• No results found

Data från byggakustiska fältmätningar och enkätundersökningar i flerfamiljshus. AkuLite Rapport 8 : Bilaga. Mätrapport 11 Skonaren

N/A
N/A
Protected

Academic year: 2021

Share "Data från byggakustiska fältmätningar och enkätundersökningar i flerfamiljshus. AkuLite Rapport 8 : Bilaga. Mätrapport 11 Skonaren"

Copied!
24
0
0

Loading.... (view fulltext now)

Full text

(1)

                   

Measurement  Report  Malmö  

5-­‐9-­‐2012  

                                                         

(2)

1.  -­‐  Introduction  and  objective  

 

In-­‐situ   acoustic-­‐vibratory   measurements   were   performed   at   a   lightweight   5   storey-­‐building  in  Västra  Hamnen  (Malmö).  Three  apartments  were  at  our  disposal  

to  carry  out  the  measurements.  Both  of  them  were  placed  on  top  of  each  other  (3rd  

and  4th  floor  of  the  building),  allowing  measurements  between  adjacent  spaces.  By  

these  measurements,  it  is  planned  to  acquire  an  insight  of  the  building  in  terms  of   sound  insulation,  impact  sound  insulation,  as  well  as  different  aspects  regarding  its   vibratory  performance.    

 

1.1.-­‐  Inconveniences  found    

The  measurements  were  carried  out  at  several  occasions.  As  the  Japanese  ball  was   only   available   at   one   of   these   occasions   only   the   surface   vibrations   could   be   measured  using  both  the  taping  machine  and  the  Japanese  ball.  Furthermore,  the   instrumented   hammer   available   did   not   work   properly   with   the   rest   of   the   measurement  equipment.  Due  to  this,  the  mobility  measurements  were  not  carried   out.  

 

2.  -­‐  The  construction    

The  building  is  comprised  of  a  nine-­‐storey  concrete  structure  and  adjacent  wooden   frame   five-­‐storey   structures.   The   ceiling   height   is   2.40   m   and   the   flooring   is   parquet  throughout  the  studied  apartments  with  the  exception  of  the  bathroom.  In   figure  1  the  exterior  of  the  building  is  shown.    

The  studied  apartments  are  located  in  the  lower,  right  hand  part  of  the  structure.  A   detail   of   the   floor   construction   and   apartment   separating   walls   can   be   seen   in   figure  2.  

 

(3)

 

Figure  2  Detail  of  the  construction.  

     

2.1.-­‐  Rooms  used  for  the  measurements    

Due  to  the  limited  amount  of  time  available  just  a  total  number  of  4  rooms  (two   rooms  in  each  apartment)  were  measured,  which  can  be  described  as  follows:    

-­‐  Apartment  4th  floor  (ap401):  

    -­‐Living  room;  here  after  denoted  LivRoom401:      

Volume:  101  m3    

-­‐  Apartment  3th  floor  (ap301  right  below  ap401):  

    -­‐Living  room;  here  after  denoted  LivRoom301  –below  LivRoom401-­‐:      

Volume:  101  m3    

  -­‐  Apartment  3th  floor  (ap302  next  to  ap301):  

    -­‐Living  room;  hereafter  denoted  LivRoom302  –next  to  LivRoom301-­‐:  

(4)

   

Figure  3  Sketch  of  the  apartments  studied.  

 

In   figure   3   an   outline   of   the   apartments   is   shown.   The   red   lines   indicate   approximately   where   the   measurements   along   or   on   the   walls   have   been   made.   The  blue  dot  in  the  Living  Room  indicates  the  position  of  the  measurement  of  the   springiness.  The  spot  was  selected,  as  it  is  the  weakest  point  on  the  floor.    

 

Figure  4  shows  the  placement  of  the  floor  elements.  The  figure  shows  apartments   with  the  alternate  placing  of  the  balcony,  therefore  the  indicated  measured  walls   (red)   does   not   correspond   to   the   placement   of   the   walls   in   the   measured   apartments  where  the  balcony  is  not  placed  by  the  measured  outer  wall.  

(5)

 

Figure  4  Placement  of  the  floor  elements.    

