• No results found

Measurement of the branching fractions of D-s(+) -> eta ' X and D-s(+) -> eta 'rho(+) in e(+)e(-) -> Ds+Ds-

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the branching fractions of D-s(+) -> eta ' X and D-s(+) -> eta 'rho(+) in e(+)e(-) -> Ds+Ds-"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

branching

fractions

of

D

+

s

η



X and

D

+

s

η



ρ

+

in

e

+

e

D

+

s

D

s

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

6

,

X.C. Ai

a

,

O. Albayrak

e

,

M. Albrecht

d

,

D.J. Ambrose

av

,

A. Amoroso

az

,

bb

,

F.F. An

a

,

Q. An

aw

,

1

,

J.Z. Bai

a

,

R. Baldini Ferroli

t

,

Y. Ban

ag

,

D.W. Bennett

s

,

J.V. Bennett

e

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

au

,

F. Bianchi

az

,

bb

,

E. Boger

y

,

4

,

I. Boyko

y

,

R.A. Briere

e

,

H. Cai

bd

,

X. Cai

a

,

1

,

O. Cakir

ap

,

2

,

A. Calcaterra

t

,

G.F. Cao

a

,

S.A. Cetin

aq

,

J.F. Chang

a

,

1

,

G. Chelkov

y

,

4

,

5

,

G. Chen

a

,

H.S. Chen

a

,

H.Y. Chen

b

,

J.C. Chen

a

,

M.L. Chen

a

,

1

,

S.J. Chen

ae

,

X. Chen

a

,

1

,

X.R. Chen

ab

,

Y.B. Chen

a

,

1

,

H.P. Cheng

q

,

X.K. Chu

ag

,

G. Cibinetto

v

,

H.L. Dai

a

,

1

,

J.P. Dai

aj

,

A. Dbeyssi

n

,

D. Dedovich

y

,

Z.Y. Deng

a

,

A. Denig

x

,

I. Denysenko

y

,

M. Destefanis

az

,

bb

,

F. De Mori

az

,

bb

,

Y. Ding

ac

,

C. Dong

af

,

J. Dong

a

,

1

,

L.Y. Dong

a

,

M.Y. Dong

a

,

1

,

S.X. Du

bf

,

P.F. Duan

a

,

E.E. Eren

aq

,

J.Z. Fan

ao

,

J. Fang

a

,

1

,

S.S. Fang

a

,

X. Fang

aw

,

1

,

Y. Fang

a

,

L. Fava

ba

,

bb

,

F. Feldbauer

x

,

G. Felici

t

,

C.Q. Feng

aw

,

1

,

E. Fioravanti

v

,

M. Fritsch

n

,

x

,

C.D. Fu

a

,

Q. Gao

a

,

X.Y. Gao

b

,

Y. Gao

ao

,

Z. Gao

aw

,

1

,

I. Garzia

v

,

C. Geng

aw

,

1

,

K. Goetzen

j

,

W.X. Gong

a

,

1

,

W. Gradl

x

,

M. Greco

az

,

bb

,

M.H. Gu

a

,

1

,

Y.T. Gu

l

,

Y.H. Guan

a

,

A.Q. Guo

a

,

L.B. Guo

ad

,

Y. Guo

a

,

Y.P. Guo

x

,

Z. Haddadi

aa

,

A. Hafner

x

,

S. Han

bd

,

Y.L. Han

a

,

X.Q. Hao

o

,

F.A. Harris

at

,

K.L. He

a

,

Z.Y. He

af

,

T. Held

d

,

Y.K. Heng

a

,

1

,

Z.L. Hou

a

,

C. Hu

ad

,

H.M. Hu

a

,

J.F. Hu

az

,

bb

,

T. Hu

a

,

1

,

Y. Hu

a

,

G.M. Huang

f

,

G.S. Huang

aw

,

1

,

H.P. Huang

bd

,

J.S. Huang

o

,

X.T. Huang

ai

,

Y. Huang

ae

,

T. Hussain

ay

,

Q. Ji

a

,

Q.P. Ji

af

,

X.B. Ji

a

,

X.L. Ji

a

,

1

,

L.L. Jiang

a

,

L.W. Jiang

bd

,

X.S. Jiang

a

,

1

,

X.Y. Jiang

af

,

J.B. Jiao

ai

,

Z. Jiao

q

,

D.P. Jin

a

,

1

,

S. Jin

a

,

T. Johansson

bc

,

A. Julin

au

,

N. Kalantar-Nayestanaki

aa

,

X.L. Kang

a

,

X.S. Kang

af

,

M. Kavatsyuk

aa

,

B.C. Ke

e

,

P. Kiese

x

,

R. Kliemt

n

,

B. Kloss

x

,

O.B. Kolcu

aq

,

9

,

B. Kopf

d

,

M. Kornicer

at

,

W. Kühn

z

,

A. Kupsc

bc

,

J.S. Lange

z

,

M. Lara

s

,

P. Larin

n

,

C. Leng

bb

,

C. Li

bc

,

C.H. Li

a

,

Cheng Li

aw

,

1

,

D.M. Li

bf

,

F. Li

a

,

1

,

G. Li

a

,

H.B. Li

a

,

J.C. Li

a

,

Jin Li

ah

,

K. Li

m

,

K. Li

ai

,

Lei Li

c

,

P.R. Li

as

,

T. Li

ai

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ai

,

X.M. Li

l

,

X.N. Li

a

,

1

,

X.Q. Li

af

,

Z.B. Li

an

,

H. Liang

aw

,

1

,

Y.F. Liang

al

,

Y.T. Liang

z

,

G.R. Liao

k

,

D.X. Lin

n

,

B.J. Liu

a

,

C.X. Liu

a

,

F.H. Liu

ak

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.H. Liu

p

,

H.H. Liu

a

,

H.M. Liu

a

,

J. Liu

a

,

J.B. Liu

aw

,

1

,

J.P. Liu

bd

,

J.Y. Liu

a

,

K. Liu

ao

,

K.Y. Liu

ac

,

L.D. Liu

ag

,

P.L. Liu

a

,

,

1

,

Q. Liu

as

,

S.B. Liu

aw

,

1

,

X. Liu

ab

,

X.X. Liu

as

,

Y.B. Liu

af

,

Z.A. Liu

a

,

1

,

Zhiqiang Liu

a

,

Zhiqing Liu

x

,

H. Loehner

aa

,

X.C. Lou

a

,

1

,

8

,

H.J. Lu

q

,

J.G. Lu

a

,

1

,

R.Q. Lu

r

,

Y. Lu

a

,

Y.P. Lu

a

,

1

,

C.L. Luo

