• No results found

Combination of searches for WW, WZ, and ZZ resonances in pp collisions at root s=8 TeV with the ATLAS detector


Academic year: 2021

Share "Combination of searches for WW, WZ, and ZZ resonances in pp collisions at root s=8 TeV with the ATLAS detector"


Loading.... (view fulltext now)

Full text


Contents lists available atScienceDirect









W W ,

W Z ,


Z Z resonances







8 TeV with





a r t i c l e i n f o a b s t ra c t



Receivedinrevisedform9February2016 Accepted9February2016

Availableonline11February2016 Editor:W.-D.Schlatter

TheATLASexperimentattheCERNLargeHadronColliderhasperformedsearchesfornew,heavybosons decayingto W W , W Z and Z Z final statesinmultipledecaychannelsusing20.3 fb−1 of pp collision dataat√s=8 TeV.Inthecurrentstudy,theresultsofthesesearchesarecombinedtoprovideamore stringenttest ofmodelspredictingheavy resonanceswithcouplingsto vectorbosons.Directsearches forachargeddibosonresonancedecayingto W Z in theν(=μ,e), qq, ¯ νqq and ¯ fullyhadronic finalstatesare combinedandupperlimits ontherateofproductiontimesbranchingratiotothe W Z bosonsarecomparedwithpredictionsofanextendedgaugemodelwithaheavy Wboson.Inaddition, directsearchesforaneutraldiboson resonancedecayingto W W and Z Z in theqq, ¯ νqq, ¯ andfully hadronicfinalstatesarecombinedandupperlimitsontherate ofproductiontimesbranchingratioto the W W and Z Z bosons arecompared withpredictionsfor aheavy,spin-2 gravitoninan extended Randall–Sundrummodel wheretheStandardModel fieldsareallowedtopropagateinthe bulkofthe extradimension.

©2016CERNforthebenefitoftheATLASCollaboration.PublishedbyElsevierB.V.Thisisanopen accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thenaturalnessargumentassociatedwiththesmallmassofthe recentlydiscoveredHiggs boson[1–4] suggeststhat theStandard Model(SM)isconceivablytobeextendedbyatheorythatincludes additionalparticles and interactions atthe TeV scale. Many such extensionsoftheSM,suchasextendedgaugemodels[5–7], mod-elsofwarpedextradimensions[8–10],technicolour[11–14], and more generic composite Higgs models [15,16], predict the exis-tenceofmassiveresonancesdecayingtopairsofW and Z bosons.

Intheextendedgaugemodel(EGM)[5]anew,chargedvector boson(W)couplestotheSMparticles.Thecouplingbetweenthe


W bosonandtheSMfermions.TheWW Z couplinghasthesame

structureasthe W W Z couplingintheSM,butisscaledbya fac-torc× (mW/mW)2,where c isa scalingconstant,mW isthe W boson mass,andmW is the W boson mass.The scaling of the coupling allows the width of the W boson to increase approx-imately linearly withmW at mW mW and to remain narrow forc∼1.Forc=1 andmW>0.5 TeV the W widthis approxi-mately3.6%ofitsmassandthebranchingratioofthe W→W Z


sec- E-mailaddress:atlas.publications@cern.ch.

tions in pp collisionsat √s=8 TeV forthe W bosonaswell as theWwidthandbranchingratiosofW→W Z foraselectionof

W bosonmassesintheEGMwithscalefactorc=1 aregivenin Table 1.

SearchesforaWbosondecayingtohavesetstrongbounds on the mass of the W when assuming the sequential standard model (SSM) [17,18], which differs from the EGM in that the

WW Z coupling is set to zero. Forc∼1 the effect ofthis

cou-plingontheproductioncrosssectionoftheWbosonattheLHC isverysmall,thustheproductioncrosssectionoftheWbosonin theSSMandtheEGMis verysimilar.Moreover, duetothesmall branching ratiooftheW→W Z in theEGMwiththe scale fac-tor c∼1, the branching ratios of the W boson to fermions are approximatelythesameasintheSSM.Nevertheless,modelswith narrowvectorresonanceswithsuppressedfermioniccouplings re-main viable extensions to theSM, andthus the EGM provides a usefulandsimplebenchmarkinsearches fornarrowvector reso-nancesdecayingto W Z .

The ATLAS andCMS Collaborations haveset exclusionbounds on the productionand decayof the EGM W boson. In searches usingtheν (e, μ) channel,theATLAS [19] andCMS[20] Collaborations have excluded, at the 95% confidence level (CL), EGM (c=1) W bosons decaying to W Z for W masses below 1.52 TeVand1.55 TeV,respectively. InadditiontheATLAS Collab-oration has excluded EGM (c=1) W bosons for masses below


0370-2693/©2016CERNforthebenefitoftheATLASCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.


1.59 TeVusing the qq¯ [21] channel, andbelow 1.49 TeV using theνqq¯[22]channel.Thesehavealsobeenexcludedwithmasses between1.3and1.5 TeVandbelow1.7 TeVbytheATLAS[23]and CMS[24]Collaborations,respectively,usingthefullyhadronicfinal state.

Diboson resonances are also predicted in an extension ofthe original Randall–Sundrum (RS) [8–10] model with a warped ex-tradimension.Inthisextension totheRSmodel[25–27],theSM fields are allowed to propagate in the bulk of the extra dimen-sion,avoiding constraintson the original RSmodelfrom flavour-changing neutral currents and from electroweak precision mea-surements.Thisso-calledbulk-RS modelischaracterised bya di-mensionlesscouplingconstantk/ ¯MPl∼1,wherek isthecurvature of the warped extra dimension, and M¯Pl=MPl/

8π is the re-ducedPlanckmass.InthismodelaKaluza–Klein excitationofthe spin-2graviton,G∗,candecaytopairsofW orZ bosons.Forbulk RS models with k/ ¯MPl=1 and for G∗ masses between 0.5 and 2.5 TeV, the branching ratio of G∗ to W W ranges from 34% to 16% and the branching ratioto Z Z ranges from 18% to 8%. The

G∗ widthrangesfrom3.7%to6.2%dependingontheG∗ mass. Ta-ble 1 lists widths, branching ratio to W W and Z Z for G∗, and productioncross sectionsin pp collisions at 8 TeVin thesebulk RSmodels.

The ATLAS Collaboration has excluded, at the 95% CL, bulk

G∗ →Z Z with masses below 740 GeV, using the qq chan-¯

nel[21],aswell asbulk G∗→W W withmassesbelow760 GeV,

usingtheνqq channel¯ assumingk/ ¯MPl=1[22].TheCMS Collab-orationhasalsoexcluded atthe95% CLtheG∗ oftheoriginal RS model,decayingtoW W and Z Z withmassesbelow1.2 TeVusing thefullyhadronicfinalstate[24]andhassetlimitsonthe produc-tionanddecayofgenericdibosonresonancesusingacombination ofqq,¯ νqq and¯ fullyhadronicfinalstates[28].

To improve the sensitivity to new diboson resonances, this article presents a combination of four statistically independent searchesfordibosonresonancespreviouslypublishedbytheATLAS Collaboration [19,21–23]. The searches are combined while con-sideringthe correlations betweensystematicuncertainties inthe differentchannels.Thefirstsearch,sensitivetochargedresonances decaying to W Z , uses the ν [19] final state. The second search,sensitivetochargedresonancesdecayingtoW Z and neu-tralresonancesdecayingto Z Z ,usestheqq final¯ state[21].The thirdsearch,sensitivetochargedresonancesdecayingtoW Z and

neutralresonancesdecayingtoW W ,usestheνqq final¯ state[22]. Finally,the fourth search, sensitive tocharged resonances

decay-ing to W Z andtoneutralresonances decayingtoeither W W or

Z Z ,usesthefullyhadronicfinal state [23].Due tothelarge

mo-menta ofthebosons fromthe resonancedecay, theresonancein thischannel is reconstructed withtwo large-radius jets, andthe fullyhadronicchannelishereafterreferredtoasthe J J channel.

TosearchforachargeddibosonresonancedecayingtoW Z the

ν, qq,¯ νqq,¯ and J J channelsare combined.The result of

this combination is interpreted using the EGM W model with

c=1 asabenchmark.

TosearchforneutraldibosonresonancesdecayingtoW W and

Z Z theqq,¯ νqq,¯ and J J channels arecombined,andtheresult

isinterpretedusingthebulkG∗,assumingk/ ¯MPl=1,asa bench-mark.

The ATLAS Collaborationhasperformed additionalsearches in whichnew dibosonresonancescould manifest themselvesas ex-cessesoverthebackgroundexpectation. Intheanalysispresented inRef.[29]the,νν,qq and¯ qq¯νν finalstateshavebeen explored inthecontext ofthesearch fora new,heavy Higgs bo-son.Also, in thecontext ofsearchesfor darkmattera final state ofahadronically decayingbosonandmissingtransverse momen-tum[30],andafinalstateofaleptonicallydecaying Z bosonand

missingtransversemomentumhavebeenexplored[31].These ad-ditional searches are not included in this combination. They are not expected to contribute significantly to the sensitivity of the combined search duetothe lower branching ratioincaseof the leptonic channels, andthe useofonly narrowjetsincaseof the


2. ATLASdetectoranddatasample

The ATLAS detector isdescribed in detail in Ref. [32]. It cov-ers nearly the entire solid angle1 around the interaction point and has an approximatelycylindrical geometry. It consistsof an inner tracking detector (ID) placed within a 2 T axial magnetic fieldsurroundedbyelectromagneticandhadroniccalorimetersand followedbyamuonspectrometer(MS)withamagneticfield pro-videdbyasystemofsuperconductingtoroids.

