• No results found

Improved Exploration of Rectilinear Polygons

N/A
N/A
Protected

Academic year: 2021

Share "Improved Exploration of Rectilinear Polygons"

Copied!
25
0
0

Loading.... (view fulltext now)

Full text

(1)

Improved Exploration of Re tilinear Polygons

MikaelHammar

Bengt J. Nilsson

Sven S huierer

§

Abstra t

Weprovea5/3- ompetitivestrategyforexploringasimplere tilinear polygon inthe

L

1

metri . Thisimprovesthepreviousfa tortwoboundofDeng,KamedaandPapadimitriou.

1 Introdu tion

Sear hinginanenvironmentisanimportantandwellstudiedprobleminroboti s. Inmanyrealisti

situations therobot doesnotpossess omplete knowledge aboutitsenvironment,for instan e, it

maynothaveamapofitssurroundings[1,2,5, 6,7,9,8,10,11,12,13,14℄.

Thesear hoftherobot anbeviewedasanon-line problemsin etherobot'sde isionsabout

the sear h are based only on the part of its environment that it has seen so far. We use the

frameworkof ompetitiveanalysis tomeasuretheperforman eofanon-linesear hstrategy

S

[15℄.

The ompetitive ratio of

S

is dened as themaximum of theratio of the distan e traveledby a

robotusing

S

totheoptimaldistan eofthesear h.

Infa t,these sear h problems ome inbasi ally twoavors. Insome aseswewantto sear h

fora targetin the environment[5, 6, 9, 10, 11, 12℄. Thetarget is usuallymodeledasa pointin

theenvironmentthat hasto berea hed by therobot. Anotherproblem typeisthat ofexploring

anenvironment, i.e., withoutaprioriknowledge ofthe environmentletarobot onstru tamap

ofit[7,8,11℄.

Weareinterestedinobtainingimprovedupperboundsforthe ompetitiveratioofexploringa

re tilinearpolygon. Thesear hismodeledbyapathor losedtourfollowedbyapointsizedrobot

insidethepolygon,givenastartingpointforthesear h. Theonlyinformationthattherobothas

aboutits surrounding polygon is thepartof the polygon that it hasseenso far. Deng et al. [7℄

showadeterministi strategyhaving ompetitiveratiotwoforthisproblemifdistan eismeasured

a ordingto the

L

1

-metri . Kleinberg[11℄provesalowerbound of

5/4

forthe ompetitiveratio of any deterministi strategy. We will showa strategy obtaining a ompetitive ratio of

5/3

for

sear hingare tilinearpolygoninthe

L

1

-metri .

Thisresear hissupportedbytheDFG-Proje tDiskreteProbleme,No.Ot64/8-1.

DepartmentofComputerS ien e,LundUniversity,Box118,S-22100Lund,Sweden.

email:Mikael.Hammar s.lth.s e

Te hnologyandSo iety,MalmöUniversityCollege,S-20506Malmö,Sweden.

email:Bengt.Nilssonte.mah.s e

§

InstitutfürInformatik,AmFlughafen17,Geb.051,D-79110Freiburg,Germany.

(2)

naryresults. InSe tion3wegiveanoverviewofthestrategybyDengetal.[7℄. Se tion4 ontains

animprovedversiongivinga ompetitiveratioof

5/3

.

2 Preliminaries

Wewillhen eforthalwaysmeasuredistan ea ordingtothe

L

1

metri ,i.e.,thedistan ebetween twopoints

p

and

q

isdenedby

||p, q|| = |p

x

− q

x

| + |p

y

− q

y

|,

where

p

x

and

q

x

arethe

x

- oordinatesof

p

and

q

and

p

y

and

q

y

arethe

y

- oordinates. Wedene the

x

-distan ebetween

p

and

q

tobe

||p, q||

x

= |p

x

−q

x

|

andthe

y

-distan etobe

||p, q||

y

= |p

y

−q

y

|

. If

C

isapolygonal urve,thenthelengthof

C

,denoted

length(C)

,isdenedasthesumofthe

distan esbetween onse utivepairsofsegmentendpointsin

C

.

Let

P

beasimplere tilinearpolygon. Twopointsin

P

aresaidtosee ea hother,orbevisible

to ea h other, if theline segment onne ting thepointslies in

P

. Forapoint

p

in

P

wedenote

by

VP(p)

thesetofpointsof

P

that arevisiblebytherobotifitstandsonposition

p

.

VP(p)

is

alledthevisibilitypolygon of

p

. If

C

isa urvein

P

,thevisibilitypolygon

VP

(C)

of

C

isdened

by

VP(C) =

S

p∈C

VP(p)

.

Let

p

be apointsomewhere inside

P

. A wat hman route through

p

is dened tobea losed

urve

C

that passes through

p

with

VP

(C) = P

. The shortest wat hman route through

p

is

denoted by

SWR

p

. It an be shown that theshortest wat hmanroute in asimple polygon is a losedpolygonal urve[3,4℄.

Sin e we are only interested in the

L

1

length of a polygonal urve we an assume that the urveisre tilinear,that is,the segmentsof the urveareallaxisparallel. Notethat theshortest

re tilinearwat hmanroutethroughapoint

p

isnotne essarilyunique.

Forapoint

p

in

P

wedenefourquadrants withrespe tto

p

. Thoseare theregionsobtained

by utting

P

along thetwo maximal axis parallel line segmentsthat pass through

p

. The four

quadrantsaredenoted

Q1

(p)

,

Q2

(p)

,

Q3

(p)

,and

Q4

(p)

intheorder fromthetoprightquadrant

tothebottomrightquadrant;seeFigure1(a).

Considerareex vertexof

P

. Thetwoedgesof

P

onne tingatthereex vertex anea hbe

extendedinside

P

untiltheextensionsrea haboundarypoint. Thesegmentsthus onstru tedare

alledextensionsandtoea hextensionadire tionisasso iated. Thedire tionisthesameasthat

ofthe ollinearpolygonedgeaswefollowtheboundaryof

P

in lo kwiseorder;see Figure1(b).

We use the four ompass dire tions

north

,

west

,

south

, and

east

to denote the dire tion of an

extension. Thereasonforthissomewhatobs ure denition ishopefully lariedbythefollowing

lemma.

Lemma2.1 (Chin,Ntafos [3℄)A losed urveisawat hmanroutefor

P

ifandonlyifthe urve

hasat leastonepointtotherightofeveryextensionof

P

.

Ourobje tive isthusto presenta ompetitiveon linestrategy that enablesarobot tofollow

a losed urvefrom thestartpoint

s

in

P

andba kto

s

withthe urvebeingawat hmanroute

(3)

Q1(p)

Q2(p)

Q3(p)

Q4(p)

(a) (b) extensions

p

e

e

p

e

dominates

e

e

isaleft extensionw.r.t.

p

( )

Figure1: Illustratingdenitions.

Anextension

e

splits

P

intotwosets

P

l

and

P

r

with

P

l

totheleftof

e

and

P

r

totheright. We sayapoint

p

istotheleft of

e

if

p

belongsto

P

l

. Tothe right isdenedanalogously.

As afurther denition we saythat an extension

e

is aleft extension with respe t to a point

p

, if

p

lies to theleft of

e

, and anextension

e

dominates anotherextension

e

, if allpointsof

P

totherightof

e

arealsoto therightof

e

;see Figure1( ). ByLemma2.1 weareonlyinterested

intheextensionsthat areleftextensionswithrespe tto thestartingpoint

s

sin etheotherones

alreadyhaveapoint(thepoint

s

)totherightofthem. Sowithoutlossof laritywhenwemention

extensionswewillalwaysmeanextensionsthat areleftextensionswithrespe tto

s

.

Asapreludetothepresentationofourstrategywegiveashortoverviewofpreviousstrategies.

Inthiswaywe anintrodu e on eptsin theiroriginalsettingthat wewilluse extensivelyin the

sequel.

3 An Overview of GO

Considera re tilinear polygon

P

that is not a priori known to the robot. Let

s

be the robot's

initialpositioninside

P

.

