• No results found

Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

N/A
N/A
Protected

Academic year: 2021

Share "Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Evolution

of

nuclear

structure

in

neutron-rich

odd-Zn

isotopes

and isomers

C. Wraith

a

,

X.F. Yang

b

,

,

L. Xie

c

,

C. Babcock

a

,

J. Biero ´n

d

,

J. Billowes

c

,

M.L. Bissell

b

,

c

,

K. Blaum

e

,

B. Cheal

a

,

L. Filippin

f

,

R.F. Garcia Ruiz

b

,

c

,

W. Gins

b

,

L.K. Grob

g

,

G. Gaigalas

h

,

M. Godefroid

f

,

C. Gorges

i

,

H. Heylen

b

,

M. Honma

j

,

P. Jönsson

k

,

S. Kaufmann

g

,

M. Kowalska

l

,

J. Krämer

i

,

S. Malbrunot-Ettenauer

l

,

R. Neugart

e

,

g

,

G. Neyens

b

,

W. Nörtershäuser

g

,

i

,

F. Nowacki

m

,

T. Otsuka

n

,

J. Papuga

b

,

R. Sánchez

o

,

Y. Tsunoda

p

,

D.T. Yordanov

q

aOliverLodgeLaboratory,OxfordStreet,UniversityofLiverpool,Liverpool,L697ZE,UnitedKingdom bKULeuven,InstituutvoorKern- enStralingsfysica,B-3001Leuven,Belgium

cSchoolofPhysicsandAstronomy,TheUniversityofManchester,Manchester,M139PL,UnitedKingdom

dInstytutFizykiimieniaMarianaSmoluchowskiego,UniwersytetJagiello´nski,ul.prof.StanisławaŁojasiewicza11,Kraków,Poland eMax-Plank-InstitutfürKernphysik,D-69117Heidelberg,Germany

fChimieQuantiqueetPhotophysique,UniversitéLibredeBruxelles,B-1050 Brussels,Belgium gInstitutfürKernchemie,UniversitätMainz,D-55128Mainz,Germany

hInstituteofTheoreticalPhysicsandAstronomy,VilniusUniversity,Saul ˙etekioav.3,LT-10222Vilnius,Lithuania iInstitutfürKernphysik,TUDarmstadt,D-64289Darmstadt,Germany

jCenterforMathematicalSciences,UniversityofAizu,Tsuruga,Ikki-machi,Aizu-Wakamatsu,Fukushima965-8580,Japan kSchoolofTechnology,MalmöUniversity,Sweden

lExperimentalPhysicsDepartment,CERN,CH-1211Geneva23,Switzerland mIPHC,IN2P3-CNRSetUniversitédeStrasbourg,F-67037Strasbourg,France nDepartmentofPhysics,UniversityofTokyo,Hongo,Tokyo113,Japan

oGSIHelmholtzzentrumfürSchwerionenforschung,D-64291Darmstadt,Germany pCenterforNuclearStudy,UniversityofTokyo,Hongo,Bunkyo-ku,Tokyo113-0033,Japan

qInstitutdePhysiqueNucléaire,CNRS-IN2P3,UniversitéParis-Sud,UniversitéParis-Saclay,91406Orsay,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received10March2017

Receivedinrevisedform24April2017 Accepted29May2017

Availableonline1June2017 Editor:V.Metag

Keywords: Zinc

Magneticdipolemoment Quadrupolemoment Laser

Shellclosure

Collinear laserspectroscopy was performed on Zn (Z=30) isotopesat ISOLDE, CERN.The studyof hyperfinespectraofnucleiacrosstheZnisotopicchain,

N

=33–49,allowedthemeasurementofnuclear spinsforthegroundandisomericstatesinodd-A neutron-richnucleiupto

N

=50.Exactlyone long-lived (>10 ms) isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic

dipolemomentsandspectroscopicquadrupolemomentsarewellreproducedbylarge-scaleshell–model calculationsinthe f5pg9 and

fpg

9d5 modelspaces, thusestablishingthe dominanttermintheirwave

function. The magneticmoment of the intruder Iπ=1/2+ isomerin 79Znis reproduced onlyif the

ν

s1/2orbitalisaddedtothevalence space,asrealizedintherecentlydevelopedPFSDG-Uinteraction.

Thespinandmomentsofthelow-lyingisomericstatein73Znsuggestastrongonsetofdeformationat

N=43,whiletheprogressiontowards79Znpointstothestabilityofthe

Z

=28 and

N

=50 shellgaps,

supportingthemagicityof78Ni.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Evaluatingtheaccuracyoflarge-scale shell–modelinteractions is dependent on experimental data in regions of shell closures.

