• No results found

Comparing Different Approaches to Model Error Modeling in Robust Identification

N/A
N/A
Protected

Academic year: 2021

Share "Comparing Different Approaches to Model Error Modeling in Robust Identification"

Copied!
24
0
0

Loading.... (view fulltext now)

Full text

(1)

Identi cation

WolfgangReinelt #

,AndreaGarulli

andLennartLjung #

#

Department ofElectrical Engineering

Linkoping University, 58183Linkoping, Sweden

WWW:

http://www.control.isy.liu.se/

E-mail:

{wolle,ljung}@isy.liu.se

Dipartimentodi Ingegneriadell'Informazione

Universita di Siena,53100Siena,Italy

WWW:

http://www-dii.ing.unisi.it/~garulli/

E-mail:

garulli@ing.unisi.it

August2, 2000

REG

LERTEKNIK

AUTO

MATIC CONTR

OL

LINKÖPING

Reportno.: LiTH-ISY-R-2293

PreparedforJournal Publication

Technical reports from the Automatic Control group in Linkoping are available by

anony-mous ftp at the address

ftp.control.isy.liu.se

. This report is contained inthe portable

(2)

in Robust Identi cation

Wolfgang Reinelt #

,

,Andrea Garulli ##

andLennartLjung #

#

DepartmentofElectricalEngineering,

Linkoping University,58183 Linkoping,Sweden.

E-mail:

{wolle,ljung}@isy.liu.se

##

Dipartimentodi Ingegneriadell'Informazione,

Universita di Siena,53100Siena, Italy.

E-mail:

garulli@ing.unisi.it

Abstract

Identi cationforrobustcontrolmustdelivernotonlyanominalmodel,butalsoa

re-liableestimateoftheuncertaintyassociatedwiththemodel. Thispaperaddressesrecent

approachestorobustidenti cation, thatexplicitly aimatseparatingcontributionsfrom

thetwomainuncertaintysources: unmodeled dynamicsandnoisea ectingthedata. In

particular,thefollowing methodsareconsidered: non-stationaryStochasticEmbedding,

Model ErrorModeling based onprediction error methods,Set Membership

Identi ca-tion. Modelvalidationissuesarealsoaddressedintheproposedframework. Moreover,

itisshownhowthecomputationoftheminimumnoiseboundforwhichanominalmodel

isnotfalsi ed byi/odata,canbeusedasarationale forselectinganappropriatemodel

class in thesetmembershipsetting. For allmethods,uncertainty isevaluatedin terms

ofthefrequencyresponse,sothatitcanbehandledby

H∞

controltechniques. An exam-ple,whereanontrivialundermodelingisensuredbythepresenceofanonlinearityinthe

systemgeneratingthedata,ispresentedtocomparethedi erentmethods.

Keywords: identi cation for robust control, model error modeling, unmodeled dynamics,

modelvalidation,setmembershipestimation,stochasticembedding.

Preliminary versions of thiswork have been presented atthe1999 Conference on Decisionand Control,

Phoenix,AZ,USA[19]andtheIFACSymposiumSystemIdenti cationSYSID2000,SantaBarbara,CA,USA[6 ].

SupportedbytheEuropeanUnionwithintheEuropeanResearchNetworkinSystemIdenti cation(ERNSI)

(3)

Oneof themainobjectivesof control-orientedidenti cationistoestimatemodelsthatare

suitable for robust control design techniques. For this purpose, the identi cation

proce-duremustdelivernotonly anominalmodel,butalsoareliableestimateoftheuncertainty

associated tothe model. Di erent paradigms forthe description ofuncertainty have been

addressedintheliterature(seee.g.thespecialissues[13,20]andtherecentbook[7]). Two

main philosophies are basically adopted. The rst one is based on statistical assumptions

andusuallyleadstoleastsquares estimationtechniquesand predictionerror methods,see

[16]. The second one relies on deterministic hypotheses, such as the identi cation error

being unknown-but-bounded (UBB), and has givenrise to a numberof techniques usually

addressedasboundederrororsetmembershipidenti cation(see[18,17]andthereferences

therein).

In standard identi cation problems, the error originates from two di erent sources: a

\variance"term,duetonoisea ectingthedata,anda\bias"term,duetosystemdynamics

whichis notcaptured by the estimatednominalmodel (oftenaddressed alsoas the model

error). Clearly,thenatureofthesetwoerrortermsisquitedi erent: theformerisgenerally

uncorrelatedwiththeinputsignal(whenthedatais collectedinopenloop),whilethelatter

stronglydependsontheestimatednominalmodelandontheinputusedintheidenti cation

experiment. The model erroris notnegligible inmost practical situations,especiallythose

in which the order of the nominal model must be small (a typical requirement of robust

design techniques). Moreover, whileapriori informationon measurementnoise areoften

available,similarhypothesesontheunmodeleddynamicsseemtobelessrealistic.

This paperaddressesthreedi erent approachestorobustidenti cation: Stochastic

Em-bedding,Model ErrorModelingandSetMembershipIdenti cation. Eachofthemexplicitly

separatecontributionsfrom theabovetwoerror sources,thusprovidingareliableestimate

ofmodeluncertainty. The rsttwoapproacheshavebeendevelopedinthestatistical

frame-work,whilethelatterrelieson UBBerror assumptions.

StochasticEmbedding[12,10]isafrequencydomainmethodwhichassumesthat

unmod-eled dynamicscanberepresentedadequatelyby anon-stationary stochasticprocesswhose

varianceincreaseswithfrequency. Thenominalmodelisobtainedvialeast-squares

estima-tionfromfrequencydomaindata; therefore, harmonicinputsarerequired. Theuncertainty

associatedtothemodelis evaluatedfrom statisticalpropertiesoftherandomwalkprocess

describingtheunmodeleddynamics.

Model Error Modeling [14, 15] employs standard prediction error methods to identify

a nominal model from input-output time domain data [16]. Then, one can estimate the

unmodeleddynamicsbylookingatthatpartoftheidenti cationresidualthatoriginatesfrom

theinput. Identi cationofresidualdynamics(thatcanbeperformedusingagainprediction

error methods) provides theso called model errormodel. The con denceregionof model

(4)

SetMembershipIdenti cationprovideseÆcientalgorithmsforestimatingthesetof

fea-siblemodels,compatiblewiththeavailabledataandtheUBBerror assumption. Thechoice

ofthenominalmodelis usuallyperformedbyminimizingacostfunctionrelatedtothe

fea-sible set. The feasiblesetitselfgives the sizeof the uncertainty associatedto the nominal

model. Inthe rstworksonsetmembershipidenti cation(seethesurvey[25]andthe

ref-erencestherein)thecontributions fromunmodeleddynamics andnoisewerenotseparated

(which corresponds to assuming that the plant generating the data belongs to the

consid-eredmodelclass).Morerecently,thepresenceofmodelerrorshasbeenexplicitlyaccounted

for inseveral works and di erent settings (seee.g. [24, 9, 8]). In thispaper, modelerror

modelingconceptsareextendedtosetmembershipidenti cation,inordertoobtainafairly

generalstrategyforseparatingerrorcontributions.

