• No results found

Streamlining of Hydraulic Testing

N/A
N/A
Protected

Academic year: 2021

Share "Streamlining of Hydraulic Testing"

Copied!
151
0
0

Loading.... (view fulltext now)

Full text

(1)

15 CREDITS, BASIC LEVEL 300

Streamlining of Hydraulic Testing

Authors: Henrik Hardell & Niclas Lind

(2)

ii

den avancerade utrustningen saknats. Syftet med detta examensarbete var därför att

effektivisera denna del av ST Aerospace:s verksamhet genom att dels skriva om manualers

testavsnitt men även att tillverka en lättförståelig beskrivning av verkstadens testutrustning

i utbildningssyfte.

Genom att följa operatörerna i deras arbete med av företaget utvalda komponenttester

kunde en grundläggande förståelse både för testbänken men även för de utvalda testerna

erhållas. Erfarenheten från testningen användes till att producera en lättförståelig

beskrivning av provbänken samt till omskrivning av de utvalda komponentmanualerna.

Utöver utbildningsmaterialet producerades totalt fyra omskrivna komponentmanualer för

ST:s räkning.

Då syftet med arbetet var att effektivisera hela ST:s provningsverksamhet är det i

efterhand tveksamt till om angripningssättet av effektiviseringsproblemen varit rätt.

Alltefter arbetets gång insågs i ökande grad att ett mer lämpligt angripningssätt hade varit

att lägga all arbetstid på utbildningsmaterialet till provbänken för att på så sätt förenkla de

framtida omskrivningarna av komponentmanualer. Ett mer utförligt utbildningsmaterial till

testutrustningen kan effektivisera produceringen av omskrivna komponentmanualer

betydligt då företaget i dagsläget testar hundratals komponenter.

(3)

iii

that the shop uses. A lack of suitable training material also causes problems for new

operators.

The purpose of this thesis work was therefore to streamline this part of

ST Aerospace’s operation, first by rewriting the test section of the manuals but also to

produce a basic description of the test bench that is used in the testing activities.

By studying the operator’s work with component testing a fundamental understanding

of the test bench was obtained along with the specific knowledge that was required in order

to rewrite the manuals to a version that ST can use with their specific test equipment.

Along with the training material a total of four rewritten component manuals were

pro-duced on ST’s behalf.

Since the purpose of this work was to streamline the company’s entire testing

business, there are post-doubts about whether the correct way to address the issue was

chosen. As the work continued it became increasingly more obvious that a more

appropri-ate way of handling the efficiency problems should have been to fully focus on the training

material for the test bench. By performing the work this way around the future rewriting of

the hundreds of component manuals can be drastically simplified and more efficient,

therefore the time required for rewriting can be drastically reduced.

(4)
(5)
(6)

vi

2. Metod ... 3

3. Resultat ... 5

4. Diskussion ... 6

5. Slutsatser ... 7

6. Rekommendationer ... 8

7. Tack ... 9

8. Referenser ... 10

9. Bilagor ... 11

(7)

1

speciell testbänk som ST använder. Som underlag för dessa tester används

testbeskrivningar som komponenttillverkaren själv skapat eftersom tillverkaren också,

utöver tillverkning, även bedriver egen underhållsverksamhet.

I sin testverksamhet använder sig ST av särskilda testbänksoperatörer, så kallade

provare. Detta är inget krav från myndigheter eller kunder men då testerna i många fall är

mycket avancerade är det ofta lämpligt.

1.2.

Syfte

Då testningen av komponenter är en stor flaskhals i ST:s produktion vill företaget

effektivisera denna för att öka sin produktivitet. Effektiviseringen ska åstadkommas genom

att förtydliga och anpassa testinstruktionerna till den aktuella testutrustningen som

prova-ren använder. Genom omskrivningar av testinstruktioner är tanken att flera provare på ett

enklare sätt ska ha möjlighet att använda testbänkens grundläggande funktioner, vilket har

syftet att bidra till den ökade effektiviteten. Vidare ska omskrivningarna leda till en

tidsbesparing för hela verksamheten i allmänhet och för provarna i synnerhet.

Utöver nämnda testinstruktioner med syfte att förenkla och effektivisera efterfrågades

även en beskrivning av själva testbänken. Syftet med beskrivningen var att denna ska

fungera som ett komplement till testinstruktionerna genom att ge läsaren en enkel inblick i

bänkens hantering samt funktionella uppbyggnad.

1.3.

Problemställning

Provarna upplever problem vid testerna då en stor del av tiden går åt till att tolka

tillverkarens beskrivningar och översätta dessa till den aktuella testbänken. Det är ofta

förekommande att det uppstår frågetecken kring hur bänken ska användas för att uppnå

avsett resultat i testningen. Utöver denna tolkning upplever provarna ibland tillverkarens

testbeskrivningar som både ofullständiga, felaktiga och komplicerade.

Störningar i produktionen uppstår hos ST eftersom tillverkaren använder sig av en

annan typ av testutrustning och testningsförfarande, vilket leder till att tillverkarens

testbeskrivningar i många fall är svårbegripliga. Denna skillnad härstammar från de

olikheter som finns mellan de europiska och amerikanska metoderna att testa

komponenter.

1.4.

Avgränsningar

Initialt var arbetsbelastningen under de angivna 10 veckorna realistisk men ur flera

aspekter har arbetet på ST behövt avgränsas och anpassas alltefter arbetet fortskridit. Då

företaget har flertalet testbänkar med mer eller mindre komplett dokumentation samt

(8)

2

lättöverskådligt sätt att producera beskrivningarna hade arbetats fram. När detta lämpliga

och smidiga arbetssätt funnits stod det på ett mer överskådligt vis klart ungefär vad som

kunde tänkas hinna med under projektets återstående tid. Ett realistiskt slutmål sattes

därför till cirka 4-6 komponenter samt en bänkbeskrivning av enklare karaktär för

återstående tid av arbetet.

Även arbetssättet fick anpassas och begränsas beroende på vilken komponent som

behandlades. De tre initiala komponenterna hade karaktär av lägre komplexitet vilket

gjorde dessa mer lämpade för en nybörjarprovare. Dessa beskrivningar till

nybörjarkom-ponenterna skrevs utförligt med avsikt att en helt oerfaren provare skulle ha möjlighet att

förstå och sätta sig in i det specifika testet.

Den efterföljande komponenten, en noshjulsstyrning till B737NG, var den i särklass

mest avancerade komponenten med de allra mest omfattande testerna. Dessa skillnader i

komplexitet och skillnader i lämplighet som instegskomponenter för nya provare gjorde att

testbeskrivningarna skrevs på olika avancerad nivå. Avgränsningen för noshjulsstyrningen

var dels en effekt av den begränsade tidsrymden i examensarbetet men även ett sätt för ST

att erhålla en mer avpassad nivå av noshjulsstyrningens testbeskrivning. En något mer

kortfattad beskrivning passar en mer avancerad komponent bättre då den ofta är avsedd för

en mer erfaren provare.

Testbänken som arbetet utfördes på saknade uppmärkning av de olika knappar och

reglage som används för testerna. Då testbeskrivningarna var omöjliga att utföra utan

uppmärkning gjordes på grund av tidsbrist en temporär uppmärkning av reglagen. En

permanent och mer logisk uppmärkning skulle ta alltför lång tid i anspråk då bänkens

hydrauliska kopplingsschema inte var helt uppdaterat efter bänkens alla ombyggnationer.

(9)

3

närvaro vid flertalet testningstillfällen skapades också den grund som behövs för att

strukturera arbetet och att för att bestämma hur arbetet och problemet ska angripas.