Thenext on eptweintrodu eis ru ialtotheworkingsofpreviouslypresentedstrategiesand

isgoingtobeveryimportantforourstrategyaswell. Forthestartingposition

s

oftherobot we

asso iateapoint

f

0

ontheboundaryof

P

thatisvisiblefrom

s

and all

f

0

theprin ipal proje tion

point of

s

. For instan e,we an hoose

f

0

tobetherstpointontheboundarythatis hitbyan

upwardraystartingat

s

. Assumenowthattherobotmovesalonga urve

C

from

s

tosomepoint

p

. Let

f

betheendpointthat therobot hasseensofaraswemove lo kwisefrom

f

0

alongthe

boundaryof

P

;seeFigure2. Thepoint

f

is alledthe urrentfrontier.

Let

C

be a polygonal urve starting at

s

. Formallya frontier

f

of

C

is a vertexof

VP(C)

adja entto anedge

e

of

VP(C)

that isnot anedge of

P

. Extend

e

until ithits apoint

q

on

C

andlet

v

bethevertexof

P

that isrsten ounteredaswemovealongthelinesegment

[q, f ]

from

q

to

f

. We denotethe left extension with respe t to

s

asso iatedto the vertex

v

by

ext(f )

; see Figures2(b)and( ).

(4)

s

f

0

prin ipalproje tion

f

frontier

VP(s)

f = v

ext

(f )

ext

(f )

C

( ) (b) (a)

q

v

C

p

f

0

f

0

f

Figure2: Illustratingdenitions.

theirstrategy,we all itBGO,goesasfollows.

Strategy BGO

1 Using

s

itselfasprin ipalproje tionpointestablishtherstfrontier

f

2

p := s

3 while

P

isnot ompletelyseen do

3.1 Gotothepointon

ext

(f )

losestto

p

,letthispointbethenewpoint

p

3.2 Using the urrent point

f

onthe boundaryasprin ipal proje tion point establish the newfrontier

f

endwhile

4 Taketheshortestpathba kto

s

End BGO

Dengetal.showthatarobotusingstrategyBGOtoexploreare tilinearpolygonfollowsatour

with shortestlength, i.e., BGO has ompetitiveratio one. Theyalso presenta similar strategy,

alled IGO, forthe asewhen the starting point

s

lies in the interior of

P

. ForIGO theyshow

a ompetitiveratiooftwo,i.e., IGOspe iesatourthat isat mosttwi e aslongastheshortest

wat hmanroute. IGOdoesthefollowing.

Strategy IGO

1 From

s

shoot aray upwards until aboundarypoint

f

0

is hit, use

f

0

as prin ipal proje tion

point andestablishtherstfrontier

f

2

p := s

3 while

P

isnot ompletelyseen do

3.1 Gotothepointon

ext

(f )

losestto

p

,letthispointbethenewpoint

p

3.2 Using the urrent point

f

onthe boundaryasprin ipal proje tion point establish the newfrontier

f

endwhile

4 Taketheshortestpathba kto

s

End IGO

ForanexamplerunofstrategyIGOseeFigure3. Thepoints

f

i

,for

1 ≤ i ≤ 19

, arethefrontiers

intheorder thattheyareen ounteredalongtheboundary. Thedire ted linesare theextensions

(5)

s

f

1

f

4

f

14

f

16

f

19

f

6

f

7

f

3

f

0

f

2

f

5

f

8

f

9

f

12

f

13

f

15

f

11

f

17

f

18

f

10

Figure3: Examplerunofthegreedy-onlinestrategy.

Asis easilyseen,thetwostrategiesdieronlyin therststepwherein one aseweestablish

therstfrontierstartingdire tlyfrom

s

,whereasintheother aseweshootarayinordertond

theprin ipalproje tionpointandfromthereweestablishtherstfrontier.

It is lear that BGO ould just as wells an the boundaryanti- lo kwise insteadof lo kwise

when establishing the frontiers and still have the same ompetitive ratio. Hen e, BGO an be

seen as two strategies, one s anning lo kwise and the other anti- lo kwise. We an therefore

parameterize the twostrategies so that BGO

(p, orient )

is the strategy beginning at some point

p

on the boundary and s anning with orientation

orient

where

orient

is either lo kwise

cw

or anti- lo kwise

aw

.

SimilarlyforIGO,we annotonly hoosetos an lo kwiseoranti- lo kwiseforthefrontierbut

also hoose toshoot theraygivingtherstprin ipalproje tionpointin anyofthefour ompass

dire tionsnorth,west,south,oreast. ThusIGOinfa tbe omeseightdierentstrategiesthat we

anparameterizeasIGO

(p, dir , orient )

andthe parameter

dir

anbe oneof

north

,

south

,

west

,

or

east

.

Wefurther dene partial versions of GOstarting atboundaryand interiorpoints. Strategies

PBGO

(p, orient , region)

and PIGO

(p, dir , orient , region)

apply GO untileither therobot has

ex-ploredallof

region

ortherobotleavestheregion

region

. Thestrategiesreturnasresulttheposition

oftherobotwhenitleaves

region

orwhen

region

hasbeenexplored. NotethatPBGO

(p, orient , P)

andPIGO

(p, dir , orient , P)

are thesamestrategiesasBGO

(p, orient )

andIGO

(p, dir , orient )

re-spe tivelyex eptthattheydonotmoveba kto

p

whenallof

P

hasbeenseen.

4 The Strategy DGO

Wepresentanewstrategydoublegreedyonline(DGO)thatstartsobyexploringtherstquadrant

of

s

,

Q1

(s)

,withoutusinguptoomu h distan e. Weassumethat

s

liesin theinteriorof

P

sin e

otherwisewe anuse BGO and a hievean optimalroute. Thestrategy uses two frontier points

(6)

s

f

0

u

f

0

r

f

r

Figure4: Upperandrightfrontierstogetherwiththeirextensions.

sameastheoneusedinGO,i.e., weshootaraystraightuptogettheupperprin ipalproje tion

point

f

0

u

and s an in lo kwise dire tion for

f

u

. Theright frontier

f

r

isestablished byshooting araytowardstherightfortherightprin ipalproje tionpoint

f

0

r

andthens an theboundaryin anti- lo kwise dire tion for

f

r

; seeFigure 4. Toea h frontierpointweasso iate aleft extension

ext(f

u

)

and

ext(f

r

)

withrespe tto

s

inthesamewayasbefore.

ThestrategyDGO,presentedinpseudo odeonPage7,makesuseofvedierentsubstrategies:

DGO-0,DGO-1,DGO-2,DGO-3,andDGO-4,thatea htake areofaspe i asethat ano ur.

Subsequentlywewillprovethe orre tnessand ompetitiveratioforea hofthesubstrategies.

We distinguish four lassesof extensions.

A

is the lass of extensions

e

whose dening edge

isabove

e

,

B

is the lass ofextensions

e

whosedening edge isbelow

e

. Similarly,

L

isthe lass

of extensions

e

whose dening edge is to the left of

e

, and

R

is the lass of extensions

e

whose

dening edge is to the right of

e

. For on iseness, we use

C

1

C

2

asashorthand for the artesian produ t

C

1

× C

2

ofthetwo lasses

C

1

and

C

2

.

We will ensure that whenever the strategy performs one of the substrategies this is the last

timethattheoutermostwhile-loopisexe uted. Hen e,theloopisrepeatedonlywhenthestrategy

doesnotenter anyofthespe iedsubstrategies. Theloopwill leadthestrategyto followan

x

-

y

-monotonepathinside

Q1

(s)

sin ewewill ensurethat

ext(f

u

)

and

ext(f

r

)

alwayslieeitherabove or to the right of the point

p

, the urrent position of the robot, in these ases. The strategy

additionallymaintainsthe invariant during the while-loop that the boundary parts of

Q1(s)

to

theleftofthe

x

- oordinateof

p

andbelowthe

y

- oordinateof

p

havebeenseen.

Wewill presentea h ofthe hosensubstrategies in sequen eand forea h of themprovethat

ifDGOexe utesthesubstrategythenthe ompetitiveratioofDGOisbounded by

5/3

. Let

FR

s

bethe losedroutefollowedbystrategyDGOstartingataninteriorpoint

s

. Let

FR

s

(p, q, orient )

denotethesubpath of

FR

s

followedin dire tion

orient

frompoint

p

to point

q

,where

orient

an eitherbe

cw

( lo kwise)or

aw

(anti- lo kwise). Similarly,wedenethesubpath

SWR

s

(p, q, orient )

of

SWR

s

. Wedenote by

SP(p, q)

ashortestre tilinearpathfrom

p

to

q

inside

P

.

