• No results found

5 A 180 subunit complex of a lumazine synthase mutant violates quasi-equivalence in

5.2 Conclusions

are no similarities between the subunit interfaces among the 3 subunits within the icosahedral asymmetric unit (Figure 8 in paper V).

Modeling studies showed that by a slight expansion of the capsid, the widened LSAQ-IDEA pentamers can be fitted into a wild type T = 1 icosahedral capsid without serious clashes. Recent EM studies have confirmed that the wild-type enzyme fromB. subtilis forms an enlarged T = 1 icosahedral capsid with an outer diameter of 186 Å instead of 156 Å (L. Xing, unpublished results). Pentamers in this enlarged T = 1 capsid are also widened and their conformation is similar to that of the pentamers in the LSAQ-IDEA mutant. It is therefore suggested, that the expanded pentameric structure, observed in this study, may serve as a model for an alternative conformation of the wild type LS pentamer as it could also be formed during the catalytic process in the form of local conformational fluctuations (Figure 5-3).

Adopting the opened conformation, the product could be released. Furthermore, there would be no steric hindrance for a substrate or product analog, e.g. 5-nitroso-6-ribitylamino-2,4(1H,3H)-pyrimidine-dione, to bind to the more exposed pyrimidine binding site. By this process, sufficient binding energy could be gained, which could trigger the conformational rearrangement leading in a ligand-driven reaction to the reconstitution of the closed pentamer structure, as it is seen in the native T = 1 capsids.10, 163

Figure 5-3. A hypothetical model of the catalytic cycle, in which the widening of the pentamer may play a role in binding of the substrates (S1 and S2) and in releasing of the products (lumazine and / or the phosphate ion). Note that the phosphate ion could either bind back to the original binding site or be released (paper II).

In the large capsid, the pentameric building blocks are widened compared to that of the wild-type enzyme. The widened pentamers may serve as a model for an alternative conformation of the wild-type enzyme playing a role in catalysis. It is shown that the opened form of the pentamer would exert no steric hindrance to substrate binding or product release. The energy gained by binding of the substrate could trigger the conformational rearrangement from the open enzymatically inactive form of the pentamer structure to the closed enzymatically active form, in accordance with ligand-driven reconstitution of T = 1 capsids from 180 subunit capsids. 10, 163

Although 180 LSAQ-IDEA subunits are assembled into a large icosahedral capsid and the number of subunits fits to the theory of quasi-equivalence assembly with T = 3, contact surface analysis has revealed no similar interactions at the interface between subunits within the icosahedral asymmetric unit or subunits around the icosahedral 2-fold, 3-fold, 5-fold and the quasi 2-fold, 3-fold and 6-fold. It is therefore concluded that the LSAQ-IDEA mutant doesn’t follow the principles of quasi-equivalence in capsid assembly.

6 ACKNOWLEDGEMENTS

The entire work and every single piece of it are largely due to the expert help of my supervisors. I would like to thank:

Prof. Rudolf Ladenstein, for offering me the opportunity to work in the X-ray group, for guiding me through the entire project, for his endless support, constant

encouragement and kindest understanding.

Dr. Winfried Meining, for those valuable advices and fruitful discussions on both theoretical and practical issues, for sharing great ideas on the project and many other scientific topics also for the great company during the past years.

Thanks to all my collaborators:

Prof. Adelbert Bacher, Dr. Markus Fischer, Dr. Ilka Haase, Prof. Mark Cushman, Dr.

Dmitri I. Svergun, Dr. Petr V. Konarev, Prof. Holland Cheng, Dr. Li Xing, Josefina Nilsson and Wit Suphamungmee for their contributions, which were indispensable for the project.

Thanks to:

Dr. Assen Koumanov and Mikael Karlström for their enormous help on studying, working and living in Sweden and for their great friendship, which I have always been enjoying very much.

Current and former colleagues in X-ray group: Dr. Andrey Karshikoff, Dr. Bin Ren, Dr. Jordi Benach, Dr. Wei Liu, Dr. Ekaterina Morgunova, Gudrun Tibbelin, Dr. Petras Kundrotas, Linda Arnfors, Dr. Heiko Bönisch, Dr. Joyce Lebbink, Niklas Hellgren, Dr.

Stefan Knapp, Dr. Thijs Kaper and Dr. Ida Helene Steen for their help and pleasant company.

