• No results found

Consecutive CT in vivo lung imaging as quantitative parameter of influenza vaccine efficacy in the ferret model

N/A
N/A
Protected

Academic year: 2021

Share "Consecutive CT in vivo lung imaging as quantitative parameter of influenza vaccine efficacy in the ferret model"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Consecutive CT in vivo lung imaging as

quantitative parameter of influenza vaccine

efficacy in the ferret model

Edwin J. B. Veldhuis Kroeze, Koert J. Stittelaar, Vera J. Teeuwsen, Marcel L Dijkshoorn,

Geert van Amerongen, Leon de Waal, Thijs Kuiken, Gabriel P. Krestin, Jorma Hinkula and

Albert D. M. E Osterhaus

Linköping University Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Edwin J. B. Veldhuis Kroeze, Koert J. Stittelaar, Vera J. Teeuwsen, Marcel L Dijkshoorn,

Geert van Amerongen, Leon de Waal, Thijs Kuiken, Gabriel P. Krestin, Jorma Hinkula and

Albert D. M. E Osterhaus, Consecutive CT in vivo lung imaging as quantitative parameter of

influenza vaccine efficacy in the ferret model, 2012, Vaccine, (30), 51, 7391-7394.

http://dx.doi.org/10.1016/j.vaccine.2012.10.008

Copyright: Elsevier.

Under a Creative

Commons license

http://www.elsevier.com/

Postprint available at: Linköping University Electronic Press

(2)

ContentslistsavailableatSciVerseScienceDirect

Vaccine

j o ur na l ho me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / v a c c i n e

Consecutive

CT

in

vivo

lung

imaging

as

quantitative

parameter

of

influenza

vaccine

efficacy

in

the

ferret

model

Edwin

J.B.

Veldhuis

Kroeze

a,b

,

Koert

J.

Stittelaar

a

,

Vera

J.

Teeuwsen

a

,

Marcel

L.

Dijkshoorn

c

,

Geert

van

Amerongen

a

,

Leon

de

Waal

a

,

Thijs

Kuiken

b

,

Gabriel

P.

Krestin

c

,

Jorma

Hinkula

d,e

,

Albert

D.M.E.

Osterhaus

a,b,∗

aViroClinicsBiosciencesB.V.,3000DRRotterdam,TheNetherlands

bDepartmentofVirology,ErasmusMedicalCenter,3000DRRotterdam,TheNetherlands cDepartmentofRadiology,ErasmusMedicalCenter,3000DRRotterdam,TheNetherlands dEurocineVaccinesAB,KarolinskaInstitutetSciencePark,17165Solna,Sweden eDivisionofMolecularVirology,IKE,LinkopingUniversity,58183Linköping,Sweden

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18June2012 Accepted4October2012 Available online 17 October 2012 Keywords:

Influenza

Preclinicalvaccineefficacy Ferret

Invivoimaging CTscan Pathology

a

b

s

t

r

a

c

t

Preclinicalvaccineefficacystudiesaregenerallylimitedtocertainreadoutparameterssuchasassessment ofvirustitersinswabsandorgans,clinicalsigns,serumantibodytiters,andpathologicalchanges.These parametersarenotalwaysroutinelyappliedandnotalwaysscheduledinalogicalstandardizedway.We usedcomputedtomography(CT)imagingasadditionalandnovelreadoutparameterinavaccineefficacy studybyquantifyingalterationsinaeratedlungvolumesinferretschallengedwiththe2009pandemic A/H1N1influenzavirus.

Vaccinationprotectedfrommarkedvariationsinaeratedlungvolumescomparedtonaivecontrols. Thevaccinatedgroupshowedadailygradualmeanreductionwithamaximumof7.8%,whereasthe controlsshowedamaximumof14.3%reduction.ThepulmonaryopacitiesevidentonCTimageswere mostpronouncedintheplacebo-treatedcontrols,andcorrespondedtosignificantlyincreasedrelative lungweightsatnecropsy.