3.  -­‐  Equipment  

 

The  equipment  used  for  the  measurements  is  described  below:    

• MEMS  accelerometers  (Analog  Devices):  

 ADXL  203  

 ADXL  202E  

• 32-­‐channel  synchronous  data  acquisition  system  

 Acquisition  software  Spectrum  SBench  6.1  

• ISO  B&K  tapping  machine   • B&K  Loudspeaker    

• B&K  instrumented  hammer   • Standardised  Japanese  Ball   • B&K  Amplifiers    

(6)

• Sound  Level  Meter  B&K  2270    

4.  -­‐  Measurements  

 

The  measurements  performed  (both  room  acoustics  and  vibration  measurements)   are  hereafter  presented.  

 

4.1.  -­‐  Airborne  sound  insulation    

The   objective   of   the   following   is   to   measure   the   airborne   sound   insulation   following  the  current  standards  (ISO  140-­‐4  och  ISO  717-­‐1  and  SS  25267),  within   the   frequency   range   going   from   50   Hz   to   5000   Hz.   Thus,   the   parameters   to   be   extracted  are  R’  in  third  octave  bands  (50-­‐5000  Hz),  R’w  and  C50-­‐3150.  

Two  loudspeaker  positions  (at  different  heights)  were  considered  in  the  sending   room  and  for  each  position  two  different  measurement  points  were  chosen  both  in   the  sending  and  receiving  room,  making  a  total  number  of  8  measurements.  

 

First  of  all,  the  reverberation  time  of  LivRoom401  was  calculated.  It  will  allow  us  

to  calculate  the  effective  absorption  area,  A[m2],  of  the  receiving  room  according  to  

(V[m3]  volume  of  the  room):  

𝑅𝑇 = 0.16   𝑉

𝐴    

The   equivalent   sound   pressure   levels   in   the   other   rooms   of   interest   (LivRoom401  and  LivRoom301)  were  measured    

 

Thus,  R’  [dB]  is  calculated  as:    

𝑅! 𝑑𝐵 = 𝐿

!"#$%#&− 𝐿!"#"$%$&'+ 10log   𝑆 𝐴    

Where   Lsending   and   Lreceiving   are   the   sound   pressure   level   in   the   sending   and  

receiving  room  respectively  (in  decibels),  A[m2]  the  effective  absorption  area  and  

S[m2]  the  surface  of  the  partition  to  be  studied.    

The  summary  of  the  measurements  done  is:    

Sending  Room   Receiving  Room   R'

w   C50-­‐3150   R'w+C50-­‐3150   Soundclass   Apt.   Floor   Room   Apt.   Floor   Room  

401   4   LivRoom401   301   3   LivRoom301   58   -­‐4   54   C  

301   3   LivRoom301   302   3   LivRoom302   58   -­‐3   55   C  

 

Plots  with  the  results  are  presented  next:              

(7)

4.1.1.-­‐  Sound  insulation  between  LivRoom401  and  LivRoom301  

   

The  results  obtained  for  the  floor  partition  between  LivRoom401  and  LivRoom301:    

 

   

NOTE:    VolReceiving  Room=  101  m3   Apartition=39  m2     Results   R’w=58  dB   C50-­‐5000=-­‐3dB   C50-­‐3150=-­‐4  dB                            

(8)

     

4.1.1.-­‐  Sound  insulation  between  LivRoom301  and  LivRoom302  

   

The  results  obtained  for  the  wall  partition  between  LivRoom301  and  LivRoom302:    

 

   

NOTE:    VolReceiving  Room=  101  m3  

Apartition=15  m2     Results   R’w=58  dB   C50-­‐5000=-­‐2  dB   C50-­‐3150=-­‐3  dB                      

(9)

4.2.  -­‐  Impact  sound  insulation    

The   objective   is   to   measure   the   structure-­‐borne   sound   insulation   following   the   current  standards  (ISO  140-­‐7,  ISO  717-­‐2  and  SS  25267)  within  the  frequency  range   50   Hz   -­‐   5000   Hz.   In   order   to   calculate   the   impact   sound   insulation   index   the   tapping   machine   was   placed   at   the   middle   of   the   floor   in   LivRoom401   and  

LivRoom301   recordings   with   the   sound   level   meter     in   third   octave   bands   were  

performed   in   LivRoom301   and   LivRoom302   respectively.   Three   tapping   machine   positions  were  considered,  and  for  each  position  two  measurements  for  each  room   -­‐receiving  and  sending-­‐  with  moving  microphone  were  performed.  As  a  result  of   this   analysis,   L’i   in   third   octave   bands   (50-­‐5000   Hz),   L’nw,   and   Cl,50-­‐2500    should   be   obtained.  