Colleagues in CSB: Prof. Kurt Berndt, Prof. Lenart Nilsson, Prof. Hans Hebert, Ana Caballero-Herrera, Dr. Jan Norberg, Dr. Jianxin Duan, Cesar Santiago, Tobias Elgán, Johan Sagemark, Dr. Philip Koeck, Dr. Yijing Xian, Lars Haag, Leif Bergman and other colleagues, whose help and company have been very important for me during that time.

I greatly appreciate:

The IT and service group for their great support, especially Erik Lundgren, for his expert help with computing at CSB.

The administration board, especially Kristina Bergholm and Ingwar Lennerfors for their help throughout these years.

My dearest friends in Sweden:

Jiang Wu, Kejun Li, Shujing Zhang, Li Lan, Roger Eriksson, Xin Ma, Yuli Cao, Yu Shi, Zhong He, Yaofeng Zhao, Jinjing Pei, Wei Jia, Yintong Xue, Yongtao Xue and Hui Zhang for friendship and supports.

I shall also thank Prof. Yonggeng Hou and Prof. Lipu Li who introduced me to the field of X-ray crystallography and have been encouraging me all the time.

I am deeply grateful to my wife, Hailin Wang, for her understanding, encouragement and love.

I appreciate my parents and brother, who have given me so much.

This work was supported by Karolinska Institutet, Södertörns Högskola and the Swedish Natural Science Research Council.

7 REFERENCES

1. Watson, J. D. & Crick, F. H. (1953). The structure of DNA. Cold Spring Harb Symp Quant Biol 18, 123-131.

2. Kendrew, J. C. (1958). Architecture of a protein molecule. Nature 182, 764-767.

3. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. &

Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181, 662-666.

4. Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A.

W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21, 129-228.

5. Sakai, H. & Tsukihara, T. (1998). Structures of membrane proteins determined at atomic resolution. J Biochem (Tokyo) 124, 1051-1059.

6. Auer, M. (2000). Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine. J Mol Med 78, 191-202.

7. Campbell, I. D. & Downing, A. K. (1998). NMR of modular proteins. Nat Struct Biol 5 Suppl, 496-499.

8. Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids, John Wiley & Sons.

9. Güntert, P. (1998). Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31, 145-237.

10. Ladenstein, R., Meyer, B., Huber, R., Labischinski, H., Bartels, K., Bartunik, H.

D., Bachmann, L., Ludwig, H. C. & Bacher, A. (1986). Heavy riboflavin synthase from Bacillus subtilis: Particle dimensions, crystal packing and molecular symmetry. J. Mol. Biol. 187, 87-100.

11. Glatter, O. & Kratky, O. (1982). Small-Angle X-ray Scattering, Academic Press., London.

12. Feigin, L. A. & Svergun, D. I. (1987). Structure Analysis by Small Angle X-ray and Neutron Scattering, Plenum Press., New York.

13. Guinier, A. & Fournet, A. (1955). Small Angle Scattering of X-rays, Wiley, New York.

14. Giacovazzo, C. (2002). Fundamentals of Crystallography. 2nd edit, Oxford University Press, Bari.

15. Drenth, J. (2002). Principles of Protein X-ray Crystallography. 2nd edit, Springer, Heidelberg.

16. McPherson, A. (1994). Crystallization of biological macromolecules, Cold spring harbor laboratory press, New York.

17. McPherson, A. (1991). Useful principles for the crystallization of proteins. In Crystallization of membrane proteins (Michel, H., ed.), pp. 2-51. CRC, Boca Rotan.

18. Unge, T. (1999). Crystallization methods. In Protein Crystallization (Bergfors, T. M., ed.), pp. 7-18. International University Line, California.

19. Garman, E. F. & Doublié, S. (2003). Cryocooling of Macromolecular Crystals:

Optimization Methods. Methods in Enzymology 368, 188-216.

20. Dauter, Z. (1999). Data-collection strategies. Acta Crystallogr D Biol Crystallogr 55 ( Pt 10), 1703-1717.

21. Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795-800.

22. Otwinowski, Z. & Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 307-326.

23. Hahn, T., Ed. (1992). International tables for crystallography. Third edit. Vol.

A: Kluwer Academic Publishers.

24. Harker, D. & Kasper, J. S. (1948). Phases of Fourier coefficients directly from crystal diffraction data. Acta Cryst., 70-75.