Webeginbyestablishingtwosimplebut usefullemmas.

Lemma4.1 If

t

isapointonsometour

SWR

s

,then

length(SWR

t

) ≤ length(SWR

s

).

Proof: Sin e

SWR

s

passesthrough

t

,therouteisawat hmanroutethrough

t

. Butsin e

SWR

t

istheshortestwat hmanroutethrough

t

, thelemmafollows.

2

(7)

If

f

isafrontierpoint,thenlet

reg(f )

denote theregiontotherightof

ext

(f )

.

StrategyDGO

Establishtheupperand rightprin ipalproje tionpoints

f

u

[s]

and

f

r

[s]

while

Q1(s)

isnot ompletelyseendo

Obtaintheupperandrightfrontiers,

f

u

and

f

r

Case 1:

reg(f

u

) ⊆ reg(f

r

)

Case 1.1:

ext

(f

r

) ∈ A ∪ R

Goto the losestpointon

ext(f

r

)

Case 1.2:

ext

(f

r

) ∈ B ∪ L

ApplysubstrategyDGO-1

Case 2:

reg(f

r

) ⊆ reg(f

u

)

Case 2.1:

ext

(f

u

) ∈ A ∪ R

Goto the losestpointon

ext(f

u

)

Case 2.2:

ext

(f

u

) ∈ B ∪ L

ApplysubstrategyDGO-1

Case 3:

ext

(f

u

)

interse ts

ext

(f

r

)

in onepoint

Case 3.1:

(ext(f

u

), ext(f

r

)) ∈ AR

Goto theinterse tionpointbetween

ext

(f

u

)

and

ext(f

r

)

Case 3.2:

(ext(f

u

), ext(f

r

)) ∈ RB ∪ LA

ApplysubstrategyDGO-1

Case 3.3:

(ext(f

u

), ext(f

r

)) ∈ LB

ApplysubstrategyDGO-4

Case 4:

reg(f

u

)

and

reg(f

r

)

aredisjoint

Case 4.1:

(ext(f

u

), ext(f

r

)) ∈ AA ∪ AR ∪ RR ∪ RA

ApplysubstrategyDGO-2

Case 4.2:

(ext(f

u

), ext(f

r

)) ∈ LR ∪ LA ∪ AB ∪ RB

ApplysubstrategyDGO-3

Case 4.3:

(ext(f

u

), ext(f

r

)) ∈ LB

ApplysubstrategyDGO-4

end while

if

P

isnot ompletelyvisible

thenApplysubstrategyDGO-0

(8)

Lemma4.2 If

q

and

q

arepointsonsometour

SWR

s

lyingin

Q1

(s)

,then

length(SWR

s

) ≥ 2 max(||s, q||

x

, ||s, q

||

x

) + 2 max(||s, q||

y

, ||s, q

||

y

).

Proof: Sin e

SWR

s

passesthrough

q

and

q

andwe al ulatelengtha ordingto the

L

1

metri , thesmallestpossibletourthatpassesthroughthetwopointsisthere tanglewithatleasttwoof

thepoints

s

,

q

,and

q

ontheperimeter. Sin e

q

and

q

liein

Q1(s)

,thepoint

s

hastobethelower

left ornerofthere tangleandthelengthoftheperimeterofthere tangleisthenasstated.

2

The stru ture of the following proofs are very similar to ea h other. In ea h ase we will

establishapoint

t

that we anensureispassedby

SWR

s

andthateither liesontheboundaryof

P

or anbeviewed asto lieon theboundaryof

P

. We then onsider the tour

SWR

t

(spe ied bystrategyBGO) and omparehowmu h longer thetour

FR

s

is. ByLemma 4.1weknowthat

length(SWR

t

) ≤ length(SWR

s

)

,hen etheratio

length(FR

s

)

length(SWR

t

)

isan upperbound on the ompetitiveratioof strategyDGO.Onequirk of theproofsis that we

requirethat there existsa tour

SWR

t

that ontainsthe startingpoint

s

in itsinterior oron the boundaryof

SWR

t

. ThisrequirementwillberemovedinLemma 4.8.

4.1 Strategy DGO-0

WestartbypresentingDGO-0.

Strategy DGO-0

1 Let

p

bethe urrentrobotposition 2 if

||s, p||

y

≤ ||s, p||

x

then

2.1

r := PIGO(p, east , cw , P)

else

/∗

if

||s, p||

y

> ||s, p||

x

then

∗/

2.2

r := PIGO(p, east , aw , P)

endif

3 From

r

goba ktothestartingpoint

s

andhalt

End DGO-0

Lemma4.3 IfthestrategyappliessubstrategyDGO-0,then

length(FR

s

) ≤

3

2

length(SWR

s

).

Proof: Sin ethepath

FR

s

(s, p, orient )

thatthestrategyhasfollowedwhenitrea hespoint

p

is

x

-

y

-monotone, the point

p

isthe urrently topmost andrightmost point of thepath. Hen e, we anaddahorizontalspikeissuing fromthe boundarypointimmediatelyto therightof

p

,giving

anewpolygon

P

having

p

on theboundaryand furthermorewith the sameshortestwat hman

routethrough

p

as

P

;seeFigure5. ThismeansthatperformingstrategyIGO

(p, east , orient )

in

P

yieldsthesameresultasperformingBGO

(p, orient)

in

P

, p

beingaboundarypointin

P

, orient

beingeither

cw

or

aw

. Thetourfollowedisthereforeashortestwat hmanroutethroughthepoint

p

in both

P

(9)

(a) (b)

||s, p||

y

≤ ||s, p||

x

s

p

r

||s, p||

y

> ||s, p||

x

p

s

SWR

p

r

SWR

p

Figure5:Illustratingthe asesintheproofofLemma4.3.

Also the point

p

lies on a left extension with respe t to

s

, by the way

p

is dened, and it

is the losest point to

s

su h that all of

Q1(s)

has been seen by the path

FR

s

(s, p, orient ) =

SP(s, p)

. Hen e,thereisaroute

SWR

s

thatpassesthrough

p

andbyLemma4.1

length(SWR

p

) ≤

length(SWR

s

)

.

Assume nowfortherst asethat DGO-0performsStep2.1,i.e., thatwhen

FR

s

rea hesthe point

p

, then

||s, p||

y

≤ ||s, p||

x

; see Figure 5(a). Theresultfor these ond asein whi hDGO-0 performsStep2.2followsbysymmetry. Thetourfollowedequals

FR

s

=

SP(s, p) ∪ SWR

p

(p, r, cw ) ∪ SP (r, s).

(1)

Sin ebyourassumption,that

s

doesnotlieoutside

SWR

p

,we anassumewithoutlossofgenerality thatthepoint

r

isthelast interse tionpointof

SWR

p

withtheverti alboundaryaxisof

Q1(s)

; seeFigure5(a).

We provethis asfollows. Letthe point

r

be asdened in thestrategy DGO-0 and let

r

be

the last interse tion point of

SWR

p

with the verti al boundary axis of

Q1(s)

. Bythe way the strategyPIGOisdenedthesubpath

SP(s, p) ∪ SWR

p

(p, r, cw )

seesallof

P

. Hen e,thesubpath

SWR

p

(r, p, cw )

equals

SP(r, p)

with

r

eitherlyingin

Q2

(s)

or

Q3

(s)

. If

r ∈ Q3(s)

then

s ∈ SWR

p

,

and

r

= s

. If

r ∈ Q2(s)

thenwe an hoose

r

sothat

||r, s||

y

= ||r

, s||

y

,and

SP(r, s) = SP (r, r

)∪

SP(r

, s)

. In both ases

length(SWR

p

(p, r, cw ) ∪ SP(r, s)) = length(SWR

p

(p, r

, cw ) ∪ SP(r

, s))

.

Thisprovesthatwe an usethepoint

r

insteadofthepoint

r

in (1).

Wehavethat

length(FR

s

) = ||s, p|| + length(SWR

p

) − ||r, p|| + ||r, s||

≤ length(SWR

s

) + ||s, p|| + ||r, s|| − ||r, p||

= length(SWR

s

) + ||s, p||

x

+ ||s, p||

y

+ ||r, s||

x

+ ||r, s||

y

− ||r, p||

x

− ||r, p||

y

= length(SWR

s

) + ||s, p||

y

+ ||r, s||

y

− ||r, p||

y

≤ length(SWR

s

) + 2||s, p||

y

≤ length(SWR

s

) + ||s, p|| ≤

3

length(SWR

s

),

(10)

sin e

length(SWR

s

) ≥ 2||s, p||

byLemma4.2and

||s, p||

y

≤ ||s, p||

x

.