*

Correspondingauthor.

E-mailaddresses:c.wraith@liverpool.ac.uk(C. Wraith), xiaofei.yang@fys.kuleuven.be(X.F. Yang).

ForelementswithZ

28,recentexperimentshaveaimedtoshed light onnuclear structureinthe neutron-richisotopes andhence assess the reliability of shell–model predictions. This region is known for beingrich in nuclear structuralchange, including the weaksub-shell closureatN

=

40 observed innickel[1]and cop-per[2],thedevelopment ofcollectivitybeyondN

=

40 inGa iso-topes[3]andthedoublymagicnatureoftheexoticnucleus78Ni, http://dx.doi.org/10.1016/j.physletb.2017.05.085

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

and31Ga isotopesshow that the fillingofthe

ν

g9/2 orbital after N

=

40 inducesareorderingoftheprotonSPlevels p3/2and f5/2,

andhence a groundstate (g.s.) spin changeinduced by the ten-sorforce[3,5].Duetotheevenprotonnumberofzinc,theeffects ofthispredicted levelreordering on theg.s. properties ofodd-A Zn isotopes will be more subtle as their moments will be dom-inatedby the unpaired neutron. The tensorinteraction decreases thesize ofthe Z

=

28 shell gapwithincreasing N, asthefilling ofthe

ν

g9/2 orbitinduces a reduction ofthe spin–orbit splitting

between the

π

f7/2 and

π

f5/2 levels [6]. This interaction

there-forehas strong implications onshell closures in thisregion, and mostnotably atclosuresfarfromstability,wherethe Z

=

28 and N

=

50 shellgapsprovideinformationontheeffectivenessofthe magicity of 78Ni [7,8]. Despite these predictions, mass

measure-mentsof71–81ZnatISOLTRAPhavehighlighted thepersistence of

the N

=

50 shell closure at Z

=

30 [9], while similar measure-ments at JYFLTRAP have indicated an increasing rigidity of the shellgapfromGatoNi [10].StudiesatRIBF of

β

-decayhalf-lives

of 76,77Co, 79,80Co and 81Cu, and E

(

4+

1

)/

E

(

2+1

)

and B

(

E2

;

4+1

2+1

)/

B

(

E2

;

2+1

0+g.s.

)

of80Znhavealsopointedtowardsadoubly

magicstructurefor78Ni

[11,12]

.

In a previous publication [13] we reported the laser spec-troscopy results of an isomeric state in 79Zn, which was

origi-nallyreported inRef. [14].Apreliminary analysisof thissystem, whichalsodisplaysasignatureofshapecoexistence,indicatedthe presence ofan intruder

ν

s1/2 state. Here, we report for thefirst

time a full theoretical analysis in the context of new measure-mentsfortheentireisotopicchain.Theobservednuclearmagnetic dipoleandspectroscopicquadrupolemomentsarecomparedwith large-scale shell–model calculations in different model spaces to evaluate the influence of proton excitations across Z

=

28 and of neutrons across N

=

50, and the evolution of nuclear struc-turealong theisotopic chain. Additionally, this Letter establishes firmlythegroundandlong-lived(

>

10 ms)isomericstatespinsof

odd-A ZnisotopesfromN

=

33–49.Thedirectobservationoftheir hyperfine structure (hfs) solves a long-standing discussion about the (non-)existence of severallong-lived isomeric states in some oftheseisotopes[15–18,14].

2. Experimentalmethod

The experiment was completed at the collinear laser

spec-troscopysetup COLLAPS[19] atISOLDE,CERN.Radioactive fission fragmentswereproducedusingathickUCx target(45 g/cm2)

bom-barded withpulses of 1.4-GeVprotons. A neutron converter[20]

suppressed the production ofRb isobars,which contaminate the beam purity of neutron-rich Zn isotopes. The Zn yield was se-lectively enhanced by a factor of 100 using the Resonant Ion-ization Laser-Ion Source (RILIS) [21]. Zn ions were accelerated to 30 keV and mass selected using the high-resolution separa-tor (HRS). A gas-filled radio frequency quadrupole, ISCOOL [22],

Fig. 1. Hyperfinespectrafor63–79Znfrom the4s4p3Po

2 →4s5s3S1 transition, includingisomericstructures.See[13]forthefullhyperfinespectrumof79,79mZn.

delivered cooled and bunched ions to the collinear laser spec-troscopy setup, with a typical accumulation and release cycleof 200 ms. Theionbeamwas neutralisedin-flightthrough acharge exchange cell (CEC) filled with Na vapour, quasi-resonantly pop-ulating the atomic metastable 4s4p 3Po

2 level at 32890.3 cm−1.

