• No results found

Sammanfattning på svenska

Proteinveckning är den process där polypeptider veckas till sina nativa struk-turer. Ogynnsamma miljöförhållanden och vissa genetiska anlag inverkar nega-tivt på veckningsprocessen och ökar därför produktionen av giftiga felveckade proteiner. Felveckade proteiner identifieras och avlägsnas från cellen genom en kvalitetskontrollprocess. I denna process spelar molekylära chaperoner ur Hsp70-familjen en nyckelroll genom att direkt identifiera felveckade proteiner och medverka till deras avlägsnande. Hsp70:s funktion bygger på samspel med en mängd kofaktorer som reglerar dess katalytiska ATPasaktivitet. I denna avhandling har jag använt mig av en kombination av metoder från jästgenetik, cellbiologi och biokemi för att experimentellt få en inblick i hur Hsp70:s funkt-ion regleras av kofaktorer som accelererar nukleotidutbyte, s. k. nukleotidutby-tesfaktorer. Studie I visar att nukleotidutbytesfaktorn Fes1 är nödvändig för kvalitetskontroll av proteiner i cytosolen. Våra genetiska studier visar att Fes1:s aktivitet krävs för att felveckade proteiner i komplex med Hsp70 ska spjälkas av ubiquitin-proteasomsystemet. Mer specifikt så främjar Fes1 en fysiskt förbin-delse mellan dessa komplex och ubiquitinyleringsenzymet Ubr1 som i sin tur sänder det felveckade proteinet för spjälkning i proteasomen. De observerade konsekvenserna av att genetisk inaktivera Fes1 är att felveckade proteiner inte spjälkas utan istället upplagras som proteinaggregat samt aktiverar ett uråldrigt genetiskt stressprogram. Sammantaget visar de experimentalla resultaten att Fes1 sänder felveckade proteiner till spjälkning genom att släppa loss dem från Hsp70. Studie II visar ett ovanligt fall av alternativ splitsning av FES1-transkripten som leder till att de två isoformerna Fes1S och Fes1L uttrycks. De båda isoformerna är fullt aktiva nucleotidsutbytesfaktorer men har olika lokali-sering i cellen. Fes1S lokaliserar till cytosolen och krävs för spjälkning av fel-veckade proteiner. Fes1L däremot lokaliserar till cellkärnan och utgör det första exemplet i jästceller på en nuklotidutbytesfaktor i cellkärnan. Upptäckten av isofomer av en nukleotidutbytesfaktor har betydelse för hur vi ser på mekan-ismen bakom kvalitetkontroll av proteiner. Studie III beskriver mekanmekan-ismen som Fes1 använder för att kontrollera Hsp70:s funktion. Fes1 bär på en evolut-ionärt konserverad N-terminal domän som saknar fast struktur, är modulär och krävs för att Fes1 ska fungera i cellen. Domänen bildar ATP-känsliga komplex med Hsp70, vilket tyder på att den binder i samma säte som felveckade protei-ner och därmed påverkar deras interaktion med Hsp70. Studie IV beskriver en ny metod baserad på homolog rekombination i jäst som underlättar byggandet av plasmider för genuttryck i bakterier. Upptäckerna i avhandlingen ger vid handen att Fes1 spelar en nyckelroll i de mekanismer i cellen som utför kvali-tetskontroll av proteiner och sänder felveckade proteiner för spjälkning i prote-asomen. I ett bredare perspektiv ger dessa fynd viktig information som krävs för att utveckla modeller som beskriver hur Hsp70:s funktion regleras av olika kofaktorer för att delta i veckning och spjälkning av proteiner.

8. Acknowledgements

I am grateful to Dr. Claes Andréasson my guru (supervisor), glad to work as your first PhD student. Thankful for giving me a wonderful opportunity to work on this project. Your patience, guidance and freedom to work in this project helped me a lot to achieve many experimental and scientific writing skills.

