• No results found

Observation of the decay Lambda(+)(c) -> Sigma(-)pi(+)pi(+)pi(0)

N/A
N/A
Protected

Academic year: 2021

Share "Observation of the decay Lambda(+)(c) -> Sigma(-)pi(+)pi(+)pi(0)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Observation

of

the

decay



+

c

→ 

π

+

π

+

π

0

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

1

,

S. Ahmed

n

,

M. Albrecht

d

,

A. Amoroso

bc

,

be

,

F.F. An

a

,

Q. An

az

,

2

,

J.Z. Bai

a

,

O. Bakina

z

,

R. Baldini Ferroli

t

,

Y. Ban

ah

,

D.W. Bennett

s

,

J.V. Bennett

e

,

N. Berger

y

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

ax

,

F. Bianchi

bc

,

be

,

E. Boger

z

,

3

,

I. Boyko

z

,

R.A. Briere

e

,

H. Cai

bg

,

X. Cai

a

,

2

,

O. Cakir

ar

,

A. Calcaterra

t

,

G.F. Cao

a

,

S.A. Cetin

as

,

J. Chai

be

,

J.F. Chang

a

,

2

,

G. Chelkov

z

,

3

,

4

,

G. Chen

a

,

H.S. Chen

a

,

J.C. Chen

a

,

M.L. Chen

a

,

2

,

S.J. Chen

af

,

X.R. Chen

ac

,

Y.B. Chen

a

,

X.K. Chu

ah

,

G. Cibinetto

v

,

H.L. Dai

a

,

2

,

J.P. Dai

ak

,

5

,

A. Dbeyssi

n

,

D. Dedovich

z

,

Z.Y. Deng

a

,

A. Denig

y

,

I. Denysenko

z

,

M. Destefanis

bc

,

be

,

F. De Mori

bc

,

be

,

Y. Ding

ad

,

C. Dong

ag

,

J. Dong

a

,

2

,

L.Y. Dong

a

,

M.Y. Dong

a

,

2

,

O. Dorjkhaidav

x

,

Z.L. Dou

af

,

S.X. Du

bi

,

P.F. Duan

a

,

J. Fang

a

,

2

,

S.S. Fang

a

,

X. Fang

az

,

2

,

Y. Fang

a

,

R. Farinelli

v

,

w

,

L. Fava

bd

,

be

,

S. Fegan

y

,

F. Feldbauer

y

,

G. Felici

t

,

C.Q. Feng

az

,

2

,

E. Fioravanti

v

,

M. Fritsch

n

,

y

,

C.D. Fu

a

,

Q. Gao

a

,

X.L. Gao

az

,

2

,

Y. Gao

aq

,

Y.G. Gao

f

,

Z. Gao

az

,

2

,

I. Garzia

v

,

K. Goetzen

j

,

L. Gong

ag

,

W.X. Gong

a

,

2

,

W. Gradl

y

,

M. Greco

bc

,

be

,

M.H. Gu

a

,

2

,

S. Gu

o

,

Y.T. Gu

l

,

A.Q. Guo

a

,

L.B. Guo

ae

,

R.P. Guo

a

,

Y.P. Guo

y

,

Z. Haddadi

ab

,

S. Han

bg

,

X.Q. Hao

o

,

F.A. Harris

aw

,

K.L. He

a

,

X.Q. He

ay

,

F.H. Heinsius

d

,

T. Held

d

,

Y.K. Heng

a

,

2

,

T. Holtmann

d

,

Z.L. Hou

a

,

C. Hu

ae

,

H.M. Hu

a

,

T. Hu

a

,

2

,

Y. Hu

a

,

G.S. Huang

az

,

2

,

J.S. Huang

o

,

X.T. Huang

aj

,

X.Z. Huang

af

,

Z.L. Huang

ad

,

T. Hussain

bb

,

W. Ikegami Andersson

bf

,

Q. Ji

a

,

Q.P. Ji

o

,

X.B. Ji

a

,

X.L. Ji

a

,

2

,

X.S. Jiang

a

,

2

,

X.Y. Jiang

ag

,

J.B. Jiao

aj

,

Z. Jiao

q

,

D.P. Jin