A co-propagating laser beamwas overlapped withthe emerging

atomicbeaminordertoresonantlyexcitetheZnatoms. Atuning potential appliedpriortotheneutralisationactedtoDoppler-shift the laser frequency observedby the atoms, allowing ascan over thehfsresonances.The481.1873 nm4s4p3Po

2

4s5s3S1

transi-tionwas studiedusingacwfrequency-doubledtitanium-sapphire laser, lockedtoa wavelengthmeterwithuseofaninterferometer which was calibrated by a stabilized HeNe laser. A mass depen-denttimeofflightisassignedtoeachionbunch,witha5 µsgate placed on the photon signal fromlaser-ion bunchinteractions to reduce backgroundfromnon-resonantscatteredphotonsbya fac-tor of 4

×

104. Due to the relatively fast releaseof Zn from the

target[23],thebackgroundwasfurthersuppressedbylimiting IS-COOLaccumulationandreleasecyclesto600 msaftereachproton pulse.

3. Experimentalresults

Opticalspectrafor63–79Znareshownin

Fig. 1

forthe481.2 nm

line. A full hfs was fittedto each experimental spectrum with a

χ

2-minimisation fitting program to obtain the magnetic dipole, A,andelectricquadrupole, B,hfsconstants[24].Aslightly asym-metric lineshape occursfromenergylosses, eitherby the popu-lation of higher levels in the charge exchange process orby ad-ditional collisions. The line shape has been modelled using the

(3)

Fig. 2. LowenergyspectraofZnisotopesfromN=41–49 arecomparedtothepredictionsfromshell–modelinteractions.Thechangeinenergyoftheconfirmedgroundand isomericstatesarehighlightedbydottedlines.Theverticaldashedlineinthe1/2+isomericstateof79Znrepresentstheerroronthemeasuredenergy.

Table 1

Spinsandhfsconstantsoftheupperandlowerstates ofthe481.2 nmline,for groundandisomericstatesof63–79Zn.NotethatB(3S

1)0. A N I A(3S1)(MHz) A(3Po 2)(MHz) B(3P2o)(MHz) 63 33 3/2 −676.9(8) −286.0(13) +60(4) 65 35 5/2 +1114.0(23) +467.6(10) −7(6) 67 37 5/2 +1266.5(18) +531.2(11) +41(7) 69 39 1/2 +4033(9) +1691(5) – 69m 39 9/2 933.7(4) 392.1(2) 113(4) 71 41 1/2 +3987(5) +1675(3) – 71m 41 9/2 844.5(9) 354.3(3) 76(5) 73 43 1/2 +4044.0(27) +1696.9(16) – 73m 43 5/2 1233.9(14) 518.2(9) +125(6) 75 45 7/2 −815.4(6) −342.3(4) +48(4) 75m 45 1/2 +4034(6) +1695.5(29) 77 47 7/2 −938.1(7) −393.8(4) +141(5) 77m 47 1/2 +4063(10) +1708(5) 79 49 9/2 −955.0(6) −400.6(3) +116(5) 79m 49 1/2 7362(6) 3093(4)

high-statisticsspectrumofaneven-A isotopeandwasfixedin fit-tingthespectraofallodd-A isotopes[25].

Unambiguous spin assignments could be made for all

nu-clei and isomers as only a single spin value reproduces all hfs peakspacingssimultaneously.The resultingspinassignmentsand hyperfine constants are shown in Table 1. Moments are cali-brated relative to those of 67Zn by using the hyperfine

con-stants A

(

3P2o

)

= +

531

.

987

(

5

)

MHz (given a negligible hyperfine

anomaly[26]) and B

(

3P2o

)

= +

35

.

806

(

5

)

MHz[27].We usedthe

nuclearmagneticdipolemoment

µ

= +

0

.

875479

(

9

)

µ

N [28] and

anupdatedvalueforthequadrupolemoment,basedonnew calcu-lationsoftheelectricfieldgradient(EFG)forthe4s4p3Po

1,2 states.

Applying both the non-relativistic Hartree–Fock and fully rela-tivisticDirac–Hartree–Fockmulticonfigurationmethods[29],using respectively ATSP [30] and GRASP [31] atomic structure codes, differentelectron correlation models were investigated andtheir consistency checked between the non-relativistic and relativistic approaches.Fromthisstudy,asetofA,EFGandQsvaluesare

pro-duced[32]fromwhichwederivedaquadrupolemomentvalueof Qs

= +

0

.

