• No results found

Immediate effects of a single session of physical exercise on cognition and cerebral blood flow : A randomised controlled study of older adults

N/A
N/A
Protected

Academic year: 2021

Share "Immediate effects of a single session of physical exercise on cognition and cerebral blood flow : A randomised controlled study of older adults"

Copied!
15
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Immediate

effects

of

a

single

session

of

physical

exercise

on

cognition

and

cerebral

blood

flow:

A

randomized

controlled

study

of

older

adults

Gaia Olivo

a,∗

, Jonna Nilsson

a,b

, Benjamín Garzón

a,c

, Alexander Lebedev

a,d

, Anders Wåhlin

e,f

,

Olga Tarassova

b

, Maria Ekblom

b,g

, Martin Lövdén

a,c

a Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden b The Swedish School of Sport and Health Sciences, Stockholm, Sweden

c Department of Psychology, University of Gothenburg, Gothenburg, Sweden d Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden e Department of Radiation Sciences, Umeå University, Umeå, Sweden

f Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden g Department of Neuroscience, Karolinska Institute, Stockhom, Sweden

a

r

t

i

c

l

e

i

n

f

o

Keywords: Physical exercise Working memory Cerebral blood flow Cerebral perfusion Physical activity ASL

a

b

s

t

r

a

c

t

Background:Regularphysicalactivityisbeneficialforcognitiveperformanceinolderage.Asingleboutofaerobic physicalexercisecantransientlyimprovecognitiveperformance.Researchershaveadvancedimprovementsin cerebralcirculationasamediatoroflong-termeffectsofaerobicphysicalexerciseoncognition,buttheimmediate effectsofexerciseoncognitionandcerebralperfusionarenotwellcharacterizedandtheeffectsinolderadults arelargelyunknown.

Methods: Forty-nineolderadultswererandomizedtoa30-minaerobicexerciseatmoderateintensityor re-laxation.Groupswerematchedonageandcardiovascularfitness(VO2max).AverageGreyMatterBloodFlow (GMBF),measuredbyapulsedarterial-spinlabeling(pASL)magneticresonanceimaging(MRI)acquisition,and workingmemoryperformance,measuredbyfigurativen-backtaskswithincreasingloadswereassessedbefore and7minafterexercising/resting.

Results: Accuracyonthen-backtaskincreasedfrombeforetoafterexercising/restingregardlessofthetypeof activity.GMBFdecreasedafterexercise,relativetothecontrol(resting)group.Intheexercisegroup,higher n-backperformanceafterexercisewasassociatedwithlowerGMBFintherighthippocampus,leftmedialfrontal cortexandrightorbitofrontalcortex,andhighercardiovascularfitnesswasassociatedwithlowerGMBF.

Conclusion:ThedecreaseofGMBFreportedinyoungeradultsshortlyafterexercisealsooccursinolderadultsand relatestocardiovascularfitness,potentiallysupportingthelinkbetweencardiovascularfitnessand cerebrovas-cularreactivityinolderage.

1. Introduction

Physical activityis associated with better cognitive performance (Costaetal.,2019;Liu-Ambroseetal.,2018;MoreauandChou,2019) andreducedriskfordementia(Liu-Ambroseetal.,2018),depression (Kandolaetal.,2019)andstroke(Krameretal.,2019).Asinglebout ofphysicalexerciseatmoderateintensity(3–6metabolicequivalents (METs; i.e. requiringthree tosix times as much energy per minute asresting)canimprovecognitiveperformanceimmediatelyafterand atleast up until30minafterexercising(Chang etal.,2012). These acuteeffectsofphysicalexerciseareparticularlypronouncedon work-ingmemory (WM)performance (Weng et al., 2015; Pontifex et al., 2009;Vossetal.,2020;Wheeleretal.,2019)andexecutivefunctions

Correspondingauthor.

E-mailaddress:gaia.olivo@ki.se(G.Olivo).

(Wheeleretal.,2019),asindicatedbyinterventionstudiesinyounger adultsandrandomizedcontrolledtrialsinolderadults.Theimmediate exercise-inducedeffectoncerebralbloodflowmightplaya preponder-antroleinboostingcognitiveperformanceafterasingleboutofphysical activity(Davenportetal.,2012),contributingtoaugmentingthesupply ofexcitatoryneurotransmittersinkeybrainregionsshortlyafter exer-cise(McMorrisandHale,2012;Vecchioetal.,2018;Szalewskaetal., 2017),thatmaythenenhancecognitionbyinfluencingcorticalarousal (Vecchioetal.,2018;Szalewskaetal.,2017).Therelationshipbetween exercise and cognition followsan inverted U-shape, with moderate-intensityexercisebeingthemosteffectiveininducingshort-and long-termpositiveoutcomesoncognition(Changetal.,2012).Aerobic ex-ercisehasbeenindicatedasthemostefficient,possiblyexerting

benefi-https://doi.org/10.1016/j.neuroimage.2020.117500

Received16June2020;Receivedinrevisedform15September2020;Accepted21October2020 Availableonline24October2020

(2)

cialeffectsonexecutivefunctionsandWMalreadyafterinterventionsof lessthan16weeks(Cabraletal.,2019),withsmalltomoderateeffects (Sandersetal.,2019).

Although the positive effects exerted on cognition are observed acrosstheentirelifespan,exerciseseemstobemoreefficientin boost-ingcognitiveperformanceinchildrenandolderadults,whenexecutive functionsarerespectivelydevelopingordeclining(Liu-Ambroseetal., 2018;AudiffrenandAndre,2019).Arecentmeta-analysisof random-izedcontrolledtrialsinadultshashighlightedtheimportanceofagein moderatingtheeffectofregularphysicalactivityinterventions,stressing thatpositiveeffectsoncognitionareparticularlypronouncedinolder adultsover65 years(RathoreandLom, 2017).Fronto-parietalbrain regions,keycontributorstoexecutivefunctions,areinfactparticularly vulnerabletoaging,andmightthereforebemoresensitivetotheimpact ofmoderatorssuchasexercise(AudiffrenandAndre,2019).Moreover, associationareassuchasthemedialfrontalregionsandthelimbic cor-tices,whicharealsoinvolvedinexecutivefunctions,attention,learning andmemory,arethemostaffectedbythedeclineinrestingcerebral bloodflowoccurringwithaging(Bentourkiaetal.,2000;Chenetal., 2011).

Researchershavesuggestedthatangiogenesisandimprovementsin cerebralcirculationmaybecrucialforthelong-termbeneficialeffects ofphysicalexerciseoncognition(Vecchioetal.,2018;Tyndalletal., 2018).Cerebralbloodflowdeclineswithage,asconsequenceofarterial stiffness,lowerbrainengagementandactivityatrestandpossibly synap-ticloss(Bentourkiaetal., 2000).Cerebrovascularreserve,definedas theabilityofthecerebralbloodvesselstodilateinresponsetoachange inmetabolicdemand,isalsoimpairedinaging(Tyndalletal.,2018). Regularexercisemaythushelpcounteractthedetrimentalimpactof agingonbrainhealthandcirculation(BarnesandCorkery,2018),by increasingglobalcerebralbloodflow,particularlybyenhancingblood flowvelocitythrougharteriessupplyingtheneocortex,and/orby im-provingcardiovascularreactivity(Wheeleretal.,2019;Tarumietal., 2015;Brugniaux etal., 2014).However,therelationshipof cerebral andperipheral vascular function with cognitivefunction is still de-bated (Tyndall etal., 2018; Tarumietal., 2015; Lucasetal., 2012; Youngetal.,2015).Importantly,suchrelationshipseemstobemediated byseveralfactors,notleastthecognitivehealthstatusoftheindividual (Stillmanetal.,2020).Positiveeffectsof long-termphysical exercise oncognitionhavebeenreportedinhealthyolderadultsaswellasin olderadultswithmildcognitiveimpairment(MCI),thoughwith differ-entunderlyingmodificationsinthecerebralbloodflow(Alfinietal., 2019).Indeed,adultswithMCIhadahigherbloodflowintheinsula comparedwithhealthyadults,thatdecreasedtocontrollevelsafter12 weeksofexercise(Alfinietal.,2019).Healthyolderadultsshowed in-steadincreasedbloodflowintherightanteriorcingulatecortexafterthe exerciseprogram(Alfinietal.,2019).Ontheotherhand,olderadults with already developed mild-to-moderate Alzheimer disease showed noimpactofphysicalactivityoncerebralbloodflowaftera16-week moderate-to-highintensityexerciseprogram(vanderKleijetal.,2018). Long-terminterventionsfeaturingrepeatedsessionsofphysicalactivity arehoweverlikelytoengageavarietyofcompensatoryand plasticity-basedbrainmechanismsandarenotdirectlyinformativeofthe path-waysbehindtheeffectsofphysicalexercise(BassoandSuzuki,2017). Thus,theneedforamorein-depthinvestigationoftheeffectsof sin-glesessionsofphysicalexercise,particularlyifaidedbythecomparison witharestingcontrolgroupmatchedforbaselinecardiovascularfitness, hasbeenhighlighted(Stimpsonetal.,2018).