ad

,

M.X. Luo

be

,

T. Luo

at

,

X.L. Luo

a

,

1

,

M. Lv

a

,

X.R. Lyu

as

,

F.C. Ma

ac

,

H.L. Ma

a

,

L.L. Ma

ai

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

af

,

X.Y. Ma

a

,

1

,

F.E. Maas

n

,

M. Maggiora

az

,

bb

,

Y.J. Mao

ag

,

Z.P. Mao

a

,

S. Marcello

az

,

bb

,

J.G. Messchendorp

aa

,

J. Min

a

,

1

,

T.J. Min

a

,

R.E. Mitchell

s

,

X.H. Mo

a

,

1

,

Y.J. Mo

f

,

C. Morales Morales

n

,

K. Moriya

s

,

N.Yu. Muchnoi

i

,

6

,

H. Muramatsu

au

,

Y. Nefedov

y

,

F. Nerling

n

,

I.B. Nikolaev

i

,

6

,

Z. Ning

a

,

1

,

S. Nisar

h

,

S.L. Niu

a

,

1

,

X.Y. Niu

a

,

S.L. Olsen

ah

,

Q. Ouyang

a

,

1

,

S. Pacetti

u

,

P. Patteri

t

,

M. Pelizaeus

d

,

H.P. Peng

aw

,

1

,

K. Peters

j

,

J. Pettersson

bc

,

J.L. Ping

ad

,

R.G. Ping

a

,

R. Poling

au

,

V. Prasad

a

,

Y.N. Pu

r

,

M. Qi

ae

,

S. Qian

a

,

1

,

C.F. Qiao

as

,

L.Q. Qin

ai

,

N. Qin

bd

,

X.S. Qin

a

,

Y. Qin

ag

,

Z.H. Qin

a

,

1

,

J.F. Qiu

a

,

K.H. Rashid

ay

,

C.F. Redmer

x

,

H.L. Ren

r

,

M. Ripka

x

,

G. Rong

a

,

Ch. Rosner

n

,

X.D. Ruan

l

,

http://dx.doi.org/10.1016/j.physletb.2015.09.059

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

V. Santoro

v

,

A. Sarantsev

y

,

7

,

M. Savrié

w

,

K. Schoenning

bc

,

S. Schumann

x

,

W. Shan

ag

,

M. Shao

aw

,

1

,

C.P. Shen

b

,

P.X. Shen

af

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

W.M. Song

a

,

X.Y. Song

a

,

S. Sosio

az

,

bb

,

S. Spataro

az

,

bb

,

G.X. Sun

a

,

J.F. Sun

o

,

S.S. Sun

a

,

Y.J. Sun

aw

,

1

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

1

,

Z.T. Sun

s

,

C.J. Tang

al

,

X. Tang

a

,

I. Tapan

ar

,

E.H. Thorndike

av

,

M. Tiemens

aa

,

M. Ullrich

z

,

I. Uman

aq

,

G.S. Varner

at

,

B. Wang

af

,

B.L. Wang

as

,

D. Wang

ag

,

D.Y. Wang

ag

,

K. Wang

a

,

1

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ai

,

P. Wang

a

,

P.L. Wang

a

,

S.G. Wang

ag

,

W. Wang

a

,

1

,

X.F. Wang

ao

,

Y.D. Wang

n

,

Y.F. Wang

a

,

1

,

Y.Q. Wang

x

,

Z. Wang

a

,

1

,

Z.G. Wang

a

,

1

,

Z.H. Wang

aw

,

1

,

Z.Y. Wang

a

,

T. Weber

x

,

D.H. Wei

k

,

J.B. Wei

ag

,

P. Weidenkaff

x

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

bc

,

L.H. Wu

a

,

Z. Wu

a

,

1

,

L.G. Xia

ao

,

Y. Xia

r

,

D. Xiao

a

,

Z.J. Xiao

ad

,

Y.G. Xie

a

,

1

,

Q.L. Xiu

a

,

1

,

G.F. Xu

a

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

as

,

X.P. Xu

am

,

L. Yan

aw

,

1

,

W.B. Yan

aw

,

1

,

W.C. Yan

aw

,

1

,

Y.H. Yan

r

,

H.J. Yang

aj

,

H.X. Yang

a

,

L. Yang

bd

,

Y. Yang

f

,

Y.X. Yang

k

,

H. Ye

a

,

M. Ye

a

,

1

,

M.H. Ye

g

,

J.H. Yin

a

,

B.X. Yu

a

,

1

,

C.X. Yu

af

,

H.W. Yu

ag

,

J.S. Yu

ab

,

C.Z. Yuan

a

,

W.L. Yuan

ae

,

Y. Yuan

a

,

A. Yuncu

aq

,

3

,

A.A. Zafar

ay

,

A. Zallo

t

,

Y. Zeng

r

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

1

,

C. Zhang

ae

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

an

,

H.Y. Zhang

a

,

1

,

J.J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

1

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

a

,

S.H. Zhang

a

,

X.Y. Zhang

ai

,

Y. Zhang

a

,

Y.N. Zhang

as

,

Y.H. Zhang

a

,

1

,

Y.T. Zhang

aw

,

1

,

Yu Zhang

as

,

Z.H. Zhang

f

,

Z.P. Zhang

aw

,

Z.Y. Zhang

bd

,

G. Zhao

a

,

J.W. Zhao

a

,

1

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

1

,

Lei Zhao

aw

,

1

,

Ling Zhao

a

,

M.G. Zhao

af

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

bf

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

1

,

Z.G. Zhao

aw

,

1

,

A. Zhemchugov

y

,

4

,

B. Zheng

ax

,

J.P. Zheng

a

,

1

,

W.J. Zheng

ai

,

Y.H. Zheng

as

,

B. Zhong

ad

,

L. Zhou

a

,

1

,

Li Zhou

af

,

X. Zhou

bd

,

X.K. Zhou

aw

,

1

,

X.R. Zhou

aw

,

1

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