25. Sayre, D. (1952). The Squaring Method: a New Method for Phase Determination. Acta Cryst., 60-65.

26. Karle, J. & Hauptman, H. (1950). The Phases and Magnitudes of the Structure Factors. Acta Cryst., 181-187.

27. Woolfson, M. M. (1987). Direct Methods from Birth to Maturity. Acta Cryst.

Section A, 593-612.

28. Giacovazzo, C. (1998). Direct Phasing in Crystallography: Fundamentals and Applications, Oxford University Press, Bari.

29. Blow, D. M. & Rossmann, M. G. (1961). The single isomorphous replacement method. Acta Cryst. 14, 1195-1202.

30. North, A. C. T. (1965). The combination of isomorphous replacement and anomalous scattering data in phase determination of non-centrosymmetric reflexions. Acta Cryst. 18, 212-216.

31. Mathews, B. W. (1966). The determination of the position of anomalously scattering heavy atom groups in protein crystals. Acta Cryst. 20, 230-239.

32. Fourme, R., Shepard, W. & Kahn, R. (1995). Application of the anomalous dispersion of X-rays to macromolecular crystallography. Prog Biophys Mol Biol 64, 167-199.

33. Phillips, J. C. & Hodgson, K. O. (1980). The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta Cryst. Section A 36, 856-864.

34. Hendrickson, W. A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51-58.

35. Karle, J. (1980). Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology. International Journal of Quantum Chemistry: Quantum Biology Symposium 7, 357-367.

36. Dauter, Z., Dauter, M. & Dodson, E. (2002). Jolly SAD. Acta Cryst. Section D 58, 494-506.

37. Dodson, E. (2003). Is it jolly SAD? Acta Cryst. Section D 59, 1958-1965.

38. Rossmann, M. & Blow, D. (1962). The detection of subunits within the crystallographic asymmetric unit. Acta Cryst. 15, 24-31.

39. Rossmann, M. G. (1990). The Molecular Replacement Method. Acta Cryst.

Section A 46, 73-82.

40. Rossmann, M. G. (1972). The molecular replacement method, Gordon and Breach Science Publishers, Inc., New York.

41. Sayre, D. (1953). The double Patterson function. Acta Cryst., 430-431.

42. Hauptman, H. & Karle, J. (1962). The Calculation of Phases from the Patterson Function. Acta Cryst., 547-550.

43. Terwilliger, T. C. & Kim, S. H. (1987). Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Cryst.

Section A 43, 1-5.

44. Crowther, R. A. & Blow, D. M. (1967). A method of positioning a known molecule in an unknown crystal structure. Acta Cryst., 544-548.

45. Read, R. J. & Schierbeek, A. J. (1988). A phased translation function. J. Appl.

Cryst. 21, 490-495.

46. Lattman, E. (1985). Use of the rotation and translation functions. Methods in Enzymology 115, 55-77.

47. Tulinsky, A. (1985). Phase Refinement/Extension by Density Modification.

Methods in Enzymology 115, 77-89.

48. Kleywegt, G. J. & Jones, T. A. (1997). Model building and refinement practice.

Methods in Enzymology 277, 208-230.

49. Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491-497.

50. Wang, B. C. (1985). Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115, 90-112.

51. Leslie, A. G. W. (1988). CCP4 Study Weekend.

52. Terwilliger, T. C. (1999). Reciprocal-space solvent flattening. Acta Crystallogr D Biol Crystallogr 55, 1863-1871.

53. Vellieux, F. M. D. & Read, R. J. (1997). Noncrystallographic symmetry averaging in phase refinement and extension. Methods in Enzymology 277, 18-53.

54. Zhang, K. Y. J. & Main, P. (1990). Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Cryst. Section A, 41-46.

55. Abrahams, J. P. & Leslie, A. G. (1996). Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr 52, 30-42.

56. Abrahams, J. P. (1997). Bias reduction in phase refinement by modified interference functions: introducing the gamma correction. Acta Crystallogr D Biol Crystallogr 53, 371-376.

57. Cowtan, K. D. & Zhang, K. Y. (1999). Density modification for

macromolecular phase improvement. Prog Biophys Mol Biol 72, 245-270.

58. Zhang, K. Y. J. (2003). Multidimensional Histograms for Density Modification.

Methods in Enzymology 374, 188-203.