However,theimmediateeffectsofsinglesessionsofphysical exer-ciseoncerebrovascularandcognitivefunctionarenotwelldescribed sofar,andtheeffectsinthehealthyolderpopulationarelargely un-known(RathoreandLom,2017;BassoandSuzuki,2017).Thepaucity ofstudiesontheimmediateeffectsofexerciseinolderagemighthave contributedtothelimitedpossibilityformeta-analyticevidence con-cerningthecognitiveeffects(orlackthereof)ofsinglesessionsof

phys-icalactivitysofar(RathoreandLom,2017;BassoandSuzuki,2017). Moreover, littleisknownabout theimmediateeffectof physical ex-ercise on cerebrovascular responses and their relation to cognition. Similar to cognition, the cerebrovascular response tophysical exer-cisealsodependsontheintensityofexercise.Theincreaseincerebral bloodflowinfactmirrorstheintensityofthephysicalexertionupto 60%ofmaximaloxygenuptake(OgohandAinslie,2009;Queridoand Sheel,2007).Beyondthatpoint,exercise-inducedhyperventilationand sympathetically-mediatedprotectivemechanismstriggercerebral vaso-constriction, causinga plateau or evena reductionin cerebral flow (Ogoh andAinslie,2009; QueridoandSheel,2007).Independent of theintensityofexertion,thepost-exercisehypotensionand consequen-tialdropincardiacoutputleadtoaquickdecreaseincerebralblood flow,detectableafewsecondsafterthecessationoftheexercisebout (QueridoandSheel,2007).Atleastinyoungadults,uptofortyminutes mightbenecessaryforthegreymatterbloodflowtoresumeits base-linelevels(MacIntoshetal.,2014),followingaphysiologicalre-boost andreactivevasodilationinducedbycerebralhypoxiaandbythe nor-malizationofthecardiacoutput(QueridoandSheel,2007).However, findingsarestillconflicting.Increasesofapproximately20%inglobal cerebralbloodflow comparedwithbaseline aftermoderateintensity exercisehavealsobeenreportedinyoungadults,lastingupto30min afterexercise(Smithetal.,2010).Localincreasesby10–12%inblood flowhavealsobeenreportedtooccurinthehippocampusofyoungand middle-agedadultsat15,40and60minafterasingleboutof moder-ateintensityphysicalexercise(Steventonetal.,2020).Worthnoting, allthesestudieshavemeasuredcerebralbloodflowofindividualsina supinepositioninthescanner,indicatingthatperfusionchangescanbe detectedevenwhenlayingdown,whentheimpactofcardiacoutput andvascularpressureonthebrainisnotascriticalasintheupright position. Moreover, theexercise-related regulation of cerebralblood flowinolderageisstillunclear.Olderadultshaveelevatedhypocapnic responses(Stefanidisetal.,2019)(i.e.theyaremore proneto react-ingwithcerebralvasoconstrictioninresponsetohyperventilation)and lowerpartialpressureofcarbondioxide(PaCO2)comparedwithyoung adults(BrazandFisher,2016).Cerebrovascularreactivityalsoseemsto impactcognitiondifferentlyinyoungerandolderage(Catchloveetal., 2018).

Toourknowledge,nostudieshaveexaminedimmediate exercise-relatedchangesoncerebralbloodflowandcognitioninolderadults. Giventhepotentialapplicationsofexerciseastreatmentaidformild cognitive impairment and dementia prevention (Alfini et al., 2019; Gedaetal.,2010),itisofgreatimportancetounderstanditsimpact oncerebralperfusioninolderadults.Tobridgethisknowledgegap,we thereforeinvestigatedtheeffectsofasinglesessionofmoderate inten-sityphysicalexerciseoncerebralbloodflowandWMperformancein older adults.Participants, matchedonage andcardiovascular fitness (VO2max),wererandomizedtoundergo30-minofexercisingor rest-ing. Wehypothesizedthatexercisewould improveWMperformance andincreaseaveragegreymatterbloodflow(GMBF)comparedwith resting,andthattheincreaseinGMBFwouldpositivelycorrelatewith theimprovementincognitiveperformance.Wealsohypothesizedthat increasesinpulsepressurewouldbepositivelyassociatedwithincreases inGMBF.Thestudywaspre-registeredintheOpenScienceFoundation database(osf.io/ve2zj).

2. Methods

2.1. Ethics statement

Thestudywasapprovedbytheethicscommitteeofregion Stock-holminSweden(RegionalaEtikprövningsnämndeniStockholm,Dnr: 2018/1340-31/2)andcompliedwiththeprinciplesoftheDeclaration ofHelsinki.

(3)

Fig.1. Flow-chartoftheexperimentalprotocol.Theflow-chartreportsthe se-quentialsessionsoftheexperimentalprotocols.Thenumberofindividuals par-ticipatingineachsessionandthenumberofdrop-outsarenoted.

2.2. Subjects

Participantswererecruitedviaadvertisementsinlocalnewspapers andflyers inthe Stockholmareabetween September andDecember 2018,seekingforoldervolunteers,agedbetween65and75years,fora studyinvestigatingtheeffectsofexerciseandrestingonbrainfunction. Tworesearch assistantswereresponsibleforthe recruitment.A pre-liminarycheckforeligibilityaccordingtostudycriteriawasperformed viatelephoneinterviewoftheinterestedparticipants.Inclusioncriteria weretheavailabilitytoattendallsessions,adequatehearing,normal orcorrectedvision,fluentSwedish(requiredtounderstandthe instruc-tions),adequatemobilityinordertoensuretheycouldliestillinthe magneticresonanceimaging(MRI)scannerforthewholeexperimental session,right-handedness,andweightbelow120kg.Exclusioncriteria were:previousorcurrentneurologicaldiseases,includingParkinson’s Diseases,dementiaandepilepsy;ascorebelow26ontheMini-Mental StateExamination(MMSE)(Folsteinetal.,1975);previousorcurrent cardiovasculardiseases,thoughbloodpressureupto200/100mmHg wasallowed;historyofbraindamageorstroke;uncontrolledmetabolic diseases;typeIorpharmacologically-treatedtypeIIdiabetes(typeII diabeteswasallowediftreatedonlywithdietary,non-pharmacological interventions);currentcancer,unlessmorethanoneyearhadpassed sincethetreatmentend;psychiatricillness,exceptforahistoryofmild tomoderatedepressionand/oranxietyallowed;historyofheadtrauma resultinginlossofconsciousness;previousparticipationinstudies in-volvingcognitivetests;presenceofmetalinthebody;claustrophobia; soundsensitivity(duetoMRInoise); neuromotoror muscoloskeletal dysfunctionslimitingorimpedethefitnesstest;cardiovascular-active medicationspotentiallyaffectingmaximalandsubmaximalfitnesstests; ongoinginfections;chestpain.

Individualsfulfillingthestudycriteriawereinvitedtoattendan in-troductionmeetingattheAgingResearchCenter(KarolinskaInstitute, Stockholm).Theprotocolconsistedofthreesessions:introductory meet-ing,fitnesscharacterizationsession,andexperimentalsession(Fig.1).

Ofthe73individualswhohadinitiallyexpressedtheirinterestinthe study,50joinedtheexperimentalsession(Fig.1).Onewasexcluded duetoMRIsignssuggestiveofpast,undiagnosedstroke.

Samplesizewasdeterminedbystatisticalpoweranalyses(G∗Power).

Themeta-analysisof McMorrisandHale(McMorrisandHale,2012) indicatedaneffectofmoderateexercise oncognitiveperformanceof 0.5SD,butthisislikelyanoverestimationduetopublicationbias. In-stead,webasedouranalysesonaconservativeestimateofhalfofthis effect(0.25),withsmallereffectsthanthisalsobeingoflimited inter-estinthiscontext.Assuming measurementreliabilityandcorrelation amongrepeatedmeasuresof0.8forourcognitiveperformance mea-sures(Lebedevetal.,2018) andanalphalevelof0.05,weneededa totalsamplesizeof54(27pergroup)todetectthiseffectwithapower of0.8.Thefinalsamplesizewas51individuals.Atapost-hocpower analysiswiththesameabove-statedparameters,thepoweractualpower resultedtobe0.79.Moredetailscanbefoundinthepreregistration. 2.3. Behavioral and demographic measures

Duringtheintroductorymeeting,participantsreceiveddetailed in-formation concerning thestudy.Relaxation exerciseshave alsobeen reported to exert positive effects on cognition (Ma et al., 2017; Ferreiraetal.,2015;Tangetal.,2007;Gardetal.,2014;Galvinetal., 2006;Siponkoskietal.,2019),andtheparticipantswerenotinformed aboutthestudyhypothesis(i.e.whethermoderateintensityphysical ex-ercisewasexpectedtobesuperiortorestinginimprovingcognitionand brainmarkers),withtheaimofminimizingtheinfluenceofexpectations onthecognitiveperformancemeasurements.Nexttheysignedthe in-formedconsentform.Allparticipantsfilledinquestionnairesfocused ondemographicinformation,aswellastheEdinburghHandedness In-ventorytoconfirmright-handednessandtheMMSE.Habitualphysical activitywasassessedwiththeInternationalPhysicalActivity Question-naire(IPAQ)(Craigetal.,2003).Participantswerealsoaskedtorate theirmemory,toratetheirmemorycomparedtowhentheywere20 yearsold,andtoratetheiragreementwiththefollowingsentence:“I thinkwehaveacertainmentalabilitythatcannotbechangedtoany greaterdegree”.Bloodpressurewasalsomeasured.Instructionsonhow toperformthen-backtasktobedoneinthemainexperimentalsession werealsohandedout,andparticipantscouldtryitoutfor5min. 2.4. Fitness characterization

Priortothefitnesscharacterization,asecondhealthscreeningwas performedviatelephoneinterviewbyaphysicianatÅstrand Labora-toryattheSwedishSchoolofSportandHealthSciences,GIH.The fit-nesscharacterizationwasperformedatGIH.Participantsperformeda submaximalincrementaltestonacycleergometerandamaximal incre-mentalrunningtestonatreadmilltoassesstheirVO2maxandmaximal heartrate(Nilssonetal.,2020).Theheartrate,O2andCO2-data ac-quiredduringthesubmaximalcyclingwereusedtoidentifyaworkrate andheartrateatwhichtheVO2reachedaround60%ofthatrecorded duringthemaximalrunningtest.Thisworkrateisexpectedtoresultin aperceivedlevelofexertionfrom13to15ontheBorgRPEscaleand aheartrateofaround60–70%ofmaximalindividualheartrate.The submaximaltestonthebikewasnotusedtoestimateVO2max,butto identifytheindividualworkrateandheartrateduringbikingatwhich theVO2reachedaround60%oftheVO2maxrecordedduringthe maxi-malrunningtest.Thisindividualworkrateandheartratewasthenused duringbikingintheexerciseinterventionoftheexperimentalsession. ThiswasnecessarysincewedidnotrecordVO2duringtheexperimental sessions.