Theresultspresentedinthisarticleusethedatasetcollectedin 2012byATLASfromtheLHC pp collisionsat√s=8 TeV,usinga single-lepton(electronormuon)trigger[33] witha pT threshold of24 GeV,orasinglelarge-radiusjettriggerwithapTthresholdof 360 GeV. Theintegratedluminosityofthisdatasetafterrequiring data quality criteriato ensure that all detectorcomponents have beenoperational duringdata takingis 20.3 fb−1.Theuncertainty on theintegratedluminosityis ±2.8%.It isderived followingthe methodologydetailedinRef.[34].

3. Signalandbackgroundsamples

Theacceptanceandthereconstructedmassspectrafornarrow resonancesareestimatedwithsignal samplesgeneratedwith res-onance masses between 200 and 2500 GeV, in 100 GeV steps. The bulk G∗ signal events are produced by CalcHEP 3.4 [35] withk/ ¯MPl=1.0,andthe W signal samplesare generatedwith Pythia 8.170 [36], setting the coupling scale factor c =1. The factorisation and renormalisation scales are set to the gener-ated resonance mass. The hadronisation and fragmentation are modelled with Pythia 8 in both cases, and the CTEQ6L1 [37] (MSTW2008LO[38]) partondistributionfunctions(PDFs)areused for the G(W) signal. The leading-order cross sections and branching ratios for the W andbulk G∗ signal samples for se-lectedmasspointsandassumedvaluesofthecouplingparameters areprovidedin Table 1.

The backgroundsinthedifferentdecaychannelsare modelled with simulated event samples. The W+jets and Z +jets back-groundsaregeneratedusing Sherpa 1.4.1[39]withCT10PDFs[40]. A separatesampleisgeneratedusing Alpgen 2.14[41]toestimate systematiceffects,usingCTEQ6L1PDFsand Pythia 6[36]for frag-mentationandhadronisation.

The W+jets and Z+jets productioncrosssectionsarescaled tonext-to-next-to-leading-order(NNLO)calculations[42].Thetop quarkpair,s-channelsingle-topquarkandW t processesare mod-elled by the MC@NLO 4.03 generator [43,44] with CT10 PDFs, interfaced to Herwig [45] for fragmentation and hadronisation and Jimmy [46] for modelling of the underlying event. The top quark pairsampleisscaledtotheproductioncrosssection calcu-latedat NNLOin QCDincluding resummationof next-to-next-to-leading logarithmic soft gluon terms withTop++2.0 [47–52]. The

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominal in-teraction point(IP)inthecentreofthedetector andthe z-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupward.Cylindricalcoordinates (r, φ)areusedinthetransverseplane, φ be-ingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefinedin termsofthepolarangle θasη= −ln tan(θ/2),andthedistancein (φ, η)spaceas R≡( φ)2+ ( η)2.


Table 1

Leading-ordercrosssections,widths,andbranchingratiosfortheWbosonintheEGMwithscalefactorc=1 andfortheG∗inthebulkRSmodelwithk/MPl=1 inpp collisionsat√s=8 TeV foravarietyofmasspoints.

m [TeV] W [GeV] σ(W) [fb] BR(W→W Z) [%] GRS [GeV] σ(G) [fb] BR(G∗→W W) [%] BR(G∗→Z Z) [%] 0.5 18.0 2.00×105 1.6 18.4 3.11×103 34 18 1.0 36.0 1.17×104 1.3 55.4 5.60×101 19 10 1.5 54.0 1.44×103 1.3 89 .5 3.14×100 17 8 2.0 73.3 2.42×102 1.2 122 .5 2.90×10−1 16 8 2.5 90.7 5.31×101 1.2 155.0 3.20×10−2 16 8

t-channel single-top events are generated by AcerMC [53] with

CTEQ6L1PDFsand Pythia 6forhadronisation.Thedibosonevents areproduced with the Herwig generator andCTEQ6L1PDFs, ex-ceptfortheνchannelwhichuses POWHEG[54,55]interfaced to Pythia 6.Thedibosonproductioncrosssectionsarenormalised tonext-to-leading-order predictions[56].Additionaldiboson

sam-plesfortheνqq channel¯ areproducedwiththe Sherpa generator.

QCD multijetsamples are simulated with Pythia 6, Herwig, and POWHEGinterfacedto Pythia 6.

GeneratedeventsareprocessedwiththeATLASdetector simu-lationprogram[57]basedontheGEANT4package[58].Signaland background samples simulated or interfacedwith Pythia use an ATLASspecifictuneof Pythia[59].Effectsfromadditionalinelastic

pp interactions (pile-up)occurringinthesameandneighbouring

bunch crossingsare takeninto account by overlaying minimum-biaseventssimulatedby Pythia 8.

4. Objectreconstructionandselection

Thesearch channelsincludedinthecombinationpresentedin thisarticleusereconstructedelectrons, muons,jetsandthe mea-surementofthemissingtransversemomentum.

Electron candidates are selected from energy clusters in the electromagneticcalorimeterwithin|η|<2.47,excluding the tran-sition region between the barrel and the endcap calorimeters (1.37<|η|<1.52), that match a track reconstructed in the ID. Electronssatisfying‘tight’identificationcriteriaareusedto recon-struct W candidates,while Zee are reconstructed from electrons thatsatisfy ‘medium’ identificationcriteria. These crite-riaare described inRef. [60]. Muon candidatesare reconstructed within the range |η|<2.5 by combining tracks with compati-ble momentum in the ID and the MS [61]. Only leptons with

pT>25 GeV areconsidered.

Backgroundsduetomisidentifiedleptonsandnon-prompt lep-tonsaresuppressedbyrequiringleptonstobeisolatedfromother activity in the event and also to be consistent with originating fromtheprimaryvertexoftheevent.2 Upperboundson calorime-terandtrack isolation discriminants are used to ensure that the leptonsareisolated.

Detailsoftheleptonisolationcriteriaaregiveninthe publica-tionsfortheν[19],qq¯ [21],andνqq¯ [22]channels.

Jetsareformedbycombiningtopologicalclustersreconstructed inthecalorimetersystem[62],whicharecalibratedinenergywith the local calibration weighting scheme [63] and are considered massless. The measured energies are corrected forlosses in pas-sivematerial, thenon-compensatingresponse ofthecalorimeters andpile-up[64].

Hadronicallydecayingvectorbosons withlow pT (450 GeV) are reconstructed using a pair of jets. The jetsare formed with theanti-kt algorithm[65]witharadiusparameter R=0.4.These

2 Theprimaryvertexoftheeventisdefinedasthereconstructedprimaryvertex withhighestp2


jets are hereafter referred to as small-R jets. Only small-R jets with|η|<2.8(2.1)and pT>30 GeV areconsideredfortheνqq¯ (qq)¯ channel. Forsmall-R jets with pT<50 GeV it is required that thesummedscalar pT ofthe tracksmatchedto theprimary vertex accountsfor at least 50% of the scalar summed pT of all tracks matchedto the jet. Jetscontaining hadronsfrom b-quarks

areidentifiedusingamultivariateb-taggingalgorithmasdescribed inRef.[66].

Hadronicallydecayingvectorbosonswithhigh pT (400 GeV) canbereconstructedasasinglejetwithalargeradiusparameter, orlarge-R jet, dueto the collimated nature oftheir decay prod-ucts. These large-R jets,hereafter denotedby J , are firstformed withtheCambridge–Aachen(C/A)algorithm[67,68]witharadius parameter R=1.2.Afterthejet formationa setofcriteriais ap-pliedtoidentifythejetasoriginatingfromahadronicallydecaying boson(bosontagging).A groomingalgorithmisappliedtothejets to reduce the effectofpile-up andunderlyingevent activityand to identifya pairofsubjets associatedwiththe quarksemerging from the vector boson decay. The grooming algorithm, a variant ofthemass-dropfilteringtechnique [69],isdescribed indetailin Ref.[23].The groomingprocedureprovidesasmalldegreeof dis-criminatingpowerbetweenjetsfromhadronicallydecayingbosons andthoseoriginatingfrombackgroundprocesses.

Jet discrimination is further improved by imposing additional requirementsonthelarge-R jetproperties.First,inallofthe chan-nels usinglarge-R jets, a requirement on thesubjet momentum-balance found at the stopping point of the grooming algorithm,

y>0.45,3 is applied to the jet. Second, jets are required to havethegroomedjetmasswithinaselectionwindow.Duetothe differentbackgroundsaffectingeachofthesearchchannels, differ-entmasswindowsareusedforeachchannel.Inthesinglelepton anddileptonchannels, masswindowsof65<mJ<105 GeV and 70<mJ<110 GeV,where mJ representsthe jetmass, are used forselectingW and Z bosons.Inthefullyhadronicchannel,mass windows of 69.4<mJ <95.4 GeV and 79.8<mJ<105.8 GeV, which are ±13 GeV around the expected W or Z reconstructed

mass peak, are used for selecting W or Z boson candidates re-spectively.