59. Jones, A. T., Zou, J. Y., Cowtan, J. Y. & Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in the model. Acta Crystallogr A 47, 110-119.

60. Engh, R. A. & Huber, R. (1991). Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. Section A, 392-400.

61. Sparks, R. A. (1985). Least-squares refinement. Methods in Enzymology 115, 23-41.

62. Brünger, A. T. (1992). XPLOR manual Version, 3.865 edit. Yale University, New Haven, CT.

63. Adams, P. D., Pannu, N. S., Read, R. J. & Brünger, A. T. (1997). Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci U S A 94, 5018-5023.

64. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Cryst.

D53, 240-255.

65. Winn, M. D., Murshudov, G. N. & Papiz, M. Z. (2003). Macromolecular TLS Refinement in REFMAC at Moderate Resolutions. Methods in Enzymology 374, 300-321.

66. Brünger, A. T. & Rice, L. M. (1997). Crystallographic refinement by simulated annealing: Methods and applications. Methods in Enzymology 277, 243-269.

67. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R.

J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 54, 905-921.

68. Brünger, A. T. (1992). Free R value : a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475.

69. Brünger, A. T. (1997). Free R value: Cross-validation in crystallography.

Methods Enzymol 277, 366-396.

70. Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. (1963).

Stereochemistry of polypeptide chain configurations. J Mol Biol 7, 95-99.

71. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993).

PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291.

72. Wilson, A. J. C. (1949). The Probability Distribution of X-ray Intensities. Acta Cryst. 2, 318-321.

73. Rees, D. C. & Adams, M. W. (1995). Hyperthermophiles: taking the heat and loving it. Structure 3, 251-254.

74. Niehaus, F., Bertoldo, C., Kahler, M. & Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51, 711-729.

75. Stetter, K. O. (1999). Extremophiles and their adaptation to hot environments.

FEBS Lett 452, 22-25.

76. Madigan, M. T. & Marrs, B. L. (1997). Extremophiles. Sci Am 276, 82-87.

77. Rothschild, L. J. & Mancinelli, R. L. (2001). Life in extreme environments.

Nature 409, 1092-1101.

78. Stetter, K. O. (2001). Hyperthermophilic Microorganisms. In Astrobiology: The Quest for the Conditions of Life (Horneck, G. & Baumstark-Khan, C., eds.), pp.

169-184. Springer Verlag, Berlin.

79. Guipaud, O., Marguet, E., Noll, K. M., de la Tour, C. B. & Forterre, P. (1997).

Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima. Proc Natl Acad Sci U S A 94, 10606-10611.

80. Guipaud, O. & Forterre, P. (2001). DNA gyrase from Thermotoga maritima.

Methods Enzymol 334, 162-171.

81. Bouthier de la Tour, C., Portemer, C., Kaltoum, H. & Duguet, M. (1998).

Reverse gyrase from the hyperthermophilic bacterium Thermotoga maritima:

properties and gene structure. J Bacteriol 180, 274-281.

82. Forterre, P., Bouthier De La Tour, C., Philippe, H. & Duguet, M. (2000).

Reverse gyrase from hyperthermophiles: probable transfer of a

thermoadaptation trait from archaea to bacteria. Trends Genet 16, 152-154.

83. Forterre, P. (2002). A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends in Genetics 18, 236-237.

84. Hough, D. W. & Danson, M. J. (1999). Extremozymes. Curr Opin Chem Biol 3, 39-46.

85. Forterre, P. (1996). A hot topic: the origin of hyperthermophiles. Cell 85, 789-792.

86. Stetter, K. O. (1996). Hyperthermophiles in the history of life. Ciba Found Symp 202, 1-10; discussion 11-18.

87. Huber, R. & Stetter, K. O. (2001). Discovery of hyperthermophilic microorganisms. Methods Enzymol 330, 11-24.

88. Swanson, R. V. (2001). Genome of Aquifex aeolicus. Methods Enzymol 330, 158-169.

89. Deckert, G., Warren, P. V., Gaasterland, T., Young, W. G., Lenox, A. L., Graham, D. E., Overbeek, R., Snead, M. A., Keller, M., Aujay, M., Huber, R., Feldman, R. A., Short, J. M., Olsen, G. J. & Swanson, R. V. (1998). The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353-358.