1

,

S. Zhu

a

,

X.L. Zhu

ao

,

Y.C. Zhu

aw

,

1

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

1

,

L. Zotti

az

,

bb

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangXiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany yJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

zJustusLiebigUniversityGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany aaKVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

abLanzhouUniversity,Lanzhou730000,People’sRepublicofChina acLiaoningUniversity,Shenyang110036,People’sRepublicofChina adNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina aeNanjingUniversity,Nanjing210093,People’sRepublicofChina afNankaiUniversity,Tianjin300071,People’sRepublicofChina agPekingUniversity,Beijing100871,People’sRepublicofChina ahSeoulNationalUniversity,Seoul,151-747, RepublicofKorea aiShandongUniversity,Jinan250100,People’sRepublicofChina

ajShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina akShanxiUniversity,Taiyuan030006,People’sRepublicofChina

alSichuanUniversity,Chengdu610064,People’sRepublicofChina amSoochowUniversity,Suzhou215006,People’sRepublicofChina anSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina aoTsinghuaUniversity,Beijing100084,People’sRepublicofChina apIstanbulAydinUniversity,34295Sefakoy,Istanbul,Turkey aqDogusUniversity,34722Istanbul,Turkey

(3)

arUludagUniversity,16059Bursa,Turkey

asUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina atUniversityofHawaii,Honolulu,HI 96822,USA

auUniversityofMinnesota,Minneapolis,MN 55455,USA avUniversityofRochester,Rochester,NY 14627,USA

awUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina axUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

ayUniversityofthePunjab,Lahore54590,Pakistan azUniversityofTurin,I-10125,Turin,Italy

baUniversityofEasternPiedmont,I-15121,Alessandria,Italy bbINFN,I-10125,Turin,Italy

bcUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bdWuhanUniversity,Wuhan430072,People’sRepublicofChina beZhejiangUniversity,Hangzhou310027,People’sRepublicofChina bfZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received30June2015

Receivedinrevisedform22September 2015

Accepted23September2015 Availableonline30September2015 Editor:L.Rolandi

Keywords:

BESIII

Ds

Branchingfractions

We study D+s decays to final states involving the

η

 with a 482 pb−1 data sample collected at

s=4.009 GeV with the BESIII detector at the BEPCIIcollider. We measure the branching fractions

B(D+s

η

X)= (8.8±1.8±0.5)% andB(D+s

η



ρ

+)= (5.8±1.4±0.4)% wherethefirstuncertainty isstatisticalandthesecondissystematic.Inaddition,weestimateanupperlimitonthenon-resonant branchingratio B(D+s

η



π

+

π

0)<5.1% atthe90% confidencelevel.Ourresults areconsistentwith

CLEO’s recentmeasurements and helptoresolvethe disagreementbetweenthetheoretical prediction andCLEO’spreviousmeasurementofB(D+s

η



ρ

+).

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Hadronic weak decays of charmedmesons provide important

informationon flavormixing, CP violation,andstrong-interaction effects [1]. There are several proposed QCD-derived theoretical

approaches to handle heavy meson decays [2–6]. However, in

contrast to B mesons, theoretical treatment of charmed mesons suffers from large uncertainties since the c quark mass is too lightforgoodconvergenceoftheheavy quark expansionbutstill much too massive for chiral perturbative theory to be applica-ble. Currently, theoretical results for the partial decay widths of ground-state charmed mesons agree fairly well with experimen-tal results. However, there exists a contradiction concerning the branching fraction

B(

D+s

η



ρ

+

)

. CLEO reported

(

12

.

5

±

2

.

2

)

%

[7],while ageneralizedfactorizationmethod[8]predictsa factor offour less,

(

3

.

0

±

0

.

5

)

%. Summing the large experimental value of

B(

D+s

η



ρ

+

)

with other exclusive rates involving

η

 gives

B(

D+s

η

X

)

= (

18

.

6

±

2

.

3

)

% [9], while the measured inclusive decayrate

B(

D+s

η

X

)

ismuchlower,

(

11

.