a

,

2

,

S. Jin

a

,

T. Johansson

bf

,

A. Julin

ax

,

N. Kalantar-Nayestanaki

ab

,

X.L. Kang

a

,

X.S. Kang

ag

,

M. Kavatsyuk

ab

,

B.C. Ke

e

,

T. Khan

az

,

2

,

P. Kiese

y

,

R. Kliemt

j

,

L. Koch

aa

,

O.B. Kolcu

as

,

6

,

B. Kopf

d

,

M. Kornicer

aw

,

M. Kuemmel

d

,

M. Kuhlmann

d

,

A. Kupsc

bf

,

W. Kühn

aa

,

J.S. Lange

aa

,

M. Lara

s

,

P. Larin

n

,

L. Lavezzi

be

,

a

,

H. Leithoff

y

,

C. Leng

be

,

C. Li

bf

,

Cheng Li

az

,

2

,

D.M. Li

bi

,

F. Li

a

,

2

,

F.Y. Li

ah

,

G. Li

a

,

H.B. Li

a

,

H.J. Li

a

,

J.C. Li

a

,

Jin Li

ai

,

K. Li

m

,

K. Li

aj

,

Lei Li

c

,

,

P.L. Li

az

,

2

,

P.R. Li

g

,

av

,

Q.Y. Li

aj

,

T. Li

aj

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

aj

,

X.N. Li

a

,

2

,

X.Q. Li

ag

,

Z.B. Li

ap

,

H. Liang

az

,

2

,

Y.F. Liang

am

,

Y.T. Liang

aa

,

G.R. Liao

k

,

D.X. Lin

n

,

B. Liu

ak

,

5

,

B.J. Liu

a

,

C.X. Liu

a

,

D. Liu

az

,

2

,

F.H. Liu

al

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.H. Liu

p

,

H.H. Liu

a

,

H.M. Liu

a

,

J.B. Liu

az

,

2

,

J.P. Liu

bg

,

J.Y. Liu

a

,

K. Liu

aq

,

K.Y. Liu

ad

,

Ke Liu

f

,

L.D. Liu

ah

,

P.L. Liu

a

,

2

,

Q. Liu

av

,

S.B. Liu

az

,

2

,

X. Liu

ac

,

Y.B. Liu

ag

,

Y.Y. Liu

ag

,

Z.A. Liu

a

,

2

,

Zhiqing Liu

y

,

Y.F. Long

ah

,

X.C. Lou

a

,

2

,

7

,

H.J. Lu

q

,

J.G. Lu

a

,

2

,

Y. Lu

a

,

Y.P. Lu

a

,

2

,

C.L. Luo

ae

,

M.X. Luo

bh

,

T. Luo

aw

,

X.L. Luo

a

,

2

,

X.R. Lyu

av

,

F.C. Ma

ad

,

H.L. Ma

a

,

L.L. Ma

aj

,

M.M. Ma

a

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

ag

,

X.Y. Ma

a

,

2

,

Y.M. Ma

aj

,

F.E. Maas

n

,

M. Maggiora

bc

,

be

,

Q.A. Malik

bb

,

Y.J. Mao

ah

,

Z.P. Mao

a

,

S. Marcello

bc

,

be

,

J.G. Messchendorp

ab

,

G. Mezzadri

w

,

J. Min

a

,

2

,

T.J. Min

a

,

R.E. Mitchell

s

,

X.H. Mo

a

,

2

,

Y.J. Mo

f

,

C. Morales Morales

n

,

G. Morello

t

,

N.Yu. Muchnoi

i

,

1

,

H. Muramatsu

ax

,

P. Musiol

d

,

A. Mustafa

d

,

Y. Nefedov

z

,

F. Nerling

j

,

I.B. Nikolaev

i

,

1

,

Z. Ning

a

,

2

,

S. Nisar

h

,

S.L. Niu

a

,

2

,

X.Y. Niu

a

,

S.L. Olsen

ai

,

Q. Ouyang

a

,

2

,

S. Pacetti

u

,

Y. Pan

az

,

2

,

P. Patteri

t

,

M. Pelizaeus

d

,

J. Pellegrino

bc

,

be

,

H.P. Peng

az

,

2

,

K. Peters

j

,

8

,

J. Pettersson

bf

,

J.L. Ping

ae

,

*

Correspondingauthor.