Thesubmaximaltestwasperformedon acycleergometer(model 828E,Monark,Varberg,Sweden).Theprotocolstartedwith4minutes cyclingat astandardworkrate(resistanceof0.5kp, 60rpm), after whichtheresistancewasincreasedinstepsof0.5–1kp,untilreaching

(4)

60–80%ofindividualmaximalcapacityandarateofperceivedexertion (RPE)ofaround16(andnotabove16).

Themaximalincrementalrunningtestonatreadmillwasusedto di-rectlymeasureVO2max.Participantswarmedupfor5–10minbefore startingthetest.Thetreadmillwasinitiallysettoaninclineof1° and acomfortablespeed(aroundRPE12–13).Inclinedegreeand/orspeed wereincreasedeveryminuteuntilvolitionalexhaustion.Participants woreasafetyharnesstopreventfallingandincreasetheirconfidence inreachingexhaustion.VO2maxwasmeasuredusingacomputerized metabolicsystem(JaegerOxyconPro,Hoechberg,Germany). Accord-ingtopreviousstudies(Bjorkmanetal.,2016;Ekblom-Baketal.,2014), thefulfilmentofthreeoutoffiveofthefollowingcriteriawasrequired toacceptthevalidityoftheVO2maxmeasurement:(a)VO2was lev-elingoff despiteanincreaseinspeedordecline,(b)RPEexceeded16, (c)arespiratoryexchangeratioexceeded1.1,(d)maximalHRwithin ±15beatsperminutefromage-predictedmaximalHRand(e)awork withtimeabove6minuteswasperformed.Thehighest30secondsof registeredvaluesofVO2werereferredtoasVO2max.

2.5. Randomization and blinding

Beforetheexperimentalsession,participantswererandomized(1:1) totwogroups:restingandexercisingcondition.AgeandVO2maxwere usedasstratifiers.Therandomizationwasconductedusinglabel shuf-flingwithpost-hocnon-parametrictestsforthestratifiers,asdescribed byLebedevetal.(2020).Thecodefortherandomization procedure waswrittenbyALandusedbyALandMVH(seniorlabmanager;see acknowledgments)toallocatetheparticipantstotheexerciseorresting condition.Thesubjectswerenotawareofwhichoftheparadigms rep-resentedcontrolandactiveconditions.Noblindingwasrequiredforthe staff collectingthedataforthisstudy.

2.6. Experimental session protocol

Noblindingwasrequiredforthisstudy.Theexperimentalsession wasperformedat theSiemens Prisma3-Teslafacilityatthe Karolin-skaUniversityHospitalinHuddinge.Priortothescanning,participants wereallowedtopracticetheWMtaskfor10min.MRIacquisitionwas carriedout atbaseline,andafter30minofexercise orresting. Sub-jectsrandomizedtotheexercisegroupcycledonastationarybikefor 30min,startingattheintensityestimatedfromthefitness characteri-zation.Subjectsrandomlyallocatedtotherestingconditionwereasked tolaydownandrelaxfor30min,whilelisteningtorelaxingmusicwith water-soundsinthebackground.Heartratewasmeasuredwitha chest-strapheartratemonitorthroughouttheperiodbetweenthescanning.

Thepost-testMRIscanningstartedsevenminutesaftertheendof the;thistimewasnecessaryforplacing,inarelaxedmanner,the sub-jectbackinthescanner.Systolicanddiastolicbloodpressurewas mea-suredatfourdifferenttime-points:beforepre-testscanning;after pre-testscanning(beforeexercising/restingfor30min);afterphysical exer-cise/resting(beforethepost-testscanning);andafterpost-testscanning. Theimagingprotocolconsistedofgreymatterbloodflowassessmentvia awhole-brain3Dpulsedarterial-spinlabeling(pASL) sequence, task-fMRIacquiredduringtheperformanceofthen-backtask;anatomical assessmentviaT1-weightedmagnetizationpreparedgradient-echo se-quence(MPRAGE).AroutineclinicalT2-weightedstructuralMRIwas alsoacquiredatpre-testfortheneuroradiologicalassessmentofthe par-ticipants.Forthecurrentstudyandaccordingtopreregistration,only thepASLandtheMPRAGEsequenceswereincludedintheanalyses. 2.7. Adverse events

Onesubjectexhibitedunstableheart-beatafterthemaximalfitness test,andwasbroughttothehospitaltoseekmedicalattention. This subjectwasexcludedfromtherandomizationprocessandthusfromthe

study. Nootheradverse eventsoccurred duringthephysical activity procedures.

2.8. . N-Back task

N-backperformancewasmeasuredbeforeandaftertheexerciseor restingsession.Thetaskconsistedofafiguraln-backtasktoassessWM performance.Three blockswithincreasingcognitiveload(1-back, 2-back,3-back)wereadministeredinanalternatefashionforthreetimes, witha 4-sfixationscreen betweenblocks indicatingtherulefor the forthcominglevel.Eachblocklastedoneminute.Theperformanceon thetaskwasexpressedintermsofaccuracy,calculatedas:

(correcthits+correctrejections)∕totalstimuli;

Accuracyforthe1-back,2-back,and3-backwascalculated,along withaverageaccuracyacrossloads.Reactiontimewasalsorecorded. Priortopre-testimaging,ashortpracticeofthen-backtaskwas per-formedwhenthesubjectwasinthescanner.Duetoamalfunctioningof thekeyboard,then-backdataofnineparticipantscouldnotberecorded. 2.9. MRI acquisition

Greymatterbloodflowwasrecordedviaawhole-brain3Dpulsed arterial-spinlabeling (pASL)sequence(scanduration≈5min). Arte-rialspinlabelingmeasurescerebralbloodflowbymagnetically label-ingarterialwaterandusingitasanendogenoustracer.Thefollowing parameters wereusedfor thepASL acquisition:repetitiontime(TR) 4000ms;timetoecho(TE)12ms:inversiontime(TI)2000ms;field ofview(FOV)128×128;1.9×1.9×4.5mm3;slicethickness4.5mm;

32slices.T1-weightedmagnetizationpreparedgradient-echosequence (MPRAGE)wasusedtoassessbrainstructure(scanduration≈5min), withthefollowingparameters:TR2300ms;TE2.01ms;flipangle:9°; FOV240 × 256;voxelsixe:1mm3;slicethickness1mm;208slices.

2.10. ASL images pre-processing

Priortopre-processing,ASLdatawerecheckedforoutlierson move-ment.Rootmeansquaresignalchange(DVARS)values,definedasthe rootmeansquareintensitydifferenceofpairedvolumes(volumeNto volume N + 1) (Power et al., 2012),wereused tocheck for move-ment.Data-pointwithDVARSvaluesexceedingthethresholdof75th percentile+1.5times theInterQuartileRange(IQR)wereexcluded. Thenumberofdata-pointswithexcessivemovementrangedbetween0 and15.Subjectswithmorethan30%ofthedata-pointsexceedingthis thresholdwereremoved.Thisledtotheexclusionofthreeindividuals, ofwhichonesubjectbelongedtotheexercisegroupandtwosubjects belongedtotherestinggroup.

ASLdatawerepre-processed withFSL(FMRIBSoftwareLibrary), byusingtheoxford_aslcommandincludedintheBASIL(Bayesian In-ference forArterial Spin labeling MRI)toolbox toprocess ASLdata (Chappelletal., 2009).Structuraldatawerepre-processed according thefsl_anatpipeline,consistingofthefollowingsteps:(1)theimages arereorientedtomatchthestandardMontrealNeurologicalInstitute (MNI)orientation;(2)theimagesarethencroppedand(3)bias-field correctionisapplied,usingtheFAST(FMRIB’sAutomatedSegmentation Tool)algorithm(Zhangetal.,2001);(4)theimagesarelinearly (us-ingFLIRT-FMRIB’sLinearImageRegistrationTool)(Jenkinsonetal., 2002)andnon-linearly(usingFNIRT-FMRIB’sNon-linearImage Reg-istrationTool)registeredtotheMNIspace;(5)brainextractionis per-formedwiththeBetExtractionToolbox(BET)(Smith,2002)and(6) tissue-typesegmentationiscarriedoutwiththeFASTalgorithmfor cor-ticalstructuresandwithFIRST(FMRIB’sIntegrated Registrationand SegmentationTool)forsubcorticalstructures.Thepre-processed struc-turalimageswerefedintotheoxford_aslcommandinordertoachieve theregistrationoftheASLdatatotheMNIstandardspace.