The high-pT jetsinbackgroundeventsare expectedtohavea larger charged-particle track multiplicity than the jets emerging from boson decays. This is due to the higher energy scale in-volved in the fragmentation process of background jetsand also duetothelargercolour chargeofgluonsincomparisontoquarks. Hence,toimprovethesensitivityofthesearchinthefullyhadronic channel, a requirement on thecharged-particle trackmultiplicity matched to the large-R jet prior to the grooming, ntrk<30, is used to discriminatebetween jetsoriginatingfrom boson decays

3 √ymin(p T j1, pT j2)


m0 ,wherem0isthemassofthegroomedjetatthe

stoppingpointofthesplittingstageofthegroomingalgorithm,pT j1 andpT j2 are

thetransversemomentaofthesubjetsatthestoppingpointofthesplittingstageof thegroomingalgorithmand R(j1,j2)isthedistancein(φ, η)spacebetweenthese


Table 2

Dominantbackgroundtotheindividualchannelsandtheirestimationmethods. Channel Dominant background Estimationmethod

ν W Z production MC(POWHEG)

q¯q Z+jets MC(Sherpa),normalisationandshape


νqq¯ W/Z+jets MC(Sherpa),normalisationandshape


J J QCD jets Data driven

and jets from background processes. Charged-particle tracks re-constructed withthe IDand consistent withparticles originating fromtheprimary vertexandwith pT≥500 MeV are matchedto a large-R jetby representing each trackby a “ghost” constituent that iscollinearwiththetrackattheperigee withnegligible en-ergyduringjetformation[70].

The missing transverse momentum EmissT is calculated from thenegative vector sumof thetransverse momenta ofall recon-structed objects,including electrons,muons, photons andjets, as well ascalibratedenergydeposits inthecalorimeterthatare not associatedtotheseobjects,asdescribedinRef.[71].

5. Analysischannels

Theselectionsinthe fouranalysischannelsν, qq,¯ νqq¯

and J J aremutuallyexclusiveandthereforethechannelsare

sta-tistically independent. This independence is enforced by the re-quired lepton multiplicity of the events at a pre-selection stage, withlepton selection criterialooser than thosefinally appliedin theindividualchannels.Thesearchesintheindividualchannelsare describedindetailintheir correspondingpublications[19,21–23]. Table 2 summarises the dominant backgrounds affecting each of

the individual channelsand the methods used to estimate these backgrounds. Summaries of the eventselection and classification criteriaaregivenin Tables 3 and 4.

The ν analysischannel is described indetail in Ref. [19]. Forthepurposeofcombinationthebinningofthediboson candi-dates’ invariant mass distribution isadjusted. The ν channel requiresexactlythreeleptons withpT>25 GeV,ofwhichatleast onemustbegeometricallymatchedtoaleptonreconstructedbya triggeralgorithm.EventswithadditionalleptonswithpT>20 GeV are vetoed.At leastone pairof oppositely-charged, same-flavour leptons is requiredto havean invariant masswithin the Z mass

window |mmZ|<20 GeV.Ifthereare twoacceptable combi-nationssatisfyingthisrequirementthecombinationwiththemass value closerto the Z boson mass is chosen as the Z candidate.

The eventis required to have Emiss

T >25 GeV. The W candidate is reconstructed fromthe third lepton, assuming the neutrino is the only source of Emiss

T and constraining the (3rd,EmissT ) sys-tem to have the pole mass of the W . This constraint results in a quadraticequation withtwo solutions forthe longitudinal mo-mentumoftheneutrino.Ifthesolutionsarereal,theonewiththe smaller absolute value is used.If the solutions are complex, the realpartisused.Toenhancethesignalsensitivity,therapidity dif-ference mustsatisfy y(W,Z)<1.5 andrequirementsareplaced on theazimuthal angledifference φ (3rd,EmissT ).Exclusive

high-mass andlow-mass regions aredefinedwith φ (3rd,EmissT )<1.5

forboostedW bosons and φ (3rd,EmissT )>1.5 for W bosonsat low pT, respectively. The main background sources inthe ν channelareSMW Z and Z Z processeswithleptonicdecaysofthe

W and Z bosons,andareestimatedfromsimulation.Other

back-groundsourcesareW/Z+jets,topquarkandmultijetproduction, whereoneorseveraljetsaremis-reconstructedasleptons.To es-timate these backgrounds the mis-reconstruction rate of jets as

Table 3

Summaryoftheevent selectionrequirementsinthedifferentsearchchannels.Theselectedeventsarefurtherclassifiedintodifferent kinematiccategoriesaslistedinTable 4.

Channel Leptons Jets Emiss

T Boson identification

ν 3 leptons – Emiss

T >25 GeV |mmZ| <20 GeV

pT>25 GeV

q¯q 2 leptons 2 small-R jets or 1 large-R jet – |mmZ| <25 GeV

pT>25 GeV pT>30 GeV 70 GeV<mj j<110 GeV

70 GeV<mJ<110 GeV,√y>0.45

νq¯q 1 lepton 2 small-R jets or 1 large-R jet Emiss

T >30 GeV 65 GeV<mj j<105 GeV

pT>25 GeV pT>30 GeV 65 GeV<mJ<105 GeV,√y>0.45

No b-jet with R(b,W/Z) >0.8

J J Lepton veto 2 large-R jets,|η| <2.0, pT>540 GeV EmissT <350 GeV |mW/ZmJ| <13 GeV

y>0.45, ntrk<30

Table 4

Summaryoftheeventclassificationrequirementsinthedifferentsearchchannels.Theclassificationsaremutuallyexclusive,applyingthe requirementsinsequencebeginningwiththehigh-pT merged,followedbythehigh-pT resolvedandfinallywiththelow-pT resolved classification.

Channel High-pTmerged High-pTresolved (high mass) Low-pTresolved (low mass)

ν – y(W,Z) <1.5 φ(3rd,Emiss T ) <1.5 φ( 3rd ,Emiss T ) >1.5

q¯q pT() >400 GeV pT() >250 GeV pT() >100 GeV

pT(J) >400 GeV pT(j j) >250 GeV pT(j j) >100 GeV νq¯q 1 large-R jet, pT>400 GeV 2 small-R jets, pT>80 GeV 2 small-R jets, pT>30 GeV

pT(ν) >400 GeV pT(j j) >300 GeV pT(j j) >100 GeV pT(ν) >300 GeV pT(ν) >100 GeV φ(Emiss

T ,j) >1 (electron channel)

J J | y12| <1.2 –


leptons is determined with data-driven methods, and applied to controldatasampleswithleptonsandoneormorejets.

The qq analysis¯ channel is described in detail in Ref. [21].

The qq channel¯ requires exactly two leptons, having the same

flavour and with pT>25 GeV. Muon pairs are required to have oppositecharge. Atleastonelepton isrequiredtobe matchedto alepton reconstructedby atrigger algorithm.The invariantmass oftheleptonpairmustbewithin25 GeV oftheZ mass.Three re-gions(merged,high-pT resolved andlow-pTresolved)aredefinedto optimise theselection fordifferent massranges. The merged re-gion requirements are pT()>400 GeV anda groomed large-R jetdescribedinSection4withpT(J)>400 GeV andsatisfyingthe boson-taggingcriteria. The high-pT resolved region isdefined by pT()>250 GeV, pT(j j)>250 GeV,andthelow-pT resolved re-gion requires pT()>100 GeV, pT(j j)>100 GeV. The invariant massrequirementonthejetsystemis70 GeV<mj j/J<110 GeV. Thethreeregionsaremadeexclusivebyapplyingtheabove selec-tionsinsequence,starting withthemerged region,and progress-ing withthe high-pT andthen the low-pT resolved regions. The mainbackgroundsourcesintheqq channel¯ areZ+jets,followed bytop-quarkpairandnon-resonantvector-bosonpairproduction. Background estimates are based on simulation. Additionally, for themain backgroundsource, Z+jets, the shape ofthe invariant massdistributionismodelledwithsimulation,whilethe normali-sation andalinearshapecorrectionaredeterminedfromdataina controlregion,definedastheside-bandsoftheqq invariant¯ mass distributionoutsidethesignalregion.

The νqq analysis¯ channel is described in detail in Ref. [22].

In the νqq channel¯ exactly one lepton with pT>25 GeV and

matchedtoa leptonreconstructed bythetrigger isrequired.The missing transverse momentum in the event is required to be


T >30 GeV. Similar to the qq channel¯ the event selection containsthree differentmassregions ofthe signal,referred to as

merged,high-pTresolved andlow-pTresolved regions.Inthemerged

regionwherethehadronicdecayproductsmergeintoasinglejet, a groomed large-R jet with pT>400 GeV and 65 GeV<mJ < 105 GeV isrequired.TheleptonicallydecayingW candidateis re-constructedusingthesame W massconstrainttechniqueusedin theν channel.The leptonicallydecaying W→ ν musthave

pT(ν)>400 GeV, where pT(ν) is reconstructed from the sum ofthecharged-leptonmomentum vectorandthe Emiss

T vector.To suppressthebackground fromtop-quarkproduction,eventswith anidentifiedb-jetseparatedby R>0.8 fromthelarge-R jetare rejected.Additionally, inthe electronchannel theleading large-R jet and EmissT are required to be separated by φ (EmissT ,J)>1 to reject multi-jet background. If the event does not satisfy the criteriaofthemerged region,the resolved region selection crite-riaare applied. In the high-pT resolved region, two small-R jets withpT>80 GeV arerequiredtoformthe hadronicallydecaying

W / Z candidatewithatransversemomentumofpT(j j)>300 GeV

andaninvariantmassof65 GeV<mj j<105 GeV.Theleptonically decaying W→ ν musthave pT(ν)>300 GeV.The eventis re-jectedifab-jetisidentifiedinadditiontothetwoleadingjets.In theelectronchanneltheleadingsmall-R jetandEmissT arerequired tobeseparatedby φ (EmissT ,j)>1.Iftheeventdoesnotpassthe selectionrequirementsofthehigh-pTresolvedregiontheselection of the low-pT resolved region is used, where pT(j j)>100 GeV and pT(ν)>100 GeV are applied. The dominantbackground in

theνqq channel¯ isW/Z+jets production,followedbytopquark

production,andmultijetanddibosonprocesses.The shapeofthe invariantmassdistributionfortheW/Z+jets backgroundis mod-elled by simulation, while the normalisation is determined from datain a control region, definedasthe side-bands of theqq in-¯

variant mass distribution outside the signal region. The pT(W) distributionofthe W+jets simulationiscorrected usingdatato

improve the modelling. The sub-dominant background processes are estimatedusing simulationonly (diboson), orsimulation and data-driventechniques(multijet,topquark).