http://dx.doi.org/10.1016/j.physletb.2017.06.065

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

R.G. Ping

a

,

R. Poling

ax

,

V. Prasad

ao

,

az

,

H.R. Qi

b

,

M. Qi

af

,

S. Qian

a

,

2

,

C.F. Qiao

av

,

J.J. Qin

av

,

N. Qin

bg

,

X.S. Qin

a

,

Z.H. Qin

a

,

2

,

J.F. Qiu

a

,

K.H. Rashid

bb

,

C.F. Redmer

y

,

M. Richter

d

,

M. Ripka

y

,

G. Rong

a

,

Ch. Rosner

n

,

X.D. Ruan

l

,

A. Sarantsev

z

,

9

,

M. Savrié

w

,

C. Schnier

d

,

K. Schoenning

bf

,

W. Shan

ah

,

M. Shao

az

,

2

,

C.P. Shen

b

,

P.X. Shen

ag

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

J.J. Song

aj

,

X.Y. Song

a

,

S. Sosio

bc

,

be

,

C. Sowa

d

,

S. Spataro

bc

,

be

,

G.X. Sun

a

,

J.F. Sun

o

,

S.S. Sun

a

,

X.H. Sun

a

,

Y.J. Sun

az

,

2

,

Y.K. Sun

az

,

2

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

2

,

Z.T. Sun

s

,

C.J. Tang

am

,

G.Y. Tang

a

,

X. Tang

a

,

I. Tapan

at

,

M. Tiemens

ab

,

B.T. Tsednee

x

,

I. Uman

au

,

G.S. Varner

aw

,

B. Wang

a

,

B.L. Wang

av

,

D. Wang

ah

,

D.Y. Wang

ah

,

Dan Wang

av

,

K. Wang

a

,

2

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

aj

,

P. Wang

a

,

P.L. Wang

a

,

W.P. Wang

az

,

2

,

X.F. Wang

aq

,

Y.D. Wang

n

,

Y.F. Wang

a

,

2

,

Y.Q. Wang

y

,

Z. Wang

a

,

2

,

Z.G. Wang

a

,

2

,

Z.H. Wang

az

,

2

,

Z.Y. Wang

a

,

Z.Y. Wang

a

,

T. Weber

y

,

D.H. Wei

k

,

P. Weidenkaff

y

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

bf

,

L.H. Wu

a

,

L.J. Wu

a

,

Z. Wu

a

,

2

,

L. Xia

az

,

2

,

Y. Xia

r

,

D. Xiao

a

,

H. Xiao

ba

,

Y.J. Xiao

a

,

Z.J. Xiao

ae

,

Y.G. Xie

a

,

2

,

Y.H. Xie

f

,

X.A. Xiong

a

,

Q.L. Xiu

a

,

2

,

G.F. Xu

a

,

J.J. Xu

a

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

av

,

X.P. Xu

an

,

L. Yan

bc

,

be

,

W.B. Yan

az

,

2

,

W.C. Yan

az

,

2

,

Y.H. Yan

r

,

H.J. Yang

ak

,

5

,

H.X. Yang

a

,

L. Yang

bg

,

Y.H. Yang

af

,

Y.X. Yang

k

,

M. Ye

a

,

2

,

M.H. Ye

g

,

J.H. Yin

a

,

Z.Y. You

ap

,

B.X. Yu

a

,

2

,

C.X. Yu

ag

,

J.S. Yu

ac

,

C.Z. Yuan

a

,

Y. Yuan

a

,

A. Yuncu

as

,

10

,

A.A. Zafar

bb

,

Y. Zeng

r

,

Z. Zeng

az

,

2

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

2

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

ap

,

H.Y. Zhang

a

,

2

,

J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

2

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

aq

,

S.Q. Zhang

ag

,

X.Y. Zhang

aj

,

Y. Zhang

a

,

Y. Zhang

a

,

Y.H. Zhang

a

,

2

,

Y.T. Zhang

az

,

2

,

Yu Zhang

av

,

Z.H. Zhang

f

,

Z.P. Zhang

az

,

Z.Y. Zhang

bg

,

G. Zhao

a

,

J.W. Zhao

a

,

2

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

2

,

Lei Zhao

az

,

2

,

Ling Zhao

a

,

M.G. Zhao

ag

,

Q. Zhao

a

,

S.J. Zhao

bi

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

2

,

Z.G. Zhao

az

,

2

,

A. Zhemchugov

z

,

3

,

B. Zheng

ba

,

J.P. Zheng

a

,

2

,

W.J. Zheng

aj

,

Y.H. Zheng

av

,

B. Zhong

ae

,

L. Zhou

a

,

2

,

X. Zhou

bg

,

X.K. Zhou

az

,

2

,

X.R. Zhou

az

,

2

,

X.Y. Zhou

a

,

Y.X. Zhou

l

,

2

,

K. Zhu

a

,

K.J. Zhu

a

,

2

,

S. Zhu

a

,

S.H. Zhu

ay

,

X.L. Zhu

aq

,

Y.C. Zhu

az

,

2

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

2

,

L. Zotti

bc

,

be

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000 Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangxiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xInstituteofPhysicsandTechnology,PeaceAve.54B,Ulaanbaatar13330,Mongolia

yJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany zJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

aaJustus-Liebig-UniversitaetGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany abKVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

acLanzhouUniversity,Lanzhou730000,People’sRepublicofChina adLiaoningUniversity,Shenyang110036,People’sRepublicofChina aeNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina afNanjingUniversity,Nanjing210093,People’sRepublicofChina agNankaiUniversity,Tianjin300071,People’sRepublicofChina ahPekingUniversity,Beijing100871,People’sRepublicofChina aiSeoulNationalUniversity,Seoul,151-747,RepublicofKorea ajShandongUniversity,Jinan250100,People’sRepublicofChina

akShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina alShanxiUniversity,Taiyuan030006,People’sRepublicofChina

amSichuanUniversity,Chengdu610064,People’sRepublicofChina anSoochowUniversity,Suzhou215006,People’sRepublicofChina

(3)

aoStateKeyLaboratoryofParticleDetectionandElectronics,Beijing 100049,Hefei 230026,People’sRepublicofChina apSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina

aqTsinghuaUniversity,Beijing100084,People’sRepublicofChina arAnkaraUniversity,06100Tandogan,Ankara,Turkey asIstanbulBilgiUniversity,34060Eyup,Istanbul,Turkey atUludagUniversity,16059Bursa,Turkey

auNearEastUniversity,Nicosia,NorthCyprus,Mersin 10,Turkey

avUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina awUniversityofHawaii,Honolulu,HI 96822,USA

axUniversityofMinnesota,Minneapolis,MN 55455,USA

ayUniversityofScienceandTechnologyLiaoning,Anshan114051,People’sRepublicofChina azUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina baUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

bbUniversityofthePunjab,Lahore-54590,Pakistan bcUniversityofTurin,I-10125,Turin,Italy

bdUniversityofEasternPiedmont,I-15121,Alessandria,Italy beINFN,I-10125,Turin,Italy

bfUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bgWuhanUniversity,Wuhan430072,People’sRepublicofChina bh

ZhejiangUniversity,Hangzhou310027,People’sRepublicofChina

biZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received31May2017 Accepted26June2017 Availableonline28June2017 Editor:W.-D.Schlatter Keywords: Branchingfraction Charmedbaryon Weakdecays e+e−annihilation BESIII

We reportthefirstobservationofthedecay+c → 

π

+

π

+

π

0,basedondata obtainedine+e

an-nihilations withanintegratedluminosity of567 pb−1 ats=4.6 GeV. Thedatawerecollectedwith

theBESIIIdetectorattheBEPCIIstoragerings.TheabsolutebranchingfractionB(c+→ 

π

+

π

+

π

0)is

determinedtobe(2.11±0.33(stat.)±0.14(syst.))%.Inaddition,animprovedmeasurementofB(+c