Asitcanbeseenfromtheabovediscussion,quitedi erentapproachestorobust

identi- cationareprovidedbytheconsideredtechniques,themaindi erencesconcerningthetype

of data required, theselectedmodelclass, the assumptionson thenoise a ectingthe data

andthenominalmodelestimationcriteria. Themaincontributionofthepaperistotestthe

abovethreeapproachesonthesamesimulationsetting,inordertohighlighttheadvantages

ofeachmethodandtoprovide,aslongasitispossible,afaircomparisonoftheresults. The

mostimportantfeaturesofeachtechniqueareemphasized. In ordertoensurethepresence

ofanontrivialundermodeling,anonlinearityispresentinthetruesystemconsideredinthe

test example, and identi cationof a low order nominal model is required. Frequency

do-mainuncertaintyregionsareconsideredinordertoprovideadequatemodelsfor

H

control design.

The secondcontributionofthepaperistoprovideafrequencydomainmodelvalidation

tool forsetmembershipidenti cation. The basicidea is toevaluatethe minimumvalue of

theerrorbound,whichallowsonetovalidatetheestimatednominalmodel. Itisalsoshown

thatthisprovidesausefulrationalefortheselectionofanadequatemodelclass.

Paper outline: Section 2 brie yreviews the technique ofnon-stationary stochastic

embed-ding, while in Section3, modelerror modeling ideas aresummarized from aquite general

point of view. Section 4 introduces the concept of set membership identi cation,

embed-ded in a model error modeling setup, and discusses identi cation of both nominal model

and model error, modelvalidation and model classselection. Section 5reports a

compar-ative simulation example, which illustrates the main features of non-stationary stochastic

embedding and model error modeling, the latter using eitherprediction error methods or

theproposedsetmembershipidenti cationapproach. Bene ts andadvantagesofthethree

techniques are discussed. Finally, Section 6 gives some concluding remarks and suggests

(5)

ThebasicideabehindStochasticEmbeddingcanbedescribedasfollows. Thetruesystem

G

canbegivenas

G(iω) = ^

G

0

(iω) + ∆G(iω)

(1)

where

G

^

0

is a \nominal system" that can be exactly represented within a parameterized

family,and

∆G(iω)

isarandomvariableindependentof

^

G

0

. Noticethatthisisaturn-around oftheconventionalinterpretation,wherethenominal,estimatedmodel

^

G

0

(iω) = G(iω) + ∆G(iω)

is seen as the true system plus a model error

∆G

, that is independent of

G

. In contrast,

thetruesystemin(1)isarandomvariableas well,whichistherootoftheterm\stochastic

embedding". Now,supposethatwehavenoisyobservationsofthetruesystem

G

atcertain

frequencies:

^

^

G

k

= G(iω

k

) + ν

k

(2)

wherethenoiseterm

ν

k

isindependentof

G

and

∆G

. Then,combining(1)and(2),onehas

^

^

G

k

= ^

G

0

(iω

k

) + ν

k

+ ∆G(iω

k

).

(3)

Thisis thebasicestimationequation,thatneedstobecomplementedwitha

parameteriza-tion ofthe model

G

^

0

and assumptions about the variance of

ν

k

and

∆G(iω

k

)

. In [10]it is

suggestedtousealinearregressionparameterizationofthenominalmodelintermsofsome

orthonormal basis functions,i.e.

G

^

0

(θ) =

P

n

i=1

θ

i

B

i

, where

B := [B

1

, . . . , B

n

]

represents the selectedbasis and

θ

is thevectorofparameters. Moreover, themodelerror

∆G

is

parame-terized according tothe samebasis

B

and itis assumedthat the relativemodel error hasa variancethatincreaseslinearlyorquadraticallywith

ω

. Thismeansthat

∆G

canbewritten

as

B



θΛ

where

Λ

is a random walk process over

ω

(this argument being suppressed) and

θ

comesfrompriorknowledge. Allthisleadsto

G

=

G

^

0

(θ) + G

0

(

θ)Λ



(4)

=

Bθ + B

θΛ.



(5)

Theidenti cationprocedurethenconsistsofthreemainsteps:

1. Pointwiseleastsquaresestimationofthetransferfunctionforcertainfrequencies:

there-fore,theinput

u

hastobeasumofsinusoids. Thisstepdeliversthevalues

^

^

G

k

,for

cer-tainfrequencies. Additionally, statisticalproperties ofthe noise

v

are calculated(i.e.

anunbiasedestimateofitsvariance),assumingGaussiannoise.

(6)

3. Estimation ofthe parameter

θ

and therandomwalk process

Λ

in eqn.(5):

^

^

G

k

=

Bθ +

B

θΛ+ν



k

,basedonthefrequencyfunctionpointestimates

^

^

G

k

. Thisisusuallyperformed accordingtothefollowingprocedure:

(a) Estimationof

θ

(called

θ

^

),basedontheknowledgeof

^

^

G

k

. Thus,thenominalmodel

^

G

0

=

B^θ

ineqn.(4) is the leastsquares estimateapproximationof

^

^

G

k

inthe

sub-spacespannedbybasisfunctions

B

.

(b) Asmodelerrorparameterization 

θ

,theestimate

θ

^

ischosen(thisisatypicalchoice, whennoaprioriinformationonunmodeleddynamicsis available). Thus,eqn.(5)

becomes:

^

^

G

k

=

B^θ(1 + Λ) + ν

k

.

(c) Computationofanunbiasedestimateofthevarianceoftherandomwalk

Λ

,

basi-callyusing anunbiased estimate ofthe varianceofthe noise, see[10] forclosed

formexpressions and technicaldetails. Here,the randomwalkis amodel whose

varianceofthefrequencyresponseincreaseslinearlywithfrequencyuptoacertain

rollo .

(d) Quanti cation of the model error

B



θΛ

for any frequency, i.e. calculation of its statisticalproperties.

Avariantoftherandomwalkforresonant systems(integratedrandomwalk)isdescribedin

[2]: here, the error increases quadraticallywith the frequency, in order to produce tighter

error boundsat lowfrequenciesinthepresenceofresonant poles.

Step2containsthecrucialchoiceofthesetof(orthonormal)basisfunctions. Inthesimple

caseofaLaguerreexpansion,onecanemploytheminimizationoftheaveragemodelingerror,

as suggestedin[1, 2]. Atanyfrequency

ω

j

, the total modeling error is givenby

G

e

j

) :=

B(ω

j

)^

θ−G(ω

j

)

. Foraclosedformexpressionof

G

e

j

)

anditscovariance

Σ

e

j

)

,thereaderis

referredto[11 ]. Wenotethat,fordi erentchoicesofthepoleintheLaguerreexpansion,the

covariancematrixisafunctionoftheLaguerrepoleaswell:

Σ

e

j

) = Σ

e

j

, p

i

)

. Therfore,we

de netheaveragemodelingerror(overacertain nitefrequencygrid

)fora xedLaguerre

poleas

X

ω

j

∈Ω

trace

e

j

, p

i

))

(6)

The\optimal"Laguerrepole

p

i

istheonethatminimizesthemeanerror(6).