 

Then,  L’n  [dB]  is  calculated  as  follows:     𝐿!! 𝑑𝐵 = 𝐿 ! + 10log   𝐴 10      

being  Li  the  sound  pressure  level  in  the  receiving  room  (in  decibels)  and  A[m2]  the  

equivalent   absorption   area,   calculated   from   the   reverberation   time.   The   31   m3  

volume  limitation  has  been  set  in  the  previous  formula.    

 

The  summary  of  the  measurements  done  is:    

 

Sending  Room   Receiving  Room   L'

n,w   Cl,50-­‐2500   L'n,w+  Cl,50-­‐2500   Soundclass   Apt.   Floor   Room   Apt.   Floor   Room  

401   4   LivRoom401   301   3   LivRoom301   47   0   47   A  

301   3   LivRoom301   302   3   LivRoom302   34   1   34   A  

   

Plots  with  the  results  are  presented  next:  

(10)

4.2.1.-­‐  Impact  sound  insulation  between  LivRoom401  and  LivRoom301  

 

The  results  obtained  for  the  floor  partition  between  LivRoom401  and  LivRoom301   regarding  impact  sound  insulation  are:  

   

   

NOTE:    VolReceiving  Room=  31  (101)  m3     Results   L’nw=47  dB   Cl,50-­‐2500=0  dB        

(11)

 

The  results  obtained  for  the  wall  partition  between  LivRoom301  and  LivRoom302   regarding  impact  sound  insulation  are:  

 

 

   

NOTE:    VolReceiving  Room=  31  (101)  m3  

  Results   L’nw=34  dB   Cl,50-­‐2500=1  dB                                        

(12)

4.3.-­‐  Sound  from  the  Japanese  ball  

 

The   sound   produced   and   transmitted   when   dropping   the   Japanese   ball   from   1  meter   height   on   the   middle   of   the   floor   of   LivRoom401   (sending   room)   was   measured  in  all  receiving  rooms  (LivRoom301  and  LivRoom302)  in  the  frequency   range  20  Hz-­‐500  Hz  (time  constant:  fast  125  ms).  In  the  following  tables,  the  values   of  the  maximum  sound  pressure  levels  are  presented  in  third  octave  bands  for  the   sending  room  (LivRoom401)  and  the  receiving  rooms  (all  other  rooms)  as  well  as   the  equivalent  maximum  A-­‐weighted  sound  pressure  level.    

   

Floors Room Lmax (centre) [dB] Lmax (centre) [dBA] Lmax (corner) [dB] Lmax (corner) [dBA]

4 LivRoom401 101,1 62,2 101,8 63,1

3 LivRoom301 89,8 50,4 91,4 51,2

3 LivRoom302 75,1 35,1 79,9 41,1

Sound pressure [dB] produced by the Japanese Ball in LivRoom401 (sending room)

   

4.4.-­‐  Vibrations  from  the  Japanese  ball  (LivRoom401)  

 

The  vibrations  produced  by  the  Japanese  ball  in  the  frequency  range  from  1  Hz  to   500  Hz  are  to  be  measured.  It  was  dropped  from  1  meter.  Meanwhile,  the  response   of  the  floor  was  measured  as  shown  in  figure  5.  The  parameters  of  interest  are  the   maximum   acceleration   (amax)   and   also   the   lowest   eigenfrequency   as   well   as   plot   “acceleration   versus   time”.   The   resulting   accelerations   Amax   and   in   third   octave   bands  can  be  seen  in  tables  1  and  2.  

   

 

Figure  5  Excitation  point  and  Accelerometer  placing    in  LivRoom401  

 

Table  1  Maximal  acceleration  for  surface  vibrations  from  Japanese  ball  excitation  

Room   Amax  acc5  m/s2  rms   Amax  acc6  m/s2  rms  

LivRoom  401   1,93   1,81         0.5m Acc6 Acc5 Excitation Response 0.5m

(13)

Table  2  Acceleration  in  third  octave  bands  for  surface  vibrations  excited  from  Japanese  ball  (m/s2  rms)   f(Hz)   10   16   20   25   31,5   40   50   63   80   Acc  5   0,100   0,083   0,244   0,120   0,155   0,201   0,151   0,134   0,094   Acc  6   0,213   0,073   0,212   0,290   0,080   0,194   0,097   0,046   0,064   f(Hz)   100   125   160   200   250   315   400   500     Acc  5   0,207   0,240   0,227   0,231   0,100   0,043   0,044   0,039     Acc  6   0,123   0,034   0,044   0,028   0,064   0,121   0,103   0,062      

In  Figure  6,  one  can  see  the  response  recorded  by  the  two  accelerometers  attached   to  the  floor,  whilst  in  Figure  7  a  detail  of  two  bounces  of  the  ball  is  presented.    