π

+

π

+)isdeterminedas(1.81±0.17(stat.)±0.09(syst.))%.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thestudyofhadronicdecaysofcharmedbaryonsprovides im-portant informationtounderstand both thestrongand theweak interactions[1].Italsoprovidesessentialinputtounderstand back-groundcontributionsinthe studyofb-baryon physics,as

b

de-cays dominantly to



+c. More than 30 years have passed since the



+c baryon was first observed in e+e− annihilations by the Mark IIexperiment[2]andtheknowledge of



+c decaysremains verypoorcomparedtothatforcharmedmesons.Sofar,measured decaymodesaccountforonlyabout60%[3]ofall



c+decays, pri-marilyconsistingofmodeswitha

()

hyperonoraprotoninthe finalstate.Decaystothe



−hyperonareCabibbo-allowedandare expectedtohavelarge rates.However,no experimental

measure-E-mailaddress:lilei2014@bipt.edu.cn(LeiLi).

1 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 2 Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049,Hefei230026,People’sRepublicofChina.

3 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 4 Alsoatthe FunctionalElectronicsLaboratory,Tomsk StateUniversity,Tomsk, 634050,Russia.

5 AlsoatKeyLaboratoryforParticlePhysics,AstrophysicsandCosmology, Min-istryofEducation;Shanghai KeyLaboratoryfor ParticlePhysicsand Cosmology; Institute ofNuclearand Particle Physics,Shanghai 200240, People’sRepublic of China.

6 AlsoatIstanbulArelUniversity,34295Istanbul,Turkey. 7 AlsoatUniversityofTexasatDallas,Richardson,TX 75083,USA. 8 AlsoatGoetheUniversityFrankfurt,60323FrankfurtamMain,Germany. 9 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 10 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

ments exist except for



+c

→ 

π

+

π

+ [3]. Therefore,searching for additional decaymodes with



− in the final state is impor-tant to build up knowledge on



+c decays.In thispaper, we re-portthefirstobservationoftheso-farundetermined,butexpected to be large, decay of



+c

→ 

π

+

π

+

π

0.11 Inaddition, we per-formthefirstabsolutemeasurement ofthebranchingfractionfor



+c

→ 

π

+

π

+.

Thedataanalyzedinthisworkcorrespondstoanintegrated lu-minosityof567 pb−1 [4]ofe+eannihilationsatcenter-of-mass

energy (c.m.)

s

=

4

.

6 GeV by the BEPCII collider andcollected withtheBESIII detector[5].The c.m. energyis slightlyabove the threshold forthe production of



+c

¯

c, so



+c

¯

c pairs are pro-ducedwith noadditional hadrons. Theanalysis technique inthis work, which was first applied in the Mark III experiment [6], is optimized for measuring charm hadron pairs produced near threshold. First, we select the subset of our events in which a

¯

c is reconstructed in an exclusive hadronic decay mode, des-ignated as the single-tag (ST) sample. Events in this ST sample are then searched for the signal channel



+c

→ 

π

+

π

+

(

π

0

)

in the system recoiling against the ST to select double tag (DT) events. In the final states of



+c

→ 

π

+

π

+

(

π

0

)

, the



− hy-peron is detected through



n

π

−. Asthe neutronis not re-constructedinthisanalysis,wededuceitskinematicpropertiesby four-momentumconservation.Theabsolutebranchingfraction(BF) of



+c

→ 

π

+

π

+

(

π

0

)

isderivedfromtheprobabilityof detect-ingtheDTsignalsintheSTsample.Hence,thismethodprovidesa

11 Throughoutthispaper,chargedconjugatemodesareimpliedunlessexplicitly statedotherwise.

(4)

cleanandstraightforwardBFmeasurementthatisindependentof thenumberof



+c

¯

c eventsproduced.

2. BESIIIdetectorandMonteCarlosimulation

BESIII[5]isacylindricaldetectorwithacoverageof93%ofthe full 4

π

solid angle.It consists ofa Helium-gas based main drift chamber (MDC),a plasticscintillator time-of-flight (TOF) system, a CsI (Tl) electromagnetic calorimeter (EMC), a superconducting solenoidproviding a 1.0 T magnetic field, anda muon detection systeminthe iron flux returnof the magnet. The charged parti-cle momentum resolution is 0.5% at a transverse momentum of 1 GeV

/

c. The photon energy resolution at 1 GeV is 2.5% in the centralbarrel region and5.0% inthe two endcaps. More details about the design and performance of the detector are given in Ref.[5].

A GEANT4-based [7] Monte Carlo (MC) simulation package, whichincludesthe geometricdescription ofthedetectorandthe detector response, is used to determine the detection efficiency andtoestimatethepotentialbackgrounds.MCsamplesofthe sig-nalmode



c+

→ 

π

+

π

+

(

π

0

)

,together witha

¯

c decayingto specifiedSTmodes,aregeneratedwithKKMC[8]andEVTGEN[9], takingintoaccountinitial-stateradiation(ISR)[10]andfinal-state radiation[11]effects.The



+c

→ 

π

+

π

+

(

π

0

)

decayissimulated by reweightingthe phase-space-generatedMC events to approxi-mateobservedkinematicdistributionsindata.Tounderstand po-tentialbackgroundcontributions, aninclusiveMCsample isused. Itincludesgeneric



+c

¯

c events,D

(∗)

(s)D

¯

(∗)

(s)

+

X production,ISR

re-turn to the charmonium states at lower masses and continuum qq processes.

¯

Previouslymeasureddecaymodesofthe

c

,

ψ

and D(s) aresimulatedwithEVTGEN,usingBFsfromtheParticleData

Group(PDG)[3].Theunknown decaysofthe

ψ

statesare gener-atedwithLUNDCHARM[12].