ThisstudyshowsthatconsecutiveinvivoCTimagingallowsforadaytodayreadoutofvaccineefficacy byquantificationofalteredaeratedlungvolumes.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thefieldofinfluenzavirusresearchisinparticularanareaof newemergingvirusesthatrequiresrapiddevelopmentofanimal modelsneededforpathogenicitystudiesandassessmentof ade-quatevaccinecandidatesandantiviraltherapies.Thiswasrecently illustrated by the emergence of the 2009 pandemic A/H1N1 influenza virus (pH1N1) [1,2]. Ferrets are being implemented extensivelyinhumaninfluenzavirusresearch.However,influenza virusresearchisconductedinmultipleseparatelaboratoriesall withtheiruniqueapproachhowtoevaluatevaccinecandidates within the ferret challenge model. Substantial differences can befoundinallstages andaspectsof challengeprotocols,study set-upsandread-outparameters.Aspectrumofrecentlypublished

Abbreviations:ALV,aeratedlungvolume;RLW,relativelungweight. ∗ Correspondingauthorat:DepartmentofVirology,ErasmusMedicalCenter,PO Box2040,3000CARotterdam,TheNetherlands.Tel.:+31107044066,

fax:+31107044760.

E-mailaddress:a.osterhaus@erasmusmc.nl(A.D.M.E.Osterhaus).

[1,3–12] infection/challenge protocols showingthis diversity is listedincomparisoninTable1.In addition,obviously, different influenza strains are used as challenge virusinstigated by the antigenicnatureofthevaccine,oralternativelytoevaluateefficacy toaheterologousinfluenzaviruschallenge.Theroutesofinfection beingintranasal,intratrachealorthroughvirustransmissionfrom experimentallyinfectedandshedding ferretsshowconsiderable differencesinimplementationandoutcomes[13].Differentviral challengedosesareused,whetherornotestablishedinpreceding dose-finding studies.However, the challenge doses are pivotal intheinterpretationofachallengeoutcome.Since,atoorobust challengemayprove,falsenegatively,apoorefficacyofahuman vaccinecandidateintheferretmodel,andviceversa.Furthermore, thedurationofthechallengereadoutperiodvaries,aswellasthe typesofsamplescollectedandfrequencyofsampling.Oftenthe designofachallengeprotocolisbasedonpredefinedendpoints andreadouts,ormayrelyonresultsfromhistoricalexperiments.

Becauseofthesevariationsintheassessmentofvaccine effi-cacy,thecomparisonoftheoutcomesofvaccinestudiesmaybe hampered,thereforeacertainwayofstandardizationcouldprove usefulbyprovidingclarity.

0264-410X/$–seefrontmatter © 2012 Elsevier Ltd. All rights reserved.

(3)

7392 E.J.B.VeldhuisKroezeetal./Vaccine30 (2012) 7391–7394

Table1

Recently,wereportedthatCT-scanningallowsquantification andcharacterisationofinfluenza-inducedpulmonarylesionsin liv-inganimals [11]. We showedthat thepulmonary ground-glass opacitiesobservedbyCTscanningcorrespondedmainlytoareas ofalveolaroedema,whichisamajorhistologicallesioninearly influenza-inducedpneumoniaandcanbeusedtoquantifythe aer-atedlungvolume(ALV).

Thepresentstudywasperformedtoevaluatethe immunogenic-ityandprotectiveefficacyofanadjuvantedinactivatedinfluenza pH1N1vaccineforintranasaluseintheferretmodel.Agroupof sixferretswasintranasallyimmunisedwiththis vaccine candi-dateandcomparedtoasecondgroupofsixferretsthatreceived intranasallyadministeredPBSasplacebo.Theseadministrations wereperformedonstudydays0,21and42.Allanimalswere subse-quentlyintratracheallychallengedwith106mediantissueculture

infectiousdose(TCID50)H1N1A/TheNetherlands/602/2009virus

onstudyday70.Theanimalsweremonitoredforvaccineinduced serologicalandimmunologicalresponsesandforinfectionrelated clinicaland virological responses (datawill be presented else-where).AsnovelreadoutparameterCT-scanningwasperformed6 daysprior,anddailyafter,virusinoculationonalltwelveferretsto monitorinfluenzainducedlungdamagebyquantifyingalterations intheALVs.Theanimalsweresacrificedat4dayspost-inoculation (dpi)toevaluatepathologicalandvirologicalparameters.