För att få en något djupare inblick i testbänkens uppbyggnad och funktion fanns

tidigare skriven dokumentation

2

att tillgå. Denna beskrivning var väldigt detaljerad och

djupgående men kunde trots allt användas som ett komplement i arbetet.

Genom samrådan med ST’s ledning bestämdes vilka komponenter som var aktuella

att skriva testinstruktioner för samt vilken testbänk som skulle prioriteras. Valet föll på

komponenter som är vanligt förekommande för testning och som inte anses vara berörda

av det utfasningsarbete som ST bedriver.

Eftersom testbänken saknade uppmärkning fanns inga namn på kranar och portar att

hänvisa till i testinstruktionerna. På grund av detta gjordes en temporär uppmärkning med

klisterlappar där testbänkens diverse funktioner namngavs.

För att förbereda inför komponenttesterna lästes testavsnittet i komponenternas

manual (CMM) igenom. Detta för att förstå hur komponenten testas och vad testerna

innefattar.

För att samla det underlag som krävs för att skriva testinstruktionerna användes

papper och penna för att dokumentera testerna då dessa utfördes av provaren. Det exakta

förfarandet antecknades så noga det var möjligt. Oklarheter och testmoment diskuterades i

en kontinuerlig dialog mellan examensarbetare och provare. För att underlätta skrivandet

och som komplement till testinstruktionerna, fotograferades viktiga moment allt eftersom

testningen

fortskred.

Som

ytterligare

kompletterande

material

gjordes

även

ljudupptagningar vid testningstillfällena.

Efter att allt underlag samlats in kunde skrivandet av själva testinstruktionerna

påbörjas. Vid skrivandet användes det inhämtade underlaget tillsammans med CMM:en

som referens men även som stöd för att inte innebörden skulle gå förlorad. I flera fall

stämde CMM:ens instruktioner överens med hur testningen hade genomförts i praktiken.

Även språk och formuleringar från CMM:en var till nytta i skrivandet.

Initialt fördes diskussioner kring hur examensarbetets testinstruktioner skulle byggas

upp och om de skulle fungera som fristående dokument eller ej. En ej fristående modell

hade krävt CMM:en som direkt komplement för att genomföra testningen, då

testinstruktionerna i detta fall endast skulle behandla det som avviker från CMM:en. Vid

denna lösning skulle provaren vara tvungen att använda sig av två separata dokument

vilket ansågs vara en potentiell källa till förvirring. Svårigheten med att sy ihop

mellanrummet mellan den ej fristående testinstruktionen och CMM:en var något som

avgjorde till den fristående modellens fördel. Valet av den fristående modellen gör att

provaren kan testa komponenten helt och hållet enligt de skrivna instruktionerna i ett

dokument. Detta under förutsättning att hänvisning till CMM:en finns på de delar där det

2 Provbänk SAS 614-000-122

(10)

4

arbete med varje ny komponent.

(11)

5

som referens.

I varje testinstruktion finns en del som innehåller information om den utrustning som

krävs för att provarna på ST ska kunna genomföra testningen. Vid testning av

komponen-ter krävs att vissa omständighekomponen-ter är uppfyllda, dessa är i praktiken oförändrade varför

endast en hänvisning till CMM finns inlagd i de omarbetade testinstruktionerna.

För att ej behöva upprepa återkomande procedurer i varje deltest lades ett särskilt

kapitel in i dokumentet där vanligt förekommande procedurer förklarades. Detta gör att

deltesterna kan hållas kortare och mer överskådliga då enbart en hänvisning till

procedurerna krävs. Inför varje deltest finns en hänvisning till vilken paragraf deltestet är

baserat på.

Vid testning av komponenter använder provaren ett dokument framtaget av ST’s

ingenjörsavdelning, kallat ”Maintenance Work Sheet” (MWS). Detta är ett protokoll för att

fylla i resultaten av de olika stegen i testningen baserat på aktuell CMM. För att underlätta

för provaren och att göra denne uppmärksam på när under testningen som ett värde ska

antecknas i MWS-protokollet, lades särskilda hänvisningar till detta in i

testinstruktion-erna. Dessa hänvisningar markerades sedan gråa för att göra provaren ytterligare

uppmärksam.

För att underlätta ingenjörsavdelningens revidering av testinstruktionerna vid

fram-tida CMM-uppdateringar gulmarkerades alla värden. De färdiga testinstruktionerna

innehåller även flertalet bilder som kan underlätta för att förstå vad som ska utföras och på

vilket sätt.

Bänkbeskrivningen innehåller en inledande del med sådant som är bra att känna till

för att göra testningen säker och effektiv. I följande kapitel beskrivs bänkens historia och

bakgrund. Huvuddelen av dokumentet är en allmän, enkel förklaring av hur testbänken

fungerar och är uppbyggd. Detta kompletteras med en ritning över testbänkens viktigaste

delar som en provare bör känna till för att utföra de allra enklaste testen. Avslutningsvis

innehåller bänkbeskrivningen instruktioner för vanligt förekommande procedurer som

genomförs vid testning samt en förklaring av vissa enskilda delar och funktioner hos

testbänken.

(12)

6

detaljerad bänkbeskrivning för att därav kunna ge nya provare en grundläggande och bättre

förståelse för hur testbänken fungerar.

Att låta en oerfaren provare med begränsade kunskaper om testbänken utföra testning

på en komponent utifrån våra testinstruktioner kan fungera om allt går som förväntat. Vår

erfarenhet av den tid vi spenderat på ST tyder dock på att oförutsedda problem ofta

uppstår. Testinstruktionerna som vi skrivit ger inget stöd till hur uppkomna problem kan

lösas utan istället lämnas då den oerfarna provaren helt utan kunskap om vad denne ska

göra för att lösa situationen.

Under den begränsade tidsperioden på tio veckor fanns ej utrymme för att producera

någon utförlig bänkbeskrivning. Testbänken är alltför avancerad för att denna korta tid

skulle kunna generera en komplett och heltäckande dokumentation av denna. Vi fick

istället fokusera på att beskriva den allra mest grundläggande funktionen hos bänken.

Bänkbeskrivningen kan ses som ett introduktionsmaterial för nya provare men beskriver

långt ifrån hela bänkens funktion.

Vid detta examensarbetes början insåg varken vi och förmodligen ej heller ST den

omfattning och tidsåtgång det skulle krävas för att skapa testinstruktioner enligt den typ

som företaget hade önskemål om: Tanken om att hinna med tiotals komponeter fick tidigt

strykas och vi fick istället inrikta oss på att ta oss an en komponent i taget och producera

instruktioner för så många tester vi skulle hinna med.

Flertalet faktorer bidrog till den höga tidsåtgången. I samband med testerna tar det till

exempel extra mycket tid i anspråk då provaren måste ägna tid åt att utförligt förklara de

olika testmomenten. Detta gör att testernas normala tidsåtgång ökar kraftigt. Vidare är det

ej möjligt att under testningens gång anteckna ett färdigt testinstruktionsresultat. Vi fick

istället inrikta oss på att anteckna enkelt och effektivt men ändå hålla oss på en sådan hög

nivå att vi senare helt och hållet skulle förstå hur vi skulle skriva testinstruktionerna.

Trots det noga antecknandet kunde testinstruktionerna inte skrivas med enbart

anteckningarna som grund. Vi upptäckte då att vår inhämtade kunskap för hur testbänken

fungerade kom till nytta. Genom kännedom om bänkens funktion kunde vi dra slutsatser

om hur vi skulle skriva på de stycken där våra anteckningar var bristfälliga. Utifrån vår

kunskap om testbänken kunde vi även till viss del verifiera instruktionernas korrekthet.