3. Analysis

The ST and DT selection technique that is used in our anal-ysisfollows closely theone used anddescribed inRef. [13]. We reconstructthe

¯

c baryonsin theeleven hadronicdecay modes listedinTable 1.Intermediateparticlesare reconstructedthrough theirdecays K0S

π

+

π

−,

¯ → ¯

p

π

+,

¯

0

γ

¯

with

¯ → ¯

p

π

+,

¯

→ ¯

p

π

0,and

π

0

γ γ

.The selection criteria forthe proton, kaon,pion,

π

0,K0

S and

¯

candidatesusedinthereconstructionof theSTsignalsaredescribedinRef.[13].

The ST

¯

c signals are identified using the beam-energy-constrained mass, MBC

=



E2beam

− |

p¯c

|

2, where E beam is the beam energy and



p¯

c is the momentum of the

¯

c candidate in the rest frame of the initial e+e− system.12 To improve the signal purity, the energy difference



E

=

Ebeam

E¯c for each candidateis requiredto bewithin approximately

±

3

σ

ofthe



E signal peak position, where

σ

is the



E resolution and E¯

c is

thereconstructed

¯

c energy.Table 1showsthemode-dependent



E requirements and the ST yields in the MBC signal region

(

2

.

280

,

2

.

296

)

GeV

/

c2,whichareobtainedbyfitstothe M

BC dis-tributions. See Ref. [13] for more details. The total ST yield is Ntot

¯

c

=

14415

±

159,wheretheuncertaintyisstatisticalonly. Candidates for the decay



+c

→ 

π

+

π

+

(

π

0

)

with



n

π

−arereconstructedfromthetracksnot usedintheST

¯

c− re-construction.Itisrequiredthatthereareonlythreechargedtracks

12 Allkinematicquantitiespresentedinthispaperareevaluatedintherestframe oftheinitiale+e−system.

Table 1

RequirementsonE andSTyieldsN¯

c fortheelevenSTmodes.Theuncertainties

arestatisticalonly.

Mode E (GeV) N¯c ¯ p K0 S [−0.025,0.028] 1066±33 ¯ p K+π− [−0.019,0.023] 5692±88 ¯ p K0 0 [−0 .035,0.049] 593±41 ¯ p K+ππ0 [−0.044,0.052] 1547±61 ¯ p K0 +π− [−0.029,0.032] 516±34 ¯π− [−0.033,0.035] 593±25 ¯ππ0 [−0.037,0.052] 1864±56 ¯ππ+π− [−0.028,0.030] 674±36 ¯0π[−0.029,0.032] 532±30 ¯π0 [−0 .038,0.062] 329±28 ¯π+π[−0.049,0.054] 1009±57 in the system recoiling against the

¯

c satisfying

|

cos

θ

|

<

0

.

93, where

θ

is the polar angle with respect to the beam direction. Forthetwo

π

+ candidatesfromthe



+c,thedistancesofclosest approach to the interaction point mustbe within

±

10 cm along the beamdirection andwithin 1 cm inthe perpendicular plane, while the

π

− candidatefrom



− decayis not subjected to this requirement.Identificationofchargedtracksisperformedby com-biningthedE

/

dx informationfromtheMDCandthetimeofflight measuredintheTOFtoobtaintheprobability

Lh

foreachhadron type h.Thethreechargedpionsmustsatisfy

L

π

>

LK

.Photon can-didatesarereconstructedfromisolatedclustersintheEMCinthe regions

|

cos

θ

|

0

.

80 (barrel)and0

.

86

≤ |

cos

θ

|

0

.

92 (endcap). The depositedenergyofa neutralcluster isrequiredto belarger than25 (50) MeVinthebarrel(endcap)region,andtheangle be-tweenthephotoncandidateandthenearestchargedtrackmustbe largerthan 10◦.Tosuppresselectronicnoise andenergydeposits unrelatedtothe event,thedifferencebetweentheEMCtime and theeventstarttimeisrequiredtobewithin

(

0

,

700

)

ns.To recon-struct

π

0candidates,theinvariantmassofphotonpairsisrequired tobe within

(

0

.

110

,

0

.

155

)

GeV

/

c2 and,asasecond step,a kine-maticfitisimplementedtoconstrainthe

γ γ

invariantmasstothe nominal

π

0mass[3].

Thekinematicvariable

Mn

=



(

Ebeam

+π+π0)

)

2

− |

→−p+ c

− →p π+π+π0)

|

2 is computed to characterize the reconstructed mass of the undetected neutron, where +π+π(π0) is the energy of the

π

+

π

+

π

(

π

0

)

combination and→−

+π+π0) is the three-mo-mentumofthe

π

+

π

+

π

(

π

0

)

combination.Theexpected momen-tum



p+ c ofthe



+ c iscalculated by



pc+

= − ˆ

ptag



E2beam

m2 +c , where p

ˆ

tag isthedirectionofthe momentumoftheST

¯

c can-didateandm+

c isthe mass ofthe



+

c taken fromthe PDG[3]. Similarly,wecanconstructthevariable

Mnπ

=



(

Ebeam

+π+0)

)

2

− |

→−p+ c

− →p π+π+0)

|

2 torepresentthereconstructedmassofthe



−.