2

4.2 Strategy DGO-1

NextwepresentDGO-1.

Strategy DGO-1

1 if

ext

(f

u

) ∈ L

then Mirror

P

atthediagonalof

Q1(s)

endif 2 Goto

v

,theverteximmediatelytotherightofthe urrentpoint 3

q := PBGO(v, aw , Q1(v))

4 if

||s, q||

y

≤ ||s, q||

x

then 4.1 Goba kto

v

4.2

r := PBGO(v, cw , P)

else

/∗

if

||s, q||

y

> ||s, q||

x

then

∗/

4.3

r := PIGO(q, north, aw , P)

endif

5 Goba ktothestartingpoint

s

andhalt

End DGO-1

Lemma4.4 IfthestrategyappliessubstrategyDGO-1,then

length(FR

s

) ≤

3

2

length(SWR

s

).

Proof: Sin ethe point

v

rea hedby path

FR

s

(s, v, orient ) = SP(s, v)

isaboundarypoint, the result of performing strategy BGO

(v, orient )

, with

orient

being either

cw

or

aw

, is a shortest

wat hmanroutethrough

v

; seeFigure6.

Also the point

v

lies on a shortest path between the horizontal boundary of

Q1(s)

and the

extension

ext(f

u

)

. Hen e, there is a route

SWR

s

that passes through

v

and by Lemma 4.1

length(SWR

v

) ≤ length(SWR

s

)

.

Assume now for the rst ase that DGO-1 performs Steps 4.1 and 4.2, i.e., that when

FR

s

rea hesthepoint

q

,then

||s, q||

y

≤ ||s, q||

x

; seeFigure6(a). Thetourfollowedequals

FR

s

= SP (s, v) ∪ SWR

v

(v, q, aw ) ∪ SP (q, v) ∪ SWR

v

(v, r, cw ) ∪ SP(r, s)

andsin ebyourassumption,that

SWR

v

ontains

s

initsinterior,we anassumewithoutlossof generalitythatthepoint

r

isthelastinterse tionpointof

SWR

v

with theverti alboundaryaxis

of

Q1(s)

;seeFigure6(a). This anbeprovedin thesamewayasin Lemma4.3. Wehave

length(FR

s

) =

||s, q|| + length(SWR

v

) − ||r, q|| + ||r, s||

length(SWR

s

) + ||s, q|| + ||r, s|| − ||r, q||

=

length(SWR

s

) + ||s, q||

x

+ ||s, q||

y

+ ||r, s||

x

+ ||r, s||

y

− ||r, q||

x

− ||r, q||

y

=

length(SWR

s

) + ||s, q||

y

+ ||r, s||

y

− ||r, q||

y

=

length(SWR

s

) + 2||s, q||

y

3

2

length(SWR

s

),

(11)

f

r

s

v

||s, q||

y

> ||s, q||

x

(b)

SWR

v

q

FR

s

f

r

FR

s

s

v

r

SWR

v

q

||s, q||

y

≤ ||s, q||

x

(a)

p

p

Figure6:Illustratingthe asesintheproofofLemma4.4.

sin e

length(SWR

s

) ≥ 2||s, q||

byLemma4.2and

||s, q||

y

≤ ||s, q||

x

.

Assume forthese ond asethatDGO-1performsStep4.3,i.e.,on e

FR

s

rea hesthepoint

q

,

then

||s, q||

y

> ||s, q||

x

;see Figure6(b). Thetourfollowedequals

FR

s

= SP(s, v) ∪ SWR

v

(v, r, aw ) ∪ SP (r, s),

with

r

beingthelast interse tionpointof

SWR

v

withthehorizontalboundaryaxisof

Q1(s)

;see Figure6(b). Inthesamewayasbeforewe annowobtain

length(FR

s

) ≤

length(SWR

s

) + 2||s, q||

x

3

2

length(SWR

s

).

This on ludes theproof.

2

4.3 Strategy DGO-2

We ontinuetheanalysisbyrstshowingthesubstrategyDGO-2andthenprovingits ompetitive

(12)

1 Let

e

betheleftmostverti aledgein

Q1(s)

ontheboundarypartseparating

ext

(f

u

)

and

ext

(f

r

)

. Similarly let

e

bethe bottommosthorizontal edgein

Q1(s)

onthe boundarypart separating

ext

(f

u

)

and

ext

(f

r

)

2 Let

v

bethetopmostvertexon

e

andlet

v

betherightmostvertexon

e

3 if

||s, v||

y

< ||s, v

||

x

then

3.1 Mirror

P

atthediagonal of

Q1(s)

/∗ v

and

v

arenowswapped

∗/

endif 4 Goto

v

5

q := PBGO(v, aw , Q1(v))

6 if

||s, v|| ≤ ||s, q||

y

then 6.1

r := PIGO(q, north, aw , P)

else

/∗

if

||s, v|| > ||s, q||

y

then

∗/

6.2 Goba kto

v

6.3

r := PBGO(v, cw , P)

endif

7 Goba kto

s

andhalt

End DGO-2

Lemma4.5 IfthestrategyappliessubstrategyDGO-2,then

length(FR

s

) ≤

5

3

length(SWR

s

).

Proof: Before we begin thea tual proofwehaveto ensure that thepoints

v

and

v

dened in

substrategyDGO-2 are su h that in all ases it holds that

length(SWR

v

) ≤ length(SWR

s

)

and

length(SWR

v

) ≤ length(SWR

s

)

. In ases

AA

and

AR

,thepoint

v

liesonsometour

SWR

s

sin e

v

liesonashortestpathfrom

s

to

ext

(f

u

)

andonashortestpathfrom

ext(f

r

)

to

ext

(f

u

)

. Hen e, forthese two asesitfollowsbyLemma4.1that

length(SWR

v

) ≤ length(SWR

s

)

;seeFigures7(a) and (b). Furthermore, sin e

v

lies on some tour

SWR

v

sin e

v

lies on a shortest path from

ext(f

r

)

to

ext

(f

u

)

,wehavebythesametokenthat

length(SWR

v

) ≤ length(SWR

v

)

,thus proving

these ondinequality.

The ase

RR

followsbya ompletelysymmetri argumentifweex hangethepoints

v

and

v

forea hother;see Figure7( ).

The nal ase

RA

is a little more involved sin e neither

v

nor

v

an be ensured to lie on

a tour

SWR

s

. To prove the inequalities onsider an interse tion point

u

between some tour

SWR

s

and

ext(f

r

)

. The point

u

must exist otherwise

SWR

s

violates the visibility property of

awat hmanroute. Now, byLemma 4.1, wehave that

length(SWR

u

) ≤ length(SWR

s

)

. Sin e

v

and

v

lie onsome shortestpath from

u

to

ext(f

u

)

we additionallyhavethat there is sometour

SWR

u

passingthroughboththesepoints. ApplyingLemma4.1againgivesusthetwoinequalities

length(SWR

v

) ≤ length(SWR

u

)

and

length(SWR

v

) ≤ length(SWR

u

)

,thusprovingour laimalso

inthis ase;seeFigure7(d).

Assume fortherst asethat DGO-2performsStep6.1,i.e., that

||s, v||

y

≤ ||s, v

||

x

andthat

when

FR

s

rea hesthepoint

q

,then

||s, v|| ≤ ||s, q||

y

;seeFigure 8(a). Thetourfollowedequals

(13)

s

ext

(f

u

)

v

v

ext

(f

r

)

s

ext

(f

r

)

ext

(f

u

)

v

v

(b) ( ) (a) (d)

s

ext

(f

r

)

v

v

ext

(f

u

)

s

v

ext

(f

u

)

v

ext

(f

r

)

p

p

p

p

Figure7: Illustratingthestru tural aseshandledbysubstrategyDGO-2.