7

±

1

.

8

)

%[10],where

X denotes all possible combinations of states. Therefore, further

experimental studyofthe

η

 decaymodesis ofgreatimportance forresolvingthisconflict.

*

Correspondingauthor.

E-mailaddress:liupl@ihep.ac.cn(P.L. Liu).

1 Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049,Hefei230026,People’sRepublicofChina.

2 AlsoatAnkaraUniversity,06100Tandogan,Ankara,Turkey. 3 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

4 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 5 Alsoatthe FunctionalElectronicsLaboratory,Tomsk StateUniversity,Tomsk, 634050,Russia.

6 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 7 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 8 AlsoatUniversityofTexasatDallas,Richardson,TX 75083,USA. 9 CurrentlyatIstanbulArelUniversity,34295Istanbul,Turkey.

Recently, CLEO reportedan updated measurementof

B(

D+s

η



π

+

π

0

)

= (

5

.

6

±

0

.

5

±

0

.

6

)

% [11]; this includes the resonant

process

η



ρ

+.This is much smaller than the previous result [7]. In thispaper, we report the measurements of the inclusiverate

B(

D+s

η

X

)

andtheexclusiverate

B(

D+s

η



ρ

+

)

attheBESIII experiment.

2. Datasampleanddetector

The analysis is carried out using a sample of 482 pb−1 [12] e+e−collisiondatacollectedwiththeBESIIIdetectoratthecenter ofmassenergy

s

=

4

.

009 GeV.

TheBESIIIdetector,asdescribedindetailinRef.[13],hasa geo-metricalacceptanceof93%ofthesolidangle.Asmall-cell helium-basedmaindriftchamber(MDC)immersedina1 Tmagneticfield measures the momentum of charged particles with a resolution of0.5%at1 GeV

/

c.Theelectromagneticcalorimeter(EMC)detects photons with a resolution of 2.5% (5%) at an energy of 1 GeV in the barrel (end cap) region. A time-of-flight system(TOF) as-sistsinparticleidentification(PID)withatimeresolutionof80 ps (110 ps)inthebarrel(endcap)region.OurPIDmethodscombine the TOF information with the specific energy loss (dE

/

dx) mea-surements of charged particles in the MDC to forma likelihood

L(

h

)(

h

=

π

,

K

)

foreachhadron(h)hypothesis.

A geant4-based [14] Monte Carlo (MC) simulation software, whichincludesthegeometricdescriptionoftheBESIIIdetectorand thedetectorresponse,isusedtooptimizetheeventselection cri-teria, determinethedetectionefficiencyandestimatebackground contributions.Thesimulationincludesthebeamenergyspreadand initial-state radiation (ISR), implemented with kkmc [15].

Allow-ing for a maximum ISR photon energy of 72 MeV, open charm

processes are simulated from D+sDs threshold at 3.937 GeV to the center-of-mass energy 4.009 GeV. Cross sections have been takenfromRef.[16].Forbackgroundcontributionstudiesandthe validation oftheanalysisprocedure, aninclusiveMC sample cor-responding to an integrated luminosity of 10 fb−1 is analyzed.

(4)

In addition to the open charm modes, this sample includes ISR production, continuum light quark production and QED events.

The known decay modes are generated with evtgen [17] with

branching fractions setto the world average values [9], and the remainingunknowneventsaregeneratedwith lundcharm[18]. 3. Dataanalysis

3.1.Measurementof

B(

D+s

η

X

)

Fordatatakenat4.009 GeV,energyconservationprohibitsany additionalhadronsaccompanyingtheproductionofa D+sDs pair. Followingatechnique firstintroducedby theMARK III Collabora-tion

[19]

, theinclusivedecayrateof D+s

η

X ismeasured. We

selectsingletag(ST)eventsinwhichatleastone D+s orDs can-didateisreconstructed,anddoubletag(DT)eventsinwhichboth

D+s and Ds are reconstructed.To illustrate themethod, we take theSTmode Ds

α

andthesignal mode D+s

η

X for exam-ple.The

η

 candidates inthesignal modeare reconstructedfrom thedecaymode

η



π

+

π

η

withthe

η

subsequentlydecaying into

γ γ

.TheSTyieldsaregivenas

ST

=

ND+

sDs

B

(

D

s

α

)

ε

αST

,

(1)

whereND+

sDs is thenumberofproduced D

+

s Ds pairsand

ε

STα is

the detectionefficiency of reconstructing Ds

α

. Similarly, the DTyieldsaregivenas

DT

=

ND+

sDs

B

(

D

s

α

)

B

(

D+s

η

X

)

B

ηPDG

ε

DTα

,

(2)

where

B

PDGη istheproduct branchingfractions

B(

η



π

+

π

η

)

·

B(

η

γ γ

)

,

ε

α

DT is the detection efficiency of reconstructing Ds

α

and D+s

η

X atthesame time.With

ε

α

ST and

ε

αDT

es-timatedfrom MC simulations, theratio of DT to ST provides a measurementof

B(

D+s

η

X

)

,

B

(

D+s

η

X

)

B

PDGη

=

DT ST

·

ε

STα

ε

α DT

.

(3)

WhenmultipleSTmodesareused,thebranchingfractionis deter-minedas

B

(

D+s

η

X

)

B

PDGη

=



αyαDT



αyαST

·

εDTα εα ST

=



yDT αyαST

·

εαDT εα ST

,

(4)

whereyDT

=



α yαDTisthetotalnumberofDTevents.