 

 

Figure  6  Response  recorded  by  the  two  accelerometers  attached  to  the  floor  

   

(14)

 

 

Figure  7  response  recorded  by  the  two  accelerometers  in  frequency  domain  

   

4.5.-­‐  Flanking  transmission  (between  LivRoom401  and  LivRoom301)  

 

The   objective   is   to   measure   how   the   vibrations   travel   through   a   junction   in   the   frequency  range  and  10-­‐3150  Hz  (when  having  the  tapping  machine  as  excitation   source)  

 

The   vibrations   induced   by   the   tapping   machine   are   measured   with   the   accelerometer  setup  shown  in  figures  8-­‐9.  Note  that  the  accelerometers  placed  on   the   walls   (acc10-­‐-­‐-­‐   14   and   acc25-­‐-­‐-­‐29)

 

are   in   a   vertical   line   and   not   in   the   horizontal.  

     

(15)

                                                                                                                                                                                                                                                                             

 

Figure  8  Layout  proposed  for  excitation  source  and  accelerometers  

   

 

Figure  9  Accelerometer  distribution  

 

The   same   measurement   was   performed   three   times   in   order   to   have   a   good   repeatability.   In   figures   10-­‐13   the   vibrations   over   a   flank   is   shown   both   in   narrowband  (figures  10-­‐11)  and  in  third  octave  band  (figures  12-­‐13).  In  Tables  3   and  4  the  mean  of  the  acceleration  and  the  maximal  accelerations  is  shown.  The   value  for  the  acceleration  on  “Wall  Below”  at  40  Hz  had  an  anomaly  resulting  in  a   value  for  the  acceleration  10  times  higher  that  expected.  This  anomaly  was  due  to   a   single   erroneous   measurement   value   and   has   been   corrected   in   the   table.    

 

 

Figure  10  Mean  of  vibrations  over  flank  using  tapping  machine  (measured  along  an  internal  wall)  in   narowband   Acc1 Acc14 Acc13 Acc12 Acc11 Acc10 Acc9 Acc8 Acc7 Acc6

Acc5 Acc4 Acc3 Acc2

FLOOR

Acc21 Acc20

Acc19 Acc18 Acc17 Acc16 Acc15

Acc25 Acc23 Acc24 Acc26 Acc27 Acc29 Acc28 CEILING WALL WALL Acc1 Acc11 Acc10 Acc9 Acc8 Acc7 Acc6

Acc5 Acc4 Acc3 Acc2

FLOOR

Acc21 Acc20

Acc19 Acc18 Acc17 Acc16 Acc15

Acc25 Acc23 Acc24 Acc26 Acc27 Acc29 Acc28 CEILING WALL WALL

(16)

 

Figure  11  Mean  of  vibrations  over  flank  using  tapping  machine  (measured  along  an  outer  -­‐facade-­‐   wall)  in  narrowband  

 

Figure  12  Mean  of  vibrations  over  flank  using  tapping  machine  (measured  along  an  internal  wall)  in   one  third  octave  band  

 

Figure  13  Mean  of  vibrations  over  flank  using  tapping  machine  (measured  along  an  outer  -­‐facade-­‐   wall)  in  one  third  octave  band  

(17)

Table  3  Accelerations  over  flank  in  third  octave  bands   Frequency   (Hz)   (mm/sWall  Up  2)   Floor  Inner   (mm/s2)   Floor  Outer   (mm/s2)   Wall  Down   (mm/s2)   Ceiling  Inner   (mm/s2)   Ceiling  Outer   (mm/s2)   10   2,00   5,81   3,19   1,83   4,67   2,27   16   1,96   14,57   3,43   1,35   4,55   2,42   20   2,08   10,57   5,52   2,24   3,33   3,34   25   2,97   18,43   7,65   4,73   4,77   6,48   32   2,99   21,15   5,25   1,82   6,55   3,46   40   2,64   20,68   13,06   3,06   9,69   7,30   50   3,16   22,31   7,77   2,44   13,29   11,50   63   3,03   18,66   8,46   2,94   14,91   6,19   80   3,16   28,92   13,84   2,84   22,91   10,05   100   5,01   24,93   18,66   2,20   17,24   12,41   125   4,39   27,10   24,48   2,10   14,93   14,59   160   3,44   25,30   21,61   1,83   16,09   12,76   200   5,37   23,97   19,85   2,39   16,47   12,91   250   10,24   23,62   21,68   3,18   14,24   13,93   315   15,08   31,28   23,10   1,77   7,05   5,09   400   16,86   45,12   17,39   1,52   4,81   3,55   500   9,94   27,02   12,69   1,39   2,61   2,17   630   10,93   38,84   13,71   1,31   2,86   2,23   800   8,28   45,49   12,55   1,28   2,44   2,06   1000   7,05   39,83   13,62   1,27   1,81   1,71   1250   7,70   49,96   17,88   1,11   1,61   1,51   1600   9,92   76,92   23,97   1,02   1,52   1,45   2000   8,00   60,17   26,22   0,95   1,35   1,32   2500   4,83   35,54   22,84   0,84   1,19   1,20   3150   2,51   26,83   16,60   0,76   1,12   1,08      