The J J analysis channel is described in detail in Ref. [23].

For the combined G∗ search the analysis is extended,

combin-ing the W W and Z Z selections into a single inclusive analysis

of both decay modes. The analysis of the fully hadronic decay mode selectseventsthat pass alarge-R jet trigger4 witha

nom-inal thresholdof 360 GeV in transverse momentum andhave at least two large-R jets within |η|<2.0, a rapidity difference be-tween thetwojetsof| y12|<1.2,andan invariantmass ofthe twojetsofm(J J)>1.05 TeV.Eventsthatcontainoneormore lep-tonswithpT>20 GeV ormissingtransversemomentuminexcess of 350 GeV are vetoed. The large-R jets must satisfy the boson-tagging criteriadescribed in Section 4. Furthermore,the dijet pT asymmetry definedas A= (pT1pT2)/(pT1+pT2) mustbe less then 0.15to avoidmis-measured jets. In thesearch forthe EGM

WdecayingtoW Z ,eventsareselectedbyrequiringoneW boson

candidate andone Z bosoncandidate ineach event by applying the selections described in Section 4. In the search for the bulk

G∗ decayingtoW W and Z Z ,eventsareselectedbyrequiringtwo

W boson or two Z boson candidates by applying the selections

described inSection 4.Dueto theoverlapping jetmasswindows applied toselect W and Z candidates, theselection fortheEGM

W andthe bulk G∗ are not exclusive and about20% of the in-clusiveevent sample isshared. Inthe fullyhadronic channel the dominantbackgroundisdijetproduction.The dijetbackground is estimatedby a parametric fitwitha smoothly falling functionto the observed dijetmass spectrumin the data.Only diboson res-onanceswith massvalues >1.3 TeV areconsidered assignal for thisanalysischannel.

The selections described above have a combined acceptance times efficiency of up to 17% for G∗ →W W , up to 11% for

G∗→Z Z ,andupto17%forW→W Z .Theacceptancetimes

ef-ficiencyincludestheW and Z branchingratios. Figs. 1(a)and 1(b) summarise theacceptancetimesefficiencyforthedifferent analy-sesasafunctionoftheW massandoftheG∗ mass,considering onlydecaysoftheresonanceintoV V ,where V denotesa W ora

Z boson.

6. Statisticalprocedure

The combination of the individual channels proceeds with a simultaneous analysis of the invariant mass distributions of the dibosoncandidates inthedifferentchannels. Foreach hypothesis beingtested,onlythechannelssensitivetothathypothesisare in-cluded in the combination. The signal strength, μ, defined as a scale factor on the cross section times branching ratio predicted by the signal hypothesis, is the parameter of interest. The anal-ysis follows the Frequentist approach with a test statistic based ontheprofile-likelihoodratio[72].Theteststatisticextracts infor-mationonthesignalstrengthfromabinned maximum-likelihood fitofthe signal-plus-backgroundmodelto thedata.Theeffect of a systematic uncertainty k on the likelihood is modelled witha nuisance parameter, θk, constrained witha corresponding proba-bilitydensityfunction f(θk),asexplainedinthepublications cor-respondingto theindividualchannels [19,21–23].In thismanner, correlatedeffectsacrossthedifferentchannelsaremodelledbythe useofacommonnuisanceparameteranditscorresponding prob-abilitydensityfunction.Thelikelihoodmodel,L,isgivenby:

L= c  i Pois  nobsi c  nsigi c (μ, θk)+n bkg ic (θk)   k fk(θk) (1)

4 Thetriggerusesanti-k


Fig. 1. Signalacceptancetimesefficiencyforthedifferentanalysesenteringthecombinationfor(a)theEGMWmodeland(b)the bulkG∗model.Thebranchingratioof thenewresonancetodibosonsisincludedinthedenominator.Theerrorbandsrepresentthecombinedstatisticalandsystematicuncertainties.

where the index c represents the analysischannel, and i

repre-sentsthebinintheinvariantmassdistribution,nobs,theobserved numberofevents,nsig thenumberofexpectedsignalevents,and nbkgtheexpectednumberofbackgroundevents.

The compatibilitybetweenthe observationsof different chan-nels with a common signal strength of a particular resonance modelandmassisquantified usingaprofile-likelihood-ratiotest. Thecorrespondingprofile-likelihoodratiois


Lμ, ˆˆθ (μ)  LμˆA,μˆB, ˆθ

, (2)

where μ is the common signal strength, μˆA and μˆB are the unconditional maximum likelihood (ML) estimators of the inde-pendent signal strengths in the channels being compared, ˆθ are theunconditionalMLestimatorsforthenuisanceparameters,and

ˆˆθ(μ)aretheconditionalMLestimatorsofθforagivenvalueof μ. Thecompatibilitybetweentheobservationsistestedbythe proba-bilityofobservingλ(μˆ),whereμˆ istheMLestimatorforthe com-monsignalstrengthforthemodelinquestion.Ifthetwochannels beingcomparedhaveacommonsignalstrength,i.e. μ =μA=μB, then in the asymptotic limit −2log(λ(μˆ)) is expected to be χ2 distributedwithonedegreeoffreedom.

Thesignificanceofobservedexcessesoverthebackground-only predictionisquantifiedusingthelocalp-value(p0),definedasthe probabilityofthebackground-onlymodeltoproduceasignal-like fluctuationatleastaslarge asobservedinthe data.Upperlimits on μ for W in the EGM and G∗ in the bulk RS model at the simulatedresonancemassesareevaluatedatthe95%CLfollowing theCLsprescription[73].Lowermasslimitsatthe95%CLfornew diboson resonances in these models are obtained by finding the maximumresonancemasswherethe95%CL upperlimit on μ is less or equal to 1. This mass is found by interpolating between thelimitson μ atthe simulatedsignalmasses. Theinterpolation assumesmonotonic andsmooth behaviour of theefficiencies for the signal andbackgroundprocesses, andthat the impact ofthe variationofsignalmassdistributionsbetweenadjacenttestmasses isnegligible.

Inthecombinedanalysistosearchfor W resonances,all four individualchannelsareused.Forthecharge-neutralbulk G∗,only

the νqq, qq, andthe J J channelscontribute to the

combina-tion,andinthecaseofthefullyhadronicchannel,a mergedsignal regionresultingfromtheunionoftheW W and Z Z signalregions

Table 5

ChannelsandsignalregionscontributingtothecombinationfortheEGMW and bulkG∗.

Channel Signal region Wmass range [TeV] G∗mass range [TeV]

ν Low-mass 0.2–1.9 – High-mass 0.2–2.5 – q¯q Low-pTresolved 0.3–0.9 0.2–0.9 High-pTresolved 0.6–2.5 0.6–0.9 Merged 0.9–2.5 0.9–2.5 νq¯q Low-pTresolved 0.3–0.8 0.2–0.7 High-pTresolved 0.6–1.1 0.6–0.9 Merged 0.8–2.5 0.8–2.5 J J W Z selection 1.3–2.5 – W W+Z Z selection – 1.3–2.5

is usedinthe analysis.The backgroundto thismergedsignal re-gion is estimatedusing thesame technique asfor theindividual signalregions. Table 5summarisesthechannelsandsignalregions combinedintheanalysisfortheEGM WandbulkG∗.

7. Systematicuncertainties

The sources of systematicuncertaintyalong with their effects ontheexpectedsignalandbackgroundyieldsforeachofthe indi-vidualchannelsusedinthiscombinationaredescribedindetailin their corresponding publications[19,21–23]. Althoughthe results from the different search channels in this combination are sta-tisticallyindependent,commonalitiesbetweenthedifferentsearch channels,suchastheobjectsused,thesignalandbackground sim-ulation,andtheintegratedluminosityestimation,introduce corre-latedeffectsinthesignalandbackgroundexpectations.Whenever an effectduetoanuncertaintyinthetriggering,identification,or reconstruction ofleptonsisconsidered fora channel,itistreated asfullycorrelatedwiththeeffectsduetothisuncertaintyinother channels.

Inthe samemanner,theeffectsofeach uncertaintyrelatedto thesmall-R jetenergyscaleandresolutionaretreatedasfully cor-relatedinall channelsusingsmall-R jetsor EmissT .Forthe search channels using large-R jets, uncertainties in the large-R jet en-ergy scale, energy resolution, mass scale, mass resolution, or in themodellingoftheboson-taggingdiscriminant √y are takenas fullycorrelated. Uncertaintiesin thedata-drivenbackground esti-matesaretreatedasuncorrelated.Theeffectsofuncertaintyinthe


Fig. 2. Thep0-valuefortheindividualandcombinedchannelsfor(a)theEGMWsearchinthe ν, q¯q, νq¯q and J J channelsand(b)thebulkG∗searchinthe q¯q, νq¯q and J J channels.