Inthisanalysis, theSTeventsare selectedby reconstructinga

Ds inninedifferentdecaymodes:K0

SK−,K+K

π

−,K+K

π

π

0,

K0SK+

π

π

−,

π

+

π

π

−,

π

η

,

π

η



(

η



π

+

π

η

)

,

π

η



(

η



ρ

0

γ

,

ρ

0

π

+

π

)

, and

π

π

0

η

. The DT events are selected by

further reconstructing an

η

 among the remaining particles not used in the ST reconstruction. Throughout the paper, charged-conjugatemodesarealwaysimplied.

Foreachchargedtrack(exceptforthoseusedforreconstructing

K0S decays),thepolarangleintheMDCmustsatisfy

|

cos

θ

|

<

0

.

93, andthe point of closest approach to the e+e− interaction point (IP)mustbewithin

±

10 cm along thebeamdirectionandwithin 1 cmintheplane perpendiculartothebeamdirection.Acharged

K

(

π

)

mesonisidentifiedbyrequiringthePIDlikelihoodtosatisfy

L(

K

)

>

L(

π

)

(

L(

π

)

>

L(

K

)

).

Showersidentified as photon candidates must satisfy the fol-lowingrequirements.ThedepositedenergyintheEMCisrequired to be larger than 25 MeV in the barrel region (

|

cos

θ|

<

0

.

8) or largerthan50 MeVinthe endcapregion (0

.

86

<

|

cos

θ

|

<

0

.

92). Tosuppresselectronicnoise andenergydepositsunrelatedtothe event,theEMCtimedeviationfromtheeventstarttimeisrequired

Table 1

Requirementson E forSTDs candidates.

ST modeα Data (GeV) MC (GeV)

K0 SK(−0.027,0.021) (−0.025,0.021) K+Kπ(−0.032,0.023) (−0.031,0.024) K+Kππ0 (−0.041,0.022) (−0.041,0.022) K0 SK+ππ(−0.035,0.024) (−0.032,0.026) π+ππ(−0.036,0.023) (−0.033,0.025) πη (−0.038,0.037) (−0.041,0.032) πηπ π η (−0.035,0.027) (−0.034,0.028) πηργ (−0.035,0.022) (−0.035,0.021) ππ0η (0.053,0.030) (0.053,0.028)

tobe 0

T

700 ns.Photoncandidatesmustbe separatedby at least 10 degrees from the extrapolated positions of any charged tracksintheEMC.

The K0S candidatesareformedfrompairsofoppositelycharged tracks.Forthesetwotracks,thepolaranglesintheMDCmust sat-isfy

|

cos

θ|

<

0

.

93,andthepointofclosestapproachtotheIPmust be within

±

20 cm alongthe beamdirection. No requirementson thedistanceofclosestapproachinthetransverseplaneoron par-ticleidentificationcriteriaareappliedtothetracks.Theirinvariant massisrequiredtosatisfy0

.

487

<

M

(

π

+

π

)

<

0

.

511 GeV

/

c2.The

twotracksareconstrainedtooriginatefromacommondecay ver-tex, which is required to be separated from the IP by a decay lengthofatleasttwicethevertexresolution.

The

π

0 and

η

candidates are reconstructed from photon

pairs. Theinvariant massis requiredtosatisfy 0

.

115

<

M

(

γ γ

)

<

0

.

150 GeV

/

c2 for

π

0, and0

.

510

<

M

(

γ γ

)

<

0

.

570 GeV

/

c2 for

η

.

Toimprovethemassresolution,a mass-constrainedfittothe nom-inal mass of

π

0 or

η

[9] is applied to the photon pairs. For

η



candidates, the invariant mass must satisfy 0

.

943

<

M

(

η

π π η

)

<

0

.

973 GeV

/

c2 and 0

.

932

<

M

(

η



ργ

)

<

0

.

980 GeV

/

c2. For the

η

ργ candidates, we additionally require 0

.

570

<

M

(

π

+

π

)

<

0

.

970 GeV

/

c2 to reduce contributions from combinatorial

back-ground.

Wedefine theenergydifference,

E

E

E0,where E isthe total measured energy ofthe particles in the Ds candidate and

E0 isthebeamenergy.The Ds candidatesarerejectediftheyfail

topass

E requirements correspondingto3timestheresolution,

as given in Table 1. To reduce systematic uncertainty, we apply differentrequirementson

E fordataandMCsamples.Ifthereis morethanone Ds candidateinaspecificSTmode,thecandidate withthesmallest

|

E

|

iskeptforfurtheranalysis.

ToidentifySTsignals, thebeam-constrainedmassMBCisused. ThisisthemassoftheDs candidatecalculatedbysubstitutingthe

beam energy E0 forthe measured energy of the Ds candidate:

M2

BCc4

E20

p2c2,where p isthe measured momentum of the Ds candidate.True Ds

α

single-tagspeakatthe nominal Ds

massinMBC.

We fit the MBC distribution of each mode

α

to obtain ST.

Backgroundcontributionsforeachmodearewelldescribedbythe ARGUS function [20],asverified withMC simulations.The signal distributionsaremodeledbyaMC-derivedsignalshapeconvoluted withaGaussianfunctionwhoseparametersareleftfreeinthefit. The Gaussian function compensatesthe resolution difference be-tween data andMC simulation. Fig. 1shows thefits to the MBC

distributionsindata;thefittedSTyields arepresentedin

Table 2

alongwiththedetectionefficienciesestimatedbasedonMC simu-lations.