I would like to thank my co-supervisor Prof. Per Ljungdahl, for discussions and guiding throughout my studies for the improvement.

I will take this opportunity to thank researcher Prof. Roger Karlsson, Prof.

Eva Severinson and Prof. Ann-Kristin Östlund Farrants for creating good research environment around. This always helped me to keep up the good work. I also thank IFSU facility and thank Stina H for helping me to acquire knowledge on microscopy.

Also would like to thank Prof. Martin Ott, and his group members DBB, Stockholm University for your great inputs on my project during the discus-sions in yeast lab meetings.

I would like to thank my collaborators Prof. Jürgen Dohmen, University of Cologne, Cologne, Germany and Asst. Prof. Marc Friedländer, Stockholm University, Stockholm for the collaboration to execute my projects and your contributions are very much valuable. I would like to thank Prof. Lena Mä-ler and Prof. Peter Brzezinski, DBB, Stockholm University, for providing opportunity to carry out experiments in your laboratory. Jobst L for you kindness and helping me with the CD spectra very much in time.

I would like to thank administrative staff for helping me during my entire studies at MBW-WGI, Stockholm University.

Special thanks to my lab mates Jayasankar, Anna and Ganapathi for all your support, we were not just colleagues also good friends. Jayasankar for the contribution to my project and you are a great teammate. Thanks Ga-napathi - ubiquitin expert in our lab, you have always added good inputs on my project. Thank Anna my Swedish tutor and being contributing to my work and for baking cakes for us. Glad to be with you all, it was really great fun working and the moments are cherishable. Thanks for your patience and taking your time on reading my thesis. Thanks to Mats for your scientific inputs on my project. Finally thank Fabian and João for all the conversa-tions together.

Thanks to Kicki Ryman for being so kind to me and helping whenever re-quired. Thanks to past and present members of Per Ljungdahl group for all the fun together and not making me feel lonely during the beginning of my studies. Thanks to Antonio, Andreas, Fitz and Marina for all crazy talks and joy together. Special thanks to Antonio for you kindness and your scientific thoughts and the experience in teaching together. It was pleasure to work with my present colleagues Misa, Yuan, Anna R, Jaclyn and past colleagues Ming, Natalija, Anna V, Steffi, Fathemehm, Sara, Matthias, Deike for all the fun and discussions during corridor meetings. I always enjoyed playing badminton with Jayashankar, Toni, Matthias and Ming. Within a short span of time, it was nice to interact with Sabarina Büttner and group mem-bers and thank you for the help and discussions. Thanks to my F4 north cor-ridor friends for making it more productive environment.

To my friends and family, you should know that your support and encour-agement was worth more than I can express on paper. I am really indebted for all those who have given me their friendship, stood by me in my odd times and provided me lot of support and practical help.

Personally, I would like to thank my family: my uncle Shivalingappa, Aunt Ratnamma, father Chandappa Gowda, mother Yashodamma for supporting me throughout the years, financially, practically and with moral support. I would like to dedicate my thesis to my uncle Mr. Rudregowda S and his wife, my aunt Shakunthala Y P who actually supported me to reach this goal and would not had happened without their support and encouragement.

I am always grateful to Harsha anna - Geetha akka ; Chaitra akka - Arun anna for your support and encouragement. You and your family have always stood along with me in all my accomplishments and have encouraged me.

Special thanks to my sisters family Sunitha – Mallikarjun, Sudha – Somanath for your immense support all the time and glad to get great sisters like you. You both are my real support and have given me unconditional love throughout my life and studies.

Special thanks to my wife Divya for love, affection and huge support have helped me to accomplish this goal. And thanks to Bhavya, my uncle Shival-ingappa and my aunt Ambika for your affection and support.

My extended thanks to Eshwarappa and family; Late Nagendrappa and his family; C Rudrappa and his family and LG family at Basavapatna for your love and affection and each one of your family members have directly or indirectly contributed to achieve this.