Fig. 3. The95%CLlimitson(a)theEGMWusingthe ν, qq,¯ νq¯q,and J J channelsandtheircombination,and(b)thecombined95%CLlimitwiththegreen(yellow) bandsrepresentingthe1σ (2σ)intervalsoftheexpectedlimitincludingstatisticalandsystematicuncertainties.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

initial- andfinal-stateradiation(ISRandFSR)modellingandinthe PDFsareeachtreatedasfullycorrelatedacrossallsearchchannels. Theeffect ofa single source of systematicuncertaintyon the combinedlimitcanbe rankedbythelossinsensitivitycausedby its inclusion. To quantify the loss of sensitivity at a given mass point the value computed with all systematic uncertainties in-cluded is compared to the value obtained excluding the single systematicuncertainty. In the low mass region at 0.5 TeV the leadinguncertaintyisthemodellingoftheSMdibosonbackground in the dominant ν channel withan impact of 35% sensitiv-itydegradation in the combined limit forEGM W. The leading sourceof uncertaintyin caseofthe G∗ limit isthe modellingof the Z+jets background inthe νqq channel¯ witha degradation of25%.In theintermediate massregion upto 1.5 TeV the un-certaintyonthenormalisationofthe W+jets backgroundinthe

νqq channel¯ is dominatingwith 20% to 30% degradation of the

EGM W limit and 25% to 55% degradation of the G∗ limit de-pendingon themass point,while inthe highmassregion up to 2 TeV the shape uncertainty on the W+jets background domi-nateswithadegradationofaround25%fortheEGM Wlimitand 35%fortheG∗ limit.

8. Results

Fig. 2showsthe p0-valueobtainedinthe searchforthe EGM W and G∗ asa function of the resonance mass for the ν,

qq,¯ νqq and¯ J J channels combined and for the individual

channels. Forthe full combinationthe largestdeviationfrom the background-only expectation is found in the EGM W search at around2.0 TeVwitha p0-valuecorrespondingto2.5 standard de-viations(σ).Thisissmallerthanthep0-valueof3.4 σ observedin the J J channelalonebecausetheν,qq,¯ andνqq channels¯

aremoreconsistentwiththebackground-onlyhypothesis. Thecompatibilityoftheindividualchannelsisquantified with the testdescribed inSection 6. Inthemass regionaround 2 TeV

the J J channel presents an excess while the other channelsare

ingoodagreementwiththebackground-onlyexpectation.Forthe EGM W benchmark the compatibility of the combined ν,

qq,¯ andνqq channels¯ withthe J J channel is atthe level of

2.9 σ. When accounting for the probability for any of the four channelstofluctuatethecompatibilityisfoundtobe atthelevel of2.6 σ.IncomparisonthecorrespondingtestforthebulkG∗ in-terpretationshowsbettercompatibility.

Fig. 3showsthecombinedupperlimitontheEGMW produc-tioncrosssectiontimesitsbranchingratiotoW Z atthe95%CLin themassrangefrom300 GeV to2.5 TeV.In Fig. 3(a)theobserved andexpectedlimitsofthe individual andcombinedchannelsare shown.In Fig. 3(b)theobservedandexpectedcombinedlimitsare compared withthe theoretical EGM W prediction.The resulting combined lower limit on the EGM W mass using a LO cross-section calculation isobserved to be 1.81 TeV,with an expected


Fig. 4. The95%CLlimitson(a)thebulkG∗usingthe q¯q, νq¯q,and J J channelsandtheircombination,and(b)thecombined95%CLlimitwiththegreen(yellow)bands representingthe1σ(2σ)intervalsoftheexpectedlimitincludingstatisticalandsystematicuncertainties.(Forinterpretationofthereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

limitof1.81 TeV.Themoststringentobservedmasslimit froman individualchannelis1.59 TeV atNNLOintheνqq analysis.¯

In Fig. 4 the observed and expected upper limits at the 95% CL on the bulk G∗ production cross section times its branching ratioto W W andZ Z areshowninthemassrangefrom200 GeV to 2.5 TeV. In Fig. 4(b) the observed andexpected limits of the individualandcombinedchannelsare shownandcompared with the theoretical bulk G∗ prediction for k/ ¯MPl=1. The combined, lowermasslimitforthebulkG∗,assumingk/ ¯MPl=1,is810 GeV, withanexpectedlimitof790 GeV.Themoststringentlowermass limitfromtheindividual qq,¯ νqq and¯ J J channelsis 760 GeV

fromtheνqq channel.¯

9. Conclusion

A combination of individual searches in all-leptonic, semilep-tonic,andall-hadronicfinalstatestosearchfornewheavybosons decaying to W W , W Z and Z Z is presented. The searches use 20.3 fb−1of8 TeV pp collisiondatacollectedbytheATLAS detec-toratthe LHC.Withinthe combinedresult, no significantexcess over the background-only expectation in the invariant mass dis-tribution of the diboson candidates is observed. Upper limitson theproductioncross sectiontimesbranching ratiotodibosons at the95%CLareevaluatedwithinthecontextofanextendedgauge modelwithaheavyWbosonandabulkRandall–Sundrummodel with a heavy spin-2 graviton. The combination significantly im-proves boththecross-section limitsandthemasslimitsforEGM

W andbulk G∗ productionover themoststringentlimitsofthe individual analyses. The observed lower limit on the EGM W

mass isfound to be 1.81 TeV andfor thebulk G∗ mass, assum-ingk/ ¯MPl=1,theobservedlimitis810 GeV.


We thankCERN for the very successfuloperation of theLHC, aswell asthe support stafffrom ourinstitutions without whom ATLAScouldnotbeoperatedefficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC,Australia; BMWFW andFWF,Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR andVSC CR, CzechRepublic;DNRF,DNSRCandLundbeckFoundation,Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China;

ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway;MNiSWandNCN,Poland;FCT,Portugal;MNE/IFA, Roma-nia; MESofRussiaandNRC KI,RussianFederation;JINR; MESTD, Serbia; MSSR,Slovakia; ARRSandMIZŠ,Slovenia; DST/NRF,South Africa; MINECO, Spain;SRCandWallenberg Foundation, Sweden; SERI, SNSF and Cantons ofBern andGeneva, Switzerland; MOST, Taiwan;TAEK,Turkey;STFC,UnitedKingdom;DOEandNSF,United States. In addition,individual groupsandmembershave received support from BCKDF, the Canada Council, CANARIE, CRC, Com-pute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET,ERC,FP7,Horizon2020andMarieSkłodowska-Curie Ac-tions, European Union; Investissements d’Avenir Labex andIdex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG andAvHFoundation,Germany; Herakleitos, Thalesand Aris-teia programmesco-financedbyEU-ESFandtheGreekNSRF;BSF, GIFandMinerva,Israel;BRF,Norway;theRoyalSocietyand Lever-hulmeTrust,UnitedKingdom.

The crucial computing supportfrom all WLCG partnersis ac-knowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1(Netherlands),PIC(Spain), ASGC(Taiwan),RAL (UK) andBNL(USA)andintheTier-2facilitiesworldwide.


[1]ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett. B716 (2012)1–29,arXiv:1207.7214[hep-ex].

[2]CMSCollaboration,Observationofanewbosonatamassof125 GeVwiththe CMSexperimentattheLHC,Phys.Lett.B716(2012)30–61,arXiv:1207.7235 [hep-ex].

[3]ATLASCollaboration,Evidenceforthespin-0natureoftheHiggsbosonusing ATLASdata,Phys.Lett.B726(2013)120–144,arXiv:1307.1432[hep-ex].

[4]CMSCollaboration,Studyofthemassandspin-parityoftheHiggsboson can-didateviaitsdecays to Z bosonpairs,Phys. Rev.Lett. 110(2013) 081803, arXiv:1212.6639[hep-ex].


pp colliders,¯ Z. Phys. C45(1989)109.


[7]C.Quigg,GaugeTheoriesoftheStrong,Weak,andElectromagneticInteractions, PrincetonUniversityPress,2013,p. 227.

[8]L.Randall,R.Sundrum,Alargemasshierarchyfromasmallextradimension, Phys.Rev.Lett.83(1999)3370–3373,arXiv:hep-ph/9905221.

[9]L.Randall,R.Sundrum,Analternativetocompactification,Phys.Rev.Lett.83 (1999)4690–4693,arXiv:hep-th/9906064.

[10]H.Davoudiasl, J.Hewett, T.Rizzo,Experimentalprobesoflocalizedgravity: on andoffthewall,Phys.Rev.D63(2001)075004,arXiv:hep-ph/0006041.


[11]K. Lane, S. Mrenna, The collider phenomenology of technihadrons in the technicolor straw man model, Phys. Rev. D 67 (2003) 115011, arXiv:hep-ph/0210299.

[12]E.Eichten,K.Lane,Low-scaletechnicolorattheTevatronandLHC,Phys.Lett. B669(2008)235–238,arXiv:0706.2339[hep-ph].

[13]F.Sannino,K.Tuominen,Orientifoldtheorydynamicsandsymmetrybreaking, Phys.Rev.D71(2005)051901,arXiv:hep-ph/0405209.