3 Model Error Modeling

Inthissection,thebasicideasofmodelerrormodelingaredescribed. Athoroughtreatment

of this approach is given in [15] , where prediction error methods are used to calculate

nominal model as well as error model. The idea described there, however, is muchmore

(7)

Let

(u

m

, y

m

)

beacollectionof i/o measurements and assumethata nominalmodel

G

n

ofthe systemthat generatedthedatahas beenestimated, accordingtosome identi cation

procedure. Then,themodelerror modelingstrategycanbesummarizedasfollows.

1. Computetheresidual

 = y

m

− G

n

u

m

.

2. Consider the \error" system, with input

u

m

and output



, and identify a model

G

e

for thissystem. This is an estimateof the error due toundermodeling, the so-called

modelerrormodel. Standardstatisticalpropertiesoftheestimatedmodelleadtothe

de nitionoftheuncertaintyregionofthemodelerror(e.g.,givenbythe99%con dence

regionoftheestimatedmodelerror

G

e

).

3. The uncertainty region of the nominal model is obtained by adding up the nominal

modelandtheuncertaintyregionofthemodelerror.

4. Model validation: the nominal model is not falsi ed if and only if it lies inside its

ownuncertaintyregionor,equivalently,ifand onlyif zerois anelementofthemodel

error uncertainty region. This can beeasily checked by lookingat the corresponding

uncertaintybandsintheBodeorNyquistplots.

Identi cationofthemodelerrorfromresidualdataprovidesaseparationbetweennoise

andunmodeleddynamics. Infact,

G

e

canbeseenasanestimateofthedynamicsystem

∆(

·)

(possiblynonlinear,time-varying,etc.), suchthat

 = ∆(u) + v

(7)

where

v

isthenoiseterm,whichis assumedtobeuncorrelatedwiththeinput

u

.

Afewobservationscanbemade.

The modelerror

G

e

must beselectedamong apre-speci edclassofmodels. Unfortu-nately,thereisnotastandardprocedureforselectingthestructureofthemodelerror.

Thisisratherbasedonaprioriknowledgeonthesystemgeneratingthedata,andonthe

purposesforwhichthemodeluncertaintyisestimated. Forexample,atypical

require-mentis thatunmodeled dynamicsis capturedat thosefrequencies thataresigni cant

forcontroldesignpurposes.

Thesizeoftheuncertaintyregionclearlydependsontheselectednominalmodel. When a severe undermodeling occurs (due for example to the fact that we are required to

delivera loworder nominalmodeltothe robust controldesigner), one cannotexpect

themodelerroruncertaintyregiontobesmallatallfrequencies,i.e. thenominalmodel

willbefalsi ed,whateverthestructureofthemodelerroris.

Afalsi ednominalmodelmaystillbeaccepted, provided thattherelateduncertainty bandissmallatfrequenciesofinterest.

In thispaper, wewill adopt the general classof linearmodels proposed in[16] and apply

(8)

4.1 BasicIdeasand connectiontoModel ErrorModeling

ThetermSetMembershipIdenti cationhasbeenusedinrecentyearstoindicateawide

va-rietyofrobustidenti cationtechniques,thatareabletohandlehardboundsonthe

identi -cationerror. Theapproachconsideredinthispaperistheonetakenin[8]. Inthefollowing,

wesummarizeits mainfeatures.

Assumethat themeasuredi/odataaregeneratedby asystem

S

0

,accordingto

y

m

= S

0

(u

m

) + v

where

S

0

belongs to a set

K

(the a priori information on the system) and the noise

v

is bounded in somenorm

Y

, i.e.

kvk

Y

≤ δ

, for given

δ > 0

. Then itis possible tode ne the feasiblesystemset

FSS =

{S ∈ K : ky

m

− S(u

m

)

k

Y

≤ δ}

(8)

which is the set of systems that are compatible with the measured data and the a priori

assumptions. The set

FSS

can be very complicated, depending on the structure of

K

and the norm

k · k

Y

. For example, if

K

is the classof LTI systems whose impulse response has anassignedexponentialdecayand noiseis

`

-bounded,then

FSS

isanin nitedimensional

polytope. Obviously,forreal-worldsystems,includingnonlinearitiesortime-varyingdrifts,

FSSmaybemuchmorecomplex.

Sincetheset

FSS

containsalltheinformationprovidedbydataandaprioriassumptions,

itisnaturaltoevaluatethequalityofanominalmodel

G

n

according toitsworst-caseerror

withrespecttoelementsof

FSS

. In otherwords,theidenti cationerrorassociatedto

G

n

is

givenby

E(G

n

) =

sup

S

∈FSS

kS − G

n

k

S

(9)

where

k · k

S

isasuitablenorminthesystemspace.

Inorder toidentifyanominalmodel,amodelclassmustbechosen.Acommon

require-ment is that the nominal modelmust be simple(low dimensional,linearly parameterized,

etc.). Hence,atypicalstructurefor

G

n

is

G

n

(q; θ) =

n

X

i=1

θ

i

B

i

(q)

(10)

wherethe

B

i

(q)

areuserde nedbasisfunctions,suchasFIR lters,LaguerreorKautz lters

[23],generalizedorthonormalbasisfunctions[22],etc. Ifwedenoteby

M

thesetof nom-inal models parameterized as in (10), the problem of selecting a model in

M

according to

(9)

optimalnominalmodelis givenbytheconditionalcentralestimate

G

n

=

arg inf

G

∈M

sup

S

∈FSS

kS − Gk

S

.

(11)

Since in most practical situation nding an exact solution of the min-maxoptimization

problem(11) isaprohibitivetask,suboptimal estimators areconsidered[5]. Inthispaper,

we will assume that noise is

`

-bounded (i.e.,

k · k

Y

= `

) and select as nominal model

G

n

(q, θ

r

)

,where

θ

r

=

arg inf

θ

IR

n

ky

m

n

X

i=1

θ

i

B

i

(q)u

m

k

.

(12)

This is known as restricted projection estimateand enjoys someniceproperties, including

thefactthatitdoesnotdependontheactualvalueofthenoisebound

δ

. Herethischoiceis

motivatedonly by computationalreasons,as

θ

r

canbeeasilycomputedby linear

program-ming;other moresophisticatedestimationalgorithmscanbechosenwithoutmodifyingthe

wholerobustidenti cationstrategy.