Toselecteventswherethe D+s decaysto

η

X ,we requirethat theDTeventscontainan

η

 candidateamongtheparticles recoil-ing against theST candidate. As mentioned above, the

η

 candi-dates are reconstructed in the decay

η



π

+

π

η

, with the

η

(5)

Fig. 1. FitstotheMBCdistributionsfortheSTDscandidates.Ineachplot,thepointswitherrorbarsaredata,thedashedcurveisthebackgroundcontributionandthesolid lineshowsthetotalfit.

Table 2

ThedetectionefficienciesandthedatayieldsoftheSTandDTevents.The efficien-ciesdonotincludetheintermediatebranchingfractionsfor π0γ γ,ηγ γ, K0

Sπ+π−,η→π+πηandη→ρ0γ.Alluncertaintiesarestatisticalonly.

ST modeα εα ST(%) ST εDTα (%) yDT K0SK− 47.89±0.35 1088±40 13.75±0.14 K+Kπ− 44.16±0.18 5355±118 12.46±0.14 K+Kππ0 13.25±0.22 1972±145 4.32±0.08 K0 SK+ππ− 24.27±0.37 595±50 6.05±0.09 π+ππ− 60.26±0.90 1657±143 17.18±0.16 68±14 πη 48.39±0.70 843±54 14.82±0.16 πηπ π η 29.48±0.52 461±41 7.91±0.11 πηργ 43.11±0.88 1424±147 11.96±0.13 ππ0η 26.02±0.32 2260±156 7.90±0.11

subsequently decaying into

γ γ

. All particles used in the

η

 re-constructionmustsatisfytherequirementsdetailedabove.Ifthere ismore thanone

η

 candidate, theone withthesmallest

M

|

M

(

η

π π η

)

m

(

η



)

|

iskept,wherem

(

η



)

isthenominal

η

mass[9]. Thedecaymode

η



ρ

0

γ

isnotusedduetolargecontributions

fromcombinatorialbackground.

There are peakingbackground contributions in M

(

η

π π η

)

pro-ducedbyeventsinwhichthereisawrongly-reconstructed Ds tag accompanied by areal

η

 in the restofthe event. To obtainthe DTyields,wethereforeperformatwo-dimensionalunbinnedfitto thevariables MBC

(

α

)

and M

(

η

π π η

)

.For MBC

(

α

)

,thefitfunctions arethesameasthoseusedintheextractionofST.ForM

(

η

π π η

)

, thesignal isdescribed bythe convolutionofa MC-derivedsignal shapeandaGaussianfunctionwithparametersleftfreeinthefit. BackgroundcontributionsinM

(

η

π π η

)

consistof(a) D+sDs events inwhich Ds decays tothe desiredST modes,but the D+s decay does not involve an

η

; (b) other (non-ST signal) decays of Ds

andalso non-D+sDs processes.Component (a) isdescribed with afirst-orderpolynomialfunction.Component(b) ismodeledwith the sum of two Gaussian functions plus a quadratic polynomial function.ThemeansofthetwoGaussiansarefixedtothe

η

 nom-inalmass[9].Otherparametersandalltheamplitudesareleftfree in thefit. The ARGUS function of MBC

(

α

)

helpsto constrain the descriptionofM

(

η

π π η

)

incomponent(b).Thistreatmenton back-groundcontributions has been verified in MC simulations. There

is no obvious correlation between MBC

(

α

)

and M

(

η

π π η

)

, so the probability densityfunctions(PDFs)ofthesetwo variablesare di-rectly multiplied.We obtainthecombinedDTyield yDTfromthe unbinned fit shown in Fig. 2. Table 2 gives the total yields of DT in dataand thecorresponding DT efficiencies. Combining the yields and efficiencies, we obtain

B(

D+s

η

X

)

= (

8

.

8

±

1

.

8

)

% withEq.(4).

3.2. Measurementof

B(

D+s

η



ρ

+

)

Inordertoimprovethestatisticalprecision,we determinethe branching fraction for D+s

η



ρ

+ using STs. As a standalone measurement, this doesnot benefit fromcancellationof system-atic uncertainties as inthe double-tag method.However, a simi-lar cancellationcan be achievedby measuring the signal relative to asimilar, alreadywell-measured finalstate. Thus, we measure

B(

D+s

η



ρ

+

)

relativeto

B(

D+s

K+K

π

+

)

,using

B

(

D+s

η



ρ

+

)

B

PDGρ+

B

PDGη

B

(

D+s

K+K

π

+

)

=

STρ+ ySTK+Kπ+

·

ε

K+Kπ+ ST

ε

ηSTρ+

,

(5) where

B

PDGρ+

=

B(

ρ

+

π

+

π

0

)B(

π

0

γ γ

)

.

Thedecay D+s

K+K

π

+ isreconstructedinthesame man-ner asreportedabove intheSTmode.OurMCsimulationofthis mode includes a full treatment of interfering resonances in the Dalitz plot [21]. The decay D+s

η



ρ

+ is reconstructed via the decays

η



π

+

π

η

and

ρ

+

π

+

π

0,where

η

(

π

0

)

γ γ

.We

apply thesamecriteriatofind

π

0 and

η

candidatesaswereused

in the analysis of D+s

η

X . We do not requirePID criteria on the chargedtracks, but instead assume them all to be pions. In the reconstruction of

ρ

+ and

η

,the

π

+ are randomlyassigned. Theinvariant mass,M

(

π

+

π

0

)

,ofthe

ρ

+ candidateisrequiredto

be within

±

0

.