122

(

10

)

b.RecentlytheEFGofZninsolidZnhasbeen

re-calculatedusingahybridDensityFunctionalTheoryapproach[33]. Combiningthisvalue withthe experimental quadrupolecoupling constants measured by Potzel etal. [34], and corrected for ther-maleffects, anew quadrupolemoment value for 67Zn g.s., Q

s

=

+

0

.

122

(

5

)

b,isdetermined in[33].Althoughthisvalue perfectly

agreeswiththepresentatomicestimation,theclaimederrorbars appeartobeveryoptimistic,takingthegeneraluncertaintyofthe DFT functionaldevelopments intoaccount. We thereforeadopted

thereferencevalue Qs

= +

0

.

122

(

10

)

b fortheg.s.of67Zn.All

ex-tractedmomentsareshownin

Table 2

.

4. Nuclearspinsofgroundandisomericstates

In Fig. 2 we present the experimental ground and isomeric statesin71–79Zn,forwhichfirmspin-assignmentshavebeenmade.

The assigned parities are based on the measured magnetic

mo-ments,asdiscussedinthenextsection.

Whenfillingthe

ν

g9/2orbitalfromN

=

41 onwards,ag.s. spin I

=

9

/

2 would be expected forthe odd-Zn isotopes, in the case

that no deformation or correlations are present. This is not the caseforanyoftheseisotopes,exceptfortheone-neutron–hole iso-tope79Zn.ThisisevidenceforthemagicnatureoftheN

=

50 shell

andsuggeststhatthelighterZnisotopes exhibitsignificant corre-lationsintheir groundstates,leading tonon-trivialg.s. spins.For

71,73Zn,theg.s. spin-parity1

/

2thatwastentativelyassigned

pre-viously[15]isconfirmed.The9

/

2+stateappearstobeisomericin 71Zn,andhasnotyetbeenobservedin73Zn.Instead,a5

/

2+

iso-mericstate isobserved[18].In75,77Zn,theg.s. spin is7

/

2+ and

the1

/

2−becomesnowalong-livedisomericstate.Finally,in79Zn,

having49neutrons,theg.s. spinisthe9

/

2+expectedfroma

non-interacting shell model picture with a hole inthe

ν

g9/2 orbital.

Along-livedisomeric state withspin-1/2 hasbeenestablished in this isotope, butits large negative magnetic moment excluded a negativeparityforthisisomer[13].

In

Fig. 2

wecomparethelowestenergylevelsinodd-A Zn iso-topeswithlarge-scale shell–modelcalculationsindifferentmodel spacesandusingdifferentinteractions. Thesimplestmodelspace starts froma 56Ni core, withprotonsandneutrons inthe f

5/2

,

p

and g9/2 orbits. Two effective interactions are available in this

model space, JUN45 [35] and jj44b [3]. This model space is ex-tendedtoincludeprotonexcitationsfrom

π

f7/2acrossZ

=

28 and

neutronexcitations across N

=

50 into the

ν

d5/2 orbital. Two

in-teractionsareavailableinthisextendedmodelspace:themodified A3DA interaction (A3DA-m)[36] in the MonteCarlo Shell-Model (MCSM)[37]frameworkandthemodifiedLNPSinteraction (LNPS-m) that isused with theANTOINE code [38].To understand the structure of the newly found positive parity isomer in 79Zn, we

usetherecentlydevelopedPFSDG-Uinteraction[39]intheproton pf andneutronsdgvalencespace.

As can be seen inFig. 2, noneof the calculationsreproduces correctly the energy level ordering of all ground and isomeric states in these isotopes. In the calculations with a 56Ni core

(JUN45) theg.s. spin is predictedto be 9

/

2+ forall isotopes. By

opening the proton shell to include excitations from the

π

f7/2

(4)

77 7/2 −0.9074(1) −0.876 −1.04 −0.964 +0.48(4) +0.421 +0.60 +0.487

77m 1/2+0.562(2) +0.450 +0.50 +0.537

79 9/2+ 1.1866(10) 1.185 1.49 1.508 +0.40(4) +0.356 +0.546 +0.367

79m 1/2+ 1.018(1) 0.741 0.603

a Tocalibrateacrosstheisotopechainthenuclearmomentsof67Znareusedasreferences,withµandQstakenfrom[28]andthisworkrespectively,withdetailsgiven in[32].PrecisehyperfineconstantsA(3P2)andB(3P2)[27]areused.

(A3DA-m and LNPS-m) the agreement becomes better for 77Zn.