90. Gomes, J. & Steiner, W. (2004). The Biocatalytic Potential of Extremophiles and Extremozymes. Food Technol. Biotechnol. 42, 223–235.

91. Burg, B. v. d. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology 6, 213-218.

92. Schellman, J. A. (1987). The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem 16, 115-137.

93. Privalov, P. L. (1990). Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25, 281-305.

94. Tanford, C. (1968). Protein denaturation. Adv Protein Chem 23, 121-282.

95. Tanford, C. (1970). Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem 24, 1-95.

96. Knapp, S., Karshikoff, A., Berndt, K. D., Christova, P., Atanasov, B. &

Ladenstein, R. (1996). Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus. Journal of Molecular Biology 264, 1132-1144.

97. Vieille, C. & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65, 1-43.

98. Rose, G. D. & Wolfenden, R. (1993). Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct 22, 381-415.

99. Spassov, V. Z., Karshikoff, A. D. & Ladenstein, R. (1995). The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Science 4, 1516-1527.

100. Dill, K. A. (1990). The meaning of hydrophobicity. Science 250, 297-298.

101. Murphy, K. P. (2001). Stabilization of Protein Structure. In Protein Structure, Stability, and Folding (Murphy, K. P., ed.), pp. 1-16. Humana press, Iowa City.

102. Stellwagen, E. & Wilgus, H. (1978). Relationship of protein thermostability to accessible surface area. Nature 275, 342-343.

103. Frank, H. S. & Evans, M. W. (1945). Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. J. Chem.

Phy. 13, 507-532.

104. Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv Protein Chem 14, 1-63.

105. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry 29, 7133-7155.

106. Makhatadze, G. I. & Privalov, P. L. (1993). Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration. J Mol Biol 232, 639-659.

107. Privalov, P. L. & Makhatadze, G. I. (1993). Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol 232, 660-679.

108. Myers, J. K. & Pace, C. N. (1996). Hydrogen bonding stabilizes globular proteins. Biophys J 71, 2033-2039.

109. Perutz, M. F. (1978). Electrostatic effects in proteins. Science 201, 1187-1191.

110. Perutz, F. M. & Raidt, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin. Nature 255, 256-259.

111. Russell, R. J. M., Hough, D. W., Danson, M. J. & Taylor, L. T. (1994). The crystal structure of citrate synthase from the thermophilic archaeon Thermoplasma acidophilum. Structure 2, 1157-1167.

112. Korolev, S., Nayal, M., Barnes, W. M., Di Cera, E. & Waksman, G. (1995).

Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5 Å resolution: structural basis for thermostability. Proc. Natl. Acad. Sci.

USA 92, 9264-9268.

113. Knapp, S., de Vos, W. M., Rice, D. & Ladenstein, R. (1997). Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 3.0 Å resolution. J. Mol. Biol. 267, 916-932.

114. Korndörfer, I., Steipe, B., Huber, R., Tomschy, A. & Jaenicke, R. (1995). The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 Å resolution. J. Mol.

Biol. 246, 511-521.

115. Kelly, C. A., M., N., Onishi, Y., Beppu, T. & Birktoft, J. J. (1993).

Determinants of protein stability in the 1.9 Å crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry 32, 3913-3922.

116. Ren, B., Tibbelin, G., de Pascale, D., Rossi, M., Bartolucci, S. & Ladenstein, R.

(1998). A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nature Struct. Biol. 7, 602-611.

117. Yip, K. S. P., Stillman, T. J., Britton, K. L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., Engel, P. C., Pasquo, A., Chiaraluce, R., Consalvi, V., Scandurra, R. & Rice, D. (1995). The structure of Pyrococcus furiosus

glutamate dehydrogenase reveals a key role for ionpair networks in maintaining enzyme stability at extreme temperatures. Structure 3, 1147-1158.

118. Baker, P. J., Britton, K. L., Engel, P. C., Farrants, G. W., Lilley, K. S., Rice, D.

W. & Stillman, T. J. (1992). Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins 12, 75-86.

119. Elcock, A. H. (1998). The stability of salt bridges at high temperatures:

implications for hyperthermophilic proteins. J. Mol. Biol. 284, 489-502.

120. Karshikoff, A. & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a "traffic rule" for hot roads. Trends Biochem Sci 26, 550-556.