My thanks to Harisha and Shruthi for all the fun together and helping me in all kinds. Harisha you were with me in all my ups and downs. Your thoughts and positive energy are exceptional. I am glad to get a great friend like you and you are very much supportive in professional and personal life and I can never forget that. Thanks to Sagar Manoli for introducing me to the world of Stockholm and all the help and support together with Nirmala.

Thanks Samarth for all the fun and enjoyment together and so many years of friendship being together and Sonam is the best match for you in all aspect.

Thanks to our Stockholm friends Harsha-Shreya; Jayanth-Vinutha;

Swaroop-Praghna for all the fun at get togethers and are never forgettable.

My friends Vinay, Srikanth, Vikaram, Sundar, Vineeth, Ganesh and Ma-hesh whom I met in Stockholm had lot of fun. Your warm friendship and was great being with you guys and we have many unforgettable moments.

My short time at Uppsala made good Uppsalites. Chethan my best friend and for being so helpful at difficult times and all the good memories staying together are always exceptional, Shwetha is your perfect life partner. Nikhil and Lakshmi - thank you so much for the fun together and I am really grate-ful for the hospitality. My buddy Raghuveer and Madhu being a kind friends and it was nice being with you both.

Not but not least, I would like to thank my all relatives and friends who di-rectly or indidi-rectly supported me throughout my studies.

9. References

Abrams, J.L., J. Verghese, P.A. Gibney, and K.A. Morano. 2014.

Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. The Journal of biological chemistry. 289:13155-13167.

Agashe, V.R., M.C. Shastry, and J.B. Udgaonkar. 1995. Initial hydrophobic collapse in the folding of barstar. Nature. 377:754-757.

Alberti, S., K. Bohse, V. Arndt, A. Schmitz, and J. Hohfeld. 2004. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell. 15:4003-4010.

Alberti, S., C. Esser, and J. Hohfeld. 2003. BAG-1--a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones. 8:225-231.

Albuquerque, C.P., M.B. Smolka, S.H. Payne, V. Bafna, J. Eng, and H.

Zhou. 2008. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular & cellular proteomics : MCP. 7:1389-1396.

Anckar, J., and L. Sistonen. 2011. Regulation of HSF1 Function in the Heat Stress Response: Implications in Aging and Disease. Annual Review of Biochemistry. 80:1089-1115.

Andréasson, C., J. Fiaux, H. Rampelt, S. Druffel-Augustin, and B. Bukau.

2008. Insights into the structural dynamics of the Hsp110–Hsp70 interaction reveal the mechanism for nucleotide exchange activity.

Proceedings of the National Academy of Sciences. 105:16519-16524.

Anfinsen, C.B. 1973. Principles that govern the folding of protein chains.

Science. 181:223-230.

Ares, M., L. Grate, and M.H. Pauling. 1999. A handful of intron-containing genes produces the lion's share of yeast mRNA. Rna. 5:1138-1139.

Ast, G. 2004. How did alternative splicing evolve? Nature reviews. Genetics.

5:773-782.

Balch, W.E., R.I. Morimoto, A. Dillin, and J.W. Kelly. 2008. Adapting Proteostasis for Disease Intervention. Science. 319:916-919.

Baldwin, R.L., and G.D. Rose. 1999. Is protein folding hierarchic? II.

Folding intermediates and transition states. Trends Biochem Sci.

24:77-83.

Banski, P., H. Mahboubi, M. Kodiha, S. Shrivastava, C. Kanagaratham, and U. Stochaj. 2010. Nucleolar targeting of the chaperone hsc70 is regulated by stress, cell signaling, and a composite targeting signal which is controlled by autoinhibition. The Journal of biological chemistry. 285:21858-21867.

Bartel, B., I. Wunning, and A. Varshavsky. 1990. The recognition component of the N-end rule pathway. The EMBO journal. 9:3179-3189.