170 GeV

/

c2 of the nominal

ρ

+ mass, and the

in-variant mass of the

η

 candidate, M

(

η

π π η

)

, is requiredto lie in the interval

(

0

.

943

,

0

.

973

)

GeV

/

c2.Additionally requiring1

.

955

<

MBC

<

1

.

985 GeV

/

c2 to enrich signal events, the M

(

π

+

π

0

)

dis-tribution of D+s

η



ρ

+ ininclusive MC simulationsand datain

Fig. 3 show good agreement. The small difference visible in the

M

(

η

π π η

)

distributionwillbetakenintoaccountinthesystematic uncertainties.

(6)

Fig. 2. Projections of the two-dimensional unbinned fit to DT events from data onto MBC(left) and M(ηπ+πη)(right).

Fig. 3. ComparisonoftheM(π+π0)(left)andM(η

π π η)(right)distributionsinSTeventsofD+sηρ+indata(points)andinclusiveMC(solidline).Thearrowsshowthe signalregion.

Fig. 4. Projectionplotsofthetwo-dimensional unbinnedfitontoMBC(left)andcosθπ+ (right).Thesignaleventsareenrichedbyrequiring1.955<MBC<1.985 GeV/c2in therightplot.

If multiple

η



ρ

+ candidates are found in an event, only the one with the smallest

|

E

|

is kept. We require

0

.

035

<

E

<

0

.

023 GeV fordataand

0

.

037

<

E

<

0

.

029 GeV forMC.Fitsto theMBCdistributionsareusedtoextractsignalyields.Toseparate thethree bodyprocess D+s

η



π

+

π

0 fromthe two bodydecay D+s

η



ρ

+,thehelicityangle

θ

π+ isusedtoextractthe

ρ

+ com-ponent,where

θ

π+ istheanglebetweenthemomentumofthe

π

+

fromthe

ρ

+decayandthedirectionopposite tothe D+s

momen-tuminthe

ρ

+restframe.ThesignalD+s

η



ρ

+isdistributedas cos2

θ

π+,whilethethreebodyprocessisflatincos

θ

π+.

Weperformatwo-dimensional unbinnedmaximumlikelihood

fittothedistributionofMBCversuscos

θ

π+ todeterminetheyield

STρ+.ThesignalmodelofMBC isthesameasthatintheanalysis of D+s

η

X . Forcos

θ

π+,the signal shapesof D+s

η



ρ

+ and

D+s

η



π

+

π

0 are determined based on MC simulations.

Back-ground contributions in MBC are modeled withan ARGUS

func-tion, while background contributions in cos

θ

π+ are taken from the events in the MBC sidebands 1

.

932

<

MBC

<

1

.

950 GeV

/

c2

and1

.

988

<

MBC

<

1

.

997 GeV

/

c2.Thereisnoobviouscorrelation

between MBC and cos

θ

π+, so the PDFsused for thesetwo

vari-ables are directlymultiplied. Fig. 4 showsthe projections of the two-dimensional fit results in data. In the rightplot, we further require1

.

955

<

MBC

<

1

.

985 GeV

/

c2 to enrichsignal events.The fitreturns STρ+

=

210

±

50, and ySTηπ+π0

= −

13

±

56, which in-dicates that no significant non-resonant D+s

η



π

+

π

0 signal is

observed. Anupper limit of

B(

D+s

η



π

+

π

0

)

atthe 90%

confi-dencelevelisevaluatedto be5.1%,afteraprobability scan based on 2000 separate toy MC simulations, taking into account both

(7)

Fig. 5. MBCdistributions with the requirement of|cosθπ+| <0.5 (left) or|cosθπ+| >0.5 (right).

Table 3

Summaryofrelativesystematicuncertaintiesinpercent.Thetotaluncertaintyis takenasthesuminquadratureoftheindividualcontributions.

Source B(D+sηX) B(D+sηρ+) MDC track reconstruction 2.0 PID 2.0 3.0 π0detection 2.4 ηdetection 2.7 3.5 E requirement 1.0 1.4 M(ηπ π η)requirement 2.0 M(ηπ π η)backgrounds 1.5 Peaking backgrounds in ST 0.3 MBCsignal shape 1.0 0.6 MBCfit range 1.7 0.5 cosθπ+backgrounds 2.9 Uncertainty of efficiency 1.6 0.5

Quoted branching fractions 1.7 3.8

Total 5.3 7.5

thestatisticalandsystematicuncertainties.Asshownin

Fig. 5

,we seeobvious D+s signalsinthe MBC distribution withthe require-ment of

|

cos

θ

π+

|

>

0

.

5, while it is not the casewhen requiring

|

cos

θ

π+

|

<

0

.

5. This indicates that the three body process is not

significant.

We study the MBC distributions for events in

ρ

+ and

η



sidebands. The

ρ

+ sideband region is chosen as M

(

π

+

π

0

)

<

0

.

500 GeV

/

c2, and the

η

 sidebands are 0

.

915

<

M

(

η

π π η

)

<

0

.

925 GeV

/

c2 and0

.

990

<

M

(

η

π π η

)

<

1

.

000 GeV

/

c2. No D+s

sig-nalisvisibleinthesidebandevents,furthersubstantiatingthatthe non-resonantprocesses D+s

η



π

+

π

0 andD+

s

ηπ

+

π

ρ

+are

negligible.Asimulationstudyshowsthatthepotentialbackground contributionfrom

η



ρ

0

γ

isnegligible.

Thedetectionefficiency

ε

STηρ+ isestimatedtobe

(

9

.

80

±

0

.