Thedistributions ofMn versus Mnπ− forthe



+c

→ 

π

+

π

+ and



+c

→ 

π

+

π

+

π

0candidatesindataareshowninFigs. 1(a) and(b),respectively,whereclusterscorrespondingtosignaldecays areevident. Toimprovetheresolutionofthesignal mass,aswell astobetter handlethebackgrounds aroundthe



− andneutron massregions,wedeterminethesignalyieldsfromthedistribution ofthemassdifference Mnπ

Mn,sinceMnπ− andMnarehighly correlated.BasedonastudyoftheinclusiveMCsamples,no peak-ingbackgroundsareexpectedforthesetwochannels.Weperform anunbinnedmaximumlikelihoodfittotheMnπ

Mnspectra,as showninFigs. 1(c)and(d).Inthefits,thesignalsaredescribedby

(5)

Fig. 1. Scatter plots of Mn versus Mnπ− for candidates in data for (a) +c

π+π+and(b)+c → π+π+π0.Alsoshownarefitstothedistributionsof Mnπ−−Mnfor(c)+c → π+π+and(d)+c → π+π+π0indata.Solidlines aretheresultsofacompletefitwhiledashedlinesreflectthebackground compo-nents.

non-parametricfunctionsextractedfromthesignalMCconvoluted witha Gaussianfunction accountingforthe resolutiondifference betweendataandMC,whilethebackgroundshapesaredescribed withasecond-orderpolynomial function.Thewidthofthe Gaus-sian is left free in the fit, while its mean is fixed to zero. From the fits, we find the DT signal yields Nobs

π+π+

=

161

±

15 and Nobs

π+π+π0

=

88

±

14,wheretheuncertaintiesarestatisticalonly. Backgroundsfromnon-



+c decaysareestimatedbyexaminingthe STcandidatesintheMBC sideband

(

2

.

252

,

2

.

272

)

GeV

/

c2 indata. Thebackgroundsfromnon-



+c decaysarefoundtobenegligible.

TheabsoluteBFsfor



+c

→ 

π

+

π

+ and



+c

→ 

π

+

π

+

π

0 aredeterminedby

B

(

+c

→ 

π

+

π

+

(

π

0

))

=

N obs π+π+0) Ntot ¯c

·

ε

π+π+ 0)

·

B

(

n

π

)

,

(1)

where

ε

π+π+0) is the detection efficiency for the



+c



π

+

π

+

(

π

0

)

decay with



n

π

. The intermediate decay branching fraction of



n

π

− is included in the denomina-tor of Eq. (1). For each ST mode i, the efficiency

ε

i

π+π+0) is obtained by dividing the DT efficiency

ε

i

tag,π+π+0) by the ST efficiency

ε

i

tag.After weighting

ε

iπ+π+0) by the mode-by-mode ST yields in data, we find the overall average efficiencies

ε

π+π+

= (

61

.

8

±

0

.

4

)

% and

ε

π+π+π0

= (

29

.

0

±

0

.

2

)

%, where thebranching fractionfor

π

0

γ γ

is included.Substitutingthe valuesofNobs π+π+0),N tot ¯c,

ε

π+π+ 0) and

B(

n

π

)

in Eq.(1),weobtain

B(

c+

→ 

π

+

π

+

)

= (

1

.

81

±

0

.

17

±

0

.

09

)

% and

B(

+

c

→ 

π

+

π

+

π

0

)

= (

2

.

11

±

0

.

33

±

0

.

14

)

%, where the first uncertaintiesare statistical,andthesecondare systematic,as de-scribedbelow.

With the DT technique, the BF measurement is insensitive to uncertainty in the ST efficiencies. The systematic uncertain-tiesinmeasuring

B(

+c

→ 

π

+

π

+

)

and

B(

+c

→ 

π

+

π

+

π

0

)

mainly arise from the efficiencies of

π

detection and identifica-tion, fits to the Mnπ

Mn distributions and the signal mod-elling in the MC simulation. The systematicuncertainties in the

π

± tracking and identification are both determined to be 1.0% by studying a set of samples of e+e

π

+

π

π

+

π

−, e+e

K+K

π

+

π

−ande+e

pp

¯

π

+

π

−obtainedfromdatawithc.m. energy above 4.0 GeV. The

π

0 reconstruction efficiency is val-idated by analyzing DT events with D

¯

0

K+

π

or K+

π

π

0

Table 2

Summaryofthe relativesystematicuncertaintiessystπ+π+ andsystπ+π+π0 in

B(+

c → π+π+)andB(c+→ π+π+π0),respectively.

Source systπ+π+[%] systπ+π+π0[%]

π±tracking 3.0 3.0 π±identification 3.0 3.0 π0reconstruction · · · 2.0 Fit to MnMnπ− 2.0 3.6 Signal modelling 2.0 2.0 MC statistics 0.6 0.7 Ntot ¯c 1.0 1.0 Total 5.2 6.4

versus D0

K

π

+

π

0 [14].The differenceofthe

π

0 reconstruc-tionefficienciesbetweendataandMCsimulationsisestimatedto be 2.0%.Theuncertaintyfromthefit tothe Mnπ

Mn distribu-tionisevaluatedbycheckingtherelativechangesofNobs

π+π+0) with different choices for signal shapes (double Gaussian func-tion), background shapes (first-order polynomial function, third-order polynomial function and a MC-derived background shape) andfitranges(

(

0

.

19

,

0

.