Baxter, B.K., and E.A. Craig. 1998. Isolation of UBP3, encoding a de-ubiquitinating enzyme, as a multicopy suppressor of a heat-shock mutant strain of S. cerevisiae. Current genetics. 33:412-419.

Becker, J., and E.A. Craig. 1994. Heat-shock proteins as molecular chaperones. European Journal of Biochemistry. 219:11-23.

Bengtson, M.H., and C.A. Joazeiro. 2010. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature. 467:470-473.

Boorstein, W., T. Ziegelhoffer, and E. Craig. 1994. Molecular evolution of the HSP70 multigene family. J Mol Evol. 38:1-17.

Bracher, A., and J. Verghese. 2015. The nucleotide exchange factors of Hsp70 molecular chaperones. Frontiers in molecular biosciences.

2:10.

Brauer, M.J., C. Huttenhower, E.M. Airoldi, R. Rosenstein, J.C. Matese, D.

Gresham, V.M. Boer, O.G. Troyanskaya, and D. Botstein. 2008.

Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell. 19:352-367.

Buchberger, A., B. Bukau, and T. Sommer. 2010. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms.

Molecular cell. 40:238-252.

Cattaneo, M., R. Dominici, M. Cardano, G. Diaferia, E. Rovida, and I.

Biunno. 2012. Molecular chaperones as therapeutic targets to counteract proteostasis defects. Journal of cellular physiology.

227:1226-1234.

Cheetham, M.E., and A.J. Caplan. 1998. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones. 3:28-36.

Chu, A., N. Matusiewicz, and U. Stochaj. 2001. Heat-induced nuclear accumulation of hsc70s is regulated by phosphorylation and inhibited in confluent cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

15:1478-1480.

Cohen, F.E., and J.W. Kelly. 2003. Therapeutic approaches to protein-misfolding diseases. Nature. 426:905-909.

Craig, E.A., and K. Jacobsen. 1984. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell.

38:841-849.

Craig, E.A., and K. Jacobsen. 1985. Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Molecular and cellular biology. 5:3517-3524.

Cuenca-Bono, B., V. García-Molinero, P. Pascual-García, H. Dopazo, A.

Llopis, J. Vilardell, and S. Rodríguez-Navarro. 2011. SUS1 introns are required for efficient mRNA nuclear export in yeast. Nucleic Acids Research. 39:8599-8611.

Cuervo, A. 2004. Autophagy: Many paths to the same end. Mol Cell Biochem. 263:55-72.

Cuervo, A.M., L. Stefanis, R. Fredenburg, P.T. Lansbury, and D. Sulzer.

2004. Impaired Degradation of Mutant α-Synuclein by Chaperone-Mediated Autophagy. Science. 305:1292-1295.

Cyr, D.M., T. Langer, and M.G. Douglas. 1994. DnaJ-like proteins:

molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci. 19:176-181.

Demartino, G.N., and T.G. Gillette. 2007. Proteasomes: machines for all reasons. Cell. 129:659-662.

Deshaies, R.J., and C.A. Joazeiro. 2009. RING domain E3 ubiquitin ligases.

Annu Rev Biochem. 78:399-434.

Dobson, C.M. 2004. Principles of protein folding, misfolding and aggregation. In Seminars in cell & developmental biology. Vol. 15.

Elsevier. 3-16.

Dobson, C.M., and M. Karplus. 1999. The fundamentals of protein folding:

bringing together theory and experiment. Current opinion in structural biology. 9:92-101.

Doyle, S.M., O. Genest, and S. Wickner. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nature reviews. Molecular cell biology. 14:617-629.

Dragovic, Z., S.A. Broadley, Y. Shomura, A. Bracher, and F.U. Hartl.

2006a. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. The EMBO journal. 25:2519-2528.