[14]A.Belyaev,etal.,TechnicolorwalksattheLHC,Phys.Rev.D79(2009)035006, arXiv:0809.0793[hep-ph].

[15]K.Agashe,R.Contino,A.Pomarol,TheminimalcompositeHiggsmodel,Nucl. Phys. B719(2005)165–187,arXiv:hep-ph/0412089.

[16]G.F.Giudice,etal.,Thestrongly-interactinglightHiggs,J. HighEnergyPhys.06 (2007)045,arXiv:hep-ph/0703164.

[17]ATLASCollaboration,Searchfornewparticlesineventswithoneleptonand missingtransversemomentuminpp collisionsat√s=8 TeV withtheATLAS detector,J. HighEnergyPhys.09(2014)037,arXiv:1407.7494[hep-ex].

[18]CMSCollaboration,Searchforphysicsbeyondthestandardmodelinfinalstates with aleptonand missingtransverseenergyinproton–protoncollisions at

s=8 TeV,Phys.Rev.D91(2015)092005,arXiv:1408.2745[hep-ex].

[19]ATLASCollaboration,SearchforW Z resonancesinthefullyleptonicchannel usingpp collisionsat√s=8 TeV withtheATLASdetector,Phys.Lett.B737 (2014)223–243,arXiv:1406.4456[hep-ex].

[20]CMSCollaboration, Search for newresonances decayingvia WZ toleptons inproton–proton collisionsat √s=8 TeV,Phys.Lett.B740(2015)83–104, arXiv:1407.3476[hep-ex].

[21]ATLASCollaboration,Searchforresonantdibosonproductionintheq¯q final

stateinpp collisionsat√s=8 TeV withtheATLASdetector,Eur.Phys.J.C75 (2015)69,arXiv:1409.6190[hep-ex].

[22]ATLASCollaboration,SearchforproductionofW W/W Z resonancesdecaying toalepton,neutrinoandjetsinpp collisionsat√s=8 TeV withtheATLAS detector,Eur.Phys.J.C75(2015)209,arXiv:1503.04677[hep-ex].

[23]ATLAS Collaboration, Searchfor high-massdiboson resonanceswith boson-taggedjetsinproton–protoncollisionsat√s=8 TeV withtheATLASdetector, arXiv:1506.00962[hep-ex],2015.

[24]CMSCollaboration,Searchformassiveresonancesindijetsystemscontaining jetstagged asWorZboson decaysinpp collisionsat√s=8 TeV,J. High EnergyPhys.08(2014)173,arXiv:1405.1994[hep-ex].

[25]K.Agashe,etal.,WarpedgravitonsattheLHCandbeyond,Phys.Rev.D76 (2007)036006,arXiv:hep-ph/0701186.



[27]O.Antipin,A.Soni,Towardsestablishingthespinofwarpedgravitons,J. High EnergyPhys.10(2008)018,arXiv:0806.3427[hep-ph].

[28]CMS Collaboration, Search for massive resonances decaying into pairs of boostedbosonsinsemi-leptonicfinalstatesat√s=8 TeV,J. HighEnergyPhys. 08(2014)174,arXiv:1405.3447[hep-ex].

[29]ATLASCollaboration,Searchforanadditional,heavyHiggsbosonintheHZ Z decaychannelat√s=8 TeV inpp collisiondatawiththeATLASdetector, arXiv:1507.05930[hep-ex],2015.

[30]ATLASCollaboration,Searchfordarkmatterineventswithahadronically de-caying W or Z boson and missingtransverse momentumin pp collisions

at√s=8 TeV withtheATLASdetector,Phys.Rev.Lett.112(2014)041802, arXiv:1309.4017[hep-ex].

[31]ATLAS Collaboration,Searchfor darkmatterineventswith a Z bosonand missingtransversemomentuminpp collisionsat√s=8 TeV withtheATLAS detector,Phys.Rev.D90(2014)012004,arXiv:1404.0051[hep-ex].

[32]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadronCollider, J. Instrum.3(2008)S08003.

[33]ATLASCollaboration, PerformanceoftheATLAS triggersystemin2010,Eur. Phys.J.C72(2012)1849,arXiv:1110.1530[hep-ex].

[34]ATLAS Collaboration,Improved luminosity determinationin pp collisionsat

s=7 TeV usingtheATLAS detectorat the LHC,Eur.Phys. J.C73(2013) 2518,arXiv:1302.4393[hep-ex].

[35]A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics withinandbeyondtheStandardModel,Comput.Phys.Commun.184(2013) 1729–1769,arXiv:1207.6082[hep-ph].

[36]T.Sjöstrand,S.Mrenna,P.Z.Skands,PYTHIA6.4physicsandmanual,J. High EnergyPhys.05(2006)026,arXiv:hep-ph/0603175.

[37]J.Pumplin,et al.,Newgenerationofpartondistributionswithuncertainties from global QCD analysis, J. High Energy Phys. 07 (2002) 012, arXiv:hep-ph/0201195.

[38]A.D.Martin,etal.,PartondistributionsfortheLHC,Eur.Phys.J.C63(2009) 189–285,arXiv:0901.0002[hep-ph].

[39]T.Gleisberg,etal.,EventgenerationwithSHERPA 1.1,J. HighEnergyPhys.02 (2009)007,arXiv:0811.4622[hep-ph].

[40]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241[hep-ph].

[41]M.L.Mangano,etal.,ALPGEN,a generatorforhardmultipartonprocessesin hadroniccollisions,J. HighEnergyPhys.07(2003)001,arXiv:hep-ph/0206293.

[42]S.Catani,etal.,Vectorbosonproductionathadroncolliders:a fullyexclusive QCDcalculationatNNLO,Phys.Rev.Lett.103(2009)082001,arXiv:0903.2120 [hep-ph].

[43]S.Frixione,B.R.Webber,MatchingNLOQCDcomputationsandpartonshower simulations,J. HighEnergyPhys.06(2002)029,arXiv:hep-ph/0204244.

[44]S. Frixione,P. Nason,B.R. Webber,Matching NLOQCD and partonshowers in heavyflavorproduction, J. HighEnergy Phys. 08(2003) 007, arXiv:hep-ph/0305252.

[45]G.Corcella,etal.,HERWIG 6:aneventgeneratorforhadronemissionreactions withinterferinggluons(includingsupersymmetricprocesses),J. HighEnergy Phys.01(2001)010,arXiv:hep-ph/0011363.

[46]J.M.Butterworth,J.R.Forshaw,M.H.Seymour,Multipartoninteractionsin pho-toproductionatHERA,Z. Phys. C72(1996)637–646,arXiv:hep-ph/9601371.

[47]M.Cacciari,etal.,Top-pairproductionathadroncolliderswith next-to-next-to-leadinglogarithmicsoft-gluonresummation,Phys.Lett.B710(2012)612–622, arXiv:1111.5869[hep-ph].

[48]P.Bärnreuther,M.Czakon,A.Mitov,Percentlevelprecisionphysicsatthe Teva-tron:firstgenuineNNLOQCDcorrectionstoq¯qt¯t+X ,Phys.Rev.Lett.109 (2012)132001,arXiv:1204.5201[hep-ph].

[49]M.Czakon,A.Mitov,NNLOcorrectionstotop-pairproductionathadron collid-ers:theall-fermionicscatteringchannels,J. HighEnergyPhys.12(2012)054, arXiv:1207.0236[hep-ph].

[50]M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark–gluon reaction, J. High Energy Phys. 01 (2013) 080, arXiv:1210.6832[hep-ph].

[51]M. Czakon, P.Fiedler, A. Mitov, Total top-quarkpair-production cross sec-tionathadroncollidersthroughO(α4



[52]M. Czakon, A.Mitov, Top++:a program for the calculation ofthe top-pair cross-sectionat hadroncolliders,Comput.Phys.Commun.185(2014)2930, arXiv:1112.5675[hep-ph].

[53]B.P.Kersevan,E.Richter-Was, TheMonteCarloeventgeneratorAcerMC ver-sions2.0to3.8withinterfacestoPYTHIA 6.4,HERWIG 6.5andARIADNE 4.1, Comput.Phys.Commun.184(2013)919–985,arXiv:hep-ph/0405247.

[54]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J. HighEnergyPhys.11(2007)070, arXiv:0709.2092[hep-ph].

[55]S. Alioli, et al., Ageneral framework for implementingNLO calculationsin shower MonteCarloprograms: the POWHEGBOX,J. High Energy Phys. 06 (2010)043,arXiv:1002.2581[hep-ph].

[56]J.M.Campbell,R.K.Ellis,Anupdateonvectorbosonpairproductionathadron colliders,Phys.Rev.D60(1999)113006,arXiv:hep-ph/9905386.

[57]ATLAS Collaboration,The ATLASsimulationinfrastructure,Eur.Phys. J.C70 (2010)823–874,arXiv:1005.4568[physics.ins-det].

[58]S. Agostinelli, et al.,GEANT4:a simulation toolkit, Nucl.Instrum. Methods, Sect. A506(2003)250–303.

[59] ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003,ATL-COM-PHYS-2012-738,https://cds.cern.ch/record/1474107,2012. [60]ATLASCollaboration,Electronreconstructionandidentificationefficiency mea-surementswiththeATLASdetectorusingthe2011LHCproton–protoncollision data,Eur.Phys.J.C74(2014)2941,arXiv:1404.2240[hep-ex].