Tyvärr fanns ej tid till att verifiera testinstruktionerna tillsammans med provarna eller

att låta provarna testa komponeter utifrån dessa. Då tid för verifiering ej fanns kan vi inte

garantera att testinstruktionerna är helt utan felaktigheter. Tvärtom är det mest troligt att fel

eller andra oklarheter finns i något avsnitt av instruktionerna på grund av dess komplexitet.

Förmodligen hade det varit intressant att få instruktionerna verifierade under arbetets gång

för att på så sätt få en bekräftelse på att instruktionernas struktur är lämpliga.

(13)

7

hydraulisk provning på egen hand utföra testning är (om ens genomförbart) både

olämp-ligt, ineffektivt och kvalitetssänkande.

(14)

8

utmärkt utbildningsmaterial för nya provare. Syftet med denna dokumentering av bänken

är att de nya provarna blir insatta i bänkens grundfunktion och därmed inte behöver

testinstruktioner för varje komponent vara beskrivna på samma grundläggande nivå.

Om författarna till kommande testinstruktioner kan förutsätta en viss grundkunskap

hos provarna kan de cirka 170 testinstruktionerna skrivas betydligt enklare vilket skulle

spara enormt mycket tid i testningsverksamheten men även för de personer som åläggs

översätta alla CMM:ers testinstruktioner.

Genom att låta ett utvalt antal personer på ett gediget sätt förstå bänkarnas

grundfunktion hellre än att slaviskt följa en exakt testinstruktion kommer förutom

effektiviteten även kvalitén i testningsverksamheten förbättras avsevärt.

Avslutningsvis utifrån de erfarenheter som arbetet givit blir rekommendationerna till

ST att:

1.

Tillverka utförliga utbildningsmaterial till varje testbänk.

2.

Utse ett fåtal personer som får sätta sig in i testverksamheten med hjälp

av utbildningsmaterialet på varje testbänk.

3.

Tillverka betydligt mer förenklade testinstruktioner utifrån det utförliga

utbildningsmaterialet. Dessa förenklade testinstruktioner kan användas

som stöd för testningsverksamheten till mer insatta provare.

(15)

9

Vi vill slutligen rikta ett stort tack till Jimmy Gustavsson för all den tid du lagt ner för

att göra detta examensarbete möjligt. Utan din hjälpsamhet och förståelse hade det inte

varit möjligt att utföra detta arbete.

(16)

10

(Nov 1 /94)

4

CMM 32-40-15, Fuse Assembly, GE Aviation

5

CMM 22-21-04, Yaw Damper Servo, Nabtesco, (rev. no. 4, May /2010)

6

CMM 32-50-17, Nose Wheel Steering Actuator, Parker, (rev. no. 15, Dec 22

/2010)

(17)

11

(baserad på CMM 22-21-04

5

)

D.

Test Instructions, Nose Wheel Steering Actuator

(baserad på CMM 32-50-17

6

)

(18)
(19)

Maintenance Work Sheet

EM56-20 Motor Operated Gate Shutoff Valve for

(20)
(21)

TABLE OF CONTENTS

1. Test description ... 1

2. Equipment needed for testing ... 1

A. General

... 1

B. Equipment

... 1

3. Test Conditions ... 2

4. General Procedures Regarding Testing ... 2

A. General

... 2

B. Repetitive Procedures

... 2

(a) Installation A ... 2

(b) Installation B ... 3

(c) Test box 29-11-01 Installation and Operation ... 4

(d) Air Bleeding Method 1, System 1 (via component valve) ... 5

(e) Air Bleeding Method 2 (via cap) ... 5

5. Test Procedure ... 6

A. General

... 6

B. Testing

... 7

(a) Differential Pressure Test ... 7

(b) Proof Pressure Test ... 8

(c) Internal Leakage Test ... 10

(d) Thermal Relief Valve Test ... 11

(e) Power Operation and Actuation Time ... 13

(f)

Starting Current ... 18

(g) Continuity Test ... 19

(h) Bonding Resistance Test ... 24

(22)

1

1. Test description

This is a description of the test procedure for the EM56-20 Motor Operated Gate Shutoff Valve Assembly for performing the tests in test bench

"Bettan".

The following description refers to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”. CMM 29-11-01 shall always be used along with this test sheet.

2. Equipment needed for testing A. General

According to "Test Equipment and Materials" in CMM 29-11-01 the tests require more equipment than the following specified list. Equipment not mentioned is built in test bench.

B. Equipment

Nr Name Serial Quantity

required

Notes

1 Yellow Box 29-11-01 1 2 Compressor 614-500-0004 1 3 Test Box 29-11-01 1

4 AN-MS-16 Standard item 2 90-dgr Connection Pipe 5 Mounting Plates - 1 set

6 Cap Standard item 1 Size 16

7 T-pipe Standard item 2 All side connections caped

8 Air Nipple SAS nr 475368-1

1 9 Blue High Pressure

Hose (HP Hose)

Standard item 1 Replaceable with LP Hose if desired

10 Timer Standard item 1 Regular watch with second hand

11 Resistomat TYP 2302

612-211-0103 1

12 Simpson 612-310-80 1 Volt/Ohm/Millammeter 13 General Air Supply Standard item 1

(23)

2

3. Test Conditions

According to “Test Conditions” in CMM 29-11-01 chapter “TESTING AND FAULT ISOLATION”.

4. General Procedures Regarding Testing A. General

(a) In this paragraph there are descriptions of standard setups and procedures required to perform the

testing. The testing is based upon knowledge of the following procedures and therefore the test

instructions are referring to this paragraph at several occasions.

(b) If desirable/necessary, test bench shutoff procedure can be executed after each subtest. The instructions regarding all subtests assume that test bench is shutoff when the subtests begin.

(c) Air bleeding shall always be executed after each and every refitting of the component's hydraulic

connections.

B. Repetitive Procedures

(a) Installation A

This installation describes how to pressurize the component's port A while keeping port B open to the atmosphere. The installation may be executed with the test bench in ON or OFF condition.

1. Verify that valve SPS1 is closed and that valve BTR1 is open.

2. Connect Connection Pipe AN-MS-16 [4] to Supply Port SP1.

3. Install the component between the Mounting Plates [5] according to figure 1.

(24)

3

4. Connect the assembly so that the port A side is facing the Supply Port SP1.

(b) Installation B

This installation describes how to pressurize the component's port B while keeping port A open to the atmosphere. The installation may be executed with test bench pumps in ON or OFF condition.

1. Verify that valve SPS1 is closed and that valve BTR1 is open.

2. Connect Connection Pipe AN-MS-16 [4] to Supply Port SP1.

3. Install the component between the Mounting Plates [5] (mirrored according to figure 1.)

4. Connect the assembly so that the port B side is facing the Supply Port SP1.

(25)

4

(c) Test box 29-11-01 Installation and Operation

1. Connect the test box's cables to the component as following (figure 2):

RED - connector pin A BLUE - connector pin B BROWN - connector pin C WHITE - connector pin D BLACK - connector pin E

2. Connect the test box to the test bench XS-35 connector. When connected, it can be operated as following:

OPEN: Set circuit breaker to "OPEN POS1".

CLOSE: Set circuit breaker to "CLOSE POS2".

MID-POSITION: When the valve is moving, set

circuit breaker to neutral position when desired valve position is reached.

(26)

5

(d) Air Bleeding Method 1, System 1 (via component valve)

Component needs to be installed according to Test Installation A or Test Installation B. Test Box 29-11-01 [3] needs to be installed.

1. Verify that valve BTR1 is open and that all other valves are closed.

2. Open EM56-20 valve using the Test Box [3].

3. Open valve SPS1 slowly until fluid is flowing through the component.

4. Alternate the EM56-20 valve between fully open and fully closed position 4-5 times. The bleeding is now complete.

Remember to bleed air from the component before pressurizing.