Dragovic, Z., Y. Shomura, N. Tzvetkov, F.U. Hartl, and A. Bracher. 2006b.

Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p. Biological chemistry.

387:1593-1600.

Easton, D.P., Y. Kaneko, and J.R. Subjeck. 2000. The hsp110 and Grp170 stress proteins: newly recognized relatives of the Hsp70s. Cell stress

& chaperones. 5:276.

Eisele, F., and D.H. Wolf. 2008. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS letters.

582:4143-4146.

Engebrecht, J., K. Voelkel-Meiman, and G.S. Roeder. 1991. Meiosis-specific RNA splicing in yeast. Cell. 66:1257-1268.

Fan, C.-Y., S. Lee, and D.M. Cyr. 2003. Mechanisms for regulation of Hsp70 function by Hsp40. Cell stress & chaperones. 8:309.

Fang, N.N., A.H. Ng, V. Measday, and T. Mayor. 2011. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat Cell Biol. 13:1344-1352.

Fersht, A.R., and V. Daggett. 2002. Protein folding and unfolding at atomic resolution. Cell. 108:573-582.

Finley, D., H.D. Ulrich, T. Sommer, and P. Kaiser. 2012. The Ubiquitin–

Proteasome System of Saccharomyces cerevisiae. Genetics.

192:319-360.

Gallagher, P.S., S.V. Clowes Candadai, and R.G. Gardner. 2014. The requirement for Cdc48/p97 in nuclear protein quality control

degradation depends on the substrate and correlates with substrate insolubility. Journal of cell science. 127:1980-1991.

Gardner, R.G., Z.W. Nelson, and D.E. Gottschling. 2005. Degradation-mediated protein quality control in the nucleus. Cell. 120:803-815.

Gautschi, M., H. Lilie, U. Fünfschilling, A. Mun, S. Ross, T. Lithgow, P.

Rücknagel, and S. Rospert. 2001. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proceedings of the National Academy of Sciences. 98:3762-3767.

Gautschi, M., A. Mun, S. Ross, and S. Rospert. 2002. A functional chaperone triad on the yeast ribosome. Proceedings of the National Academy of Sciences of the United States of America. 99:4209-4214.

Geiler-Samerotte, K.A., M.F. Dion, B.A. Budnik, S.M. Wang, D.L. Hartl, and D.A. Drummond. 2011. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proceedings of the National Academy of Sciences of the United States of America. 108:680-685.

Ghaemmaghami, S., W.K. Huh, K. Bower, R.W. Howson, A. Belle, N.

Dephoure, E.K. O'Shea, and J.S. Weissman. 2003. Global analysis of protein expression in yeast. Nature. 425:737-741.

Gietz, R.D., and R.A. Woods. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method.

Methods in enzymology. 350:87-96.

Goeckeler, J.L., A. Stephens, P. Lee, A.J. Caplan, and J.L. Brodsky. 2002.

Overexpression of Yeast Hsp110 Homolog Sse1p Suppressesydj1-151 Thermosensitivity and Restores Hsp90-dependent Activity.

Molecular Biology of the Cell. 13:2760-2770.

Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W.

Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S.G. Oliver.

1996. Life with 6000 genes. Science. 274:546, 563-547.

Gottesman, S., S. Wickner, and M.R. Maurizi. 1997. Protein quality control:

triage by chaperones and proteases. Genes & Development. 11:815-823.

Groll, M., M. Bochtler, H. Brandstetter, T. Clausen, and R. Huber. 2005.

Molecular machines for protein degradation. Chembiochem : a European journal of chemical biology. 6:222-256.

Grund, S.E., T. Fischer, G.G. Cabal, O. Antúnez, J.E. Pérez-Ortín, and E.

Hurt. 2008. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression.

The Journal of Cell Biology. 182:897-910.

Hahn, J.S., Z. Hu, D.J. Thiele, and V.R. Iyer. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Molecular and Cellular Biology. 24:5249-5256.