Hen e,wehavethatthelengthof

FR

s

isboundedby

length(FR

s

) =

||s, v|| + length(SWR

v

(v, r, aw )) + ||r, s||

length(SWR

v

) + 2||s, v|| ≤ length(SWR

s

) +

4

3

||s, v|| +

2

3

||s, v||

length(SWR

s

) +

4

3

||s, q||

y

+

2

3

||s, v||

x

+

2

3

||s, v||

y

length(SWR

s

) +

4

3

||s, q||

y

+

2

3

||s, v

||

x

+

2

3

||s, v

||

x

=

length(SWR

s

) +

4

3

||s, q||

y

+

4

3

||s, v

||

x

length(SWR

s

) +

2

3

length(SWR

s

) =

5

3

length(SWR

s

),

sin e

length(SWR

s

) ≥ 2||s, q||

y

+ 2||s, v

||

x

byLemma4.2.

Forthese ond aseassumethatDGO-2performsSteps6.2and6.3,i.e.,that

||s, v||

y

≤ ||s, v

||

x

andthatwhen

FR

s

rea hesthepoint

q

,then

||s, v|| > ||s, q||

y

;seeFigure8(b). Thetourfollowed equals

FR

s

= SP(s, v) ∪ SWR

v

(v, q, aw ) ∪ SP(q, v) ∪ SWR

v

(v, r, cw ) ∪ SP (r, s).

Withoutlossofgeneralitywe anassumethat

r

isthelastinterse tionpointbetween

SWR

v

and theverti alboundaryaxisof

Q1

(s)

. Thelengthof

FR

s

isboundedby

length(FR

s

) =

||s, q|| + length(SWR

v

(v, q, aw )) + length(SWR

v

(v, r, cw )) + ||r, s||

=

||s, q|| + length(SWR

v

) − ||r, q|| + ||r, s||

(14)

s

v

SWR

v

v

||s, v||

y

≤ ||s, v

||

x

||s, v|| > ||s, q||

y

(b)

q

r

s

q

v

SWR

v

v

r

||s, v||

y

≤ ||s, v

||

x

||s, v|| ≤ ||s, q||

y

p

p

(a)

Figure8:Illustratingthe asesintheproofofLemma4.5.

=

length(SWR

s

) +

4

3

||s, q||

y

+

2

3

||s, q||

y

< length(SWR

s

) +

4

3

||s, q||

y

+

2

3

||s, v||

=

length(SWR

s

) +

4

3

||s, q||

y

+

2

3

||s, v||

x

+

2

3

||s, v||

y

length(SWR

s

) +

4

3

||s, q||

y

+

2

3

||s, v

||

x

+

2

3

||s, v

||

x

=

length(SWR

s

) +

4

3

||s, q||

y

+

4

3

||s, v

||

x

length(SWR

s

) +

2

3

length(SWR

s

) =

5

3

length(SWR

s

),

sin e

length(SWR

s

) ≥ 2||s, q||

y

+ 2||s, v

||

x

byLemma4.2.

This on ludes theproof.

2

4.4 Strategy DGO-3

(15)

1 if

(ext (f

u

), ext (f

r

)) ∈ LR ∪ LA

then Mirror

P

atthediagonalof

Q1(s)

endif

2 Let

e

betheleftmostverti aledgein

Q1(s)

ontheboundarypartseparating

ext

(f

u

)

and

ext

(f

r

)

andlet

v

bethetopmostvertexon

e

.Let

v

betheverteximmediatelytotherightofthe urrent

point 3 if

||s, v

||

x

≤ ||s, v||

x

then 3.1 Goto

v

3.2

q := PBGO(v

, aw , Q1(v

))

3.3 if

||s, q||

y

≤ ||s, q||

x

then 3.3.1 Goba kto

v

3.3.2

r := PBGO(v

, cw , P)

else

/∗

if

||s, q||

y

> ||s, q||

x

then

∗/

3.3.3

r := PIGO(q, north , aw , P)

endif else

/∗

if

||s, v

||

x

> ||s, v||

x

then

∗/

3.4 if

||s, v||

y

≤ ||s, v

||

x

then 3.4.1 Goto

v

3.4.2

q := PBGO(v, aw , Q1(v))

3.4.3 if

||s, v|| ≤ ||s, q||

y

then 3.4.3.1

r := PIGO(q, north, aw , P)

else

/∗

if

||s, v|| > ||s, q||

y

then

∗/

3.4.3.2 Goba kto

v

3.4.3.3

r := PBGO(v, cw , P)

endif else

/∗

if

||s, v||

y

> ||s, v

||

x

then

∗/

3.5 Goto

v

3.6

r := PBGO(v

, aw , P)

endif endif

4 Goba kto

s

andhalt

End DGO-3

Lemma4.6 IfthestrategyappliessubstrategyDGO-3,then

length(FR

s

) ≤

5

3

length(SWR

s

).

Proof: Sin ethepoint

v

rea hedbypath

FR

s

(s, v

, orient ) = SP(s, v

)

isaboundarypointthe result of performing strategy BGO

(v

, orient )

, with

orient

being either

cw

or

aw

, is a shortest

wat hmanroutethrough

v

;seeFigure9.

Also, thepoint

v

lieson ashortest pathbetween thehorizontal boundaryof

Q1(s)

and the

extension

ext

(f

r

)

. Hen e, there is a route

SWR

s

that passes through

v

and by Lemma 4.1

length(SWR

v

) ≤ length(SWR

s

)

. The point

v

lies on a shortest path from

ext(f

r

)

to

ext(f

u

)

and therefore we havethat there is aroute

SWR

s

that passes through

v

and

length(SWR

v

) ≤

(16)

s

q

r

v

v

SWR

v

s

||s, v

||

x

≤ ||s, v||

x

v

v

q

r

||s, q||

y

> ||s, q||

x

p

p

SWR

v

||s, v

||

x

≤ ||s, v||

x

||s, q||

y

≤ ||s, q||

x

(a) (b)

s

v

v

q

r

SWR

v

||s, v||

y

≤ ||s, v

||

x

||s, v|| ≤ ||s, q||

y

s

||s, v

||

x

> ||s, v||

x

v

SWR

v

v

r

q

||s, v||

y

≤ ||s, v

||

x

||s, v|| > ||s, q||

y

p

p

( ) (d)

||s, v

||

x

> ||s, v||

x

||s, v

||

x

> ||s, v||

x

v

q

v

s

r

p

SWR

v

||s, v||

y

> ||s, v

||

x

(e)

(17)

Assumefortherst asethatDGO-3performsSteps3.3.1and3.3.2,i.e.,that

||s, v

||

x

≤ ||s, v||

x

and

||s, q||

y

≤ ||s, q||

x

; seeFigure9(a). Thetourfollowedequals

FR

s

= SP(s, v

) ∪ SWR

v

(v

, q, aw ) ∪ SP(q, v

) ∪ SWR

v

(v

, r, cw ) ∪ SP (r, s),

with

r

beingthelastinterse tionpointof

SWR

v

withtheverti alboundaryaxisof

Q1(s)

. Inthe asethat thestrategyperformsStep 3.3.3i.e., that

||s, v

||

x

≤ ||s, v||

x

and

||s, q||

y

> ||s, q||

x

; see

Figure9(b). Thetourfollowedequals

FR

s

= SP (s, v

) ∪ SWR

v

(v

, r, aw ) ∪ SP(r, s),

with

r

beingthelast interse tionpointof

SWR

v

withthehorizontalboundaryaxisof

Q1

(s)

. In thesamewayasintheproofofLemma4.4we anobtaina ompetitiveratioof

3/2

inthis ase.

Assume for the se ond ase that DGO-3 performs Step 3.4.3.1, i.e., that

||s, v

||

x

> ||s, v||

x

,

||s, v||

y

≤ ||s, v

||

x

and

||s, v|| ≤ ||s, q||

y

;see Figure9( ). Thetourfollowedequals

FR

s

= SP(s, v) ∪ SWR

v

(v, r, aw ) ∪ SP (r, s),

with

r

being the last interse tion point of

SWR

v

with the horizontal boundary axis of

Q1(s)

. In the ase that the strategy performs Steps 3.4.3.2 and 3.4.3.3, i.e., that

||s, v

||

x

> ||s, v||

x

,

||s, v||

y

≤ ||s, v

||

x

and

||s, v|| > ||s, q||

y

;see Figure9(d). Thetourfollowedequals

FR

s

= SP (s, v) ∪ SWR

v

(v, q, aw ) ∪ SP (q, v) ∪ SWR

v

(v, r, cw ) ∪ SP(r, s)

with

r

beingthelastinterse tionpointof

SWR

v

withtheverti alboundaryaxisof

Q1(s)

. Inthe samewayasintheproofofLemma4.5we anobtaina ompetitiveratioof

5/3

inthis ase.