(5)

The oxford_aslcommand automatically performs a seriesof pre-processingstepsonASLdata,inanautomatedpipeline.First,motion correctionisperformed.Atissueperfusionmapisthenproduced,and registeredtotheMNIstandardspacebyapplyingtheparameters gen-eratedduringtheregistrationofthestructuralimageandstoredina transformationmatrix.Thecalibratedperfusionmapisthengenerated usingtheprotondensityweightedimageandsettingthecerebrospinal fluid(CSF)asareferencetocalculatetheequilibriummagnetizationof bloodwithinaCSFmask,automaticallygeneratedfromthe segmenta-tionofthestructuralimageandnormalizedtotheMNIspace.Aquality checkwas performedvisuallytoensurethegoodqualityof the pre-processing.Thecalibratedimageswereusedforsubsequentstatistical analyses,astheyexpressgreymatterbloodflowasml/100g/min.Prior tostatisticalanalyses,theimagesweresmoothedwithan8mmFWHM gaussiankernel.

2.11. Statistical analyses

Toassessstabilityofthemeasurementovertime,wecalculated pre-topost-testcorrelationsforaveragen-backaccuracy,bloodflow,and movement(meanDVARS)separatelywithineachgroup.Thedatawere notnormallydistributed,thusSpearman´srhowasusedforcorrelation analyses.Thethresholdforsignificancewassetat p <.05.Belowwe describethepreregisteredhypotheses(Hi)andresearchquestions(RQi)

andthestatisticalanalyses(confirmatoryandexploratory,respectively) usedtoaddressthem.

2.12. H1. Working memory performance will improve more after exercise than after resting

Statistical analyses were performed with SPSS (Statistical Pack-age for Social Science), v26 ( https://www.ibm.com/analytics/spss-statistics-software).Ninepeoplehadmissingdataon then-back per-formance.Then-back subsamplethusconsistedof20peoplein each group.

Box plots were used to check for the presence of outliers on group∗sessionloadcombinations.Outliersweredefinedasmildfor

val-uesbetween1.5and3IQR,andasextremeifoutside3IQR.Five data-pointsreachedthecut-off forbeingextremeoutliers,whilesixadditional data-pointswerecategorizedasmildoutliers.Theseledtothe identifi-cationoftwoextremeoutliersandtwomildoutliers,allbelongingto therestinggroup.Foreachoutlier,correspondingdata-pointsonboth sessionswereremoved,asourinterestlaidinperformancechangeover time.Extremeoutlierswereexcluded,whilemildoutlierswereretained astheycanbereflectiveofthenormalpopulationvariability,whenthe sampleisnotbigenoughtoberepresentativeofthewholepopulation. Nonetheless,theanalyseswererunwithandwithoutmildoutliersto confirmthatresultswerenotdrivenbythepresenceofoutliers.Asthe presenceofmildoutliersdidnotimpacttheanalysis,theywereretained forsubsequentcorrelationanalyses.

Ageneralizedlinearmixedmodel(GLMM)withabinomial distribu-tionandlogitlinkfunctionwasusedtoanalysethetaskperformance. Thebinomialdistributionfunctionspecifiesthenumberoftimesthat aneventoccursinasequenceof n independenttrials.Thenumberof correctanswers(correcthits+correctrejection)over90trials(foreach load)wasenteredasdependentvariable.Group,timeandloadwere enteredasfixedfactors;thegrouprepresentedthebetween-subject fac-tor,whiletimeandloadwerewithin-subjectfactors.Thesubjects fac-torrepresentedtherandomfactor.Arandominterceptmodelwas pre-ferredovertherandomcoefficientmodelgiventhelownumberof mea-surementsforeachindividual(twotime-pointsonly)(Wright,2017).A fullfactorialmodelwascarriedouttotestformaineffects,two-ways andthree-waysinteractionsbetweenthefactors:group,timeandload. Theresidualmethodwasusedforthedenominatordegreesoffreedom estimation,andtherobustestimationwaschosen forcoefficient esti-mates.Thecriticaleffectstotestourhypothesiswerethegroup∗time

andgroup∗timeloadinteractionterms.Thethresholdforsignificance

wassetatp <.05.AGLMM,withthesamefactorsandalinear distribu-tion,wascarriedouttoanalysereactiontime(TableS4,Supplementary materials).Thiswasanexploratoryanalysis,notreportedinthe prereg-istrationofthecurrentstudy.

Effect sized were calculated on the statistically significant pairwise comparisons using Cohen’s d for paired observations (d =(M1−M2)/

√ (S2

1+S22)/2)),where M isthemeanand S isthe

stan-darddeviation.Effectsizesareregardedas(FunderandOzer,2019): verysmall(0.05),verysmallfortheexplanationofsingleeventsbut po-tentiallyconsequentialinthenot-very-longrun;small(0.1)atthelevel ofsingleeventsbutpotentiallymoreultimatelyconsequential;medium (0.2)withsomeexplanatoryandpracticaluseevenintheshortrunand thereforeevenmoreimportant;large(0.3)andpotentiallypowerfulin boththeshortandthelongrun.

2.13. H2. GMBF will increase after exercise, compared with resting Mean DVARSwascalculatedfor eachsubject,andwas testedfor maineffectsofgroup,session,andgroup∗session,toensurethat

move-mentdidnotdifferbetweengroupsandsessions.MeanGMBFwas au-tomaticallycalculatedaspartoftheoutputoftheoxford_aslandwas importedinSPSSforfurtheranalyses.MeanGMBFwastestedfor nor-malityofthedistributionwithShapiroWilk’stest.Thedatawerenot normallydistributed(p =.008),andthedistributionwasright-skewed. AGLMMwithagammadistributionwithloglinkfunctionwasused fortheanalysis.Groupandsessionwereenteredasfixedfactors;the grouprepresentedthebetween-subjectfactor,whilesessionwassetas within-subject factor. Subjectidentity was enteredas randomfactor (randominterceptmodel).Maineffectsoftheinterventionandsession, andtheeffectofthegroup∗sessioninteractionweretested.The

inter-actioneffectwascriticaltotestourhypothesis,asweexpectedGMBF toincreasemoreintheexercisegroupthanintherestinggroup.The residualmethodwasusedforthedenominatordegreesoffreedom esti-mation,andtherobustestimationwaschosenforcoefficientestimates. Thethresholdforsignificancewassetat p <.05.Effectsizeswere cal-culatedasdescribedabove.

2.14. RQ1. What is the regional distribution of exercise-induced GMBF changes?

Voxel-wise analyses on ASL data were carried out in SPM 12. A flexible factorial design was used totest for the main effects of group(between-groupfactors)andsession(within-groupfactor),and group∗sessioninteractiononGMBF(criticaleffect).Apreliminary

un-correctedthresholdof p <.001wasapplied(Wooetal.,2014).Voxels survivingsuchthresholdwerefurthercorrectedforfamily-wiseerror (FWE)rateatclusterlevelwithathresholdofp < .05(Wooetal.,2014). Theanalysiswasrestrictedtogreymatter.

2.15. H3. Changes in mean GMBF will correlate with working memory performance changes more strongly in the exercise group than in the resting group

Accordingtoour hypotheses,changes in then-back performance would correlatewithGMBF changes.N-back accuracywasaveraged acrossblocks,andthedifferencefrompre-topost-testwascalculated. Thesubjectswhowereextremeoutliersononeormoreofthe measure-mentswereexcluded.Additionally,twoextremeoutliersontheaverage accuracy,bothbelongingtotherestinggroup,werealsoexcluded.The changeinGMBFwasalsocomputed.Theanalyseswererunintwosteps. Asafirststep,andaccordingtothepre-registration(osf.io/ve2zj),we testedforassociationsbetweenn-backperformancechangeandGMBF change,andforangroup∗GMBFchangeinteractioneffect.Weuseda

generalizedlinearmodel,withthechangeinn-backperformancesetas dependentvariableandthechangesinGMBFandgroupsetasfactors.In

(6)

thismodel,theinteractioneffecttestsforbetween-groupsdifferencesin theassociationbetweentwovariables(n-backperformanceandGMBF) andrepresentedthecriticaleffectfortestingourhypothesis,aswe ex-pectedtheassociationtobestrongerintheexercisethanintheresting group.

Asasecondstep,weperformedGLMManalysestofurtherexplore whethertheassociationbetweenthevariableschangeddifferentlyover timeinthetwogroups.Tothispurpose,andsimilarlytotheprevious analysis,weusedageneralizedlinearmodelwherethenumberof cor-rectanswerswasusedastargetvariable,andthenumberoftrialswas enteredasdenominator.Afullfactorialmodelincludingmaineffects, two-waysandthree-waysinteractiontermsforthefactorsgroup, ses-sionandGMBFwascarriedout.Thethresholdforsignificancewasset at p < .05.

2.16. RQ2. Is the correlation between GMBF and working-memory performance regionally localized?

Correlationsbetweenmeann-backperformanceandGMBFwere as-sessedseparatelyineachgroupateachsessionwithlinearregression modelsinSPM12.Apreliminaryuncorrectedthresholdofp <.001was applied(Wooetal.,2014).Voxelssurvivingsuchthresholdwere fur-thercorrectedforfamily-wiseerror(FWE)rateatclusterlevelwitha thresholdofp <.05(Wooetal.,2014).Voxel-wiseGMBFwassetas de-pendentvariable;meann-backperformancewassetassoleindependent variable.