Whatever nominalmodel hasbeen identi ed, the actualsize of theunmodeled

dynam-ics can be evaluated from available data by exploiting the Model Error Modeling concept

described in Section3. The identi cationof the error system(7) canbeperformed viaset

membership identi cationalgorithms, exploiting the noisebound on

v

. If the structure of

themodelerrormodelischosenas

G

e

(q;

θ) =

 

n

X

i=1



θ

i

B



i

(q)

(13)

thefeasiblesetforthemodelerrorparametersisgivenby

FES =

{

θ



IR 

n

:

k −



n

X

i=1



θ

i

B



i

(q)u

m

k

Y

≤ δ}.

(14)

Then,onemayselecttheworst-caseoptimalerrormodelbycomputingtheChebishevcenter

of

FES



θ

=

arg inf 

θ

IR 

n

sup ~

θ

∈FES

k

θ −

~

θ



k

(15)

where

k · k

denotestheEuclideannorm(ofcourse,othernorms canbechosen).

As for (11), problem (15) maybe computationally infeasible, and suboptimal solutions

are sought. For example, since for

`

-bounded noise

FES

is a polytope in IR 

n

, it can be

recursivelyapproximatedbysimplerregions,likeellipsoidsorparallelotopes[4,3],andthe

centeroftheseapproximatingsetsmaybechosenasanestimateof 

θ

.

If robust identi cationis orientedto

H

control,anuncertainty bandassociatedtothe nominalmodelfrequencyresponsemustbedeliveredtothecontroldesigner. Inthis

(10)

theset

FES

ontothecomplexplaneforeachfrequencyofinterest. Thisleadstothefrequency

domainuncertaintyset

V(FES) =

[

ω

V

ω

(FES)

where

V

ω

(FES) =

{z ∈

Cl

: z = A

ω



θ,

θ



∈ FES}

(16) and

A

ω

= [



B

1

(e

) . . .

B

 

n

(e

)]

Cl

1

×

n



. Once again, the computation of

V(FES)

may be a formidabletaskiftheexact

FES

de nedby(14)isconsidered. Hence,setapproximationsare

usefulalsointhisrespect. Exampleoftheresultingplotsfornominalmodelandmodelerror

willbeshown inSection5.

The overallsetmembershipidenti cationstrategycanbesummarizedasfollows.

1. Identify the nominal model

G

n

(q; θ)

, using conditional estimators (12) based on the

feasiblesystemset(8).

2. Computetheresidual

 = y

m

− G

n

(q; θ)u

m

.

3. Selectamodelerrorstructure,choosethenoisebound

δ

andcompute(orapproximate)

thefeasiblemodelerror set(14).

4. Identifyanominalmodelerror

G

e

(q;



θ)

,usingoptimalorsuboptimalestimators based on

FES

.

5. Mapthe nominalmodelplusthe modelerror and its uncertaintyregiononto the

fre-quencydomain.

Remark. The use of residual data in set membership identi cation for evaluating the

worst-case

H

norm ofthe unmodeled dynamics has beenintroduced in[9], for standard least-squares nominal models. The above set membership model error modeling strategy

canbeseenasageneralframeworkinwhichthestructuresofthenominalanderrormodels,

andthecorrespondingidenti cationalgorithmsmustbechosenbytheuseraccordingtothe

speci cproblem(a prioriknowledge,noisebound,error norm,etc.).

Inthenextsubsection,itwillbeshownhowitispossibletoexploittheaboveframework

toobtainareliable measureofthe sizeof theunmodeled dynamics. This will alsoprovide

usefulinformationabout theselectionofthenominalmodelclass.

4.2 Model Validationand ModelClass Selection

Lift this to a seperate section (WR+AG)?

In the Set Membership procedure previously described, a key parameter is the noise

(11)

Hence,

δ

canbeusedasatuningparameter,inordertoevaluatethe\distancetovalidation"

oftheselectednominalmodel.

Letusconsidertheset

V

ω

(FES)

in(16)andde ne

d(ω) =

min

z

∈V

ω

(FES)

|z|.

(17) Ifweset

d =

sup

ω

d(ω)

(18)

thenitisclearthatthenominalmodelcanbedeemedtobeunfalsi edif

d = 0

. Ifellipsoidal

approximationsof

FES

areconsidered,thesets

V

ω

(FES)

areellipsesinthecomplexplaneand theoptimizationproblem(17) canbeeasilysolved. Then,

d

in(18) canbeapproximatedby

takingthemaximumovera nitenumberoffrequenciesintherangeofinterest.

Itisworthobservingthat

d

isafunctionof

δ

,since

FES

(anditsfrequencyimage

V

ω

(FES)

) dependon the noisebound. Then,one canlook forthe minimumvalue of

δ

for whichthe

nominalmodelisstillnotfalsi edbydata,i.e.

δ

=

min

{δ: d=0}

δ.

(19)

Since

d

is anincreasingfunctionof

δ

, thecomputationof

δ

canbeeasilyperformed within

thedesiredprecision, usingastandardbisection on

δ

. Obviously,

δ

willnotbelargerthan

thevalueofthenormgivenineqn.(12),whichistheminimumnoisebound forthenominal

modelwhenusingnomodelerror model.

Itisbelievedthatthequantity

δ

isimportantinseveralrespects. Inparticular,itallows

one to deliver the smallest frequency domain uncertainty region associated to the model

error model, which does not falsify the nominal model. This meets a typical requirement

ofthecontroldesigner: the\tightest"uncertaintybandaroundthenominalmodel,without

contradictingtheinformationgivenbydata. Clearly,

δ

dependsonthemodelclassselected

for identi cationof the model error model: the\richer" thisclass, thesmaller

δ

. On the

otherhand,atoosimplemodelclassmayresultinalargevalueof

δ

,whichwouldcontradict

the a priori assumptionon the noise size. Hence,

δ

can be usedto \validate" either the

noiseboundor themodelerrormodelclass,accordingtotheavailableaprioriinformation.

Ifareliableaprioriestimate

^

δ

ofthenoisesizeis available,themodelclassformodelerror

identi cationshouldbechosensothat

δ

turnouttobeascloseaspossibleto

^

δ

. Conversely,

ifthemodelerrormodelclassissuggestedbyaprioriinformationaboutthesystemdynamics,

δ

providesavalidationtoolforthenoisebound(forexample,if

δ

ismuchsmallerthanthe

aprioribound,one mayconcludethatthelatterwasoverestimated).

Anotherusefulpropertyof

δ

isthatitgivesarationaleforselectinganappropriatemodel

classfornominalmodelidenti cation. Letusdenoteby

p

avectorofparametersthatde ne

a model class for

G

n

(for example, the numberand/or the pole locations of the family of

(12)

modelandmodelerrormodelassuggestedinSection4.1,andcompute

δ

(p)

. Then,atleast

inprinciple,onecanchoose theoptimal modelstructurebysolving

inf

p

δ

(p).