(e) Air Bleeding Method 2 (via cap)

Component needs to be installed according to

Installation A or Installation B. Test box 29-11-01 [3] needs to be installed.

1. Attach Cap [6] a couple of turns to the port open to the atmosphere.

2. Open EM56-20 valve using the test box. 3. Open valve SPS1 slowly.

4. Bleed air out of the component by pressing the top end of the cap (figure 3). The fluid will now start to flow out of the cap, let it flow for a couple of seconds.

(27)

6

5. Screw the cap all the way in and tighten. The bleeding is now complete.

5. Test Procedure A. General

(a) All tests in this paragraph are adapted to test bench “Bettan” and produced with CMM 29-11-01 as reference. The reference document, CMM 29-11-01, shall under all circumstances be used along with all test procedures following.

(b) In this paragraph there are several grey marked “Test No”. This is a direct reference to CMM

29-11-01. The “Test No” shall also be used along with the test paragraphs of MWS29-11-01-CS.

(28)

7

B. Testing

(a) Differential Pressure Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.A. CAUTION: DO NOT SUBMERGE THE COMPONENT BEFORE

PRESSURIZATION.

1. Install the component between the Mounting Plates [5], with T-pipes [7] on each side (figure 4).

2. Unscrew the pressurization hole screw from the component and replace it with the Air Nipple [8]. 3. Connect the General Air Supply [13] to the Compressor

[2].

4. Connect the Compressor [2] to the Air Nipple [8].

(29)

8

5. Pressurize the component by adjusting the regulator on the Compressor [2] until the manometer is reading 14 psig.

6. Fill Yellow Box [1] with water and submerge the component and hold for 2 minutes.

7. Verify there is no air leakage. - Test No 4.A

(b)Proof Pressure Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.B.

WARNING: ACCORDING to 4.B(3) in CMM, "THROTTLE VALVE" SHOULD ALWAYS BE CLOSED. IN TEST BENCH "BETTAN", THIS CORRESPONDS TO VALVE BTR1 WHICH SHALL BE OPEN

NOTE: Interport leakage may occur at the port open to the atmosphere due to flow through body relief valve. Interport leakage shall not be cause for rejection.

1. Install the component according to Installation B. 2. Connect Test Box [3].

3. Open valve BTR1 and close valve SPS1 before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. In the software, set "V set" to 28.0 Vdc.

6. Execute Air Bleeding Method 1. Verify that valve SPS1 is open after bleeding is complete.

7. Close EM56-20 valve.

(30)

9

8. Slowly close valve BTR1 until BP224 is reading 200 psig. Hold for 2 minutes.

9. Depressurize by opening valve BTR1 and closing valve SPS1.

10. There shall be no damage, deformation or external leakage. - Test No 4.B(4)

11. Install the component according to Installation A. 12. Execute Air Bleeding Method 1. Verify that valve SPS1

is open after bleeding is complete. 13. Close EM56-20 valve.

WARNING: DO NOT ALLOW PRESSURE TO EXCEED 220 psig.

14. Slowly close valve BTR1 until BP224 is reading 200 psig. Hold for 2 minutes.

15. Depressurize by opening valve BTR1 and closing valve SPS1.

16. There shall be no damage, deformation or external leakage. - Test No 4.B(3)

17. Open EM56-20 valve.

18. Attach Cap [6] a couple of turns to port B.

19. Execute Air Bleeding Method 2. Verify that valve SPS1 is open after bleeding is complete.

20. Slowly close valve BTR1 until BP224 is reading 200 psig. Hold for 2 minutes.

21. Depressurize by opening valve BTR1 and closing valve SPS1.

22. There shall be no damage, deformation or external leakage. - Test No 4.B(5)

(31)

10

(c)Internal Leakage Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.C.

1. Install the component according to Installation A. Let port B be situated in a slightly lower vertical

position than port A. 2. Connect the Test Box [3].

3. Open valve BTR1 and close valve SPS1 before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. In the software, set "V set" to 28.0 Vdc.

6. Execute Air Bleeding Method 1. Verify that valve SPS1 is open after bleeding is complete.

7. Close EM56-20 valve.

8. Slowly close valve BTR1 until Inlet Pressure is reading 50 psig. Hold for 3 minutes.

9. Measure the internal leakage through the valve; shall not exceed 10 drops per minute. - Test No 4.C(4) NOTE: There shall be no external leakage.

10. Depressurize by opening valve BTR1 and closing valve SPS1.

11. Open EM56-20 valve to let remaining pressure out. 12. Install the component according to Installation B.

Let port A be situated in a slightly lower vertical position than port B.

13. Execute Air Bleeding Method 1. Verify that valve SPS1 is open after bleeding is complete.

(32)

11

14. Close EM56-20 valve.

15. Slowly close valve BTR1 until Inlet Pressure is reading 50 psig. Hold for 3 minutes.

16. Measure the internal leakage through the valve; shall not exceed 10 drops per minute. - Test No 4.C(6) NOTE: There shall be no external leakage.

17. Depressurize by opening valve BTR1 and closing valve SPS1.

18. Cycle the EM56-20 valve to let remaining pressure out. Close the valve when finished.

(d)Thermal Relief Valve Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.D. 1. Install the component according to Installation B. 2. Connect the Test Box [3].

3. Open valve BTR1 and close valve SPS1 before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. In the software, set "V set" to 28.0 Vdc.

6. Execute Air Bleeding Method 1. Verify that valve SPS1 is open after bleeding is complete.

7. Close EM56-20 valve.

8. Slowly close valve BTR1 until Inlet Pressure is reading 100 psig.

9. Verify flow from port A exceeds 5 drops per minute. - Test No 4.D(3)

(33)

12

10. Open valve BTR1 until Inlet Pressure is reading 70 psig.

11. Using a graduated cylinder, verify leakage from port A does not exceed 5 cc during a two minute waiting period. Immediately continue to Step 12.

- Test No 4.D(5)

12. Leakage during the following one minute from port A shall not exceed 10 drops per minute.

- Test No 4.D(6)

13. Slowly close valve BTR1 until Inlet Pressure is reading 110 psig.

14. Using a graduated cylinder, verify flow at port A exceeds 50 cc per minute. - Test No 4.D(8)

15. Depressurize by opening valve BTR1 and closing valve SPS1.

16. Cycle the EM56-20 valve to let remaining pressure out. Close the valve when finished.

17. Install the component according to Installation A. 18. Execute Air Bleeding Method 1. Verify that valve SPS1

is open after bleeding is complete. 19. Close EM56-20 valve.

20. Slowly close valve BTR1 until Inlet Pressure is reading 100 psig.

21. Verify flow from port B exceeds 5 drops per minute. - Test No 4.D(11)

22. Open valve BTR1 until Inlet Pressure is reading 70 psig.

23. Using a graduated cylinder, verify leakage from port B does not exceed 5 cc during a two minute waiting period. Immediately continue to Step 24.

(34)

13

- Test No 4.D(13)

24. Leakage during the following one minute from port B shall not exceed 10 drops per minute.

- Test No 4.D(14)

25. Slowly close valve BTR1 until Inlet Pressure is reading 110 psig.

26. Using a graduated cylinder, verify flow at port B exceeds 50 cc per minute. - Test No 4.D(16)

27. Depressurize by opening valve BTR1 and closing valve SPS1.

28. Cycle the EM56-20 valve to let remaining pressure out. Close the valve when finished.

(e) Power Operation and Actuation Time

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.E. NOTE: This test requires that both of the test bench's main pumps are running. If the test bench is running in single pump mode, shutoff pump before proceeding.

CAUTION: THROUGHOUT THE POWER OPERATION AND ACTUATION TIME TEST, DO NOT ALLOW PRESSURE TO EXCEED 100 psig (689.5 KPA) WHEN VALVE CLOSES. DAMAGE TO VALVE FACESEAL MAY

RESULT.