121. Vetriani, C., Maeder, D. L., Tolliday, N., Yip, K. S., Stillman, T. J., Britton, K.

L., Rice, D. W., Klump, H. H. & Robb, F. T. (1998). Protein thermostability above 100 ºC: a key role for ionic interactions. Proceedings of the National Academy of Sciences of the United States of America 95, 12300-12305.

122. Lebbink, J. H., Knapp, S., van der Oost, J., Rice, D., Ladenstein, R. & de Vos, W. M. (1999). Engineering activity and stability of Thermotoga maritima glutamate dehydrogenase. II: construction of a 16-residue ion-pair network at the subunit interface. Journal of Molecular Biology 289, 357-369.

123. Lehninger, A. L., Nelson, D. L. & Cox, M. M. (1993). Principles of biochemistry. 2nd edit, Worth Publishers, Inc., New York.

124. Massey, V. (2000). The chemical and biological versatility of riboflavin.

Biochem Soc Trans 28, 283-296.

125. Murty, C. V. & Adiga, P. R. (1982). Pregnancy suppression by active

immunization against gestation-specific riboflavin carrier protein. Science 216, 191-193.

126. White, H. B., 3rd & Merrill, A. H., Jr. (1988). Riboflavin-binding proteins.

Annu Rev Nutr 8, 279-299.

127. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G.

M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. & Kroemer, G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446.

128. Yagita, K., Tamanini, F., van Der Horst, G. & Okamura, H. (2001). Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278-281.

129. Dagley, S. (1987). Lessons from biodegradation. Annu Rev Microbiol 41, 1-23.

130. Jorns, M. S., Wang, B. & Jordan, S. P. (1987). DNA repair catalyzed by Escherichia coli DNA photolyase containing only reduced flavin: elimination of the enzyme's second chromophore by reduction with sodium borohydride.

Biochemistry 26, 6810-6816.

131. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77-84.

132. Cole, S. T., Eiglmeier, K., Parkhill, J., James, K. D., Thomson, N. R., Wheeler, P. R., Honore, N., Garnier, T., Churcher, C., Harris, D., Mungall, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R. M., Devlin, K., Duthoy, S., Feltwell, T., Fraser, A., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Lacroix, C., Maclean, J., Moule, S., Murphy, L., Oliver, K., Quail, M. A., Rajandream, M. A., Rutherford, K. M., Rutter, S., Seeger, K., Simon, S., Simmonds, M., Skelton, J., Squares, R., Squares, S., Stevens, K., Taylor, K., Whitehead, S., Woodward, J. R. & Barrell, B. G. (2001). Massive gene decay in the leprosy bacillus. Nature 409, 1007-1011.

133. Sassetti, C. M. & Rubin, E. J. (2003). Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989-12994.

134. Coates, A., Hu, Y., Bax, R. & Page, C. (2002). The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1, 895-910.

135. Knowles, J. & Gromo, G. (2003). A guide to drug discovery: Target selection in drug discovery. Nat Rev Drug Discov 2, 63-69.

136. Bacher, A., Baur, R., Eggers, U., Harders, H. D., Otto, M. K. & Schnepple, H.

(1980). Riboflavin synthases of Bacillus subtilis. Purification and properties.

Journal of Biological Chemistry 255, 632-637.

137. Bacher, A. (1986). Heavy riboflavin synthase from Bacillus subtilis. Methods in Enzymology 122, 192-199.

138. Bacher, A., Schnepple, H., Mailänder, B., Otto, M. K. & Ben-Shaul, Y. (1980).

Flavins and Flavoproteins (Yagi, K. Y., T., Ed.), Japan Scientific Societies Press, Tokyo.

139. Plaut, G. W. (1963). Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J Biol Chem 238, 2225-2243.

140. Plaut, G. W. E. (1971). Metabolism of water soluble vitamins. The biosynthesis of riboflavin. In Comprehensive Biochemistry (Florkin, M. & Stotz, E. H., eds.), pp. 11-45. Elsevier, Amsterdam.

141. Wacker, H., Harvey, R. A., Winestock, C. H. & Plaut, G. W. E. (1964). 4-(1'-D-Ribitylamino)-5-amino-2,6-dihydroxypyrimidine, the second product of the riboflavin synthetase reaction. J. Biol. Chem. 239, 3493-3497.