(20)

In practice, the optimization in (20) canbe performed over a nite set

P = {p

1

. . . p

m

}

(see theexampleinthenextsection,where

p

isthepoleofaLaguerreexpansionof xedorder).

5 Simulation Example 5.1 ExperimentalSetup

Gnom

u

zg

zsat

zf

F

y

noise

Figure1: Theexperimentalsetup: Alinearsystem

G

nom

inparallelwithalinearFilter

F

and

asaturationnonlinearity. Theoutputsignal

y

iscorruptedbynoise.

ConsidertheexperimentalsetupasshowninFig.1. Itscoreconsistsofthefollowing fth

orderlinearsystem

G

nom

(s) =

24.15(s + 1)

0.012s

5

+ 0.25s

4

+ 1.80s

3

+ 5.86s

2

+ 7.33s + 1

.

Its dynamics are perturbed by a nonlinearity in the medium frequency range. This is due

toa parallelconnectionwith alinear secondorder lter

F(s) =

2s

0.1s

2

+s+0.09

and a saturation nonlinearity, that saturates at level

l = 1.2

. According to theamplitude curve ofthe lter,

whichisgiveninFig.2,thenonlinearitywillbe\active"inthefrequencyrange

ω = [0.1; 10]

,

dependentontheamplitudeoftheinputsignal. Thesystemwillbehavelinearly,whenthe

outputofthe lter

z

f

issmallerthan

1.2

inamplitude;then

y = z

g

+ z

sat

= (G

nom

+ F)u

holds.

In order to be able to apply Stochastic Embedding, the input signal we use is a linear

combination of

53

sinusoids(thecontainedfrequencies aremarkedas crossesinFig. 4). We

use a sampletime of

T

s

= 0.04s

and

3000

samples. We will use four di erent data sets to

examinethebehaviorofthelinearidenti cationmethodstothisnonlinear plant,whichare

(13)

10

−2

10

−1

10

0

10

1

10

2

10

−1

10

0

10

1

Amplitude

Amplitude, Filter F

Figure2: Amplitudeplotofthesecondorder linear lter

F

.

0

20

40

60

80

100

120

−10

−5

0

5

10

input u

0

20

40

60

80

100

120

−40

−20

0

20

40

noisy output y

0

20

40

60

80

100

120

−2

−1

0

1

2

noise

time/s

0

20

40

60

80

100

120

−15

−10

−5

0

5

10

15

filter output z

f

0

20

40

60

80

100

120

−1

−0.5

0

0.5

1

sat output z

sat

time/s

Figure3: Selectedsignalsfromdataset3. Left: Testinput

u

,noisyoutput

y

andoutputerror

noise(top-down). Right: Outputofthe lter

F

,

z

f

,and ofthesaturationnonlinearity,

z

sat

.

Dataset excitationofsaturation inputlevel( rsthalf) inputlevel(sec.half)

1 none(linearbehavior)

1

1

2 low

1

2

3 medium

1

6

4 high

10

10

Experiments1 and4excitethesystemwith aninputsignal asdescribed abovewithan

am-plitude of about

1

and

10

respectively. These input signalswill lead toan either linear or

completelynonlinearbehavior. Experiments2and3switchfromalowamplitudeinput

sig-naltoahigherone. Wenote thattheresultsobtainedlateron willnotchangesigni cantly

when switching form a higher to a lower amplitude. For experiment 3, these signals are

reportedinFig.3.

(14)

corre-10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

Amplitude

Spectral analysis of Noiseless Data: D1 (k−), D2 (b:), D3 (g−.), D4 (r−−)

Frequency, Excited frequencies (kx)

10

−2

10

−1

10

0

10

1

10

2

10

−1

10

0

10

1

10

2

Amplitude

Spectral Analysis of Noiseless Data (E1, −); and linear model (−−)

Frequency, Excited frequencies (kx)

Figure4: Left: Spectralanalysis(employingasmallsmoothingwindow)ofthefournoiseless

datasets: dataset1(solid),dataset2(dotted),dataset3(dash-dotted)anddataset4(dashed).

Thecrossesonthefrequencyaxismarkthose53frequencies,containedinthemulti-sinusoid

inputsignal. Right: Bodeplotofthelinear\mode"

G

nom

+ F

(dashed)incomparisontothe

spectralanalysisofdataset1(solid).

sponding inputsignal

u

. The resultis depictedinFig. 4 (left), togetherwith theBode plot

of the linear system

G + F

, which will be \the true plant" for low input level (right). All

frequency pro les are quite similarfor low frequencies, while they are signi cantly

di er-ent at higher frequencies. Clearly,the frequency measurements obtained inthis case may

changefor di erent inputsignals, especiallyforaninputsignal with acompletely di erent

powerspectrum. Nevertheless,wekeeptheobtainedfrequencypro lesasareferenceinthe

comparisonofthedi erentmethods,forthespeci cinputsselected.

Add something about 2nd moment equivalent (LL)

Additionally, theoutput is corruptedby noise, whichis alsoshown in Fig.3 (left). The

noiseisanormallydistributedonewithvariance

0.0102

,addedtoascaledversion(toa

max-imum amplitudeof about

1.4

) ofthe

200Hz

signal registered during theLomaPrieta

earth-quakeintheSantaCruzMountainsinOctober1989(whichhasbeenmeasuredattheCharles

F.RichterSeismologicalLaboratoryandmadebeenavailablebyTheMathWorksInc.). This

noisesignal hasbeen choseninorder toavoid usageof standardstationary stochastic

pro-cessesor boundaryvisitingsignalsasnoisemodels.

Inthefollowing,datasets1-4willbeusedforidenti cationpurposes. Di erentdatasets

(obtainedbyaddingadi erentoutputnoise)willbeemployedinthemodelvalidationstep,

for those methods that allow an explicit validation procedure (i.e. Model Error Modeling

andSetMembershipIdenti cation).

Thegoaloftheidenti cationexperimentsistoobtainanominalmodelofordernotlarger

(15)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

pole location p

average modeling error SigmaGbar

Figure 5: NSSE: Laguerre pole vs. mean error over all frequencies, in order to choose the

\optimal"Laguerrepole,thatguaranteesminimumerror. Result isbasedondataset4.

sizeforrobustcontrollerdesignusing standard

H

methods.

5.2 Identi cation via Non-Stationary StochasticEmbedding

The rst stepwithin non-stationarystochasticembedding is the estimation ofthe transfer

functionatthosefrequenciescontainedintheinputsignal. Thesecondstepisthenthe

esti-mationofthenominalmodel,basedonthesetransferfunctionpointestimates. Byproblem

de nitionwearerestrictedtomodels oforder

4

,thus wechoose suchaLaguerreexpansion

forouridenti cation. Inordertoobtaincomparableresults,weuseacon dencelevelof

99

%

hereaswellasforthepredictionerrormethodsintheModelErrorModelingapproach. We

remark, however, that theshape of the uncertainty band does not change paramountly at

lowandmediumfrequencies,whendecreasingthecon dencelevel. Moreover,preliminary

testrunsshowthattheintegratedrandomwalkwillproduceuncertaintybandsthatarequite

tightforlowerfrequenciesanduselesslargeforhigherfrequencies,whereastherandomwalk

(increasing linearly with frequency)produces reasonableuncertainty bands. Therefore, we

conclude that thesystemdoes not containimportant resonances, and continuewith

error-propagationbyrandomwalkstrategy. WeareleftwiththechoiceofthepoleintheLaguerre

basis. Therefore, weemploythe minimizationofthe average modeling error,as suggested

inSec.2. A typicalplotof meanerror vs. polelocationfor xedorder is reportedinFig. 5

(dataset 4).