However, for the less exotic isotopes the level ordering is still not well reproduced. These interactions predict a positive-parity 1

/

2+levelin79Zn,althoughitappearsat1.8and1.5 MeV

respec-tively,well above the experimental energy of 1.10(15) MeV [14]. Themagneticmomentofthislevelmotivateda furtherextension ofthemodelspace, asrealizedinthePFSDG-Uinteraction.Inthis extendedmodelspacean isomeric1

/

2+ levelisfound atthe ex-perimentalenergy.

5. Groundandisomericstateg-factorsandwavefunctions

In the f5pg9 model space used for JUN45 and jj44b, we use gseff

=

0

.

7gsfree for magnetic moment calculations, and effective

chargeseeff

p

=

1

.

5e,eeffn

=

1

.

1e[35].Theseinteractions were used

inourpreviousworkonthenuclearmomentsandspinsoftheCu andGagroundstates[40,3],reproducingtheseobservablesrather well.TheLNPS-mandA3DA-minteractionsstartfroma40Cacore

andincludealsothed5/2orbital,thususingafpg9d5 modelspace.

The neutron f7/2 orbit is blocked for the LNPS-m calculations,

butthishasnoinfluenceonthespectroscopyoftheneutron-rich (N

>

38) isotopes. Free g-factors canbe applied inthisextended

modelspace. Furthermore,theeffectiveneutroncharge canbe re-ducedtoeeff

n

=

0

.

46e becauseoftheinclusionofthe

ν

d5/2 orbital,

whiletheprotoncharge istakenaseeff

p

=

1

.

31e [38]. Thenuclear

moments have been calculated for the lowest lying energylevel withtheconfirmedspinassignment.

The nuclear magnetic moment provides a sensitive probe of

thewave functionofthestate. Bycomparingthemeasured mag-netic moments, andmore specifically the corresponding g-factor (g

=

µ

/

I) to the effective SPvalues of nearbyorbitals, the

lead-ing contributions to the wave functions can be deduced (Fig. 3). These values are also compared to the predictions of the shell– modelinteractions,fromwhichwecanextractthecalculatedmain contributioninthewavefunction.

The experimental g-factors for the 1

/

2− ground states of 69,71,73Znandtheisomericstatesin75,77Znareingoodagreement

withthe effectiveSP value for the

ν

p1/2 orbit. The

(

ν

p1/2)1 led

wave function configurationfor these statesis confirmed by the calculationsinthef5pg9 modelspacethatpredict a

>

50%

contri-butionfroma

ν

p1/2 holeconfigurationforthegroundstatesand

>

60% forthe isomers. The calculated magnetic moments appear

tosystematically underestimatethemeasured valuesofthe 1

/

2−

states.Furthertheoreticalinvestigationsareneededtounderstand this.

Fig. 3. Measured g-factorsofthegroundandisomericstatesof65–79Zn.The ob-served results arecompared tothe effective SP values (parityinbrackets) and predictionsofshell–modelinteractions(seetextfordetails).

Thegroundstatesof65,67Zn(N

=

35

,

37)bothhavespin5

/

2+

andtheir g-factorisingoodagreementwiththatforan unpaired neutronconfigurationinthe

ν

f5/2 orbital.Thehigh-spinstatesin

the 69–79Znisotopes,havingspins9

/

2+,5

/

2+ and7

/

2+,allhave

a g-factorthatisvery closeto thatforan unpairedneutron con-figurationinthe

ν

g9/2 orbital,suggestingthisistheleadingterm

intheirwavefunction.

For the isomeric 9

/

2+ states in 69,71Zn and the 9

/

2+ g.s. in 79Zn,a single unpaired g9

/2 neutronconfigurationis expectedto

dominatethe wavefunction. Thatis confirmedbythe large-scale shell–modelcalculationsfromJUN45andjj44b,whichpredictthis configuration to have the largestcontribution indeed: about 50% in 69Zn (N

=

39), 40% in71Zn(N

=

41) andnearly 100% in79Zn

(N

=

49).Theexcellentagreementofthecalculatedmagnetic mo-ments withthe observedvalue forthe 79Zng.s. with all

interac-tions(Table 2),illustratesthepersistenceofN

=

50 asashellgap. Alsothevaluesforthe7

/

2+ groundstatesin75,77Znare well

re-produced by all large scale shell–modelcalculations. The leading termin theirwave function isa seniority-3

ν

(

g9/2

)

37/2

configura-tion, which makes up roughly half ofthe wave function in 75Zn

and77Zn.

The5

/

2+ isomericstatein73Znalsohasag-factorthatagrees

well with the value for an unpaired g9/2 neutron configuration.

(5)

Fig. 5. Positive-paritylevelsinN=49 isotopesduetoneutronexcitationsacrossN=50,comparedthecalculatedlevelswiththePFSDG-Uinteraction.Theverticaldashed lineinthe1/2+isomericstateof79Znrepresentstheerroronthemeasuredenergy.