34

)

GeV

/

c2).The uncertaintyinmodelling the signal process is obtained by varying the reweighting fac-tors of the observed kinematic variables within their statistical uncertainties and extracting the difference of the resultant effi-ciencies. The difference is estimated to be 2.0% for the studied channels and is taken as the systematic uncertainty due to the signal modelling. In addition, there are systematic uncertainties in obtaining Ntot¯

c evaluated by using alternative signal shapesin

the fits to the MBC spectra [13], resulting in an uncertainty of 1.0%, and in the statistical limitation of the MC samples, which isestimatedtobe0.6 (0.7)%for



+c

→ 

π

+

π

+

(

π

0

)

.The uncer-taintiesfromtheBFsof



n

π

− and

π

0

γ γ

arenegligible. All ofthe above systematic uncertainties are summarized in Ta-ble 2,andthetotaluncertaintiesareevaluatedtobe5.2%and6.4% for

B(

+c

→ 

π

+

π

+

)

and

B(

+c

→ 

π

+

π

+

π

0

)

,respectively, bycombiningallitemsinquadrature.

4. Summary

Based on an e+e− collision data sample with an integrated luminosity of 567 pb−1 taken at

s

=

4

.

6 GeV with the BE-SIII detector,we report the first observation ofthe decay



+c



π

+

π

+

π

0 and the first absolute BF measurement for



+

c



π

+

π

+.The results are

B(

+c

→ 

π

+

π

+

)

= (

1

.

81

±

0

.

17

±

0

.

09

)

% and

B(

+c

→ 

π

+

π

+

π

0

)

= (

2

.

11

±

0

.

33

±

0

.

14

)

%,where thefirstuncertaintiesarestatisticalandthesecondaresystematic. Ourresultfor

B(

+c

→ 

π

+

π

+

)

isconsistentwithandmore precise than the previous result [3]. BESIII measured the BF of the isospin symmetric channel

B(

+c

→ 

+

π

+

π

)

= (

4

.

25

±

0

.

24

±

0

.

20

)

%[15].Thisallowsustodeterminetheratio

B(

+c



π

+

π

+

)/

B(

c+

→ 

+

π

+

π

)

=

0

.

42

±

0

.

05

±

0

.

02,where the first uncertaintyis statisticalandthesecond systematic. The sta-tisticaluncertainty oftheratiodominates,asmanycommon sys-tematicuncertaintiescancel.Thisisconsistentwithandmore pre-cisethanthevaluepreviouslymeasuredbytheE687 Collaboration

(

0

.

53

±

0

.

15

±

0

.

07

)

[16].

Acknowledgements

The BESIII Collaboration thanks the staff of BEPCII and the IHEPcomputingcenterfortheirstrongsupport.Thisworkis sup-ported in part by National Key Basic Research Program ofChina underContractNo.2015CB856700;NationalNaturalScience Foun-dationofChina(NSFC)underContractsNos.11125525,11235011,

(6)

11275266,11305180, 11322544,11322544, 11335008, 11425524, 11505010; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellencein Par-ticle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds ofthe NSFC andCAS under Contracts Nos. U1332201,U1532257, U1532258; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45, QYZDJ-SSW-SLH003; 100 Talents Program of CAS; National 1000TalentsProgram ofChina; INPACand Shanghai Key Labora-toryforParticlePhysicsandCosmology;GermanResearch Founda-tionDFG underContracts Nos.Collaborative ResearchCenter CRC 1044,FOR2359;IstitutoNazionalediFisicaNucleare,Italy; Konin-klijke Nederlandse Akademie van Wetenschappen (KNAW) under ContractNo.530-4CDP03;MinistryofDevelopmentofTurkey un-der Contract No. DPT2006K-120470; National Science and Tech-nology fund; The Swedish Research Council; U.S. Department of EnergyunderContractsNos.DE-FG02-05ER41374,DE-SC-0010118, DE-SC-0010504, DE-SC-0012069; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI),Darmstadt; WCU Program ofNational ResearchFoundation ofKorea underContractNo.R32-2008-000-10155-0. Thispaperis also supported by Beijing municipal government under Contract Nos.KM201610017009,2015000020124G064,CIT&TCD201704047.

References

[1] H.Y.Cheng,Charmedbaryonscirca2015,Front.Phys.10 (6)(2015)101406, https://link.springer.com/article/10.1007/s11467-015-0483-z;

C.D.Lü,W.Wang,F.S.Yu,TestflavorSU(3)symmetryinexclusivec decays, Phys.Rev.D93(2016)056008,http://dx.doi.org/10.1103/PhysRevD.93.056008, arXiv:1601.04241;

K.K. Sharma, R.C. Verma, SU(3)flavor analysis of two-body weak decays of charmed baryons, Phys. Rev. D 55 (1997) 7067, http://dx.doi.org/10.1103/ PhysRevD.55.7067,arXiv:hep-ph/9704391;

L.L. Chau, H.Y. Cheng, B. Tseng, Analysis of two-body decays of charmed baryonsusingthequark-diagramscheme,Phys.Rev.D54(1996)2132,http:// dx.doi.org/10.1103/PhysRevD.54.2132,arXiv:hep-ph/9508382.

[2] G.S.Abrams,etal.,MarkIICollaboration,Observationofcharmed-baryon pro-ductionine+e−annihilation,Phys.Rev.Lett.44(1980)10,http://dx.doi.org/ 10.1103/PhysRevLett.44.10.