Table  4  Maximal  acceleration  over  flank  

Wall  Up   (m/s2)   Floor  Inner   (m/s2)   Floor  Outer   (m/s2)   Wall  Below   (m/s2)   Ceiling  Inner   (m/s2)   Ceiling  Outer   (m/s2)   0,46   3,05   1,25   0,10   0,31   0,25        

4.6.-­‐  Surface  Vibration  of  the  Floor  (LivRoom401)  

 

The   objective   is   to   measure   and   analyse   how   the   vibrations   travel   through   the   floor   and   how   they   are   dampened   from   the   source.   The   frequency   ranges   of   interest  are  1-­‐500  Hz  when  exciting  with  the  Japanese  ball  and  20-­‐3150  Hz  when   exciting  with  the  hammer  machine.  

 

The  excitation  was  at  the  middle  of  LivRoom401  when  dropping  the  Japanese  ball   from  1  m  height  and  the  tapping  machine.  The  accelerometers’  setup  is  shown  in   Figure  14.  

(18)

 

Figure  14  Measurement  layout.  Acc  1-­‐5  in  along  direction.  Acc  6-­‐10  in  across  direction  

 

 

Figure  15  Floor  vibrations  from  tapping  machine  in  narrow  band.  Along  direction.  

 

Figure  16  Floor  vibrations  from  tapping  machine  in  narrowband.  Across  direction   0.5m Acc6 Acc5 Excitation Response Acc1 Acc3 Acc4 Acc2 0.32m 0.5m 0.5m 0.375m 0.5m Acc7 Acc8 Acc9 Acc10

(19)

 

Figure  17  Floor  vibrations  from  tapping  machine  in  one  third  octave  band.  Along  direction  

 

Figure  18  Floor  vibrations  from  tapping  machine  in  one  third  octave  band.  Across  direction  

 

(20)

 

Figure  20  Floor  vibrations  from  Japanese  ball  in  narrowband.  Across  direction  

 

Figure  21  Floor  vibrations  from  Japanese  ball  in  third  octave  band.  Along  direction  

 

(21)

Table  5  Accelerations  from  Japanese  ball  Amax  (mm/s^2  rms)  positions  as  in  figure  13.  