Fig. 4. (a) High-spin state g-factors in relation to the effective SP value of geff(νg9/2).(b)Measuredspectroscopicquadrupolemomentsofthehighspinstates ofZnisotopescomparedtotheexpectedvaluesforaseniority-1(g9/2)n configura-tionandthespin-7/2+and5/2+seniority-3configurations.(Forinterpretationof

thereferencestocolourinthisfigure,thereaderisreferredtothewebversionof thisarticle.)

SPconfiguration.Thisexcludesthatthis5

/

2+ isomericstateisan

intruder isomer, dominated by a neutron excited into the

ν

d5/2

orbital. The fact that its g-factor is somewhat lower than that ofthe other high-spin statessuggests that some admixture with suchaconfigurationcannot beexcluded. In

Fig. 4

a,thehigh-spin g-factors are presentedon asmaller scale,inorder tobetter see how well each of the calculations agrees with the data. The di-vergenceofpredictionsfromtheLNPS-mandA3DA-minteractions fromexperimenttowards N

=

50 whileJUN45andjj44bconverge hintsatthepersistence ofthe Z

=

28 and N

=

50 shell gaps.All

Table 3

Calculatedenergies(MeV)andelectromagnetic momentsµ(µN)and Qs (b)for 79Znand81GeusingthePFSDG-Uinteraction.Thesameeffectivechargesareused asforLNPS-m.

AZ Iπ E µexp µbare/µquenched Qs ,exp Qs 79Zn 9/2+ 0.0 1.1866 1.03/1.10 +0.40 +0.42

1/2+ 1.03 1.018 1.14/0.91

81Ge 9/2+ 0.0 0.90/0.95 +0.60

1/2+ 0.31 1.15/0.94

interactionspredictaveryfragmentedwavefunctionforthe5

/

2+

isomericstate in73Zn,withthelargestcontributioninJUN45

be-inglessthan10%.

Forthe isomeric state in79Zn,the modelspacelimitations of

the JUN45and jj44b interactions prevent anypredictions forthe positiveparity1

/

2+state.Thespinandpositiveparityofthislevel

were tentativelyassigned in [14] andfirmly established by [13], basedon itsstrong negative g-factor, whichisincompatible with a p1/2 hole configuration (see Fig. 3). The larger modelspace of

the LNPS-m andA3DA-m interactions consider excitations across the N

=

50 shellclosureinto the

ν

d5/2 orbitonly. In thismodel

space, a 1

/

2+ level is predictedat 1.8and 1.5 MeV respectively,

with g-factors gA3DA−m

= −

1

.

206 and gLNPS−m

= −

1

.

482, closer

to theobserved value, gexp

= −

2

.

038,butstill not in agreement.

In [13], a 1p–2h neutron excitation to a positive parity spin-1/2 state is suggested, witha large part of the wave function domi-natedbyasingleneutroninthes1/2 orbit.

Anewshellmodelinteractionhasbeendeveloped,suitableto calculatelevelsinisotopesaround N

=

50 withprotonslimitedto thepf shellandneutronstothesdg space[39],includingallspin– orbitpartners(allowingtheuseoffree g-factors). Thusthe inter-action is not suited to calculate levels in which neutrons inthe pf orbitsplayanimportantrole(suchasthe1

/

2−isomericstates

in75,77Zn).Therefore,we limitthecalculationstothe N

=

49

iso-toneswithprotonsinthe pf shell,wherepositive-parityintruder orbitshave beenobservedbetween Z

=

38 and Z

=

30.In

Fig. 5

wecomparethecalculatedlowestpositiveparity9

/

2+,1

/

2+ and

5

/

2+ levels in 85Kr,83Se, 81Ge,79Znand77Ni tothe

experimen-taldata.Theenergiesfortheseintruderlevelsarewellreproduced for79Zn,giventypical shell–modeluncertainties(afew 100 keV)

onenergypredictions.For77Ni,theseintruderlevelsarepredicted

closeto2MeV,suggestingarathergooddoubly-magicnaturefor

78Ni.Fortheheavierisotonestheyappear200to500 keVtoolow,

whichneedssomefurtherinvestigation.