Assumeforthethird asethatDGO-3performsSteps3.5and3.6,i.e.,that

||s, v

||

x

> ||s, v||

x

and

||s, v||

y

> ||s, v

||

x

;seeFigure9(e). Thetourfollowedequals

FR

s

= SP (s, v

) ∪ SWR

v

(v

, r, aw ) ∪ SP(r, s),

length(FR

s

) =

||s, v

|| + length(SWR

v

(v

, r, aw )) + ||r, s||

||s, v

|| + length(SWR

v

) − ||r, v

|| + ||r, s|| ≤ length(SWR

s

) + 2||s, v

||

x

<

length(SWR

s

) + ||s, v

||

x

+ ||s, v||

y

3

2

length(SWR

s

),

sin e

length(SWR

s

) ≥ 2||s, v

||

x

+ 2||s, v||

y

by Lemma 4.2. From our assumption, that

SWR

v

ontains

s

in its interior, we an assume without loss of generality that the point

r

is the last

interse tionpointof

SWR

v

withtheverti alboundaryaxisof

Q1(s)

. This anbeprovedin the samewayasinLemma 4.3.

This on ludes theproof.

2

4.5 Strategy DGO-4

(18)

1 Let

v

betheverteximmediatelyabove

p

andlet

v

betheverteximmediatelytotherightof

p

. 2 if

||s, v||

y

≤ ||s, v

||

x

then 2.1 Goto

v

2.2

r := PBGO(v, cw , P)

else

/∗

if

||s, v||

y

> ||s, v

||

x

then

∗/

2.3 Goto

v

2.4

r := PBGO(v

, aw , P)

endif

3 Goba kto

s

andhalt

End DGO-4

Lemma4.7 IfthestrategyappliessubstrategyDGO-4,then

length(FR

s

) ≤

3

2

length(SWR

s

).

Proof: Consider the point

v

. It lies on the shortest path between the horizontal boundaryof

Q1(s)

and the extension

ext(f

u

)

. Hen e, there is a route

SWR

s

that passes through

v

and by

Lemma4.1

length(SWR

v

) ≤ length(SWR

s

)

. Bya ompletely symmetri argumentitalsofollows thatthereisaroute

SWR

s

thatpassesthrough

v

,andhen e,

length(SWR

v

) ≤ length(SWR

s

)

. Assume rstthat DGO-4performsSteps2.1and2.2,i.e.,

||s, v||

y

≤ ||s, v

||

x

;seeFigure10(a). Thetourfollowedequals

FR

s

= SP(s, v) ∪ SWR

v

(v, r, cw ) ∪ SP (r, s).

Withoutlossofgeneralitywe anassumethat

r

isthelastinterse tionpointbetween

SWR

v

and theverti alboundaryaxisof

Q1(s)

. This anbeprovedinthesamewayasinLemma 4.3. The

lengthof

FR

s

isboundedby

length(FR

s

) =

||s, v|| + length(SWR

v

(v, r, cw )) + ||r, s||

||s, v|| + length(SWR

v

) − ||r, v|| + ||r, s||

length(SWR

s

) − ||r, v|| + ||s, v|| + ||r, s||

length(SWR

s

) + 2||s, v||

y

length(SWR

s

) + ||s, v||

y

+ ||s, v

||

x

3

2

length(SWR

s

),

sin e

length(SWR

s

) ≤ 2||s, v||

y

+ 2||s, v

||

x

byLemma4.2. IfDGO-4performsSteps2.3and2.4,i.e.,

||s, v||

y

> ||s, v

||

x

;seeFigure10(b);thetourfollowed equals

FR

s

= SP(s, v

) ∪ SWR

v

(v

, r, aw ) ∪ SP (r, s)

andsimilarlywe anassumethat

r

isthelastinterse tionpointbetween

SWR

v

andthehorizontal boundaryaxisof

Q1(s)

asprovedin Lemma4.3. Inthesamewayasbefore weobtainthat

length(FR

s

) ≤ length(SWR

s

) + 2||s, v

||

x

3

(19)

s

||s, v||

y

> ||s, v

||

x

(b)

v

v

r

s

||s, v||

y

≤ ||s, v

||

x

v

v

SWR

v

r

(a)

p

p

Figure10: Illustratingthe asesintheproofofLemma4.7.

This on ludes theproof.

2

Inea hoftheproofsofLemmas4.34.7weestablishedakeypoint,fromnowondenoted

t

,in

Q1(s)

that ispassed by sometour

SWR

s

. If

SWR

t

ontainsthestarting point

s

in the interior

orontheboundarythentheresultsofLemmas4.34.7holdaswehaveshown. Now onsiderthe

asewhen

s

liesoutside

SWR

t

. Weneedto showthat theresultsofthelemmasstillhold inthis ase.

Lemma4.8 Usingthenotationabove,theresultsofLemmas4.34.7stillholdif

s

isnot ontained

in

SWR

t

.

Proof: Ofallthepossibletours

SWR

t

onsideronethathasapoint

s

visiblefrom

s

andas lose

to

s

aspossible. Wewillshowthat

length(SWR

s

) ≥ 2||s, s

|| + length(SWR

s

)

andthat

length(FR

s

) ≤ 2||s, s

|| + length(FR

s

).

Thus,wehavethat

length(FR

s

) ≤ 2||s, s

|| + length(FR

s

) ≤ 2||s, s

|| + c · length(SWR

s

)

≤ 2c||s, s

|| + c · length(SWR

s

) ≤ c · length(SWR

s

)

forany

c ≥ 1

su hthat

length(FR

s

) ≤ c · length(SWR

s

)

. Hen e,we anapply

c = 3/2

or

c = 5/3

onea h ofthe asesDGO-0 toDGO-4 appropriatelysin ethepoint

s

isbydenition ontained

ontheboundaryof

SWR

t

.

Toprovethe twoinequalities,werst assumethat

SWR

t

is ontainedin

Q1

(s)

and possibly

(20)

s

q

s

t

SWR

t

(a)

s

q

t

(b)

SWR

t

s

Figure11: IllustratingtheproofofLemma4.8.

symmetri albyamirroringoperationofthepolygon

P

atthediagonalof

Q1(s)

andtherefore an

behandledin thesameway.

Next,notethatthepoint

s

liesonan

x

-

y

-monotonepathfrom

s

to

t

. Thisisbe ause

s

annot

lieabovethe

y

- oordinateof

t

andit annotlietotherightofthe

x

- oordinateof

t

. If

s

did,then

itwouldbe possibleto moveit loserto

s

ontradi tingourinitialassumption. (Indeed if

SWR

t

liesinboth

Q1(s)

and

Q4(s)

,then

s

liesonthehorizontalboundaryof

Q1(s)

.)

Considera tour

SWR

s

. Sin e

SWR

t

has no pointsin

Q2(s

)

or

Q3(s

)

it followsthat these

quadrants annot ontain any verti alleft extensions with respe t to

s

. Hen e, itis possibleto

moveany verti aledge of

SWR

s

(partially) visiblefrom

s

and tothe leftof

s

towardstheright

so that the new tour onstru ted is a wat hman route, passes through

s

, has the same length

as

SWR

s

, and has no verti al edge in

Q2

(s

)

or

Q3

(s

)

; see Figures 11(a) and (b). The tour onstru ted in this way onsists of a wat hman route passing through

s

and an

x

-

y

-monotone

path onne ting

s

and

s

. Ex hangingthewat hmanroute passingthrough

s

foratour

SWR

s

possiblyshortensthetotallengthofthetourandthisprovestherstinequality.

Toprovethese ondinequalitywenotethat

FR

s

onsistsofan

x

-

y

-monotonepathfrom

s

to

t

followedbyapartof

SWR

t

andapathba kto

s

. Hen ewe an(forthisproofonly)assumethat theinitialpathfrom

s

to

t

passesthrough

s

. Furthermorewenotethat whi heversubstrategyis

appliedfor

FR

s

thesamesubstrategywillbeappliedfor

FR

s

. Howeverwithinasubstrategynot ne essarilythesamestepswillbeperformedfor

FR

s

and

FR

s

. Wedenethisdieren eformally asfollows.