f(Hz)   acc1   acc2   acc3   acc4   acc5   acc6   acc7   acc8   acc9   acc10   10   26,76   53,21   78,11   79,96   99,72   213,38   209,12   204,63   144,00   82,89   16   20,50   57,20   92,47   122,71   83,18   73,44   152,04   218,36   189,27   123,58   20   94,32   196,00   273,33   301,16   244,37   211,59   57,43   168,48   231,19   180,47   25   83,99   141,33   183,54   184,03   119,65   290,22   211,18   119,62   277,73   246,88   32   159,08   234,90   274,21   293,79   154,51   80,12   135,39   121,18   177,97   160,86   40   121,66   197,07   229,22   251,32   200,75   194,29   63,12   211,71   115,14   113,21   50   174,86   205,07   207,31   245,86   151,32   97,18   122,13   142,55   46,04   47,39   63   234,35   204,79   164,59   214,05   134,45   45,60   62,35   67,93   26,52   82,09   80   193,54   169,25   110,36   141,46   93,68   64,21   124,30   65,27   27,66   63,08   100   78,18   65,49   78,06   173,72   206,86   123,46   136,25   64,56   21,96   40,92   125   28,97   17,27   97,30   49,57   240,48   34,36   39,47   16,09   9,72   16,55   160   30,67   40,28   134,61   75,41   226,64   44,16   16,32   15,59   5,62   9,70   200   18,92   45,67   30,33   64,74   230,71   28,29   15,09   21,65   9,56   7,03   250   25,19   33,50   63,53   118,78   99,60   63,74   11,75   15,14   10,02   7,40   315   23,45   26,31   23,28   76,17   42,91   120,83   39,99   22,46   19,36   10,32   400   22,73   19,71   25,90   33,49   44,09   103,21   90,30   43,22   30,85   24,12   500   16,40   14,19   18,58   19,16   38,79   61,82   55,44   62,23   31,58   17,64   630   16,88   8,84   9,24   23,07   32,79   71,61   75,80   46,91   42,82   22,49   800   10,03   5,14   8,45   16,72   67,11   111,03   77,41   60,71   38,96   31,13   1000   7,96   7,36   13,54   28,25   59,86   84,71   49,47   36,25   32,91   23,68   1250   8,24   8,66   15,28   34,32   50,34   39,96   33,91   30,05   24,54   15,81   1600   9,82   10,56   18,34   25,50   37,96   31,38   50,11   53,17   48,18   35,20   2000   7,81   9,99   24,97   36,97   30,12   34,49   43,23   37,77   40,20   22,99   2500   4,96   7,71   11,75   22,85   17,66   20,22   20,48   12,69   17,46   6,00   3150   3,10   5,43   7,07   15,79   17,01   22,75   18,24   11,21   9,39   8,10        

Table  6  Maximal  acceleration  from  Japanese  ball  on  floor.  Positions  as  in  figure  13  

Point   Amax  (m/s2)   Point   Amax  (m/s2)  

acc1   0,71   acc6   1,81   acc2   0,84   acc7   1,58   acc3   1,11   acc8   1,32   acc4   1,53   acc9   1,15   acc5   1,93   acc10   0,84         4.7.-­‐  Wall  Response      

The   objective   was   to   calculate   the   lowest   eigenfrequency   of   the   structure   when   hitting  the  wall  with  an  instrumented  hammer  with  a  rubber  tip.    

(22)

 

Figure  23  Measurement  disposition  on  the  walls.  X  and  Y  signifies  distances  as  shown  in  table  7  

 

Table  7  positions  for  excitation  point  and  measurement  point  as  indicated  in  figure  22  

  x   y   Inner  Wall   0,86m   1,75m   Apartment  separating  wall   0,86m   1,0m  

 

Note:  the    force  transducer  of  the  instrumented  hammer  available  didn’t  work  and   therefore  no  correlation  with  the  impact  force  can  be  made.  

 

 

 

Figure  24  Vibrations  on  inner  -­‐apartment  separating-­‐  wall  in  narrow  band  

y Acc14 Excitation Response x y x Hammer

(23)

 

Figure  25  Vibrations  on  inner  -­‐apartment  separating-­‐  wall  in  third  octave  bands  

 

(24)

 

Figure  27  Vibrations  on  inner  wall  in  third  octave  bands    

4.8.-­‐  Springiness  

The  springiness  was  measured  to  be  0,3mm  using  the  equipment  shown  in  figure   28.  

     

Figure  28  Setup  to  measure  springiness   4.9.-­‐  Mobility  

 

References

Related documents

Eight hours after infection, total cell numbers were slightly elevated in infected larvae ( S5 Fig ), lamel- loblasts were seen in the circulation for the first time ( Fig 2B’ ),

När det kommer till huruvida de allierade lyckades skapa och upprätthålla den lokala marina överlägsenheten, skall vi gå tillbaka till teorin och se vad den

The second mechanism that might explain the different flash behaviour involves energy transfer from photo exited [Ru(bpy) 3 ] 2+ to the manganese. complexes which would not

The microfinance institution Résseau de Caisses Populaires (RCPB) has chosen to focus on loans to women in a program where they provide financial services (credit and

Author: Ani Andermo, ani.andermo@gmail.com Supervisor: Associated Professor Dr.. Abstract: Although Georgia has experienced dramatic increases in the number of visitors over the

In this study, we investigate the effect of water-side convection on the gas transfer velocity of CO 2 based on eddy covariance (EC) air-sea flux measurements of CO 2 and.. sensible

The bars show percentage distribution of respondents reported preferences when answering as an at-risk relative in a family with either moderate (grey bars) or high risk of

I detta kapitel redovisar jag och beskriver mina data, kategoriserade i läroböcker och observationer, och den svenska och grekiska skolan. Därutöver jämför jag de