The 1

/

2+ state appearsto be isomericin 79Zn and81Ge[41],

andthe intruder nature ofthis state is firmly established via its magnetic moment. Indeed, excellent agreement is observed

be-tween the calculated andobserved magnetic moment of the

(6)

normal-Fig. 6. Neutronoccupancynormalisedtothemaximumorbitalnucleonnumberfor thegroundandisomericstatesin79ZnfromthePFSDG-Uinteraction.

izedneutronoccupancyinallsdg levels.Theg.s. wavefunctionis dominated byasingle neutronholeinthe g9/2 orbit(50%),buta

significantamountofneutronexcitationsintothesdspaceare ob-servedfortheisomericstate.Thatleadstoabetteragreementwith

theexperimental magneticandquadrupolemoment comparedto

theLNPS-mcalculations.Theisomericlevelhasalargeoccupancy ofthes1/2 level,butalsomorenp–nhexcitationsintothed5/2

or-bitalaswell asthehigher gd orbits.Themaincomponentinthe isomeric wave function is found tobe indeedofa 1p–2h nature (40%).

6. Quadrupolemomentsofgroundandisomericstates

The quadrupole moments of the high-spin states, shown in

Fig. 4b,are abletoshedfurtherlightonthesingle particle struc-tureaswell ascollectivityandstructural changesacross the iso-tope chain as the

ν

g9/2 orbit is filled. In Table 2, the A3DA-m

interaction is shown to most accurately predict the measured quadrupolemomentsofneutronrichisotopesfrom69–79Zn,except

fortheg.s.of75Zn.

Alreadystartingfrom69Zn,theneutronsgraduallyfillthe g 9/2

orbital.In generalthequadrupole momentshould reflectthe na-ture of a single g9/2 neutron particle in 69Zn and single g9/2

neutron hole in 79Zn, as discussed for the magnetic moments

measured in this work. In Fig. 4b it can be seen that the 1p configuration for the isomeric state in 69Zn has indeed the

op-posite quadrupolemoment ofthe1h configurationforthe g.s.of

79Zn. The quadrupole moments forthe seniority-1

(

ν

g

9/2)n

con-figurations with spin-9/2 (69,71,79Zn) follow the expected linear

increase,crossingzerointhemiddleoftheshell[42] (reddashed lineof

Fig. 4

b) whichcorresponds to A

=

74 in thepresentcase. Theexperimentalmagneticmomentsofthe7

/

2+ statesin75,77Zn

show a seniority-3

ν

(

g9/2)37/2+ configuration, explainingwhythe their quadrupole moments do not followthe straight line ofthe seniority-1cases.

Anestimateofthequadrupolemomentsofthe7

/

2+

seniority-3statescanbeobtainedusingtheeffectivesingle-particle quadru-polemomentobservedintheseniority-1cases,Qsp

= ⟨

J

| ˆ

Q

|

J

,the

applicable coefficients of fractional parentage [43] and the rela-tion[44,45],

Jn

(

I

)

| !

Q

|

Jn

(

I

)⟩ =

2 J

+

1

2n 2 J

+

1

2

ν

ν

"

J1

(−

1

)

J1+J+I

(

cfp

)

2

×(

2I

+

1

)

#

J I J1 I J 2

$

J

|!

Q

|

J

(1)

result, along with the increase of configuration mixing at Zn mentionedabove,witnessedbothinitsmagneticmomentandits quadrupole moment,thereforesignalsa rapidshape transitionat N

=

43 intheZnisotopes.Alow-energyCoulombexcitationstudy of zinc isotopes at REX-ISOLDE supports this conclusion. Here a suddenloweringof2+statesatN

=

40 andanincreaseinB(E2

)

strength towards N

=

44 was associatedwithan increase in col-lectivity due to proton–neutron correlations anda weakening of the sub-shell closure [47,48]. An onset of collectivityis also

ob-served in the quadrupole moments of odd-A Ga isotopes when

N

>

40 [3], while no such increase in collectivityis observed in

the quadrupole moments of Cu isotones [40]. Therefore, Zn iso-topes are considered to lie within a transitional region between sphericalNianddeformedGenuclei[49].

7. Conclusion

In summary,thenuclear spins, magneticdipole moments and electricquadrupolemomentshavebeendeterminedfortheground and isomeric states in 63–79Zn by means of collinear laser

spec-troscopy. Exactlyone long-lived(t1/2

>

10 ms) isomericstate has

been observed in all odd-A Zn isotopes from N

=

39–49. This

hasprovided an insightintothe neutronlevelsystematics asthe N

=

50 shellclosureisapproached.

The magnetic dipole moments of ground andisomeric states

havebeencomparedtoavarietyoflarge-scaleshell–model calcu-lationsindifferentmodelspaces.Allstatesupto79Zn(exceptfor

the 1

/

2+ isomeric level) are well described withinteractions

as-suminga56Nicoreandneutronslimitedtothepf andg9

/2orbits.