2.17. H4. Changes in pulse pressure will correlate with GMBF changes, more strongly in the exercise group than in the resting group

WehadalsohypothesizedthatGMBFchangeswouldbeassociated withpre-topost-testchangesinpulse.Theanalyseswererunfollowing thesamestepsasdetailedabove.Wefirsttestedtheassociationbetween GMBFchange(normallydistributed)andpulsechangeandgroup∗pulse

change(criticaleffect).Pulsepressurechangewascalculatedasthe dif-ferencebetweenthepulsepressuremeasuredatbaseline,beforethestart oftheexperimentalsession(firstmeasurement),andafterthe exercis-ingorrestingsession,beforethesecondMRIacquisition(third measure-ment).Asasecondstep,weperformedGLMManalysestofurthertest forassociationsbetweenGMBFandpulsebyusingafullfactorialmodel includingmaineffects,two-waysandthree-waysinteractiontermsfor thefactors:group,sessionandpulse.Thethresholdforsignificancewas setat p <.05.

2.18. RQ3. Is VO2 max associated with mean GMBF?

Tobetterelucidatethemechanismsunderlyingourfindingsrelated toexercise-induced effectsonGMBF(seebelow),wedecidedtoalso exploretherelationshipbetweenGMBFandcardiovascularfitness,as measuredbytheVO2max(hypothesisnotpreregistered).Tothis pur-pose,andsimilarlyastowhatwasdetailedabove,wefirsttestedthe associationbetweenGMBFchangeandVO2maxandgroup∗VO2max

(criticaleffect).WethenusedGLMManalysestofurthertestfor associ-ationsbetweenGMBFandsession∗groupVO2max.Thethresholdfor

significancewassetat p <.05.

3. Results

3.1. Sample descriptives

Theexerciseandrestinggroupswereequivalentregardingage,sex, physicalactivityreports(IPAQ),MMSEscore,bloodpressureand sub-jectivememoryevaluation(Table1).Thesubgroupwhosen-backdata wereavailablewascomparabletothetotalsample,bothbeforeand af-tertheexclusionoftheoutliers(TableS1).Pulsepressurewasmeasured atfourtime-points:(1)beforethefirstMRI;(2)afterthefirstMRIand beforetheexercisingorrestingsession;(3)aftertheexerciseorresting

Table1

Samplecharacterizationatpre-test.

Exercise Resting (mean (SD)) (Mean (SD))

N 24 25

Age (years) 69.6 (2.8) 70.7 (3.1)

VO2 max (ml/min/kg) 31.4 (5.5) 32.3 (5.6)

MMSE 28.9 (1.2) 28.4 (1.0)

IPAQ (MET/min/week) 2731.0 (1442.0) 3268.2 (2027.0) Systolic blood pressure (mmHg) 136.1 (16.4) 140.8 (16.7) Diastolic blood pressure (mmHg) 87.8 (11.1) 86.5 (9.7) Memory evaluation 3.6 (0.7) 3.6 (0.7) Memory vs 20 years old 3.1 (0.9) 3.4 (0.7) Plasticity belief 2.1 (0.9) 2. (1.2)

% %

Sex (females; males) 50.0; 50.0 40.0; 60.0

Marital status (married) 66.7 56

sessionandbeforethesecondMRI;(4)afterthesecondMRI(Fig.2;Fig. S4,Supplementarymaterial).Inbothgroups,pulsepressureshoweda statisticallysignificantincreaseafterthefirstMRI(2),probablydueto stressinrelationtotheexperimentalsession(Trappetal.,2014).After resting(3),pulsepressureintherestinggrouphadreducedandreached thebaselinelevels(1),asexpectedfollowingthephysiological recov-eryofbloodpressureindicesafterstress,aidedbytherestingsession (Kaushiketal.,2006;Chafinetal.,2004;Santaellaetal.,2006).Onthe otherhand,pulsepressurewasstillhigherthanthebaselineinthe exer-cisegroup,asexpectedasresultofthephysicalexercise(Sharmanetal., 2005).Pulsepressurethenincreasedagainintherestinggroupduring thesecondimagingsession(4),whereitreachedthesamelevelsasafter thefirstMRI(2);ontheopposite,pulsepressuredecreasedinthe exer-cisegroup(4)aspartofthepost-exerciserecoveryphase(Sharmanetal., 2005),goingbacktothebaselinelevels(1).

3.2. Pre- to post-test correlations

Pre-topost-testcorrelationsshowedoverallagoodstabilityofthe measurementsovertime.N-backaccuracyatpre-testshoweda statis-ticallysignificantcorrelationwithaccuracyatpost-testinboththe ex-ercise(Spearman’sRho=0.636)andintherestinggroup(Spearman’s Rho=0.901).Astatisticallysignificantpre-topost-testcorrelationon GMBFwasalsopresentinbothgroups(Spearman’sRho=0.710inthe exercisegroupandSpearman’sRho=0.869intherestinggroup).Mean DVARSalsoshowedastatisticallysignificantcorrelationfrompre-to post-test(Spearman’sRho=0.734intheexercisegroupandSpearman’s Rho=0.475intherestinggroup).Pre-topost-testcorrelationsare rep-resentedinFigs.S1–S3,inSupplementarymaterials.

3.3. H1. Working memory performance will improve more after exercise than after resting

Intotal,234data-pointswereincludedintheanalysis.Statistically significantmaineffectsofsessionandloadwerefoundonn-back per-formance,whilethemaineffectofgroupwasnotstatisticallysignificant (Table2;Figs.2and3).Astatisticallysignificantimprovementin per-formancewasobserved frompre-testtopost-test,though theoverall differencein accuracywasrather small(1.4%gaininaccuracyfrom pre-topost-test;Cohen’s d =0.042).Asexpected,theperformance de-creasedwithincreasingdifficultyloadregardlessofsession. Concern-ingtheinteractionterms,astatisticallysignificantsession∗loadeffect

was detected, indicating thatthe improvementin performancefrom pre- topost-testwas limitedtothe1-back task(Cohen’s d = 0.333; mediumeffect).Nostatisticallysignificanteffectsofthegroup∗session,

intervention∗load,or groupsessionloadinteractionswere found,

al-thoughatrendforabetterperformanceonthe3-backtaskforthe exer-cisegroupcomparedwiththerestinggroupwasfoundatbothpre-and post-test.However,theconfidenceintervals(C.I.)relativetothe

(7)

post-Fig.2. Grouplevelpre-topost-testchangesonn-backperformanceatdifferentloads.Theboxplotsrepresentthen-backperformanceatdifferentcognitiveloads (1-back,2-back,3-back)intheexercise(blue)andresting(red)groups,before(pre-test)andafter(post-test)theexercisingorrestingsession.Thetaskaccuracy decreasedwithincreasingload(p<.001)andwasoverallhigheratpost-testcomparedwithpre-test(p=.012;1.4%increaseinaccuracy).Theeffectofthe group∗sessionloadwasnotstatisticallysignificant(p=.647).Circlesrepresentthemildoutliers,definedasvalueslyingbetween1.5and3interquartilesrange (IQR).

Table2

Effectsofgroup,sessionandloadonn-backperformance.

C.E. S.E. t Adj. sig. 95% C.I. (min, max) GROUP, F (1222) = 0.349; p = .555 Ex vs Rel 0.009 0.015 0.583 0.561 − 0.020, 0.038 SESSION, F (1222) = 5.560; p = .011 Post-test vs Pre-test † 0.014 0.005 2.546 0.012 0.003, 0.024 LOAD, F (2222) = 114.1; p < .001 1- vs 2-back † 0.172 0.011 15.896 < 0.001 0.151, 0.193 1- vs 3-back † 0.225 0.008 26.491 < 0.001 0.208, 0.241 2- vs 3-back † 0.053 0.009 5.608 < 0.001 0.034, 0.071 GROUP SESSION, F (1222) = 0.105; p = .746 Pre-test, Ex vs Res 0.007 0.016 0.448 0.655 − 0.025, 0.040 Post-test, Ex vs Res 0.010 0.015 0.645 0.520 − 0.020, 0.039 GROUP LOAD, F (2222) = 0.436; p = .647 1-back, Ex vs Res − 0.001 0.005 − 0.156 0.876 − 0.011, 0.009 2-back, Ex vs Res 0.022 0.023 0.976 0.330 − 0.023, 0.068 3-back, Ex vs Res † 0.044 0.017 2.543 0.012 − 0.079, − 0.010 SESSION LOAD, F (2222) = 3.361; p = .036

1-back, Post- vs Pre-test † 0.006 0.002 2.549 0.011 0.001, 0.010 2-back, Post- vs Pre-test − 0.001 0.007 − 0.123 0.903 − 0.015, 0.013 3-back, Post- vs Pre-test 0.009 0.007 1.195 0.233 − 0.006, 0.023 GROUP LOAD SESSION, F

(2222) = 0.766; p = .466

Pre-test, 1-back, Ex vs Res − 0.002 0.006 − 0.382 0.703 − 0.015, 0.010 Pre-test, 2-back, Ex vs Res 0.021 0.023 0.909 0.364 − 0.024, 0.066 Pre-test, 3-back, Ex vs Res † 0.052 0.019 2.727 0.007 0.014, 0.089 Post-test, 1-back, Ex vs Res < 0.001 0.005 0.051 0.959 − 0.009, 0.010 Post-test, 2-back, Ex vs Res 0.024 0.025 0.960 0.338 − 0.025, 0.073 Post-test, 3-back, Ex vs Res † 0.037 0.019 1.996 0.047 0.0005, 0.074 C.E.,contrastestimate;S.E.,standarderror;df,degreesoffreedom;C.I.,confidenceintervals; †,statisticallysignificant;Ex,exercise;Res,resting.

testcomparisonswereveryclosetoencompassingzero(95%C.I.(min, max)=0.0005,0.074),suggestingthatotherfactorsmighthave influ-encedthebaselinemeasurements,followedbyaregressiontothemean atpost-test.Whenexcludingmildoutliersfromtheanalysis,theresults weremostlyunchanged(TableS2),thoughthetrendforadifferenceon 3-backperformanceatpost-testwasnolongerobservable.Overall,our hypothesisthatn-backperformancewouldimprovemoreafterexercise thanafterrestingwasnotsupportedbyourfindings.