WARNING: THE PROCEDURE DESCRIBED IN CMM 29-11-01 PARAGRAPH 4E2/4E3 IS NOT ADAPTED TO TEST BENCH "BETTAN". FOLLOWING CMM'S PROCEDURE IN THIS PARAGRAPH WILL RESULT IN DAMAGE TO THE COMPONENT DUE TO EXTREMLY HIGH PRESSURE WHEN THE EM56-20 VALVE CLOSES.

1. Install the component according to Installation A. 2. Connect Connection Pipe AN-MS-16 [4] to port RTTFM.

(35)

14

3.

Connect Blue HP Hose [9] between Connection Pipe AN-MS-16 [4] and component's port B (figure 5).

4.

Connect the Test Box [3].

CAUTION: THROUGHOUT THE FOLLOWING START PROCEDURE, LET VALVE HF2 BE OPEN AT ALL TIMES.

5. Open valve BTR1 and close valve SPS1 before proceeding to pump startup procedure.

6. Start 20 + 44 gpm pump and keep valve HF2 open during the procedure.

7. In the software, set "V set" to 18.0 Vdc.

8. Execute Air Bleeding Method 1 but keep valve HF2 open during the procedure. Verify that valve SPS1 is open after bleeding is complete.

9. Set Return Flow to about 12 gpm by adjusting switches FC20 and/or FC44.

NOTE: The goal of the following procedure is to achieve a flow of 25 gpm with EM56-20 valve open and a

pressure of about 100-120 psig with EM56-20 valve closed, to gradually and slowly increase the

(36)

15

pressure until the flow with EM56-20 valve open has reached 25 gpm.

10. Verify that valve BTR1 is open. 11. Close EM56-20 valve.

12. Carefully adjust valves BTR1 and PR in combination until Inlet Pressure is reading a maximum of 50 psig. 13. Open EM56-20 valve and note the Return Flow reading. NOTE: The goal is to gradually increase this value until

a flow of 25 gpm is achieved in this state. 14. Close EM56-20 valve. Carefully adjust valve PR to

achieve a slightly higher Inlet Pressure.

15. Carefully repeat Step 12 and 13 several times until Return Flow is reading 25 gpm with EM56-20 valve open and the Inlet Pressure is reading about 100-120 psig with EM56-20 valve closed.

NOTE: As a final result of executing Step 8-14, valve BTR1 should now be closed and valve PR almost open. If this is not achieved, change the value of the Return Flow in Step 8 and repeat Step 9-14 until the correct combination of flow and pressure is reached.

16. Open EM56-20 valve.

17. In the software, open "Graph". A graph is shown with current (A) presented on the y-axis and time (s) on the x-axis.

18. In "Graph", press "Start". Immediately cycle EM56-20 valve from open to close to open. Verify that EM56-20 valve opens and closes completely when cycling. When the valve has opened completely, immediately press "Stop".

(37)

16

19. By using "Graph", verify that running current does not exceed 2.0 amperes in either direction and starting current does not exceed 5 amperes in either direction. - Test No 4.E(4)

20. Print the graph by pressing "Print".

NOTE: In the software, remember to fill in test

information in order to get this on the printout. 21. In the software, set "V set" to 28.0 Vdc.

22. Verify that Return Flow is reading 25 gpm when 20 valve is open and that Inlet Pressure is

reading 100-120 psig when EM56-20 valve is closed. 23. Open EM56-20 valve.

24. In "Graph", press "Start". Immediately cycle EM56-20 valve from open to close to open. Verify that EM56-20 valve opens and closes completely when cycling. When the valve has opened completely, immediately press "Stop".

25. By using "Graph", verify that running current does not exceed 2.0 amperes in either direction and starting current does not exceed 5 amperes in either direction. - Test No 4.E(8)

26. Print the graph by pressing "Print". 27. In the software, set "V set" to 26.0 Vdc.

28. Verify that Return Flow is reading 25 gpm when 20 valve is open and that Inlet Pressure is

reading 100-120 psig when EM56-20 valve is closed. 29. Close EM56-20 valve.

30. In "Graph", press "Start". Immediately open EM56-20 valve. Verify that EM56-20 valve opens completely. When the valve has opened completely,

(38)

17

31. In "Graph", uncheck "Set cursor to current value". Retrieve the cursor from the very right side of the graph. Position the cursor at the end (right side) of the current cycle. Note the end value by reading "Cursor Position". Position the cursor at the

beginning (left side) of the current cycle. Note the start value by reading "Cursor Position".

32. Subtract start value from end value in order to calculate the time to fully open EM56-20 valve. 33. Verify that EM56-20 valve opens fully in 1 second or

less. - Test No 4.E(10)

34. Verify that Return Flow is reading 25 gpm when 20 valve is open and that Inlet Pressure is

reading 100-120 psig when EM56-20 valve is closed. 35. Verify that "V set" is set to 26.0 Vdc.

36. Open EM56-20 valve.

37. In "Graph", press "Start". Immediately close EM56-20 valve. Verify that EM56-20 valve closes completely. When the valve has closed completely,

immediately press "Stop".

38. In "Graph, position the cursor at the end (right side) of the current cycle. Note the end value by reading "Cursor Position". Position the cursor at the beginning (left side) of the current cycle. Note the start value by reading "Cursor Position".

39. Subtract start value from end value in order to calculate the time to fully close EM56-20 valve. 40. Verify that EM56-20 valve closes fully in 1 second or

less. - Test No 4.E(12)

41. Verify that Return Flow is reading 25 gpm when 20 valve is open and that Inlet Pressure is

(39)

18

42. In the software, set "V set" to 28.0 Vdc. 43. Close EM56-20 valve.

44. Open EM56-20 valve, while EM56-20 valve blade is in motion, reverse direction the valve. Valve blade shall reverse direction and return to the valve closed position. - Test No 4.E(15)

45. Repeat Step 43-44 one time. - Test No 4.E(16)

46. Depressurize by opening valve BTR1 and closing valve SPS1.

(f) Starting Current

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.F. NOTE: This test requires that both of the test bench's main pumps are shutoff.

1. Install the component according to Installation A or Installation B.

2. Connect the Test Box [3].

3. In the software, set "V set" to 28.0 Vdc.

4. In "Graph", press "Start". Cycle EM56-20 valve several times between fully closed and fully opened position. Verify that EM56-20 valve opens and closes completely when cycling. When cycling is complete, press "Stop". 5. In "Graph", uncheck "Set cursor to current value".

Retrieve the cursor from the very bottom of the graph. Position the cursor at the highest peak of the current cycles.

6. Peak starting current shall not exceed 5 amperes. - Test No 4.F

7. In "Graph”, position the cursor at the end (right side) of the starting current cycle. Note the end

(40)

19

value by reading "Cursor Position". Position the cursor at the beginning (left side) of the staring current cycle. Note the start value by reading "Cursor Position".

8. Subtract start value from end value in order to calculate the maximum period for starting current. 9. Maximum period for starting current shall not exceed

500 ms. - Test No 4.F

(g) Continuity Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.G. NOTE: This test requires that both of the test bench's main pumps are running. If the test bench is running in single pump mode, shut off pump before proceeding.

WARNING: THE PROCEDURE DESCRIBED IN CMM 29-11-01 PARAGRAPH 4G2/4G3 IS NOT ADAPTED TO TEST BENCH "BETTAN". FOLLOWING CMM'S PROCEDURE IN THIS PARAGRAPH WILL RESULT IN DAMAGE TO THE COMPONENT DUE TO EXTREMLY HIGH PRESSURE WHEN THE EM56-20 VALVE CLOSES.