[61]ATLASCollaboration,Measurementofthemuonreconstructionperformanceof theATLASdetectorusing2011and2012LHCproton–protoncollisiondata,Eur. Phys.J.C74(2014)3130,arXiv:1407.3935[hep-ex].

[62] W. Lampl,et al.,Calorimeter clusteringalgorithms:description and perfor-mance,ATL-LARG-PUB-2008-002,http://cds.cern.ch/record/1099735,2008. [63]C. Cojocaru,et al., Hadronic calibration ofthe ATLAS liquid argonend-cap

calorimeterinthepseudorapidityregioninbeamtests,Nucl.Instrum. Meth-ods,Sect. A531(2004)481–514.

[64]ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton–proton collisions at √s=7 TeV, Eur. Phys. J. C 73 (2013) 2304, arXiv:1112.6426[hep-ex].

[65]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J. High


[66]ATLASCollaboration,Performanceofb-jetidentificationintheATLAS experi-ment,arXiv:1512.01094[hep-ex],2015.

[67]Y.L.Dokshitzer,etal.,Betterjetclusteringalgorithms,J. HighEnergyPhys.08 (1997)001,arXiv:hep-ph/9707323.

[68] M.Wobisch, T. Wengler, Hadronizationcorrections to jet cross sections in deep-inelastic scattering, PITHA 99/16, http://arxiv.org/abs/hep-ph/9907280, 1999.

[69]J.M.Butterworth,etal.,JetsubstructureasanewHiggssearchchannelatthe LHC,Phys.Rev.Lett.100(2008)242001,arXiv:0802.2470[hep-ph].


[70]M.Cacciari,G.P.Salam,G.Soyez,Thecatchmentareaofjets,J. HighEnergy Phys.04(2008)005,arXiv:0802.1188[hep-ph].

[71]ATLAS Collaboration, Performanceof missing transversemomentum recon-structioninproton–protoncollisionsat7 TeVwithATLAS,Eur.Phys.J.C72 (2012)1844,arXiv:1108.5602[hep-ex].

[72]G.Cowan,etal.,Asymptoticformulaeforlikelihood-basedtestsofnewphysics, Eur.Phys.J.C71(2011)1554,arXiv:1007.1727[physics.data-an];


[73]A.L.Read,Presentationofsearchresults:theCLstechnique,J. Phys. G28(2002)

2693–2704. ATLASCollaboration

G. Aad85, B. Abbott113,J. Abdallah151,O. Abdinov11, R. Aben107, M. Abolins90, O.S. AbouZeid158, H. Abramowicz153,H. Abreu152, R. Abreu116, Y. Abulaiti146a,146b, B.S. Acharya164a,164b,a,

L. Adamczyk38a,D.L. Adams25,J. Adelman108, S. Adomeit100, T. Adye131, A.A. Affolder74, T. Agatonovic-Jovin13,J. Agricola54, J.A. Aguilar-Saavedra126a,126f, S.P. Ahlen22, F. Ahmadov65,b, G. Aielli133a,133b, H. Akerstedt146a,146b,T.P.A. Åkesson81,A.V. Akimov96,G.L. Alberghi20a,20b, J. Albert169, S. Albrand55,M.J. Alconada Verzini71, M. Aleksa30,I.N. Aleksandrov65,C. Alexa26b, G. Alexander153, T. Alexopoulos10,M. Alhroob113, G. Alimonti91a, L. Alio85, J. Alison31,S.P. Alkire35, B.M.M. Allbrooke149,P.P. Allport18,A. Aloisio104a,104b, A. Alonso36,F. Alonso71,C. Alpigiani138, A. Altheimer35,B. Alvarez Gonzalez30,D. Álvarez Piqueras167, M.G. Alviggi104a,104b, B.T. Amadio15, K. Amako66, Y. Amaral Coutinho24a,C. Amelung23,D. Amidei89, S.P. Amor Dos Santos126a,126c, A. Amorim126a,126b, S. Amoroso48,N. Amram153, G. Amundsen23, C. Anastopoulos139, L.S. Ancu49, N. Andari108, T. Andeen35,C.F. Anders58b,G. Anders30,J.K. Anders74,K.J. Anderson31,

A. Andreazza91a,91b,V. Andrei58a,S. Angelidakis9, I. Angelozzi107,P. Anger44,A. Angerami35, F. Anghinolfi30, A.V. Anisenkov109,c, N. Anjos12,A. Annovi124a,124b, M. Antonelli47, A. Antonov98, J. Antos144b,F. Anulli132a, M. Aoki66, L. Aperio Bella18,G. Arabidze90,Y. Arai66,J.P. Araque126a,

A.T.H. Arce45,F.A. Arduh71,J-F. Arguin95, S. Argyropoulos63, M. Arik19a,A.J. Armbruster30,O. Arnaez30, H. Arnold48, M. Arratia28, O. Arslan21,A. Artamonov97,G. Artoni23, S. Artz83,S. Asai155, N. Asbah42, A. Ashkenazi153, B. Åsman146a,146b,L. Asquith149,K. Assamagan25, R. Astalos144a, M. Atkinson165, N.B. Atlay141, K. Augsten128,M. Aurousseau145b,G. Avolio30,B. Axen15,M.K. Ayoub117,G. Azuelos95,d, M.A. Baak30,A.E. Baas58a, M.J. Baca18,C. Bacci134a,134b, H. Bachacou136,K. Bachas154,M. Backes30, M. Backhaus30,P. Bagiacchi132a,132b, P. Bagnaia132a,132b,Y. Bai33a,T. Bain35, J.T. Baines131,

O.K. Baker176,E.M. Baldin109,c,P. Balek129, T. Balestri148,F. Balli84, W.K. Balunas122, E. Banas39, Sw. Banerjee173,e,A.A.E. Bannoura175, L. Barak30,E.L. Barberio88, D. Barberis50a,50b,M. Barbero85, T. Barillari101,M. Barisonzi164a,164b,T. Barklow143, N. Barlow28,S.L. Barnes84, B.M. Barnett131, R.M. Barnett15, Z. Barnovska5,A. Baroncelli134a,G. Barone23,A.J. Barr120, F. Barreiro82,

J. Barreiro Guimarães da Costa33a,R. Bartoldus143,A.E. Barton72,P. Bartos144a,A. Basalaev123,

A. Bassalat117,A. Basye165, R.L. Bates53, S.J. Batista158, J.R. Batley28,M. Battaglia137,M. Bauce132a,132b, F. Bauer136,H.S. Bawa143,f,J.B. Beacham111,M.D. Beattie72, T. Beau80,P.H. Beauchemin161,

R. Beccherle124a,124b, P. Bechtle21, H.P. Beck17,g,K. Becker120, M. Becker83,M. Beckingham170, C. Becot117,A.J. Beddall19b, A. Beddall19b, V.A. Bednyakov65,C.P. Bee148, L.J. Beemster107, T.A. Beermann30, M. Begel25,J.K. Behr120, C. Belanger-Champagne87,W.H. Bell49,G. Bella153, L. Bellagamba20a, A. Bellerive29,M. Bellomo86, K. Belotskiy98,O. Beltramello30, O. Benary153, D. Benchekroun135a,M. Bender100,K. Bendtz146a,146b,N. Benekos10, Y. Benhammou153,

E. Benhar Noccioli49, J.A. Benitez Garcia159b, D.P. Benjamin45, J.R. Bensinger23, S. Bentvelsen107, L. Beresford120, M. Beretta47,D. Berge107,E. Bergeaas Kuutmann166, N. Berger5, F. Berghaus169, J. Beringer15,C. Bernard22,N.R. Bernard86,C. Bernius110,F.U. Bernlochner21, T. Berry77, P. Berta129, C. Bertella83,G. Bertoli146a,146b,F. Bertolucci124a,124b,C. Bertsche113,D. Bertsche113, M.I. Besana91a, G.J. Besjes36,O. Bessidskaia Bylund146a,146b,M. Bessner42,N. Besson136, C. Betancourt48, S. Bethke101, A.J. Bevan76, W. Bhimji15,R.M. Bianchi125, L. Bianchini23,M. Bianco30,O. Biebel100,D. Biedermann16, N.V. Biesuz124a,124b,M. Biglietti134a, J. Bilbao De Mendizabal49,H. Bilokon47, M. Bindi54,S. Binet117, A. Bingul19b, C. Bini132a,132b,S. Biondi20a,20b, D.M. Bjergaard45, C.W. Black150, J.E. Black143,

K.M. Black22, D. Blackburn138,R.E. Blair6,J.-B. Blanchard136,J.E. Blanco77,T. Blazek144a,I. Bloch42, C. Blocker23,W. Blum83,∗,U. Blumenschein54, S. Blunier32a, G.J. Bobbink107,V.S. Bobrovnikov109,c, S.S. Bocchetta81,A. Bocci45, C. Bock100, M. Boehler48,J.A. Bogaerts30,D. Bogavac13,

A.G. Bogdanchikov109,C. Bohm146a,V. Boisvert77, T. Bold38a,V. Boldea26b, A.S. Boldyrev99,

M. Bomben80, M. Bona76,M. Boonekamp136,A. Borisov130, G. Borissov72, S. Borroni42,J. Bortfeldt100, V. Bortolotto60a,60b,60c,K. Bos107, D. Boscherini20a,M. Bosman12, J. Boudreau125,J. Bouffard2,