3.4. H2. GMBF will increase after exercise, compared with resting Aftertheremovalofmotionoutliers,eachgroupconsistedof23 in-dividuals,fora totalof92 data-points.Nostatisticallysignificant ef-fectsofgroup,sessionorgroup∗sessionwerefoundonmovement(mean

DVARS).Astatisticallysignificanteffectofthegroup∗session

interac-tiononGMBFwasfound(Table3,Fig.4).Inparticular,reducedGMBF wasfoundintheexercisegroupatpost-testcomparedtopre-test (Co-hen’sd =0.302;mediumeffect),whilenostatisticallysignificantpre-to post-testdifferenceswereobservedintherestinggroup.Moreover,no between-groupsdifferencesweredetectedeitheratpre-testorpost-test. Noeffectsofgrouporsessionwerefound.Thesefindingswere conflict-ingwithourinitialhypothesisthatGMBFwouldincreaseafterexercise, comparedwithresting.

3.5. RQ1. What is the regional localization of GMBF changes?

At theexploratory,voxel-wiseanalysis,no statisticallysignificant effectsofgroup,grouporofthegroup∗sessioninteractionwerefound.

(8)

Fig.3. Subject-levelpre-topost-testchangesonn-backperformanceatdifferentloads.Thefigurerepresentsthechangesonn-backperformanceatdifferentcognitive loads(1-back,2-back,3-back)intheexercise(upperpanel)andresting(lowerpanel)groups,before(pre-test)andafter(post-test)thegroup.Thegroup∗loadsession interactionwasnotstatisticallysignificant(p=.466).

Table3

EffectsofgroupandsessiononGMBF.

C.E. S.E. t Adj. sig. C.I. 95% (min, max) GROUP, F (1,88) = 0.009; p = .924 Exercise vs Resting 0.157 01.647 0.096 0.924 − 3.116, 3.341 SESSION, F (1,88) = 1.687; p = .197 Post-test vs Pre-test − 0.71 0.543 − 1.308 0.194 − 1.788, 0.368 GROUP SESSION, F (1,88) = 6.574; p = .012

Exercise, post- vs pre-test † − 2.122 0.784 − 2.706 0.008 − 3.681, − 0.564 Resting, post- vs pre-test 0.688 0.734 0.937 0.351 − 0.771, 2.146 C.E.,contrastestimate;S.E.,standarderror;df,degreesoffreedom;C.I.,confidenceintervals; †,statisticallysignificant.

Fig.4. Effectofthegroup∗sessioninteractionongreymatterbloodflow.TheboxplotsrepresentGMBFintheexercise(left)andresting(right)groups,before (pre-test)andafter(post-test)theexerciseorrestingsessions.GMBFhadastatisticallysignificantdecreaseatpost-testcomparedwithpre-testintheexercisegroup (p=.008),butnotintherestinggroup(p=.351).Circlesrepresentthemildoutliers,definedasvalueslyingbetween1.5and3interquartilesrange(IQR).

(9)

Table4

AssociationbetweenGMBFandn-backperformance.

Coeff. S.E. t Sig. C.I. 95% (min, max)

Group GMBF, F(1,60) = 16.674; p ≤ .001

Exercise vs Resting † − 0.043 0.0099 − 4.284 < 0.001 − 0.062, − 0.023

Session GMBF, F(1,60) = 4.229; p = .044

Post-test vs pre-test † − 0.016 0.0069 − 2.331 0.023 − 0.030, − 0.002 Group session GMBF, F(1,60) = 2.759; p = .102

Exercise group, post- vs pre-test † − 0.017 0.0068 − 2.439 0.020 − 0.030, − 0.003 Resting group, post-test vs pre-test − 0.001 0.0052 − 0.219 0.829 − 0.012, 0.010 S.E.,standarderror;df,degreesoffreedom;C.I.,confidenceintervals;†,statisticallysignificant.

Table5

AssociationbetweenVO2maxandGMBF.

Coeff. S.E. t Sig. C.I. 95% (min, max)

Group VO2max, F(1,84) = 4.024; p = .048

Exercise vs Resting † − 0.027 0.0136 − 1.993 0.049 − 0.054, − 0.001

Session VO2max, F(1,84) = 4.079; p = .047

Post-test vs pre-test − 0.010 0.0074 − 1.331 0.187 − 0.024, 0.005 Group session VO2max, F(1,84) = 2.595; p = .111

Exercise group, post- vs pre-test † − 0.022 0.0098 − 2.248 0.030 − 0.042, − 0.002 Resting group, post-test vs pre-test − 0.003 0.0073 − 0.350 0.728 − 0.017, 0.012 S.E.,standarderror;df,degreesoffreedom;C.I.,confidenceintervals.

Theclustershowingastrongerinteractioneffectwaslocatedintheleft inferiorparietalgyrus(IPL),extendingtothemedialprefrontalcortex (pFWE-corr=0.393,clusterextent:179voxels,MNIcoordinates:−60, −56,12).

3.6. H3. Changes in mean GMBF will correlate with working memory performance changes more strongly in the exercise group than in the resting group

Thepre- topost-testchangeon average n-backperformance was notcorrelatedwiththepre-topost-testdifferenceonGMBF,norwas aneffectofthegroup∗GMBFdifferencefoundstatisticallysignificant.

In the GLMM, a statistically significant group∗GMBF interaction

ef-fect wasfound, indicatinganoveralldifferencein theregression ef-fectbetweengroups(Table4).Inparticular,GMBF wasinversely as-sociated with n-back performance in the exercise group, and posi-tivelyassociatedin therestinggroup (Fig.5a).A statistically signif-icanteffect of thesession∗GMBF was alsofound,while theeffect of

thegroup∗sessionGMBF interactionwas not statistically significant;

nonetheless,inthepost-hoctests,astatisticallysignificantchangein theassociationbetween GMBF andn-back performancefrompre-to post-testwasdetectedin theexercisegroup (Fig.5b)butnot inthe restinggroup(Fig.5c).Thus,thebetween-groupdifferenceobservedin thepreviousgroup∗GMBFinteractionseemstobemostlydrivenbythe

exercise-inducedinverseassociationbetweenGMBFandperformanceat post-test.OurhypothesisthatchangesinmeanGMBFwouldcorrelate withworkingmemoryperformancemorestronglyintheexercisegroup thanin therestinggroupwerethuspartly supportedbythedata, al-thoughweexpectedtheassociationtobepositiveratherthannegative. 3.7. RQ2. Is the correlation between GMBF and working-memory performance specifically localized?

Astatistically significantnegativecorrelation wasfoundbetween the meann-back performanceand post-testGMBF in theright hip-pocampus(clusterextent=1488voxels;pFWE-corr=0.001; F =62.3; MNIcoordinates(x,y,z)=32,−38,−6)andleftmedialfrontalcortex (clusterextent=733voxels;pFWE-corr=0.017; F =35.3;MNI coordi-nates(x,y,z)=−8,26,−14),largelyextendingtothecontralateral or-bitofrontalcortexintheexercisegrouponly(Table5;Fig.5d).

3.8. H4. Changes in pulse pressure will correlate with GMBF changes, more strongly in the exercise group than in the resting group

Noeffectsofeitherpulsedifferenceorgroup∗pulsepressure

interac-tiononGMBFpre-topost-testchangewerefound.Atthemixedmodel analysis,nostatisticallysignificanteffectsofpulsepressure∗group,pulse

pressure∗session nor pulse pressuregroupsession interactions were

foundonGMBF.Thedatadidnotsupportourhypothesisthatchanges inpulsepressurewouldcorrelatewithGMBFchangesmorestronglyin theexercisegroupcomparedwiththerestinggroup.

3.9. RQ3. Is VO2 max associated with mean GMBF?

NoeffectsofeitherVO2maxorgroup∗VO2maxinteractionwere

foundonthepre-topost-testGMBFchange.AttheGLMM,a statisti-callysignificanteffectofthegroup∗VO2maxinteractiononGMBFwas

found;inparticular,astrongerinverseassociationbetweenGMBFand VO2maxwasobservedintheexercisegroupcomparedwiththe rest-inggroup(Table5).Astatisticallysignificanteffectofthesession∗VO2

max wasalsodetected;however,post-hoctestswerenotstatistically significant,likelyduetothesmalldifferenceintheassociationbetween pre-andpost-test.Ontheotherhand,despitetheinteractionbetween group∗sessionVO2max was not statistically significant, the post-hoc

testdidnonethelessshowastatisticallysignificantdifferencebetween groupsinthepre-topost-testregressioneffect(Table5).Inparticular, theregressioncoefficientchangedfrompre-topost-testintheexercise group,whileitremainedstableintherestinggroup(Fig.6).