[3] C.Patrignani,etal.,ParticleDataGroup,Reviewofparticlephysics,Chin.Phys. C40(2016)100001,http://dx.doi.org/10.1088/1674-1137/40/10/100001. [4] M.Ablikim,etal.,BESIIICollaboration,Precisionmeasurementoftheintegrated

luminosity ofthe data taken byBESIIIat center-of-mass energiesbetween

3.810 GeVand4.600 GeV,Chin.Phys.C39(2015)093001,http://iopscience. iop.org/1674-1137/39/9/093001,arXiv:1503.03408.

[5] M. Ablikim, et al., BESIII Collaboration, Design and construction of the BESIII detector, Nucl.Instrum. MethodsA 614(2010)345,http://dx.doi.org/ 10.1016/j.nima.2009.12.050,arXiv:0911.4960.

[6] J.Adler,etal.,MarkIIICollaboration,Measurementofthebranchingfractions for D0πe+ν

e andD0→Ke+νe anddeterminationof|Vcd/Vcs|2,Phys. Rev.Lett.62(1989)1821,http://dx.doi.org/10.1103/PhysRevLett.62.1821. [7] S. Agostinelli, et al., GEANT4 Collaboration, GEANT4—a simulation toolkit,

Nucl. Instrum. Methods A 506 (2003) 250, http://dx.doi.org/10.1016/ S0168-9002(03)01368-8.

[8] S.Jadach,B.F.L.Ward,Z.Was,TheprecisionMonteCarloeventgeneratorK K for two-fermionfinalstatesine+e− collisions,Comput.Phys.Commun.130 (2000) 260, http://dx.doi.org/10.1016/S0010-4655(00)00048-5, arXiv:hep-ph/ 9912214;

S. Jadach, B.F.L. Ward,Z.Was, Coherentexclusive exponentiationfor preci-sionMonteCarlocalculations,Phys.Rev.D63(2001)113009,http://dx.doi.org/ 10.1103/PhysRevD.63.113009,arXiv:hep-ph/0006359.

[9] D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152,http://dx.doi.org/10.1016/S0168-9002(01)00089-4. [10] E.A. Kuraev, V.S. Fadin, Radiative corrections to the cross section for

single-photon annihilation of an e+e− pair at high energy, Sov. J. Nucl.Phys.41(1985)466,http://refhub.elsevier.com/S0370-2693(17)30065-5/ bib534A4E5034315F343636s1.

[11] E.Richter-Was,QEDbremsstrahlunginsemileptonicB andleptonicτ decays, Phys.Lett.B303(1993)163,http://dx.doi.org/10.1016/0370-2693(93)90062-M; E.Barberio,Z.Was,PHOTOS—a universalMonteCarloforQEDradiative cor-rections:version 2.0,Comput.Phys.Commun.79(1994)291,http://dx.doi.org/ 10.1016/0010-4655(94)90074-4.

[12] J.C.Chen,G.S.Huang,X.R.Qi,D.H.Zhang,Y.S.Zhu,Eventgeneratorfor J/ψ

and ψ(2S)decay, Phys.Rev.D62(2000)034003, http://dx.doi.org/10.1103/ PhysRevD.62.034003.

[13] M.Ablikim,etal.,BESIIICollaboration,Measurementoftheabsolutebranching fractionfor+c → e+νe,Phys.Rev.Lett.115(2015)221805,http://dx.doi.org/ 10.1103/PhysRevLett.115.221805,arXiv:1510.02610;

M.Ablikim,etal.,BESIIICollaboration,Measurementoftheabsolute branch-ingfractionfor+c → μ+νμ,Phys.Lett.B767(2017)42,http://dx.doi.org/

10.1016/j.physletb.2017.01.047,arXiv:1611.04382;

M. Ablikim,etal., BESIIICollaboration,Observationof+cnK0+,Phys. Rev.Lett.118(2017)112001,http://dx.doi.org/10.1103/PhysRevLett.118.112001, arXiv:1611.02797.

[14] M.Ablikim,etal.,BESIIICollaboration,Measurementoftheabsolutebranching fractionofD+→ ¯K0e+νe viaK¯0π0π0,Chin.Phys.C40(2016)113001,

http://dx.doi.org/10.1088/1674-1137/40/11/113001,arXiv:1605.00208. [15] M.Ablikim,et al., BESIII Collaboration, Measurementsofabsolute hadronic

branching fractions ofthe +c baryon, Phys. Rev.Lett.116 (2016)052001, http://dx.doi.org/10.1103/PhysRevLett.116.052001,arXiv:1511.08380. [16] P.L.Frabetti,etal.,E687Collaboration,Firstobservationoftheπ+π+decay

modeofthecbaryonanditsbranchingratiorelativetothe+π+π−mode, Phys.Lett.B328(1994)193,http://dx.doi.org/10.1016/0370-2693(94)90450-2.

Figure

Fig. 1. Scatter plots of M n versus M n π − for candidates in data for (a)  + c →

References

Related documents

In the present study, when the participant teachers direct the students’ at- tention to metalinguistic knowledge as well as metacognitive reading strategies, I regard it as a

For example, the online resource from which the teacher excerpted texts used early in the course (Clio, 2020) contains separate sections for contrasting sources representing

Precis som i ett tidigare samtal om algebra och multiplikation framstår lärarens, och i detta fall även elevernas, erfarenheter från att bo i andra länder som en resurs

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

Among the Swedish-Somali men and women in this study, opinions and perceptions related to genital modifications in children and its impact on health, pain sensation/ experience

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

För att vi ska kunna analysera hur fritidshemslärare kan tänkas förstå och skapa relationer till de elever som de definierat som de tysta och osynliga eleverna, kommer vi

The overall aim was to study periodontitis prevalence and severity in two Swedish adult populations, and to describe the changes over time. Further aims were to examine the effect