2. Materialandmethods

2.1. Animals

Theferrets(Mustelaputoriusfuro)werefemalesof8months of age, seronegative for antibodies against current circulating influenzaviruses,andAleutiandiseasevirus.Housingand hand-ling was performed under biosafety level (BSL)-3+ conditions

in negatively pressurized and high efficiency particulate air (HEPA)-filtered biocontainment isolator units, approved by an independent institutional laboratory animal ethics and welfare committee.Generalinjectionanaesthesia(ketamine8mg/kgand medetomidine-HCl 7.5␮g/kg body weight) was applied during handlingandscanning.

2.2. Immunisation

Theanimals(n=6)wereimmunisedthreetimeswitha3week interval withan adjuvanted inactivated vaccine.200␮l of vac-cinewasintranasallyadministeredanddividedequallyoverboth nostrils.Thecontrols(n=6)weresimilarlyshamimmunisedwith 200␮lPBSintranasally(referredtoasplacebo).

2.3. Challengevirus

Allanimalswerechallenged, 4 weeksafterthe last immun-isation, intratracheally with 106 median tissue culture

infec-tious dose (TCID50) of the 2009 pandemic influenza virus

A/Netherlands/602/2009 (pH1N1) in 3ml PBS, as described previously [2,12,14]. The virus was routinely propagated in MDCKcellculturesandinfectiousdosedeterminedasdescribed previously[15],andtitrescalculated accordingtothemethodof Spearman-Karber[16].

2.4. CT-scanning

Allanimalswerescannedon−6,1,2,3,and4d.p.i.(seealso Table1).Adual-sourceultrafastCT-system(SomatomDefinition Flash,SiemensHealthcare)wasused(temporalresolution:0.075s, spatialresolutionis0.33mm,tablespeedof458mm/s:ferret tho-raxacquisitiontime≈0.22s;enablesaccuratescanningofliving ferretswithoutthenecessityofbreath-holding, respiratory gat-ing,orelectrocardiogram(ECG)-triggering)aspreviouslydescribed [11].Briefly,duringscanningtheferretswereindorsalrecumbency inapurposelybuilt(Tecnilab-BMI)perspexbiosafetycontainerof 8.3Lcapacity.Thepost-infectiousreductionsinaeratedlung vol-umesweremeasuredfrom3-dimensionalCTreconstructsusing lowerandupperthresholdsinsubstancedensitiesof−870to−430 Hounsfieldunits(HU).

2.5. Pathology

Followingeuthanasiabyexsanguinationallanimalswere sub-mittedfor necropsy.Thelung lobeswereinspectedand lesions

(4)

wereassessedwhilethelung wasinflated.Thetracheawascut atthelevelofthebifurcationand thelungswereweighed.The relative lung weight was calculated as proportion of the body weightondayofdeath(lungweight/bodyweight×100).

Fig. 2. Changes in aerated lung volume after infection with H1N1 A/Netherlands/602/2009.Theaeratedlungvolumewascalculatedusinglowerand upperthresholdsinsubstancedensitiesof−870to−430Hounsfieldunits(HU)for theanalysisof3D-reconstructionsofthelung.Thepercentagechangeofaerated lungvolumewascalculatedusingtheindividualbaselineaeratedlungvolumesof day6againsttheaeratedlungvolumesofthedifferentdaysafterinfection.These dataareexpressedasmean±SEM.Animalswereintratracheallychallengedwith 106TCID

50H1N1A/TheNetherlands/602/2009onday0.