1. Install the component according to Installation A. 2. Connect Connection Pipe AN-MS-16 [4] to port RTTFM.

(41)

20

3. Connect Blue HP Hose [9] between Connection Pipe AN-MS-16 [4] and component's port B (figure 6).

4. Connect Test Box [3]

CAUTION: THROUGHOUT THE FOLLOWING START PROCEDURE, LET VALVE HF2 BE OPEN AT ALL TIMES.

5. Open valve BTR1 and close valve SPS1 before proceeding to pump startup procedure.

6. Start 20 + 40 gpm pump and keep valve HF2 open during the procedure.

7. In the software, set "V set" to 23.0 Vdc.

8. Execute Air Bleeding Method 1 but keep valve HF2 open during the procedure. Verify that valve SPS1 is open after bleeding is complete.

9. Set Return Flow to about 12 gpm by adjusting switches FC20 and/or FC44.

(42)

21

NOTE: The goal of the following procedure is to achieve a flow of 25 gpm with EM56-20 valve open and a

pressure of about 100-120 psig with EM56-20 valve closed, to gradually and slowly increase the

pressure until the flow with EM56-20 valve open has reached 25 gpm.

10. Verify that valve BTR1 is open. 11. Close EM56-20 valve.

12. Carefully adjust valves BTR1 and PR in combination until Inlet Pressure is reading a maximum of 50 psig. 13. Open EM56-20 valve and note the Return Flow reading. NOTE: The goal is to gradually increase this value until

a flow of 25 gpm is achieved in this state. 14. Close EM56-20 valve. Carefully adjust valve PR to

achieve a slightly higher Inlet Pressure.

15. Carefully repeat Step 12 and 13 several times until Return Flow is reading 25 gpm with EM56-20 valve open and the Inlet Pressure is reading about 100-120 psig with EM56-20 valve closed.

NOTE: As a final result of executing Step 8-14, valve BTR1 should now be closed and valve PR almost open. If this is not achieved, change the value of the Return Flow in Step 8 and repeat Step 9-14 until the correct combination of flow and pressure is reached.

16. Open EM56-20 valve.

17. In the software, set "V set" to 23.0 Vdc.

18. Set EM56-20 to any position between open and closed (mid-position).

19. Disconnect the Test Box [3]. Connect test leads from Simpson [12] to connector pins B-D. Circuit shall be open. - Test No 4.G(4)

(43)

22

20. Connect Test Box [3]. 21. Close EM56-20 valve. 22. Disconnect Test Box [3].

23. Connect test leads from Simpson [12] to connector pins A-C. Circuit shall be open. - Test No 4.G(6) 24. Connect test leads from Simpson [12] to connector

pins B-E. Circuit shall be open. - Test No 4.G(6) 25. Connect test leads from Simpson [12] to connector

pins A-E. Circuit shall be closed. - Test No 4.G(6) 26. Connect test leads from Simpson [12] to connector

pins B-D. Circuit shall be closed. - Test No 4.G(6) 27. Connect Test Box [3].

28. Close EM56-20 valve. Verify that Inlet Pressure is reading 100 psig.

29. Starting with the EM56-20 valve in closed position, start opening the valve. Before the valve blade has reached fully open position, set the testbox's switch to neutral position. (The valve will stop in a

mid-position.)

30. Disconnect Test Box [3].

31. Connect test leads from Simpson [12] to connector pins A-C. Circuit shall be open. - Test No 4.G(9) 32. Connect Test Box [3].

33. Open EM56-20 valve. 34. Disconnect Test Box [3].

35. Connect test leads from Simpson [12] to connector pins A-E. Circuit shall be open. - Test No 4.G(11)

(44)

23

36. Connect test leads from Simpson [12] to connector pins B-D. Circuit shall be open. - Test No 4.G(11) 37. Connect test leads from Simpson [12] to connector

pins A-C. Circuit shall be closed. - Test No 4.G(11) 38. Connect test leads from Simpson [12] to connector

pins B-E. Circuit shall be closed. - Test No 4.G(11) 39. Shut off pumps.

40. Connect Test Box [3].

41. Starting with the EM56-20 valve in closed position, start opening the valve. Before the valve blade has reached fully open position, set the testbox's switch to neutral position. (The valve will stop in a

mid-position.)

42. Disconnect Test Box [3].

43. Connect test leads from Simpson [12] to connector pins A-E. Circuit shall be closed. - Test No 4.G(14) 44. Connect test leads from Simpson [12] to connector

pins B-E. Circuit shall be closed. - Test No 4.G(14) 45. Connect test leads from Simpson [12] to connector

pins A-C. Circuit shall be open. - Test No 4.G(14) 46. Connect test leads from Simpson [12] to connector

pins B-D. Circuit shall be open. - Test No 4.G(14) 47. Connect Test Box [3].

48. Starting with the EM56-20 valve in open position, start closing the valve. Before the valve blade has reached fully closed position, set the testbox's switch to neutral position. (The valve will stop in a mid-position.)

(45)

24

50. Connect test leads from Simpson [12] to connector pins A-E. Circuit shall be closed. - Test No 4.G(17) 51. Connect test leads from Simpson [12] to connector

pins B-E. Circuit shall be closed. - Test No 4.G(17) 52. Connect test leads from Simpson [12] to connector

pins A-C. Circuit shall be open. - Test No 4.G(17) 53. Connect test leads from Simpson [12] to connector

pins B-D. Circuit shall be open. - Test No 4.G(17) 54. Disconnect Test Box [3].

(h) Bonding Resistance Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.H.

NOTE: This test requires that the component is disconnected from any hydraulic or electrical connections.

1. Install the component between protection plates. 2. Setup Resistomat [11] as following:

• Temp. Kompensation: "Ein" / "On"

• Range: "20 mohm" / "1A"

• Netz POWER: "ON"

3. Connect the test clips to the Resistomat [11] as following:

• Grey cables: "-I", "-U"

• Red cables: "+I", "+U"

4. Connect the grey test clip to bonding test point 1 (figure 7).

5. Connect the red test clip to bonding test point 2 (figure 7).

(46)

25

6. Verify that electrical resistance does not exceed 0.0025 ohm. - Test No 4.H

7. Connect the red test clip to bonding test point 3. 8. Verify that electrical resistance does not exceed

0.0025 ohm. - Test No 4.H

(i) Post Test

This test is according to CMM 29-11-01, chapter “TESTING AND FAULT ISOLATION”, paragraph 4.I.

1.

Flush unit.

2.

Fill unit with BMS 3-11 so that internal

seals are lubricated.

NOTE: Sufficient air entrapment must be

present for storage thermal expansion.

3.

Using BMS 3-11 or equivalent resistant

plastic cap, cap ports and electrical

connections.

- Test No 4.I

(47)

26

(48)
(49)

Maintenance Work Sheet Fuse 2-7737

for

(50)
(51)

TABLE OF CONTENTS

1.

Test Description

... 1

2.

Equipment Needed For Testing

... 1

A. General ... 1 B. Equipment ... 1

3.

Test Conditions

... 1

4.

General Procedures Regarding Testing

... 1

A. General ... 1 B. Repetitive Procedures ... 2 General Test Setup A & B ... 2 (a) Fuse Reset ... 3 (b)

5.

Test Procedure

... 3

A. General ... 3 B. Testing ... 3 Proof Pressure Test ... 3 (a)

Minimum Flow Test ... 4 (b)

Internal Leakage Test ... 5 (c)

Reverse Flow Test ... 6 (d)

Pressure Drop Test ... 6 (e)

Volumetric Capacity Test ... 7 (f)

Reset Test ... 9 (g)

Bypass Test ... 11 (h)

(52)

1

1. Test Description

This is a description of the test procedure for the Fuse 2-7737 for performing the tests in test bench "Bettan".