Hanna, J., N.A. Hathaway, Y. Tone, B. Crosas, S. Elsasser, D.S. Kirkpatrick, D.S. Leggett, S.P. Gygi, R.W. King, and D. Finley. 2006.

Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell. 127:99-111.

Hartl, F.U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature. 475:324-332.

Hartl, F.U., and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol:

from nascent chain to folded protein. Science. 295:1852-1858.

Heck, J.W., S.K. Cheung, and R.Y. Hampton. 2010. Cytoplasmic protein

Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. The Journal of biological chemistry. 257:13964-13970.

Hipp, M.S., S.H. Park, and F.U. Hartl. 2014. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends in cell biology.

24:506-514.

Ho, A.K., G.A. Raczniak, E.B. Ives, and S.R. Wente. 1998. The integral membrane protein Snl1p is genetically linked to yeast nuclear pore complex function. Molecular biology of the cell. 9:355-373.

Hochstrasser, M. 1995. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current Opinion in Cell Biology.

7:215-223.

Hossain, M.A., C.M. Rodriguez, and T.L. Johnson. 2011. Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing. Nucleic Acids Research. 39:8612-8627.

Huh, W.K., J.V. Falvo, L.C. Gerke, A.S. Carroll, R.W. Howson, J.S.

Weissman, and E.K. O'Shea. 2003. Global analysis of protein localization in budding yeast. Nature. 425:686-691.

Jones, G., Y. Song, S. Chung, and D.C. Masison. 2004. Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding. Molecular and Cellular Biology.

24:3928-3937.

Juneau, K., M. Miranda, M.E. Hillenmeyer, C. Nislow, and R.W. Davis.

2006. Introns regulate RNA and protein abundance in yeast.

Genetics. 174:511-518.

Juneau, K., C. Nislow, and R.W. Davis. 2009. Alternative splicing of PTC7 in Saccharomyces cerevisiae determines protein localization.

Genetics. 183:185-194.

Kabani, M., J.M. Beckerich, and J.L. Brodsky. 2002a. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Molecular and Cellular Biology. 22:4677-4689.

Kabani, M., and C.N. Martineau. 2008. Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity?

Current genomics. 9:338.

Kabani, M., C. McLellan, D.A. Raynes, V. Guerriero, and J.L. Brodsky.

2002b. HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS letters. 531:339-342.

Kabbage, M., and M.B. Dickman. 2008. The BAG proteins: a ubiquitous family of chaperone regulators. Cellular and molecular life sciences : CMLS. 65:1390-1402.

Kaganovich, D., R. Kopito, and J. Frydman. 2008. Misfolded proteins partition between two distinct quality control compartments. Nature.

454:1088-1095.

Kampinga, H.H., and E.A. Craig. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature reviews.

Molecular cell biology. 11:579-592.

Kettern, N., M. Dreiseidler, R. Tawo, and J. Hohfeld. 2010. Chaperone-assisted degradation: multiple paths to destruction. Biological chemistry. 391:481-489.

Kim, H.-K., R.-R. Kim, J.-H. Oh, H. Cho, A. Varshavsky, and C.-S. Hwang.

2014. The N-Terminal Methionine of Cellular Proteins as a Degradation Signal. Cell. 156:158-169.

Kim, Y.E., M.S. Hipp, A. Bracher, M. Hayer-Hartl, and F.U. Hartl. 2013.

Molecular chaperone functions in protein folding and proteostasis.

Annu Rev Biochem. 82:323-355.

Koplin, A., S. Preissler, Y. Ilina, M. Koch, A. Scior, M. Erhardt, and E.

Deuerling. 2010. A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes. The Journal of Cell Biology. 189:57-68.

Kraft, C., F. Reggiori, and M. Peter. 2009. Selective types of autophagy in

Kraft, C., F. Reggiori, and M. Peter. 2009. Selective types of autophagy in

Related documents