4. Discussion

Weassessedtheeffectsofacutemoderateintensityphysicalexercise onWMperformanceandGMBFin23olderindividuals,comparedwith 23subjectswhorelaxedbetweenthemeasurements.Confirmatory anal-yseswerecarriedouttoconfirmourhypothesesconcerning exercise-inducedchangesonn-backperformanceandGMBF.Overall,cognitive performancedecreasedwithincreasingdifficultyloadregardlessof ses-sionandgroup,andslightlyincreasedfrompre-testtopost-test, inde-pendentofgroup.GMBFdecreasedfrompre-topost-testinthe exer-cisegroup,butnotintherestinggroup.Correlationanalysesbetween GMBFandaveragen-backperformance,andbetweenpulsepressureand GMBF,consistedofaconfirmatoryparttestingforassociationsbetween

(10)

Fig. 5. Association between GMBF and n-backperformance. Thefigure representsthe between-groupsassociations between n-back performanceandthemean(a,b,c,d)or voxel-wise(e)GMBF.Theupperpanel(a)showsthe differentassociationofaveragen-back perfor-mancewithmeanGMBFbetweentheexercise group (coefficient:−0.023, p=.008) andthe restinggroup(coefficient:0.017,p=.003). Co-efficientswerecalculatedseparatelyforeach group using a GLMM. Panel (b) shows the changeintheassociationbetweenaverage n-backperformancewithmeanGMBFfrom pre-(B=0.002, p=.178) topost-test (B=−0.001,

p=243),calculatedseparatelyineachgroup andsessionusinglinearregression.The mid-dlepanel(c,d)showsthechangeinthe as-sociationfrompre-topost-testin(c)the ex-ercisegroup(B<−0.001,p=.989atpre-test;

B=−0.004,p=.013atpost-test)andin(d)the restinggroup(B=0.004,p=0.105atpre-test;

B=0.002,p=.251atpost-test),respectively, calculatedseparatelyineachgroupandsession using linearregression. The lowerpanel (e) showsvoxel-wisecorrelationsbetweenaverage n-backperformanceandGMBFatpost-testin theexercisegroup,intherighthippocampus andleftmedialfrontalgyruslargelyextending totherightorbitofrontalcortex.

pre-topost-testchangesonthevariables,andofanexploratory(not preregistered)parttestingtheimpactofthegroupontheassociation betweenthevariables.Theconfirmatoryanalysesshowedno statisti-callysignificant associationsbetween the pre-topost-testdifference inn-backperformanceandthedifferenceinGMBF.However,the ex-ploratoryanalysesshowedthatintheexercisegroup,lowerGMBFwas associatedwithhighern-backperformance,whileapositiveassociation wasfoundintherestinggroup.Thispatternwaslikelydrivenbythe inverseassociationbetweenGMBFandn-backscoresemerginginthe exercisegroupatpost-test,thatwasnotobservedintherestinggroup, wherenochangeintheassociationstrengthwasobserved.Regional as-sociationswerefoundintheexercisegroupbetweenlowerGMBFinthe righthippocampus,leftmedialfrontalcortexandrightorbitofrontal

cor-texandhigheraveragen-backperformance.Anadditionalexploratory analysisrevealedanegativeassociationbetweenVO2maxandGMBF thatwasstrongerintheexercisegroupatpost-testcomparedwiththe restinggroup.

4.1. Working memory performance

Contrarytoourhypothesis,exercisedidnotinfluencethelevelof performanceinastatisticallysignificantway,incontrastwithsome pre-viousreportsofimmediatepositiveeffectsofphysicalexerciseon exec-utivefunctionsandWM(VolkersandScherder,2014;Langloisetal., 2013;Alvesetal.,2012).Ourstatisticalpowerishoweverlowandthe uncertaintiesaroundtheestimatesarehigh. Wearethushesitant to

(11)

Fig.6. AssociationbetweenVO2maxandGMBF.Thefigureshowsthepre-topost-testchangeintheassociationbetweenVO2maxandGMBF(a)intheexercise group(B=−0.653,p=.009atpre-test;B=−0.920,p<.001atpost-test)and(b)intherestinggroup(B=−0.256,p=.246atpre-test;B=−0.286,p=.213atpost-test). Coefficientswerecalculatedseparatelyineachgroupandsessionusinglinearregression.

maketoomuchoutthisnullfinding,althoughwenotethatdespitethe largebodyofevidenceinsomereportsinfavorofthepositivecognitive effectsofacuteexercise,theevidenceis stillconsideredinconclusive (Youngetal.,2015;Angevarenetal.,2008;GasquoineandChen,2020). Recentmeta-analysesofrandomizedcontrolledtrialshavearguedthat acuteburstsofphysicalactivityhaveminoreffectsonWMperformance atbest(effectsize:0.15;95%CI:−0.33,0.63)(RathoreandLom,2017), andthatthesuggestedbeneficialeffectsofaerobicphysicalactivityare notsupportedbyavailableevidenceincognitivelyhealthyolderadults (Youngetal.,2015).However,thestudiesincludedinthemeta-analysis hadconsiderableheterogeneityintermsofinstrumentsusedtoassess WMperformance, unequal samplesizes, andage of theparticipants (RathoreandLom,2017).Age,inparticular,moderatestheeffectsof atleastchronicphysicalactivityinterventions,withsmallpositive ef-fects(effectsize:0.324;95%CI:0.185,0.463)onlyobservablein indi-vidualsover65years(RathoreandLom,2017).However,olderadults areunderrepresentedininvestigationsofimmediateeffectsofphysical activityonWMperformance.Thelackofstudiesinvestigatingthe im-mediateeffectsofphysicalactivityinolderadultsmighthavemasked anypotentialeffectofacutephysicalexercise.Anotherpotential expla-nationfornullfindingsisthatthegainsincognitiveperformanceare notuniformacrossindividuals,beingratherinfluencedbytheir base-lineWMperformance(SibleyandBeilock,2007;Yamazakietal.,2018). Inparticular,cross-overdesignstudieshaveindicatedthatindividuals startingwithlowerWMseemtogainthemost intermsofcognitive performanceafteranacuteboutofmoderateintensityphysicalactivity (SibleyandBeilock,2007;Yamazakietal.,2018).Accordingly,several studiesreportingimprovementsincognitivefunctionsafteraphysical trainingprogramhavebeencarriedoutinolderindividualsaffectedby mildormoderatecognitiveimpairment(VolkersandScherder,2014; Parketal.,2019).

Apivotalroleintheinconsistentresultsacrossstudiesmightalsobe playedbythelengthoftheexerciseprotocol(RathoreandLom,2017). Infact,the majorityof studieshave focusedon long-termprograms (RathoreandLom,2017).Whiletheseseemtobemoreefficientthan acutephysicalexercisesessionsinexertingbeneficialeffectson execu-tivefunctionsandcognition,thedatarelativetoacutephysicalexercise arenotsufficientforthisclaim(RathoreandLom,2017).Concerning acuteexercisesession,aerobicmoderateintensityphysicalexercise last-ingatleast20minhasbeensuggestedtoexertthemostprominenteffect onexecutivefunction(Changetal.,2012),particularlyinolderadults (Ludygaetal.,2016).However,themoderatorroleplayedbythe

in-tensityanddurationoftheexercisesession(RathoreandLom,2017), thetimeofdaywhenthetestiscarriedout,aswellasbytheageand fitnesslevelof theparticipants,hastobenoted(Changetal.,2012; Ludygaetal.,2016).Insuchregard,ourstudyprotocolwasdesignedin ordertominimizetheconfoundingeffectsofthesefactors.Our partic-ipantswerematchedforageandcardiovascularfitnessandtherewere nodifferencesinthetimeofday(morningvsafternoon)whenthe par-ticipantsinthetwogroupsweretested.Wecanthereforeatleastrule outthattheseknownconfoundersmighthaveimpactedonthelackof effectofphysicalexerciseoncognitiveperformanceinourstudy. How-ever,wecannotexcludethatthetimingofthepost-testassessmentof cognitivefunctionmighthaveplayedarole.Infact,onestudyhas re-portedthatthebeneficialeffectsoncognitiveperformancestarttobe evidentfewminutesaftertheexercise,reachingtheirpeak11–20min afterandthenstartingtosubside(Changetal.,2012).Whilethe post-testWMtaskstartedaround12minaftertheendofthephysicalexercise (Fig.2)andwasthuswithintheexpectedpeakwindow,thepaucityof evidenceconcerningthetimingofthecognitiveeffectswarrantsfor fur-therinvestigationonthematter.

Worth noting,relaxationexerciseshave alsobeenreportedto ex-ertpositiveeffectsoncognition(Maetal.,2017;Ferreiraetal.,2015; Tangetal.,2007;Gardetal.,2014;Galvinetal.,2006;Siponkoskietal., 2019).Althoughourcontrolgroupdidnotperformanyactiverelaxation exercise(i.e.sustainingattentionalfocusontheirbody,breath,imagery orelse),theywerestillinstructedtorestandexposedtosoothingsounds. Thismayhavecontributedtoimprovetheircognitiveperformance, lim-itingthepowertodetectpotentialbeneficialeffectsoftheexercisebout. 4.2. Grey matter blood flow

GMBF wasdecreased frompre- topost-testin theexercisegroup only.Theliteratureis quiteconsistentinsuggestingthatincreasesin cerebralbloodflow occurduringexercise(QueridoandSheel,2007; Steventonetal.,2020;Kleinloogetal.,2019;Chaddock-Heymanetal., 2016; Jorisetal.,2018),despitesomescatteredconflictingevidence (vanderKleijetal.,2018;QueridoandSheel,2007).Thisdiscrepancy mightbepartlyduetothedifferentprotocolsofphysicalexerciseusedin differentstudies.Theincreaseincerebralbloodflowinfactmirrorsthe intensityofthephysicalexertionupto60%ofmaximaloxygenuptake (OgohandAinslie,2009;QueridoandSheel,2007);athigherphysical exertion,ontheotherhand,aplateauorevenareductionisreached, due tohyperventilation-inducedcerebralvasoconstriction(Ogoh and

(12)

Ainslie,2009;QueridoandSheel,2007).Infact,thehypocapniainduced byhyperventilation,coupledtothesympathetically-mediated protec-tivemechanismsopposingexcessiveincreasesincerebralbloodflow, triggerscerebralvasoconstrictionathighphysicalexertion(Queridoand Sheel,2007).Evenatmoderateintensity,alreadyafewsecondsafterthe cessationoftheexercisebout,thecerebralbloodflowstartstodecrease duetopost-exercisehypotension(QueridoandSheel,2007).Inaddition tothepost-exercisedropincardiacoutput,thisleadstoatransient de-creaseinGMBFimmediatelyafterexercise(QueridoandSheel,2007). AccordingtootherpreviousstudiesusingASLtoassessbloodflowina supineposition,thistransientdecreaseinGMBFisstillobservableup totenminutesafterthecompletionofasingleboutofaerobicphysical exerciseinyoungadults,resumingbaselinelevelsfortyminutes post-exercise(MacIntoshetal.,2014).Infact,thedecreaseincerebral per-fusionandtheresulting hypoxia,aswellasthenormalizationofthe cardiacoutputafterexercisecessation,inducealaterre-boostinGMBF (QueridoandSheel,2007;MacIntoshetal.,2014).Ourfindings indi-catethatthetransientdecreaseonGMBFshortlyafteranacuteboutof moderateintensityaerobicexerciseismaintainedinolderage.