The following description refers to CMM 32-40-15, chapter

“TESTING/TROUBLESHOTTING”. CMM 32-40-15 shall always be used along with this test sheet.

2. Equipment Needed For Testing A. General

According to "Test Equipment" in CMM 32-40-15 the tests require more equipment than the following specified list. Equipment not mentioned is built in test bench.

B. Equipment

Nr Name Serial Quantity

Required

Notes

1 Valve M Standard item 1 2 Blue High Pressure Hose (HP

Hose)

Standard item 3 3 T-pipe Standard item 2

4 AN-MS-8 Standard item 1 90-dgr

Connection Pipe 5 Pipe Standard item 2 Straight

Connection Pipe 6 Push-Pull Gage 642-411-0116 1 Chatillon DFM 50

3. Test Conditions

According to “Test Conditions” in CMM 32-40-15 chapter “TESTING/TROUBLESHOOTING”.

4. General Procedures Regarding Testing A. General

In this paragraph there are descriptions of standard (a)

setups and procedures required to perform the

testing. The testing is based upon knowledge of the following procedures and therefore the test

instructions are referring to this paragraph at several occasions.

(53)

2

If desirable/necessary, test bench shutoff procedure (b)

can be executed after each subtest. The instructions regarding all subtests assume that test bench is shutoff when the subtests begin.

B. Repetitive Procedures

General Test Setup A & B

(a)

By using equipment Nr [1], [2], [3], [4], [5], install the component according to figure 1.

The component shall be oriented so that the bypass lever is closest to the return side of the

installation.

The three HP Hoses [2] shall be connected to the following ports:

• Setup A (High flow): Valve M to port RTTFM Setup B (Low flow) : Valve M to port A1

• Port PP13 – Pressure after component

• Port PP14 - Pressure before component

(54)

3

Fuse Reset

(b)

The fuse is a volume triggered shutoff valve. During the testing the fuse will close at several occasions and needs to be reset (opened).

1. Position Shifter to SP3, this will cut the flow to the fuse and will allow it to reset.

2. Hold for about 3 seconds. The fuse has now reset.

5. Test Procedure A. General

All tests in this paragraph are adapted to test bench (a)

“Bettan” and produced with CMM 32-40-15 as reference. The reference document, CMM 32-40-15, shall under all circumstances be used along with all test procedures following.

In this paragraph there are several grey marked “Test (b)

No”. This is a direct reference to CMM 32-40-15. The “Test No” shall also be used along with the test paragraphs of MWS32-40-15.

B. Testing

NOTE: During all of the following subtests, valve HF2 shall be open at all times.

Proof Pressure Test

(a)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(1).

1. Install the component according to General Test Setup A.

2. Open valve BTR1 and valve HF2 before proceeding to pump startup procedure.

3. Start 20 gpm pump.

4. Position Shifter to SP4. 5. Slowly close valve M.

(55)

4

6. Close valve BTR1 until Pressure Bp229 is reading 3000 psi.

7. Increase pressure with PR until Pressure Bp229 is reading 4500 psi.

8. Hold for 2 minutes.

9. Decrease pressure with PR until Pressure Bp229 is reading 3000 psi.

10. Depressurize by opening valve BTR1.

11. There shall be no evidence of external leakage failure, distortion or permanent set. - Test No

4.B(1) (a) to (f) Minimum Flow Test

(b)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(2).

1. Install the component according to General Test Setup B.

2. Open valve BTR1 and valve LFG before proceeding to pump startup procedure.

3. Start 20 gpm pump.

4. Position Shifter to SP4. 5. Open valve M.

6. Gradually and in interaction, adjust valve BTR1 and valve M until Pressure Bp229 is reading 3000 psi and until Return flow BQ222 (mL/min) is reading a value between .189 and .208 lpm.

7. Reset the fuse and position Shifter to SP4, maintain the flow from Step 6 for 8.3 minutes. 8. Fluid flow shall not stop during this test. - Test

No 4.B(2) (a) to (i)

(56)

5

Internal Leakage Test

(c)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(3).

1. Install the component according to General Test Setup B.

2. Close valve M.

3. Open valve BTR1 and valve LFG before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. Position Shifter to SP4.

6. Close valve BTR1 until Pressure Bp229 is reading 3000 psi.

7. Gradually open valve M until unit fuses. (Flowmeter BQ222 shall now read zero.) When unit has fused, start a countdown timer for 3 minutes. Execute Step 8 within 2 minutes.

8. After flow has stopped, disconnect HP Hose [2] from the T-connection that is connected to port PP13. 9. Leakage measurement shall be conducted during the

last minute and shall not exceed 5 drops per minute. (The leakage shall be measured from the open port on the T-pipe.) - Test No 4.B(3) (a) to

(h) Step (d)

10. Open valve BTR1 until Pressure Bp229 is reading 37-43 psi.

11. Fuse shall remain fused.

12. Maintain the 37-43 psi pressure for 3 minutes. 13. Requirement: Leakage measurement shall not exceed

10 drops per minute. - Test No 4.B(3) (a) to (h)

Step (g)

14. Depressurize by opening valve BTR1. 15. Reconnect HP Hose [2] to T-pipe.

(57)

6

Reverse Flow Test

(d)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(4).

1. Install the component according to General Test Setup B but install the unit in reversed direction. 2. Open valve M.

3. Open valve BTR1 and valve LFG before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. Position Shifter to SP4. 6. Close valve M.

7. Adjust valve BTR1 until Pressure Bp229 is reading 30-50 psi (206.8-345 kPa).

8. Open valve M to allow fluid flow through the fuse. Requirement: Fluid shall flow through the fuse.

Verify by reading Return flow BQ222. - Test No 4.B(4) (a) to (c)

9. Depressurize by opening valve BTR1.

Pressure Drop Test

(e)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(5).

NOTE: If the unit fuses before the correct flow is obtained, reset the fuse and continue to adjust valve M until the correct flow is set.

1. Install the component according to General Test Setup B.

2. Close valve M.

3. Open valve BTR1 and valve LFG before proceeding to pump startup procedure.

(58)

7

5. Position Shifter to SP4.

6. Close valve BTR1 until Pressure Bp229 is reading 3000 psi.

7. Open valve M until Return flow BQ220 is reading 6.0/6.2 gpm (22.7/23.5 lpm).

NOTE: Due to the fast fusing of the unit at this high flow rate, it is necessary to reset the fuse at several times and use the graph function in the software in order to set the correct flow. Select profile “Flow 32-40-15”.

8. In the software, select profile ”Pressuredrop 32-40-15” in ”Graph”-window. This graph will record pressure before and after the component:

• Pressure before – Red curve (Bp229)

• Pressure after – Yellow curve (Bp230) 9. Reset the fuse and position Shifter to SP4. 10. Immediately measure and record pressure drop

through the fuse by reading the graph.

Requirement: Pressure drop shall not exceed 100 psid (689 kPa). - Test No 4.B(5) (a)

to (i)

NOTE: If the pressure drop exceeds 100 psid (389 kPa), perform Step 1-10 without component installed. Record this pressure drop and subtract from the obtained value with

component installed. If the pressure drop now is less than 100 psid (389 kPa), the

component has passed the subtest. 11. Depressurize by opening valve BTR1.

Volumetric Capacity Test

(f)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(6).

NOTE: If the unit fuses before the correct flow is obtained, reset the fuse and continue to adjust

(59)

8

valve M until the correct flow is set. If the unit fuses quickly, the graph function in the software can be used to determine if the correct flow is set. Select profile “Flow 32-40-15”.

NOTE: When the unit has fused, the pressure

difference between Pressure Bp229 and Pressure Bp230 will increase. This method can be used in order to determine when the unit fuses.