3. Resultsanddiscussion

Allanimals fromboth groups were scanned6 days prior to virusinoculationtodefinetheuninfectedbase-linestatusoftheir respiratorysystem.ConsecutiveinvivoimagingwithCTscanning showedthatferretsintranasallyimmunisedwiththevaccine can-didatewerelargelyprotectedagainsttheappearanceofpulmonary ground-glass opacities,as isshown by meansoftransversal CT imagesinFig.1.TheALVsmeasuredfrom3DCTreconstructs like-wiseshowedthattheimmunisedferretswereprotectedagainst majoralterationsinALV(groupmeanALVrangingfrom0.95to −7.8%) and didnot show a temporal increase in ALVon 1dpi, whichwasobservedintheplacebogroup(groupmeanALV ran-gingfrom17.3to−14.3%)(Fig.2).Thissuddenandshortincrease of17.3%(Mann–Whitneytest,two-tailed,P=0.035)inthe unpro-tectedplacebo-treatedanimalsmayresultfromavirally-induced acute respiratory depression withcompensatoryhyperinflation. A compensatoryincrease in respiratory tidal volumeby means ofhyperinflationisapathophysiologicalphenomenonknownto occurinrespiratoryviralinfections[17,18].However,CTscanning couldnotdiscernpossibleemphysemaduetorupturedalveolias causeofALVincrease.TherelativechangeofALVsondays2,3 andespecially4afterinfectiondidnotshowsignificantdifferences betweenthetwogroups.Onepossibleexplanationisthat over-expansionofthethoraxand lungsallowsforincreasedalveolar floodinginexcessofbaselineaerationresultinginapproximately unalteredALVsbetweenthetwogroups.Anotherexplanationis thattheinflamedandoedematousareaswereaeratedlessthan nor-mal,butbecausetheunaffectedareasoflungwereaeratedmore

Fig. 1. Consecutive transversal lung CT images after infection with H1N1 A/Netherlands/602/2009.Twocolumnsofconsecutive(toptobottom)transversal lungCTimagesofonerepresentativeimmunisedferret(left)andone represen-tativeplacebo-treatedferretrecordedinvivocomparedwiththeirgrossaspectat necropsy(bottom).Atday6beforeinfection,thelungsshowedtheclearaerated baselinecondition,from1dpiwiththenewpandemicH1N1influenzavirusonwards markedalmostdiffuseground-glassopacitiesappearthatshowagradualincrease withaplateauon3–4dpi.Thetwophotographstakenatnecropsyon4dpidepict theventralaspectofthelungs,withtheheartsremoved.Thelungsofthe placebo-treatedanimal(bottomright)showdiffusereddishconsolidationindicativeofacute inflammationthatessentiallymatchtheopacitiesontheCTimagestakenjustbefore necropsy;non-affectedaeratedlungtissuefromtheimmunisedanimalislightpink incolour(bottomleft).

(5)

7394 E.J.B.VeldhuisKroezeetal./Vaccine30 (2012) 7391–7394

Fig.3.Relativelungweights.Meanrelativelungweights(RLWs,relatedtobody weight;±SEM)atnecropsy(4dpi)fortheimmunisedgroupversusthe placebo-treatedcontrolgroupafterinfectionwithH1N1A/Netherlands/602/2009.

thannormal(hyperinflationoremphysema),theoverallALVvalues remainedapproximatelyunaltered.

Nevertheless,theseALVprofilesprovidemoredetailed knowl-edgeabouttheinfluenza-inducedrespiratorydiseasedevelopment thanconfineddata obtainedfrom asinglepredefined read out. Moreover,survivalandrecoveryfromchallengeinfectioncanbe includedinthisset-upandwiththeopportunitytostillmeasurethe developmentofserumantibodyresponsesuponchallenge infec-tion.