142. Plaut, G. W., Smith, C. M. & Alworth, W. L. (1974). Biosynthesis of water-soluble vitamins. Annual Review of Biochemistry 43, 899-922.

143. Liao, D. I., Calabrese, J. C., Wawrzak, Z., Viitanen, P. V. & Jordan, D. B.

(2001). Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis. Structure (Camb) 9, 11-18.

144. Liao, D. I., Wawrzak, Z., Calabrese, J. C., Viitanen, P. V. & Jordan, D. B.

(2001). Crystal structure of riboflavin synthase. Structure (Camb) 9, 399-408.

145. Gerhardt, S., Schott, A. K., Kairies, N., Cushman, M., Illarionov, B., Eisenreich, W., Bacher, A., Huber, R., Steinbacher, S. & Fischer, M. (2002).

Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. Structure (Camb) 10, 1371-1381.

146. Truffault, V., Coles, M., Diercks, T., Abelmann, K., Eberhardt, S., Luttgen, H., Bacher, A. & Kessler, H. (2001). The solution structure of the N-terminal domain of riboflavin synthase. J Mol Biol 309, 949-960.

147. Eberhardt, S., Zingler, N., Kemter, K., Richter, G., Cushman, M. & Bacher, A.

(2001). Domain structure of riboflavin synthase. Eur J Biochem 268, 4315-4323.

148. Meining, W., Eberhardt, S., Bacher, A. & Ladenstein, R. (2001). Crystallization and preliminary crystallographic analysis of the recombinant N-terminal domain of riboflavin synthase. Acta Cryst. D 57, 1296-1299.

149. Haase, I., Mortl, S., Kohler, P., Bacher, A. & Fischer, M. (2003). Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of

Methanococcus jannaschii. Eur J Biochem 270, 1025-1032.

150. Zheng, Y. J., Jordan, D. B. & Liao, D. I. (2003). Examination of a reaction intermediate in the active site of riboflavin synthase. Bioorg Chem 31, 278-287.

151. Meining, W., Eberhardt, S., Bacher, A. & Ladenstein, R. (2003). The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6A resolution. J Mol Biol 331, 1053-1063.

152. Illarionov, B., Haase, I., Bacher, A., Fischer, M. & Schramek, N. (2003).

Presteady state kinetic analysis of riboflavin synthase. J Biol Chem 278, 47700-47706.

153. Bacher, A. & Mailander, B. (1978). Biosynthesis of riboflavin in Bacillus subtilis: function and genetic control of the riboflavin synthase complex.

Journal of Bacteriology 134, 476-482.

154. Bacher, A. & Ludwig, H. C. (1982). Ligand-binding studies on heavy riboflavin synthase of Bacillus subtilis. European Journal of Biochemistry 127, 539-545.

155. Volk, R. & Bacher, A. (1990). Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase. Journal of Biological Chemistry 265, 19479-19485.

156. Volk, R. & Bacher, A. (1991). Biosynthesis of riboflavin. Studies on the mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase. Journal of Biological Chemistry 266, 20610-20618.

157. Bacher, A. & Ladenstein, R. (1990). The Lumazine Synthase/Riboflavin Synthase Complex of Bacillus subtilis. In Chemistry and Biochemistry of Flavoenzymes (Müller, F., ed.), Vol. I., pp. 215-259. Chemical Rubber & Co., Boca Raton, Florida.

158. Schott, K., Ladenstein, R., Konig, A. & Bacher, A. (1990). The lumazine synthase-riboflavin synthase complex of Bacillus subtilis: Crystallization of reconstituted icosahedral E-subunit capsids [published erratum appears in J.

Biol. Chem., 1990 Oct 15;265(29):18041]. Journal of Biological Chemistry 265, 12686-12689.

159. Bacher, A., Fischer, M., Kis, K., Kugelbrey, K., Mortl, S., Scheuring, J., Weinkauf, S., Eberhardt, S., Schmidt-Base, K., Huber, R., Ritsert, K.,

Cushman, M. & Ladenstein, R. (1996). Biosynthesis of riboflavin: structure and mechanism of lumazine synthase. Biochemical Society Transactions 24, 89-94.

160. Ladenstein, R., Ludwig, H. C. & Bacher, A. (1983). Crystallization and preliminary X-ray diffraction study of heavy riboflavin synthase from Bacillus subtilis. Journal of Biological Chemistry 258, 11981-11983.

Related documents