1. Install the component according to General Test Setup B.

2. Open valve M.

3. Open valve BTR1 and valve LFG before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. Position Shifter to SP4. 6. Close valve M.

7. Close valve BTR1 and adjust pressure with valve PR until Pressure Bp229 is reading 3000 psi.

8. Open valve M until Return flow BQ222 is reading .1 gpm (.378 lpm).

9. Reset the fuse when Step 8 is complete.

10. Position Shifter to SP4 then, in the software, immediately press to start Flow totalizer.

11. After the unit has fused, determine the volume of fluid that has passed through the unit by reading the Flow totalizer.

Requirement: This value shall be between 42-80 in3 (688.3-1311 cc). - Test No 4.B(6) (a)

to (p)

12. Reset the fuse then position Shifter to SP4. 13. Open valve M until Return flow BQ222 is reading 2

(60)

9

14. Reset the fuse when Step 13 is complete

15. Position Shifter to SP4 then, in the software, immediately press to start Flow totalizer.

16. After the unit has fused, determine the volume of fluid that has passed through the unit by reading the Flow totalizer.

Requirement: This value shall be between 42-80 in3 (688.3-1311 cc). - Test No 4.B(6) (a)

to (p)

17. Reset the fuse then position Shifter to SP4. 18. Open valve M until Return flow BQ222 is reading 8

gpm (30.3 lmp).

NOTE: Due to the fast fusing of the unit at this high flow rate, it is now necessary to reset the fuse at several times and use the graph function in the software in order to set the correct flow. Select profile “Flow 32-40-15”. 19. Reset the fuse when Step 18 is complete.

20. Position Shifter to SP4 then, in the software, immediately press to start Flow totalizer.

21. After the unit has fused, determine the volume of fluid that has passed through the unit by reading the Flow totalizer.

Requirement: This value shall be between 42-80 in3 (688.3-1311 cc). - Test No 4.B(6) (a)

to (p)

22. Depressurize by opening valve BTR1.

Reset Test

(g)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(7).

NOTE: If the unit fuses before the correct flow is obtained, reset the fuse and continue to adjust valve M until the correct flow is set.

(61)

10

NOTE: When the unit has fused, the pressure

difference between Pressure Bp229 and Pressure Bp230 will increase. This method can be used in order to determine when the unit fuses.

1. Install the component according to General Test Setup A.

2. Open valve M.

3. Open valve BTR1 and valve HF2 before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. Position Shifter to SP4. 6. Close valve M.

7. Close valve BTR1 and adjust pressure with valve PR until Pressure Bp229 is reading 3000 psi.

8. Open valve M until Return flow BQ220 is reading 6 gpm (22.7 lpm).

NOTE: Due to the fast fusing of the unit at this high flow rate, it is necessary to reset the fuse at several times and use the graph function in the software in order to set the correct flow. Select profile “Flow 32-40-15”. 9. Reset the fuse and position Shifter to SP4. The

unit shall fuse, Return flow BQ220 shall now read zero.

10. After the fluid flow has stopped, depressurize by positioning Shifter to SP3. Hold for 4.8-5.0 seconds.

Requirement: Unit shall reset.

11. Position Shifter SP4 to allow forward flow through the fuse. Verify that unit has reset by reading Return flow BQ220.

(62)

11

13. Position Shifter to SP4 to reapply pressure. In the software, immediately press to start Flow

totalizer.

14. After the unit has fused, determine the volume of fluid that has passed through the unit by reading the Flow totalizer. Record as volume “B”. Reset Flow totalizer. - Test No 4.B(7) (a) to (f) 15. Instantly, reset the fuse.

16. Position Shifter to SP4 to reapply pressure. In the software, immediately press to start Flow

totalizer.

17. After the unit has fused, determine the volume of fluid that has passed through the unit by reading the Flow totalizer. Record as volume “C”. - Test No

4.B(7) (a) to (f)

18. Both fused volumes (B and C) shall be within 10 cubic inches (164 cc) of each other and each fused volume shall be within 42-80 cubic inches (688.3-1311 cc). - Test No 4.B(7) (a) to (f)

19. Depressurize by opening valve BTR1.

Bypass Test

(h)

This test is according to CMM 32-40-15, chapter “TESTING/TROUBLESHOOTING”, section 4.B(8).

1. Install the component according to General Test Setup A.

2. Open valve M.

3. Open valve BTR1 and valve HF2 before proceeding to pump startup procedure.

4. Start 20 gpm pump.

5. Position Shifter to SP4. 6. Close valve M.

7. Close valve BTR1 and adjust pressure with valve PR until Pressure Bp229 is reading 3000 psi.

(63)

12

8. Open valve M, allow flow until unit fuses. 9. Using Push-Pull Gage [6], manually open bypass

lever to the full open position.

Requirement: The bypass lever actuation lever force shall not exceed 20 lb (9.07 kg). - Test No 4.B(8) (a) to (h) Step (e) 10. While holding bypass lever open, gradually close

valve M until Return flow BQ220 is reading 3.0 gpm (11.4 lpm).

Requirement: When Return flow BQ220 is reading 3.0 gpm (11.4 lpm), pressure between Pressure Bp229 and Pressure Bp230 shall not exceed 700 psid (4826 kPa). - Test No 4.B(8) (a) to (h) Step (f) 11. Release the bypass lever and verify that it is

spring loaded to the full closed position as evidenced by a minimum of 2900 psid (19.995 kPa) across the fuse.

(64)

13

(65)
(66)

Maintenance Work Sheet Yaw Damper Servo

for

(67)
(68)

TABLE OF CONTENTS

1. Test Description ... 1 2. Equipment Needed For Testing ... 1 A. General ... 1 B. Equipment ... 1 3. Test Conditions ... 2 4. General Procedures Regarding Testing ... 2 A. General ... 2 B. Repetitive Procedures ... 2 (a) General Test Setup ... 2 (b) Air Bleeding Method 1 ... 4 5. Test Procedure ... 6 A. General ... 6 B. Electrical Tests ... 6 (a) Electrical Wiring Continuity and Resistance Test ... 6 (b) Dielectric Strength Test ... 7 (c) Insulation Resistance Test ... 8 (d) Bonding Resistance Test ... 9 (e) LVDT Null Adjustment ... 10 (f) LVDT Output Voltage Test ... 12 (g) Electro-Hydraulic Servo Valve (EHSV) Polarity Test ... 13 (h) LVDT Phase Test ... 14 (i) Free Play Test ... 14 C. Hydraulic Tests ... 16 (a) Proof Pressure Test ... 16 (b) Leakage Test ... 17 (c) Output Stroke Test ... 17 (d) Resolution Test ... 17 (e) Centering Test ... 17 (f) Centering Force Test ... 17 (g) Null Bias Test ... 18

Figure

Figure 1: EM56-20 with mounting plates
Figure 2:  EM56-20 Connector pins
Figure 4: Mounting Plates with T-pipes
Figure 5: Test setup with HP Hose
+7

References

Related documents

In light of increasing affiliation of hotel properties with hotel chains and the increasing importance of branding in the hospitality industry, senior managers/owners should be

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

In Section 4 we analyze the polynomial identities and prove (Theorem 2) that they imply that the supporting function ρ(ω) must be a quadratic polynomial, which together with the

The Court of Justice of the European Union has progressively revised the rule of purely internal situations to ensure a wider scope of application of the economic freedoms as well as

However, when the original edition has been adapted according to the current guidelines for adapted texts, and the layout, content and language of the original is transformed,

When applied to modern macroe- conomics, mathematical control theory utilizes every branch of mathematics that most master students, or even Ph.D students, in economics have

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton & al. -Species synonymy- Schwarz & al. scotica while