Upon necropsy, the relative lung weights (RLWs) of the intranasally immunised ferrets was about 2-fold lower (Mann–Whitney,two-tailed,P<0.0047)ascompared tothoseof theplacebo-treatedanimals(Fig.3),whichisinagreementwith theabsenceofpulmonaryground-glassopacities.Usually,more severely affected and inflamed lungs with increased amounts offluid are heaviercompared tonormal or less affectedlungs. Thistranslateswithintheferret modelin influenzaresearchto RLWs≤1.0associatedwithnon-tominimallyaffectedlungsand RLWs>1.0associatedwithseverepulmonaryinflammationwith oedema[12,19,20].

Inconclusion,theimplementationofconsecutiveCT imaging enablesrepeatedinvivomeasurementsoflungaerationas parame-tertoevaluatevaccineefficacyinpreclinicalprotocols.Consecutive daytodayimagingovercomesthelimitationsentailedbynecropsy atapredefinedtimepointafterinfection,andthelungcapacitycan berepeatedlyquantifiedinreal-time.

Acknowledgements

WearegratefultoWillemvanAert,RonaldBoom,Cindyvan Hagen,RobvanLavierenfromViroClinicsBiosciencesB.V.,Peter vanRunfromthe Department ofVirology Erasmus MC Rotter-dam,andDennisdeMeulderfromtheErasmusLaboratoryAnimal ScienceCenterRotterdamfortheirexcellenttechnicalassistance andanalyses.

Conflictofinterest:TheauthorsEVK,VT,KS,GvA,LdW,andAO areaffiliatedwithErasmusMCspin-offcompanyViroClinics Bio-SciencesB.V.TheauthorJHisaffiliatedwithKarolinskaInstitutet spin-offcompanyEurocineVaccinesAB.

References

[1] ItohY,ShinyaK,KisoM,etal.Invitroandinvivocharacterizationofnew swine-originH1N1influenzaviruses.Nature2009;460(7258,Aug20):1021–5. [2]vandenBrandJM,StittelaarKJ,vanAmerongenG,etal.Severityofpneumonia duetonewH1N1influenzavirusinferretsisintermediatebetweenthatdueto seasonalH1N1virusandhighlypathogenicavianinfluenzaH5N1virus.JInfect Dis2010;201(7,Apr1):993–9.

[3] EllebedyAH,FabrizioTP,KayaliG,etal.ContemporaryseasonalinfluenzaA (H1N1)virusinfectionprimesforamorerobustresponsetosplit inactiv-atedpandemicinfluenzaA(H1N1)Virusvaccinationinferrets.ClinVaccine Immunol2010;17(12,Dec):1998–2006.

[4] HossainMJ,BourgeoisM,QuanFS,etal.Virus-likeparticlevaccinecontaining hemagglutininconfersprotectionagainst2009H1N1pandemicinfluenza.Clin VaccineImmunol2011;18(12,Dec):2010–7.

[5]MartelCJ,AggerEM,PoulsenJJ,etal.CAF01potentiatesimmuneresponses and efficacy of an inactivated influenza vaccine in ferrets. PLoS ONE 2011;6(8):e22891.

[6]JonesFR,GabitzschES,XuY,etal.Preventionofinfluenzavirussheddingand protectionfromlethalH1N1challengeusingaconsensus2009H1N1HAand NAadenovirusvectorvaccine.Vaccine2011;29(40,Sep16):7020–6. [7] YangP,DuanY,WangC,etal.Immunogenicityandprotectiveefficacyofa

liveattenuatedvaccineagainstthe2009pandemicAH1N1inmiceandferrets. Vaccine2011;29(4,Jan17):698–705.

[8]PearceMB,BelserJA,HouserKV,KatzJM,TumpeyTM.Efficacyofseasonallive attenuatedinfluenzavaccineagainstvirusreplicationandtransmissionofa pandemic2009H1N1virusinferrets.Vaccine2011;29(16,Apr5):2887–94. [9]PilletS,KobasaD,MeunierI,etal.Cellularimmuneresponseinthepresence

ofprotectiveantibodylevelscorrelateswithprotectionagainst1918influenza inferrets.Vaccine2011;29(39,Sep9):6793–801.