Itisunlikelythatanysustainedeffectofswitchingfromastanding positiontoalyingpositionmighthaveinfluencedthebloodflow mea-surementsinthescanner,asthetimeallowedbetweenchangingbody postureandGMBFmeasurementsshouldhavebeenenoughforthe au-toregulationofbloodflowtooccur(atleasttwominutesforpreparing thesubjectinthescannerpluslocalizeracquisition).Studiesmeasuring MCA-velocityhaveinfactindicatedthataroundtwominutesmaybe sufficientforautoregulatorymechanisms(Haubrichetal.,2004). 4.3. Associations between task performance, GMBF, and cardiovascular variables

Whilethepre-topost-testdifferenceinGMBFdidnotcorrelatewith theimprovementonthen-backperformance,thegroupsexhibited dif-ferentcorrelationalpatternsbetween GMBFandaveragen-back per-formanceovertime.Consistentlywithpreviousliterature,intheresting grouphigherGMBFwasassociatedwithbettern-backperformance. Pre-viousstudiesperformedinolderadultsusingASL,infact,havereported cross-sectionalpositiveassociationsbetweenglobalcerebralbloodflow andexecutivefunctions(Leeuwisetal.,2018),andGMBFhasbeen re-portedtoalsopredictlongitudinalchangesonfluidintelligence(DeVis etal.,2018).Ontheotherhand,lowerGMBFwasassociatedwithhigher n-backperformanceintheexercisegroup.Thisfindingmaybeascribed tobe theinverseassociation betweenGMBFandn-backemergingin theexercisegroupatpost-test.LowerGMBFwasthusassociatedwith highertaskaccuracyafterexercise,contrarytoourexpectations.

MostofthepreviousresearchcarriedoutwithASLreporting pos-itiveassociations between cerebral bloodflow andcognitive perfor-mancewasbasedonlongerphysicaltraininginterventions,lasting sev-eral weeks (Chapman et al., 2013). Whena single boutof physical activityisperformed,therelationshipbetweencognitiveperformance andcerebralperfusionseemstoprogressivelyuncoupleduringexercise (Lucasetal.,2012).Indeed,theexercise-inducedtemporaldynamics ofcerebralperfusionchangesmighthelpuselucidatetheobserved in-versedrelationshipbetweenn-backperformanceandGMBFafter exer-cise.Asmentionedabove,we measuredGMBFwithin thetimeframe forthetransientpost-exercisereductionincerebralbloodflow.Ifwe assumethatlowerGMBF inthis contextisindicativeof higher cere-brovascularreactivity,assupported bythepresence of the intercur-rent negativecorrelationbetween GMBFandVO2 max foundatthe exploratoryanalysis,itsassociationwithtaskperformanceisthenless surprising.In fact,higher cardiovascularfitness wasassociated with lowerGMBF,andtheassociationwasstrongerafterexercisecompared withresting.NegativeassociationsbetweenVO2maxandGMBFhave beenreportedbeforeinyoungadults(Fosteretal.,2020;Furbyetal., 2019),andpossiblyinhealthyolderadults(Intzandtetal.,2019).The strengtheningoftheassociationafterexerciseisconsistentwiththe

no-tionthatawell-functioningcerebrovascularreactivity,asassessedwith thecombineduseofDopplerandPET(CO2),isprotectiveagainst cere-brovasculardiseasesassociatedwithageing(Murrelletal.,2013). Cere-bralvasodilatorresponsestohypercapnia,asmeasuredbytranscranial Doppler,arealsoassociatedwithhighercardiovascularfitnessandVO2 max inhealthyolderadults(Barnesetal.,2013).Inthis framework, wemightexpectindividualswithlowerGMBFafterexercisetohave experiencedahigherboost inflowfollowinginitial vasoconstriction. Ifwe hadmeasuredGMBF afewminutes later,we mighthavethen beenabletoobserveareversedassociationofGMBFwithtask perfor-mance,asreportedinpreviousliterature.Supportingthishypothesis, wehavealsofoundbetterpost-testn-backperformancetobe unexpect-edlyassociatedwithlower,ratherthanhigher,post-testGMBFinthe exercisegroupinthehippocampalandorbitofrontalregions,both well-knowntobepositively relatedwithbetterWM(Barbeyetal.,2011; Loprinzietal.,2019;Nissimetal.,2016) andexercise-relatedeffects on cognitiveperformance (Basso andSuzuki,2017; Chapman etal., 2016;DenOudenetal.,2018;Firthetal.,2018;Ericksonetal.,2011; Brockettetal.,2015).Nonetheless,itmustbenotedthatwedidnothave adirectmeasureofcerebrovascularreactivity,andonlyearly measure-mentsonGMBFwereavailable.Thoughbasedonwell-established liter-atureonexercise-relatedcerebrovascularreactivity(Lucasetal.,2012; Fosteretal.,2020;Furbyetal.,2019;Intzandtetal.,2019;Murrelletal., 2013;Barnesetal.,2013),theproposedexplanationisthustobe con-sideredspeculative.

Wehadhypothesizedthatpulsepressurewouldalsobepositively relatedtotheGMBF.Infact,whilepersistentlyelevatedpulsepressure hasbeen relatedwitharterialstiffness (Safaretal., 2011) and cere-brovascular events(Thorin-Trescases etal., 2018),when maintained within thephysiological rangepulsepressure contributestoan ade-quatecerebrovascularperfusion.Therelationshipbetweenblood pres-sureandbrainhealthisindeedquitecomplexinoldage(Shangetal., 2016;Forteetal.,2019;McDadeetal.,2016),whenlowsystolicblood pressurecanbeasdetrimentalforthebrain(Foster-Dingleyetal.,2015; Mulleretal.,2010)andcognition(Shangetal.,2016;Forteetal.,2019; McDadeetal.,2016;Mosselloetal.,2015)ashighbloodpressure. In-deed,individualswithAlzheimer’sDiseasehavelowerpulsepressure andcerebralhypoperfusioncomparedwithcontrols(Roheretal.,2012). Moreover, low pulsepressure,particularlywhencombined withlow cerebralbloodflow,hasbeenassociated withcortical(Mulleretal., 2010)andsubcortical(Foster-Dingleyetal.,2015)atrophy.The rela-tionship betweenpulsepressure andGMBF inour samplewas how-eversomewhatstrongerintherestinggroup,ratherthaninthe exer-cisegroupasweexpected.ConsideringtheGMBFreductionobserved intheexercisegrouppost-test,itisnotsurprisingthatsuchrelationship wouldbeweakerinthisgroup.Giventhecomplexityoftherelationship betweenpulsepressureandGMBF,furtherstudieswillneedtofurther elucidatethisassociation.

4.4. Limitations

Somelimitationsinourstudyhavetobeacknowledged.Firstofall, thelimitedsamplesizedidnotallowforastratificationofthe partici-pantsaccordingtotheirbaselineWMcapacity,whichhasbeenindicated tomoderatethegainsincognitiveperformanceinducedbyphysical ex-ercise(SibleyandBeilock,2007;Yamazakietal.,2018).Ourprotocol didnotincludeadelayedmeasurementofGMBF,thuspreventingusto fullydescribethetrajectoryofbloodflowchangesafterexercise. More-over,thesignal-to-noiseratioisinherentlylowforASLacquisitions,as thesignalfromthelabeledinflowingbloodconstitutesonly0.5−1.5% ofthefulltissuesignal.Furthermore,arterialstiffnesswasnotevaluated (Petcharunpaisanetal.,2010).Concerningtheexerciseprotocol, mea-surementsofbloodgasesduringexercisewerenotacquired,potentially allowingfor toohighintensitiesofexercise beingreached. Also, de-hydrationisknowntoaffectcerebralbloodflowmeasurementsduring exercise(Trangmaretal.,2015).Ourparticipantswereallowedtodrink

References

Related documents

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

This result becomes even clearer in the post-treatment period, where we observe that the presence of both universities and research institutes was associated with sales growth

Däremot är denna studie endast begränsat till direkta effekter av reformen, det vill säga vi tittar exempelvis inte närmare på andra indirekta effekter för de individer som

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Hence, the load of visual working memory (the Trace Fade-out setting) might be expected to influence one’s creative performance. no differences between the data of the two

However, when comparing the third (Q2) and first (Q4) most active population, a non significant change was measured in comparison to the least active group (Q1) [13]. Applying