Choosing pole for the Laguerre expansion to

p = −0.2895

(dataset1,2) and

p = −0.5737

(dataset 3,4)respectively, leastsquares estimation ofthe nominalmodel and error

propa-gationleadstotheresults asdepictedinFig. 6. Note, thatchoiceoferror propagation and

con denceleveldonotin uencethenominalmodel. Inallfourcases,theuncertaintyband

(16)

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

For Comparison: Spectral analysis of Dataset (b−−)

Frequency

Magnitude

Estimated model

Point Estimate

99.99% conf. cloud, random walk

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

For Comparison: Spectral analysis of Dataset (b−−)

Frequency

Magnitude

Estimated model

Point Estimate

99.99% conf. cloud, random walk

Figure 6: NSSE: Identi cation based on datasets 3 (left) and 4 (right) respectively. Both

approachesusea

4th

orderLaguerreexpansionwithpolelocatedat

p = −0.5737

andrandom

walkaserrorpropagation. The

99

%con dencecloudsaredrawn(shaded),aswellastransfer

functionpointestimates(crosses), estimatednominalmodel(solid)andspectralanalysisof

noiselessdata(dashed).

5.3 Identi cation via Prediction ErrorMethods

WeestimateanOutputErrormodeloforder

4

asnominalmodelusingpredictionerror

meth-ods. The result fordataset1,togetherwiththestandardresidualtest,isreportedinFig.7.

The realplantis clearlynotinthe con denceregion,whichis rathersmalldue tothelarge

amountofdata(3000samples) usedhere. Moreover,the modeldoesnot seemtopass the

classicalresidualtest. A similarstatementholds for the remaining threedatasets. Hence,

weareinneed ofmore detailed informationabout the accuracyof the identi ed

4rth

oder

OE model. Basedon theobtained nominalmodel, wethereforeproceed withestimationof

anerrormodelbasedontheresidualdata(calculatedfromthevalidationdataset). Acrucial

stepistochoosethestructureoftheerror model,sothatthenominalmodelisnotfalsi ed

byitsownerrormodel,i.e.zerohastobeinsidethe,say99%,con denceregionoftheerror

model.

Wechooseaerror modeloftheform

A(q)(t) =

B(q)

F(q)

u(t − n

k

) +

C(q)

D(q)

v(t)

withpolynomialorders

n

A

= 1, n

B

= 9, n

C

= n

D

= 5, n

F

= 10

anddelay

n

k

= 1

forvalidation

dataset1. TheresultisreportedinFig.8(left). Themodelerrormodelvalidatesthenominal

model,atthepriceofalargercon denceregion(comparedtotheoneinFig.7).

Wefollowthesamereasoningforvalidationdataset4. Aswefacenon-trivial

(17)

straight-10

−2

10

−1

10

0

10

1

10

2

10

−1

10

0

10

1

10

2

Amplitude

Nominal plant (b−) and Real plant (r−−)

0

5

10

15

20

25

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Correlation function of residuals. Output validation noise data

lag

−25

−20

−15

−10

−5

0

5

10

15

20

25

−0.2

−0.1

0

0.1

0.2

0.3

Cross corr. function between input Sum of 53 sinusoids and residuals from output validation noise data

lag

Figure7: PEM: Left:

4rth

order outputerror model, using dataset1for identi cation. The

99

% con denceregionis givenas well(shaded). Right: Correlation functionoftheresiduals (upperplot) andcross-correlationfunction(lowerplot) usingthevalidation dataset.

forward how to choose order and structure of the model error model in order to validate

the nominal model. After several trials, we used an error model with polynomial orders

n

A

= 4, n

B

= 9, n

C

= n

D

= 5, = n

F

= 10

and delay

n

k

= 1

, whichdoes not verify the

nomi-nalmodel,butgives betterinformationonthefrequencyrangewheretheerror occurs. The

result isreportedinFig.8(right).

5.4 Identi cation via SetMembershipEstimation

Toobtaina

4rth

ordernominalmodelweusea

4rth

orderLaguerreexpansion. Thepolesof

theLaguerreexpansionarechosenaccordingtothestrategysuggestedinSection4.2. Hence

we will use the hard bound on the noise as additional tuning parameter for the selection

ofthe modelclass. A typicalpictureof Laguerrepole locationvs.minimum, non-falsifying

noisebound isreportedinFig.9.

Using dataset 1,3 and 2,4, weend up with a Laguerre pole at

p = 0.97

and

p = 0.98

re-spectively. Duetotheincreasingamountofnonlinearity,theminimum,non-falsifyingerror

bounds increaseby

δ = 0.70, 0.83, 1.29, 2.63

fordatasets 1-4 respectively. These \identi ed"

noiseboundsfordatasets1-3coincidequitewellwiththesizeoftheactualnoiseofabout

1

,

asgiveninFig.3. Clearly,thehighervaluefordataset4isdue toasigni cantcontribution

fromthenonlinearity.

In order toobtainafrequencydomainuncertaintyrepresentation,we followthe

proce-duresuggestedinSection4.2. Toreducethecomputationalburden,weapproximatetheFES

in(14) via ellipsoids[4]. Fig. 10 reports the nal result for datasets1 and 4. Weobserve,

(18)

10

0

10

1

10

2

10

−1

10

0

10

1

Nominal plant (b−) and Real plant (r−−)

Magnitude

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Model Error Model With Uncertainty Region

Frequency

Magnitude

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

Nominal plant (b−) and Spectral analysis (r−.)

Magnitude

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Model Error Model With Uncertainty Region

Frequency

Magnitude

Figure8: PEM:Left:

4rth

orderoutputerrormodel,usingdataset1foridenti cation. Model

errormodelingwitha

(1,9,5,5,10,1)

-errormodelusingvalidationdataset1. Therealplant

is shown as well(dashed). Right:

4rth

order output error model, using dataset4 for

iden-ti cation. Model error modeling with a

(4,9,1,1,11,2)

-errormodel using validation data

set4. Upperplots: nominalmodel(solid)alongwithuncertaintyregion(shaded) and

spec-tralanalysis ofnoiseless data(dashed). Lowerplots: modelerror modelswith uncertainty

regions.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0.6

0.8

1

1.2

1.4

1.6

Laguerre pole

minimum noise bound for model error

Figure9: SMI:LocationofLaguerrepoleversusminimum,non-falsifyingnoisebound ofthe

(19)

10

−2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Frequency

Magnitude

Nominal plant (b−) and Real plant (r−−)

10

−2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Frequency

Magnitude

Model error model (b−) with uncertainty region

10

−2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Frequency

Magnitude

Nominal plant (b−) and Spectral analysis (r−.)