[10]ChenGL,MinJY,LamirandeEW,etal.Comparisonofaliveattenuated2009 H1N1vaccinewithseasonalinfluenzavaccinesagainst2009pandemicH1N1 virusinfectioninmiceandferrets.JInfectDis2011;203(7,Apr1):930–6. [11]Veldhuis KroezeEJ, vanAmerongen G, DijkshoornML,et al. Pulmonary

pathologyofpandemicinfluenzaA/H1N1virus(2009)-infectedferretsupon longitudinalevaluation bycomputed tomography.J GenVirol2011;92(8, Aug):1854–8.

[12]StittelaarKJ,VeldhuisKroezeEJ,RudenkoL,etal.Efficacyofliveattenuated vaccinesagainst2009pandemicH1N1influenzainferrets.Vaccine2011;29(49, Nov15):9265–70.

[13]BodewesR,Kreijtz JH,vanAmerongenG,etal.PathogenesisofInfluenza A/H5N1virusinfectioninferretsdiffersbetweenintranasalandintratracheal routesofinoculation.AmJPathol2011;179(1,Jul):30–6.

[14] DelGiudiceG,StittelaarKJ,vanAmerongenG,etal.Seasonalinfluenzavaccine providesprimingforA/H1N1immunization.SciTranslMed2009;1(12,Dec 23),12re1.

[15] MunsterVJ,deWE,vandenBrandJM,etal.Pathogenesisandtransmissionof swine-origin2009A(H1N1)influenzavirusinferrets.Science2009;325(5939, Jul24):481–3.

[16]KärberG.BeitragzurkollektivenBehandlungpharmakologischer Reihenver-suche.ArchExpPathPharmak1931;162:480–3.

[17]deSwartRL,KuikenT,TimmermanHH,etal.Immunizationofmacaqueswith formalin-inactivatedrespiratorysyncytialvirus(RSV)induces interleukin-13-associatedhypersensitivitytosubsequentRSVinfection.JVirol2002;76(22, Nov):11561–9.

[18]BlackCP.Systematicreviewofthebiologyandmedicalmanagementof respi-ratorysyncytialvirusinfection.RespirCare2003;48(3,Mar):209–31. [19]BarasB,deWaalL,StittelaarKJ,etal.PandemicH1N1vaccinerequirestheuse

ofanadjuvanttoprotectagainstchallengeinnaiveferrets.Vaccine2011;29(11, Mar3):2120–6.

[20]BarasB,StittelaarKJ,KuikenT,etal.Longevityoftheprotectiveimmune response induced after vaccination with one or two doses of AS03A-adjuvanted split H5N1 vaccine in ferrets. Vaccine 2011;29(11, Mar 3): 2092–9.

References

Related documents

Multivariate analysis of TFS including the high- risk parameters (short telomeres, Binet stage B/C, CD38 and ZAP70 positivity, unmutated IGHV genes and

Residual volume (RV), total lung capacity (TLC) and vital capacity (VC) were measured in seventeen subjects with obstructive (11) or restrictive (6) lung disease and four

spårbarhet av resurser i leverantörskedjan, ekonomiskt stöd för att minska miljörelaterade risker, riktlinjer för hur företag kan agera för att minska miljöriskerna,

This project focuses on the possible impact of (collaborative and non-collaborative) R&amp;D grants on technological and industrial diversification in regions, while controlling

Analysen visar också att FoU-bidrag med krav på samverkan i högre grad än när det inte är ett krav, ökar regioners benägenhet att diversifiera till nya branscher och

a) Inom den regionala utvecklingen betonas allt oftare betydelsen av de kvalitativa faktorerna och kunnandet. En kvalitativ faktor är samarbetet mellan de olika

Results: Mean CT density and volume fractions of soft tissue, gas, iodinated blood, atelectasis, poor aeration, normal aeration and overdistension correlated between dCT and the

To evaluate whether relative gene expression of potential correlates of protection was reflected dur- ing in vitro immune responses by liver and lung lymphocytes, we evaluated