Considerthetour

FR

p

foranypoint

p

. IfDGOon

p

appliesasubstrategythatdoesoneofthe following:

1. itsrst appli ationof PIGOorPBGO iswith anti- lo kwise orientationand the(possible)

subsequentappli ationofPIGOorPBGOisalsowithanti- lo kwiseorientation,

2. its rst appli ation of PIGO or PBGO is with lo kwise orientation and the subsequent

appli ationofPIGOorPBGO iswithanti- lo kwiseorientation,

(21)

urrentpointto

t

,applyoneofPIGOorPBGOuntilwerea hapoint

q

whereade isionismade

depending on whether

||s, q||

y

≤ ||s, q||

x

or

||s, q||

y

> ||s, q||

x

. This de isionis pre isely the one thatdetermineswhetherthetourwillbeforwardorientedorba kwardoriented.

If both

FR

s

and

FR

s

are forwardorientedorba kwardoriented,then these ond inequality follows dire tly. Hen e, we have a problem if either

FR

s

is forward oriented whereas

FR

s

is ba kwardorientedorthereverse aseo urs. Wedoa aseanalysistoprovethese ondinequality.

Assume rstthat

FR

s

is ba kward orientedand

FR

s

is forwardoriented. Let

o

denote the orientationthat therstappli ation ofPIGO orPBGO in DGOon

s

performs inasubstrategy.

Let

¯

o

betheotherorientation,i.e.,if

o = aw

,then

o = cw

¯

and onversely.

Wehavethat

length(FR

s

) =

||s, s

|| + length(FR

s

(s

, q, o)) + ||q, t|| + ||t, r|| +

+ length(FR

s

(r, s

, ¯

o)) + ||s

, s||

=

length(FR

s

(s

, q, o)) + ||q, s

|| + length(FR

s

(s

, r, o)) + ||r, s

|| +

+ 2||s, s

|| + ||t, r|| + ||q, t|| − ||q, s

|| − ||r, s

||

=

length(FR

s

) + 2||s, s

|| + ||t, r|| + ||q, t|| − ||q, s

|| − ||r, s

||

length(FR

s

) + 2||s, s

||,

sin e

length(FR

s

(r, s

, ¯

o)) = length(FR

s

(s

, r, o))

,

length(FR

s

(s

, q, o)) = length(FR

s

(s

, q, o))

, and

||t, r|| + ||q, t|| − ||q, s

|| − ||r, s

|| =

||t, r||

x

+ ||t, r||

y

+ ||q, t||

x

+ ||q, t||

y

− ||q, s

||

x

− ||q, s

||

y

− ||r, s

||

x

− ||r, s

||

y

=

||t, r||

y

+ ||q, t||

y

− ||q, s

||

x

− ||q, s

||

y

− ||r, s

||

x

− ||r, s

||

y

=

||r, q||

y

− ||q, s

||

x

− ||q, s

||

y

− ||r, s

||

x

− ||r, s

||

y

−||q, s

||

x

− ||r, s

||

x

− ||r, s

||

y

0,

if

o = aw

;seeFigure12(a). Thepenultimateinequalityfollowssin e

||s

, q||

y

≥ ||r, q||

y

. If

o = cw

,

thenasimilar al ulation aneasilybemade.

Assume nowthat

FR

s

isforwardorientedand

FR

s

isba kwardoriented. If

SWR

t

interse ts both

Q1

(s)

and

Q4

(s)

(thismeansthat

s

liesonthehorizontalboundaryof

Q1

(s)

),weargueas

follows. Sin e

||s, q||

y

= ||s

, q||

y

inthis ase,thismeansthat if

||s, q||

x

< ||s, q||

y

,then

||s

, q||

x

<

||s

, q||

y

, and hen e, it is notpossible for

FR

s

to be forward oriented and

FR

s

to be ba kward oriented. Therefore

SWR

t

mustbe ompletely ontainedin

Q1(s)

.

We an furthermoreassume that

s

is sele ted sothat

SWR

t

lies ompletely in

Q1

(s

)

. We

have,ifthesubstrategyusedisnotDGO-4,that

length(FR

s

)

= ||s, s

|| + length(FR

s

(s

, q, o)) + ||q, t|| + ||t, r

|| +

+ length(FR

s

(r

, r, o)) + ||r, s

|| + ||s

, s||

= length(FR

s

(s

, q, o)) + ||q, t|| + ||t, r|| + length(FR

s

(r, r

, ¯

o)) + ||r

, s

|| +

+ 2||s

, s|| + ||r, s

|| + ||t, r

|| − ||r

, s

|| − ||t, r||

(22)

s

q

FR

s

s

q

s

s

t

r

t

r

r

FR

s

s

FR

s

t

t

s

( ) (b) (a)

Figure12: IllustratingtheproofofLemma4.8.

≤ length(FR

s

) + 2||s, s

||,

sin e

length(FR

s

(r, r

, ¯

o)) = length(FR

s

(r

, r, o))

,

length(FR

s

(s

, q, o)) = length(FR

s

(s

, q, o))

, and

||r, s

|| + ||t, r

|| − ||r

, s

|| − ||t, r|| ≤ 0

by a similar al ulation as above; see Figure 12(b)

for an example of this ase when

o = aw

. The keyinsight is that on e the point

q

is rea hed,

thenallof

Q1(s)

that alsoliesin

Q1(t)

,

Q2(t)

,and

Q3(t)

hasalreadybeenseen. Hen eit only

remainstoexplorethepartin

Q4(t)

.

Finally, ifthe substrategyused isDGO-4, then wehave two dierentkeypoints, thepoint

t

rea hedby

FR

s

andthepoint

t

rea hedby

FR

s

,giving

length(FR

s

) =

||s, s

|| + ||s

, t|| + length(FR

s

(t, t

, aw )) + ||t

, s

|| + ||s

, s||

=

||s

, t

|| + length(FR

s

(t

, t, cw )) + ||t, s

|| + 2||s

, s|| +

+ ||s

, t|| + ||t

, s

|| − ||s

, t

|| − ||t, s

||

=

length(FR

s

) + 2||s

, s|| + ||s

, t|| + ||t

, s

|| − ||s

, t

|| − ||t, s

||

=

length(FR

s

) + 2||s, s

||,

sin e

length(FR

s

(t, t

, aw )) = length(FR

s

(t

, t, cw ))

and

||s

, t|| + ||t

, s

|| − ||s

, t

|| − ||t, s

|| = 0

;see Figure12( ).

This on ludes theproof.

2

Next,weprovethe orre tnessof ourstrategy.

Lemma4.9 IfthestrategyDGOdivertsfroman

x

-

y

-monotonepaththenoneofthesubstrategies

DGO-0toDGO-4isperformed.

Proof: Theobje tiveofthisproofistoensurethatall asesaretaken areof. Weenumerateall

thepossible asesandshowthatunlessoneofthesubstrategiesDGO-0toDGO-4isenteredthen

strategywill ontinuealongan

x

-

y

-monotonepathinside

P

.

Webeginbyassumingthat the urrentpointoftherobotisapoint

p

in

Q1(s)

. Furthermore,

(23)

p

has been seenso far. All these assumptions are true for the starting point, i.e., when

p = s

.

Let

ext(f

u

)

and

ext(f

r

)

betheupperandrightfrontierestablishedfromthepoint

p

havingtheir

issuingedgesinside

Q1(s)

. Thisgivesriseto threepossible ases.

Therst aseisthat neither

ext(f

u

)

nor

ext(f

r

)

exist. Thismeansthat thepathfrom

s

to

p

sees allof

Q1

(s)

and substrategyDGO-0 guaranteesa ompetitive ratioof

3/2

in this ase; see

Lemma4.3.

The se ond aseis that the extensions

ext(f

u

)

and

ext(f

r

)

exist but

ext(f

u

) = ext(f

r

)

, i.e., in essen e we only have one extension. If the extension is in

B

or

L

, then substrategyDGO-1

guarantees a ompetitive ratio of

3/2

in this ase; see Lemma 4.4. On the other hand, if the

extensionis in

A

or

R

, thenthe robot movestothe losestpointon theextension. This anbe

done with an

x

-

y

-monotone path moving upwardsand to the rightfrom the urrentpoint thus

showingthatthepathfrom

s

tothenew urrentpointis

x

-

y

-monotone. Furthermore,everything

in

Q1(s)

to theleftandbelowthenew urrentpointhasbeenseen.