04

)

%. Combinedwiththeresultsforthenormalizationmode K+K

π

+, asgivenin

Table 2

, weobtain fromEq.(5)theratioof

B(

D+s

η



ρ

+

)

relative to

B(

D+s

K+K

π

+

)

as 1

.

04

±

0

.

25. Taking the mostprecise measurement of

B(

D+s

K+K

π

+

)

= (

5

.

55

±

0

.

19

)

% from CLEO [11] as input, we obtain

B(

D+s

η



ρ

+

)

=

(

5

.

8

±

1

.

4

)

%.

3.3. Systematicuncertainties

In the measurement of

B(

D+s

η

X

)

,many uncertainties on theST side mostly cancelinthe efficiencyratios inEq.(4). Sim-ilarly, for D+s

η



ρ

+, the uncertainty in the tracking efficiency cancelsto anegligiblelevel bytakingtheratioto the normaliza-tionmode D+s

K+K

π

+ inEq.(5).The followingitems, sum-marizedin

Table 3

,aretakenintoaccountassourcesofsystematic uncertainty.

a. MDCtrackreconstructionefficiency. Thetrackreconstruction ef-ficiencyisstudiedusingacontrolsample ofD+

K

π

+

π

+

inthedatasampletakenat

s

=

3

.

773 GeV.Thedifferencein the trackreconstruction efficiencies between dataand MC is found to be 1.0%per charged pionandkaon.Therefore, 2.0% istakenasthesystematicuncertaintyoftheMDCtrack recon-structionefficiencyforD+s

η

X .

b. PIDefficiency. We study the PID efficiencies using the same control sampleasinthetrackreconstructionefficiencystudy. ThedifferenceinPIDefficienciesbetweendataandMCis de-termined to be 1.0% per charged pion or kaon. Hence, 2.0% (3.0%) is takenasthe systematic uncertaintyof the PID effi-ciencyforD+s

η

X (D+s

η



ρ

+).

c.

π

0and

η

detection. The

π

0 reconstruction efficiency,

includ-ing the photon detection efficiency, is studied using a con-trol sample of D0

K

π

+

π

0 in the data sample taken at

s

=

3

.

773 GeV. After weighting the systematic uncertainty inthemomentumspectraof

π

0,2.8%istakenasthe

system-aticuncertaintyforthe

π

0efficiencyinD+

s

η



ρ

+.Similarly,

the systematicuncertainty forthe

η

efficiencyin D+s

η

X

(D+s

η



ρ

+) is determined to be 2.7% (3.5%) by

assum-ingdata-MCdifferenceshavethesamemomentum-dependent valuesasfor

π

0 detection. Thesystematicuncertaintieswere

setconservativelyusingthecentralvalue ofthedata-MC dis-agreements plus 1.0(1.64) standarddeviations for

π

0 (

η

),as

appropriate fora 68% (95%)confidencelevel.Here we inflate the

η

uncertainty,becausetheuncertaintyofthe

η

detection isestimatedreferringto

π

0.

d.

E requirement. Differences in detector resolutions between

dataandMCmayleadtoadifferenceintheefficienciesofthe

E requirements.In ourstandardanalysisprocedure,we

ap-plydifferent

E requirements ondataandMC,toreducethe systematicuncertainties. To be conservative,we examine the relative changesoftheefficiencies byusingthesame

E

re-quirementsforMCasfordata.Weassignthesechanges,1.0% forD+s

η

X and1.4%forD+s

η



ρ

+,asthesystematic un-certaintiesonthe

E requirement.

e. M

(

η

π π η

)

requirement. In the right plot in Fig. 3, the resolu-tionofthe

η

peakinMCisnarrowerthandata.Wetakethe change in efficiency of 2.0%, after using a Gaussian function tocompensateforthisresolutiondifference,asthesystematic uncertaintyoftheM

(

η

π π η

)

requirementforD+s

η



ρ

+.

f. M

(

η

π π η

)

background contributions. In the measurement of

B(

D+s

η

X

)

, a two-dimensional fit is performed to the

MBC

(

ST

)

and M

(

η

π π η

)

distributions. The uncertainty due to

the description of the M

(

η

π π η

)

background contributions is estimated by repeating the fit with higher orderpolynomial functions. We take the maximum relative change of 1.5% in

Figure

Fig. 1. Fits to the M BC distributions for the ST D s candidates. In each plot, the points with error bars are data, the dashed curve is the background contribution and the solid line shows the total fit.
Fig. 2. Projections of the two-dimensional unbinned fit to DT events from data onto M BC (left) and M ( η π  + π − η ) (right).
Fig. 5. M BC distributions with the requirement of | cos θ π + | &lt; 0 . 5 (left) or | cos θ π + | &gt; 0

References

Related documents

historieundervisning. Klassisk historieundervisning var gällande ända fram till hälften av 1900-talet. Man kan säga att klassisk historieundervisning var

Consequently, the aim of this study is to identify whether the country context (Sweden, U.S. and England), where public space ETs and ICTs are used by older adults, or having

In the present study, when the participant teachers direct the students’ at- tention to metalinguistic knowledge as well as metacognitive reading strategies, I regard it as a

Precis som i ett tidigare samtal om algebra och multiplikation framstår lärarens, och i detta fall även elevernas, erfarenheter från att bo i andra länder som en resurs

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

The overall aim was to study periodontitis prevalence and severity in two Swedish adult populations, and to describe the changes over time. Further aims were to examine the effect

The term internationalization, which is a term used extensively in this paper, is discussed by Knight (2004) who argues that there isn’t a common understanding