E.V. Bouhova-Thacker72,D. Boumediene34, C. Bourdarios117,N. Bousson114,S.K. Boutle53,A. Boveia30, J. Boyd30,I.R. Boyko65,I. Bozic13,J. Bracinik18,A. Brandt8, G. Brandt54,O. Brandt58a, U. Bratzler156, B. Brau86,J.E. Brau116, H.M. Braun175,∗, W.D. Breaden Madden53,K. Brendlinger122, A.J. Brennan88, L. Brenner107,R. Brenner166, S. Bressler172,T.M. Bristow46,D. Britton53,D. Britzger42, F.M. Brochu28, I. Brock21,R. Brock90,J. Bronner101, G. Brooijmans35, T. Brooks77,W.K. Brooks32b,J. Brosamer15, E. Brost116, P.A. Bruckman de Renstrom39, D. Bruncko144b, R. Bruneliere48,A. Bruni20a, G. Bruni20a, M. Bruschi20a, N. Bruscino21,L. Bryngemark81,T. Buanes14, Q. Buat142, P. Buchholz141,A.G. Buckley53, I.A. Budagov65, F. Buehrer48, L. Bugge119,M.K. Bugge119,O. Bulekov98,D. Bullock8, H. Burckhart30, S. Burdin74, C.D. Burgard48, B. Burghgrave108, S. Burke131,I. Burmeister43,E. Busato34, D. Büscher48, V. Büscher83, P. Bussey53, J.M. Butler22,A.I. Butt3,C.M. Buttar53, J.M. Butterworth78, P. Butti107, W. Buttinger25,A. Buzatu53,A.R. Buzykaev109,c,S. Cabrera Urbán167,D. Caforio128,V.M. Cairo37a,37b, O. Cakir4a, N. Calace49,P. Calafiura15, A. Calandri136,G. Calderini80, P. Calfayan100,L.P. Caloba24a, D. Calvet34,S. Calvet34, R. Camacho Toro31, S. Camarda42,P. Camarri133a,133b,D. Cameron119, R. Caminal Armadans165, S. Campana30,M. Campanelli78, A. Campoverde148,V. Canale104a,104b, A. Canepa159a,M. Cano Bret33e,J. Cantero82,R. Cantrill126a, T. Cao40,M.D.M. Capeans Garrido30, I. Caprini26b, M. Caprini26b,M. Capua37a,37b, R. Caputo83, R.M. Carbone35, R. Cardarelli133a, F. Cardillo48, T. Carli30, G. Carlino104a, L. Carminati91a,91b,S. Caron106,E. Carquin32a,

G.D. Carrillo-Montoya30,J.R. Carter28,J. Carvalho126a,126c, D. Casadei78,M.P. Casado12,M. Casolino12, D.W. Casper163, E. Castaneda-Miranda145a, A. Castelli107,V. Castillo Gimenez167,N.F. Castro126a,h, P. Catastini57,A. Catinaccio30, J.R. Catmore119, A. Cattai30,J. Caudron83,V. Cavaliere165, D. Cavalli91a, M. Cavalli-Sforza12, V. Cavasinni124a,124b, F. Ceradini134a,134b, L. Cerda Alberich167, B.C. Cerio45, K. Cerny129,A.S. Cerqueira24b,A. Cerri149,L. Cerrito76, F. Cerutti15, M. Cerv30,A. Cervelli17, S.A. Cetin19c, A. Chafaq135a,D. Chakraborty108,I. Chalupkova129,Y.L. Chan60a,P. Chang165, J.D. Chapman28,D.G. Charlton18, C.C. Chau158, C.A. Chavez Barajas149, S. Cheatham152,

A. Chegwidden90,S. Chekanov6,S.V. Chekulaev159a,G.A. Chelkov65,i, M.A. Chelstowska89,C. Chen64, H. Chen25,K. Chen148, L. Chen33d,j,S. Chen33c,S. Chen155,X. Chen33f,Y. Chen67, H.C. Cheng89, Y. Cheng31,A. Cheplakov65, E. Cheremushkina130,R. Cherkaoui El Moursli135e, V. Chernyatin25,∗, E. Cheu7,L. Chevalier136, V. Chiarella47,G. Chiarelli124a,124b,G. Chiodini73a, A.S. Chisholm18, R.T. Chislett78,A. Chitan26b,M.V. Chizhov65,K. Choi61,S. Chouridou9, B.K.B. Chow100,

V. Christodoulou78, D. Chromek-Burckhart30,J. Chudoba127,A.J. Chuinard87,J.J. Chwastowski39, L. Chytka115,G. Ciapetti132a,132b,A.K. Ciftci4a, D. Cinca53,V. Cindro75,I.A. Cioara21, A. Ciocio15, F. Cirotto104a,104b, Z.H. Citron172, M. Ciubancan26b,A. Clark49,B.L. Clark57,P.J. Clark46, R.N. Clarke15, C. Clement146a,146b,Y. Coadou85,M. Cobal164a,164c,A. Coccaro49,J. Cochran64,L. Coffey23,

J.G. Cogan143, L. Colasurdo106, B. Cole35, S. Cole108,A.P. Colijn107,J. Collot55, T. Colombo58c, G. Compostella101,P. Conde Muiño126a,126b,E. Coniavitis48, S.H. Connell145b, I.A. Connelly77, V. Consorti48,S. Constantinescu26b,C. Conta121a,121b,G. Conti30, F. Conventi104a,k, M. Cooke15, B.D. Cooper78, A.M. Cooper-Sarkar120,T. Cornelissen175,M. Corradi132a,132b, F. Corriveau87,l, A. Corso-Radu163, A. Cortes-Gonzalez12,G. Cortiana101, G. Costa91a,M.J. Costa167, D. Costanzo139, D. Côté8,G. Cottin28,G. Cowan77,B.E. Cox84,K. Cranmer110, G. Cree29,S. Crépé-Renaudin55, F. Crescioli80,W.A. Cribbs146a,146b, M. Crispin Ortuzar120,M. Cristinziani21, V. Croft106, G. Crosetti37a,37b,T. Cuhadar Donszelmann139, J. Cummings176, M. Curatolo47, J. Cúth83, C. Cuthbert150,H. Czirr141, P. Czodrowski3, S. D’Auria53, M. D’Onofrio74,

M.J. Da Cunha Sargedas De Sousa126a,126b,C. Da Via84,W. Dabrowski38a,A. Dafinca120,T. Dai89, O. Dale14,F. Dallaire95,C. Dallapiccola86,M. Dam36, J.R. Dandoy31, N.P. Dang48, A.C. Daniells18, M. Danninger168,M. Dano Hoffmann136,V. Dao48, G. Darbo50a, S. Darmora8, J. Dassoulas3,

A. Dattagupta61, W. Davey21,C. David169,T. Davidek129, E. Davies120,m, M. Davies153,P. Davison78, Y. Davygora58a, E. Dawe88,I. Dawson139, R.K. Daya-Ishmukhametova86,K. De8,R. de Asmundis104a, A. De Benedetti113,S. De Castro20a,20b,S. De Cecco80, N. De Groot106,P. de Jong107, H. De la Torre82, F. De Lorenzi64,D. De Pedis132a,A. De Salvo132a, U. De Sanctis149,A. De Santo149,

J.B. De Vivie De Regie117,W.J. Dearnaley72, R. Debbe25,C. Debenedetti137,D.V. Dedovich65, I. Deigaard107,J. Del Peso82, T. Del Prete124a,124b,D. Delgove117, F. Deliot136,C.M. Delitzsch49, M. Deliyergiyev75, A. Dell’Acqua30,L. Dell’Asta22, M. Dell’Orso124a,124b, M. Della Pietra104a,k,


Table 2 summarises the dominant backgrounds affecting each of
Fig. 1. Signal acceptance times efficiency for the different analyses entering the combination for (a) the EGM W  model and (b) the bulk G ∗ model
Fig. 2. The p 0 -value for the individual and combined channels for (a) the EGM W  search in the  ν     ,  q q, ¯  ν q q and ¯ J J channels and (b) the bulk G ∗ search in the  q q, ¯
Fig. 4. The 95% CL limits on (a) the bulk G ∗ using the  q q, ¯  ν q q, ¯ and J J channels and their combination, and (b) the combined 95% CL limit with the green (yellow) bands representing the 1 σ (2 σ ) intervals of the expected limit including stati


Related documents

Frånvaron av Räddningstjänsten Syds ledning i den kontakt med skolorna kan beskrivas ha bidragit till att samverkans struktur kommit att inta en form av kolle- gial samverkan som

När det kommer till tillgänglighet av böcker på förskolan handlar det inte bara om vilka böcker som finns tillgängliga utan även deras faktiska konkreta tillgänglighet för

Police area Middle Scania was chosen as an area of significance for this thesis due to my personal interest and the interest of the local police to get a better understanding of

• uppmärksamma betydelsen av föräldrarnas inställning för barns lärande i matematik, • arbeta med fördomar och negativa attityder till matematik som finns hos många vuxna,

Resultatet kan kanske knytas ihop med sjuksköterskornas otillfredsställande kunskap om riktlinjer kring det aktuella ämnet och detta kan innebära att patienter som har ett

Sådana skillnader beror på att skolorna ifråga har olika sätt att organisera sitt specialpedagogiska stöd men också på att pedagogerna på skola B har fått

One way of achieving such economy is to alter an already existing expression&#34; (Nilsen, 1981). The photograph of figure 11 is a graffito located at Nile street right next to

Trots att eleverna känner ett svagt intresse till kursen och att lärarna verkar vara dåliga på att ta vara på elevernas intresse så uttrycker eleverna att de till viss del får