10

−2

10

−1

10

0

10

1

10

2

10

−4

10

−2

10

0

10

2

Frequency

Magnitude

Model error model (b−) with uncertainty region

Figure10: SMI:Fordatasets1(left)and4(right): Theupperplotshowsrestrictedprojection

estimate (solid) insidethe unfalsi eduncertainty region(shaded) compared to linearplant

(left plot) and spectral analysis of noiseless data (right plot) respectively. The lower plots

showthemodelerror modelinsideits unfalsi eduncertaintyregion.

ranges. Moreover,theuncertaintybandisreasonablysmallandincludesthefrequency

pro- lesprovided byspectralanalysis.

5.5

Why the comparison in the next subsection?

(LL)

5.6 Comparison

Thesystemgeneratingthedata(seeFig.1)containsasaturation,whichisanoddstatic

non-linearitywithagainvaryingbetween

0

and

1

. Wethereforecomparetheuncertaintyregions,

deliveredby identi cation with the magnitudeenvelope given by

G

nom

and

(G

nom

+ F)

as

lowerand upperbound respectively. For easeofnotation,wewillrefertothelatterregion

as the \true uncertainty region". Figures 11and 12report the results fordatasets 2 and 4

respectively. The identi ed uncertainty regions should cover parts of the true uncertainty

region,obviouslydependedoftheexcitationofthenonlinearitybytheinputsignal.

Weobserve,thatforbothdatasetstheuncertaintysetproducedbypredictionerror

meth-odsis misleadinglytight,becauseof alarge amountof data(

1500

samples). Moreover, the

nominalmodelisfalsi edforthemediumfrequencyrangefordataset4,seeFig.8.

Moreover, we note that for dataset 4, Fig. 12, preferably the \lower part" of the true

uncertainty region is captured by all methods. This is clear due to the lower gain of the

(20)

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

Bode Magnitude: nominal model (r−) and G

nom

, G

nom

+F (b−−)

Frequency

Magnitude

Estimated model

Point Estimate

99.99% conf. cloud, random walk

10

−2

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

Bode Magnitude: nominal model (b−) and G

nom

,G

nom

+F (b−−)

Magnitude

Frequency

10

−2

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

Frequency

Magnitude

Bode Magnitude: nominal model (b−) and G

nom

,G

nom

+F (b−−)

Figure11: Dataset 2: Nominalmodel(solid)anduncertaintyregion(shaded) incomparison

totheamplitudesof

(G

nom

+

1

2

F)

±

1

2

F

(dashed). FromlefttorightforNSSE(continuoustime), MEMandSMI(discretetime).

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

Bode Magnitude: nominal model (r−) and G

nom

,G

nom

+F (b−−)

Frequency

Magnitude

Estimated model

Point Estimate

99.99% conf. cloud, random walk

10

−2

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

Bode Magnitude: nominal model (b−) and G

nom

,G

nom

+F (b−−)

Magnitude

Frequency

10

−2

10

−1

10

0

10

1

10

2

10

−2

10

−1

10

0

10

1

10

2

Frequency

Magnitude

Bode Magnitude: nominal model (b−) and G

nom

,G

nom

+F (b−−)

Figure12: Dataset 4: Nominalmodel(solid)anduncertaintyregion(shaded) incomparison

totheamplitudesof

(G

nom

+

1

2

F)

±

1

2

F

(dashed). FromlefttorightforNSSE(continuoustime), MEMandSMI(discretetime).

(21)

Our comparison addresses three di erent approaches to robust identi cation: Stochastic

Embedding, Model Error Modeling and Set Membership Identi cation. The rst two

ap-proaches have been developed in the statisticalframework, while the latter relies on UBB

errorassumptions. Duetothedi erentnatureofthethreemethods,anoverallcomparison

mightbecomeunfairat acertainstage. Duetorestrictionsonharmonicinputsignal for

ex-ample,onemight notalwaysbeabletoapplyStochasticEmbeddingtoagivendataset. We

thereforeconcentrateourselves onhighlighting themostimportant propertiesand bene ts

ofeachmethod.

Model Error Modeling and Set Membership Identi cation allow an explicit validation

step (on freshvalidation data). Asno furtherknowledge than the nominali/o behavior is

needed,theseframeworksalsoallowvalidationofanalreadyexistingmodelfortheprocess.

Evenwhen invalidated, valuable information on the underlying error canbe obtained, for

instanceinwhichfrequencyrangethemodelissuÆcientlyreliable.

Incontrast,StochasticEmbeddingallowsthechoicebetweendi erentrandomwalk

mod-els(thevariancemayincreaseindi erentwayswithfrequency)toperformtheerror

propa-gation. Althoughthisisnoexplicitvalidationstep,itisaquitereasonableconcepttoproduce

reliablecon denceregions.

The Model Error Modeling setup enjoys exibility in the choiceof the structure of the

nominal model, to end up with for instance OE or ARX models. In contrast, Stochastic

Embeddingand the presentedSetMembership Identi cationare(thelatteratleastinthis

context)tiedtoaparameterizationoforthonormalbasisfunctions. Bothschemes,however,

comealongwitharationaleforchoiceofthepoleinaLaguerreexpansion. Itisworthtonote

that both end up with basicallythe samerecommendation(in our caseat

s = −0.29, −0.57

,

correspondingto

z = 0.98, 0.97

indiscretetime).

Aremainingprobleminthemodelerrormodelingapproachisthecorrectorderand

struc-tureselectionofthemodelerrormodel,whichisingeneralnotstraightforward. This

prob-lemhasalsobeenreportedin[21],wheretheauthorssuggestanadaptiveandnonparametric

frequency-domainmethodthatestimatesthefrequencyresponseofthemodelerrorandalso

allowslocaltuningindi erentfrequencybands.

We observe, that all methods deliver an estimated nominal model, along with an

un-certaintyregion,whichis certainlysuitedforrobustcontroller design,forinstanceusingan

H

mixedsensitivity approach, based on the estimateduncertainty band in thefrequency domain.

6 Conclusions and Future Works

Wecomparedidenti cationmethods,workinginthetimeandfrequencydomainand

(22)

dependon the apriori knowledge (for example,if harmonicinput signalsare possibleor a

prioriinformationonthe noiseamplitudeor statistics areavailable). However,weshowed

themain features ofthemethods andobtainedreliablenominalmodels andacceptable

re-lateduncertaintiesinallthreecases.