The third ase is that the extensions

ext(f

u

)

and

ext(f

r

)

exist and are dierent. This ase has a number of sub ases. If

ext(f

u

)

is in

B

, then

ext(f

r

)

must also lie in

B

, and hen e, one extension dominatesthe other. Sin e

ext(f

u

)

lies in

B

is symmetri with respe t to amirroring operationof

P

along thediagonal of

Q1(s)

to

ext(f

r

)

liesin

L

, wehaveby thesame argument thatoneextension dominatestheotherin this ase. So,ifweassumethat thetwoextensionsdo

notdominateea hother andthat theydo notinterse t,wehavethat the pairof extensions an

bein oneofthefollowingnine ases:

(ext(f

u

), ext (f

r

)) ∈ AA ∪ AB ∪ AR ∪ LA ∪ LB ∪ LR ∪ RA ∪ RB ∪ RR.

If

(ext(f

u

), ext(f

r

)) ∈ AA ∪ AR ∪ RR ∪ RA

,thensubstrategyDGO-2guaranteesa ompetitive

ratioof

5/3

inthis ase;seeLemma 4.5.

If

(ext(f

u

), ext (f

r

)) ∈ LA ∪ LR ∪ RB ∪ AR

,thensubstrategyDGO-3guaranteesa ompetitive

ratioof

5/3

inthis ase;seeLemma 4.6.

If

(ext(f

u

), ext(f

r

)) ∈ LB

, then substrategyDGO-4 guarantees a ompetitive ratio of

3/2

in

this ase;seeLemma4.7.

Next, we assume that the two extensions interse t, hen e they are orthogonal. The pair of

extensions anbein oneofthefollowingve ases:

(ext (f

u

), ext(f

r

)) ∈ AR ∪ LA ∪ LB ∪ RA ∪ RB.

The ase

(ext (f

u

), ext (f

r

)) ∈ RA

annoto urwiththetwoextensionsinterse tingleavinguswith

thefourremaining ases.

If

(ext(f

u

), ext (f

r

)) ∈ LA ∪ RB

,thensubstrategyDGO-1guaranteesa ompetitiveratioof

3/2

inthis ase;seeLemma 4.6.

If

(ext(f

u

), ext(f

r

)) ∈ LB

, then substrategyDGO-4 guarantees a ompetitive ratio of

3/2

in

this ase;seeLemma4.7.

If

(ext(f

u

), ext(f

r

)) ∈ AR

, thenby ourindu tive assumption we anmovethe urrent point

withan

x

-

y

-monotonepathtotheinterse tionpointoftheextensions. Everythingtotheleftand

belowtheinterse tionpointisseenbyan

x

-

y

-monotonepathfrom

s

to theinterse tionpoint.

(24)

hasbeenseensofar.

This on ludes the aseanalysisandtheproof.

2

Lemmas4.34.9leadustoestablishthetotal ompetitiveratioofDGO.Wehavethetheorem.

Theorem 1

length(FR

s

) ≤

5

3

length(SWR

s

).

Proof: It only remains to prove the orre tness of our strategy, i.e., that on e the strategy

terminatesthe omplete polygonhas been explored. But this followsfrom Lemma 2.1sin e the

strategyensuresthat

FR

s

hasatleastonepointto therightofeveryextension.

2

5 Con lusions

We haveproved a

5/3

- ompetitivedeterministi strategy alled DGO for exploring a re tilinear

polygonin the

L

1

metri . Weanti ipatethatwithasimilarmethodthe ompetitiveratioshould bepossibletobeimprovedto

3/2

althoughthedetailsareyettobeironedout. Thisnewstrategy

makesextensiveuseofthestrategyDGOanditssubstrategiesDGO-0to DGO-4.

Closing thegapto theknown lowerboundof

5/4

is stillanopenproblem. Wehopethat our

methodwillgivenewinsightsothatthegap anbenarrowedfurtheroreven losedaltogether.

Referen es

[1℄ Margrit Betke, Ronald L. Rivest, Mona Singh. Pie emealLearningof anUnknown

Environment. In Sixth ACM Conferen e on Computational Learning Theory (COLT 93),

pages277286,July1993.

[2℄ K-F. Chan, T.W. Lam. An on-linealgorithmfor navigatinginanunknownenvironment.

International Journalof ComputationalGeometry&Appli ations,3:227244,1993.

[3℄ W. Chin, S.Ntafos. OptimumWat hmanRoutes. InformationPro essingLetters,28:39

44, 1988.

[4℄ W. Chin, S. Ntafos. Shortest Wat hmanRoutes in SimplePolygons. Dis reteand

Com-putational Geometry,6(1):931,1991.

[5℄ A.Datta,Ch.Hipke,S.S huierer.CompetitiveSear hinginPolygonsBeyond

General-izedStreets.InPro .SixthAnnualInternationalSymposiumonAlgorithmsandComputation,

pages3241.LNCS1004,1995.

[6℄ A. Datta,Ch.I king. CompetitiveSear hinginaGeneralizedStreet. InPro . 10thAnnu.

ACM Sympos. Comput.Geom.,pages175182,1994.

[7℄ X. Deng,T.Kameda, C.H.Papadimitriou. HowtoLearnanUnknownEnvironment. In

(25)

Polygon.InPro eedingsoftheEighthAnnualACM-SIAMSymposiumonDis reteAlgorithms,

pages166174,1997.

[9℄ Christian I king, Rolf Klein. Sear hing for the Kernel of a Polygon: A Competitive

Strategy. InPro . 11thAnnu.ACMSympos.Comput. Geom., pages258266,1995.

[10℄ R. Klein. Walkinganunknownstreetwithboundeddetour. Comput.Geom. Theory Appl.,

1:325351,1992.

[11℄ J. M. Kleinberg. On-line sear hin asimple polygon. InPro . of 5th ACM-SIAM Symp.

on Dis reteAlgorithms,pages815,1994.

[12℄ A. López-Ortiz, S. S huierer. GoingHomeThroughan Unknown Street. InS. G.Akl,

F.Dehne, J.-R.Sa k,editors,Pro . 4thWorkshoponAlgorithms andDataStru tures,pages

135146.LNCS955,1995.

[13℄ AohanMei, YoshihideIgarashi.AnE ientStrategyforRobotNavigationinUnknown

Environment. Inform. Pro ess.Lett.,52:5156,1994.

[14℄ C. H. Papadimitriou, M. Yannakakis. Shortest paths without a map. In Pro . 16th

Internat.Colloq.AutomataLang.Program.,volume372ofLe tureNotesinComputerS ien e,

pages610620.Springer-Verlag,1989.

[15℄ D. D. Sleator,R. E.Tarjan. Amortizede ien yoflistupdateandpagingrules.

Figure

Figure 1: Illustrating denitions.
Figure 2: Illustrating denitions.
Figure 3: Example run of the greedy-online strategy .
Figure 4: Upper and right frontiers together with their extensions.
+7

References

Related documents

As has already been observed, the rhymes of a Shakespearean sonnet are organized according to the scheme abab-cdcd-efef-gg. In other words, they are presented in pairs, two for

The most important reasons for operating a CDP are to increase cross-selling of other products, followed by increased service level for the customers and increased income from

The findings of this thesis benefit the design of systems that automatically generate image descriptions and search engines and lead to a more natural human-robot

Now we have seen that the Casimir operator W 2 describes the spin of a massive particle in quantum field theory, and since the Pauli-Lubanski spin is invariant under the

För det tredje har det påståtts, att den syftar till att göra kritik till »vetenskap», ett angrepp som förefaller helt motsägas av den fjärde invändningen,

Skolverket skriver på sin hemsida att: “Sammantaget vet forskarna alltså inte hur lärares bedömningsarbete går till” (Skolverket, 2011a). Det finns alltså utrymme för

Starting with the data of a curve of singularity types, we use the Legen- dre transform to construct weak geodesic rays in the space of locally bounded metrics on an ample line bundle

To illustrate how profit is not the best means of making a new hospital, Paul Farmer contrasts a private finance hospital construction in the city of Maseru in Lesotho with