Some ‘‘nonlinear’’ comments (LL)

Moreover, theideasof modelerror modeling andtheirapplicationinthecontextofset

membership identi cation have been analyzed. In particular, it has been shown that the

separationofnoiseandunmodeleddynamicsisquitenaturalinthisframework,andthatthe

minimumnoisebound forwhicha nominalmodel is notfalsi ed by the data canbeeasily

computedand usedasatoolformodelclassselection.

Complementaryworkhasstilltobedone,inseveraldirections. Forexample,more

com-plicatedmodelerrormodelstructuresareneeded,tocopewithnonlinearitiesortime-varying

drifts. Obviously,thisrequiresmoresophisticatedidenti cationalgorithmsandsmarter

ap-proximationsinthecomputationoftheuncertaintyregions. Moreover,accuratecriteriafor

the a priori selectionof the structureof the model error model, depending on the speci c

control-orientedidenti cationproblem,must stillbeinvestigated.

References

[1] J. H. Braslavsky. Model error quanti cation via non-stationary stochastic

embed-ding: Hairdryer example. CIDAC, Dept of Electrical Engineering, Univ of Newcastle,

Callaghan,Australia.ManualforNSSE-package,Mar.1999.

[2] J.H. Braslavskyand G. C.Goodwin. A noteon non-stationarystochasticembedding

for modelling error quanti cation in the estimation of resonant systems. Technical

Report EE99014,CIDAC,DeptofElectricalEngineering,UnivofNewcastle,Callaghan,

Australia,Jan.1999.

[3] L. Chisci,A.Garulli, A.Vicino, andG. Zappa. Blockrecursiveparallelotopicbounding

insetmembershipidenti cation. Automatica,34:15{22,1998.

[4] E.FogelandF.Huang. Onthevalueofinformationinsystemidenti cation{bounded

noisecase. Automatica,18(12):229{238,Dec.1982.

[5] A. Garulli, B. Z. Kacewicz, A. Vicino, and G. Zappa. Error bounds for conditional

al-gorithmsinrestrictedcomplexitysetmembershipidenti cation. IEEETrans.on

(23)

Proc.oftheSystemIdenti cationSymposiumSYSID,pagesWeMD1{3,SantaBarbara,

CA,USA,June2000.

[7] A. Garulli, A. Tesi, and A. Vicino, editors. Robustnessin Identi cation and Control.

Number 245 in Lecture Notes in Control and Information Sciences. Springer-Verlag,

1999.

[8] A. Garulli,A. Vicino, andG. Zappa. Conditionalcentralalgorithmsfor worst-caseset

membershipidenti cationand ltering. IEEE Trans.onAutomaticControl,Jan.2000.

[9] L.Giarre, M.Milanese,andM.Taragna.

H

identi cationandmodelquality evalua-tion. IEEE Trans.onAutomatic Control,42(2):188{199,1997.

[10] G.C.Goodwin. Identi cationandrobustcontrol: Bridgingthegap. InProc.ofthe7th

IEEE MediterranianConferenceonControland Automation,Haifa,Israel,June1999.

[11] G.C.Goodwin,J.H.Braslavsky,andM.M.Seron. Non-stationarystochastic

embed-dingfortransferfunctionestimation.InProc.ofthe14thIFACWorldCongress,Bejing,

China,July1999.

[12] G.C.Goodwin,M.Gevers,andB.Ninness.Quantifyingtheerrorinestimatedtransfer

functionswithapplicationtomodelorderselection.IEEETrans.onAutomaticControl,

37(7):913{928,July1992.

[13] R.L.Kosut,G.C.Goodwin,andM.P.Polis. Specialissueon systemidenti cationfor

robustcontroldesign. IEEETrans.onAutomaticControl,37(7),July1992.

[14] L. Ljung. Comments on model validation as set membership identi cation. In

A. Garulli, A. Tesi, and A. Vicino, editors, Robustness in Identi cation and Control,

pages7{16.Springer,1999.

[15] L. Ljung. Model validation and modelerror modeling. In Proc. of the 

Astrom

Sym-posium on Control, pages 15{42, Lund, Sweden, Aug. 1999. Studentliteratur, Lund,

Sweden.

[16] L.Ljung.SystemIdenti cation{TheoryFortheUser.PTRPrenticeHall,UpperSaddle

River,N.J.,2nd edition,1999.

[17] M. Milanese, J.P. Norton, H. Piet-Lahanier, and E. Walter, editors. Bounding

Ap-proachestoSystemIdenti cation. PlenumPress,NewYork,1996.

[18] M.Milaneseand A.Vicino. Optimalestimationtheory fordynamicsystemswith

(24)

in identi cation for control. In Proc. of the 38th IEEE Conference on Decision and

Control,pages1488{1493,Phoenix,AZ,USA,Dec.1999.

[20] T.Soderstr om and K.J. 

Astrom. Specialissueon trendsinsystemidenti cation.

Au-tomatica,31(17),Dec.1995.

[21] A. Stenman and F.Tjarnstr om. A nonparametric approach to model error modeling.

InProc oftheIFAC Symposiumon SystemIdenti cationSYSID,Jun2000. Accepted.

[22] P. M. J. Van den Hof, P. S. C. Heuberger, and J. Bokor. Systemidenti cation with

generalizedorthonormalbasisfunctions. Automatica,31(12):1821{1834,1995.

[23] B.Wahlberg. Systemidenti cationusingLaguerremodels. IEEE Trans.on Automatic

Control,39:1276{1282,1991.

[24] B. Wahlberg and L. Ljung. Hard frequency-domain model error bounds from

least-squares like identi cationtechniques. IEEE Trans. on Automatic Control, 37(7):900{

912,1992.

[25] E.WalterandH.Piet-Lahanier. Estimationofparameterboundsfrombounded-error

References

Related documents

Thus, provided that the observer and the control error can be bounded and shown to lie in sufficiently ”small” sets, it is possible to find an admissible control sequence ¯ u and ¯

Tryck på den lilla vita pilen i Program FPGA knappen för att köra alla nivåer upp till Program FPGA med inkluderad nedladdning till kortet. Trycker man bara på Program FPGA så

For frequency domain data it becomes very simple: It just corresponds to assigning dierent weights to dierent fre- quencies, which in turn is the same as using a fre- quency

Locally applied controlled-release doxycycline gel may partly counteract the negative effect of smoking on periodontal healing following initial non-surgical

In this thesis we investigated the Internet and social media usage for the truck drivers and owners in Bulgaria, Romania, Turkey and Ukraine, with a special focus on

The derived regions for the H 2 - norm of the interconnections are used to extent the H 2 - norm based method to the uncertain case, and enables robust control structure selection..

The bacterial system was described using the growth rate (k G ) of the fast-multiplying bacteria, a time-dependent linear rate parameter k FS lin , the transfer rate from fast- to

In Figure 18 we show another simple example where we have a single pen- dulum starting at 0 radians but with an initial angle velocity of 2 radians/second.. Again we see the