Extendingthemodelspacebothforprotonexcitationsacross Z

=

28 and neutron excitations across N

=

50 does not significantly improve theagreement withexperiment, withtheir high-spin g-factorsdivergingfromtheexperimentalvaluesforN

=

45–49 sug-gesting the preservation of these shell gaps when approaching

78Ni.

Forthe 1

/

2+ intruder isomer,a newly developedshell–model

interactioninthepf

+

sdgmodelspaceisneededtoreproducethe magnetic dipole moment of 79mZn, which lies outside the f

5pg9

andfpg9d5 modelspaces.ThePFSDG-Uinteractionsuggestsa

lead-ingwavefunctionconfigurationformedbya1p–2hexcitationfrom

ν

g9/2 to

ν

3s1/2, consistent with the spin-parity of the isomeric

state as 1

/

2+. A similar isomeric intruder level has been sug-gestedin81Ge[41]andafuturemagnetic momentmeasurement

shouldconfirmits1p–2hintrudernature.Alsoin80Gaalow-lying

short-livedintruder0+statehasbeeninferredfrom

β

-decay

stud-ies[50].Thusfurtherstudiestoestablishthedeformationofthese proposedshape-coexistingstatesareneeded.

The quadrupole moments reveal a strong onset ofcollectivity from71mZnto 73mZn,wherethedeviationofthequadrupole

mo-ment from the seniority-3 5

/

2+ prediction indicates substantial

(7)

describedmostaccurately bytheA3DA-minteraction,butin gen-eraltheyarewellreproducedbyallshell–modelinteractions.

Acknowledgements

The support and assistance from the ISOLDE technical group aregratefullyacknowledged.Thisworkwassupportedbythe

IAP-project P7/12, the FWO-Vlaanderen, GOA grant 15/010 from KU

Leuven,theBMBFContractsNos.05P15RDCIA,theMax-Planck So-ciety, the Science and Technology Facilities Council, and the EU FP7viaENSARNo. 262010. TheatomiccalculationsofEFGswere supported fromthe European Regional DevelopmentFund in the frameworkofthePolishInnovationEconomyOperationalProgram (contract no. POIG.02.01.00-12-023/08). PJ acknowledges support from the Swedish Research Council under contract 2015-04842. The Monte Carlo Shell-Model calculations were performed on K

computer at RIKEN AICS (hp150224, hp160211). This work was

supported in part by the HPCI Strategic Program (the origin of matterandtheuniverse)and“PriorityIssueonPost-Kcomputer” (Elucidationof the Fundamental Laws and Evolution of the Uni-verse)fromMEXTandJICFuS.

References

[1]O.Sorlin,etal.,Phys.Rev.Lett.88(2002)092501. [2]M.L.Bissell,etal.,Phys.Rev.C93(2016)064318. [3]B.Cheal,etal.,Phys.Rev.Lett.104(2010)252502.

[4]P.T.Hosmer,H.Schatz,etal.,Phys.Rev.Lett.94(2005)112501. [5]K.T.Flanagan,etal.,Phys.Rev.Lett.103(2009)142501. [6]T.Otsuka,etal.,Phys.Rev.Lett.95(2005)232502. [7]M.G.Porquet,O.Sorlin,Phys.Rev.C85(2012)014307. [8]K.Sieja,F.Nowacki,Phys.Rev.C85(2012)051301. [9]S.Baruah,etal.,Phys.Rev.Lett.101(2008)262501. [10]J.Hakala,etal.,Phys.Rev.Lett.101(2008)052502. [11]Z.Y.Xu,etal.,Phys.Rev.Lett.113(2014)032505.

[12]Y.Shiga,etal.,Phys.Rev.C93(2016)024320. [13]X.F.Yang,etal.,Phys.Rev.Lett.116(2016)182502. [14]R.Orlandi,etal.,Phys.Lett.B740(2015)298–302. [15]M.Huhta,etal.,Phys.Rev.C58(1998)3187–3194. [16]E.Runte,etal.,Nucl.Phys.A441(1985)237–260. [17]S.V.Ilyushkin,etal.,Phys.Rev.C80(2009)054304. [18]S.V.Ilyushkin,etal.,Phys.Rev.C83(2011)014322. [19]A.C.Mueller,etal.,Nucl.Phys.A403(1983)234.

[20]R.Catherall,etal.,Nucl.Instrum.MethodsB204(2003)235–239. [21]B.A.Marsh,etal.,HyperfineInteract.196(2010)129–141. [22]E.Mané,etal.,Eur.Phys.J.A42(2009)503–507. [23]U.Köster,etal.,AIPConf.Proc.798(2005)315–326. [24]P.Campbell,etal.,Prog.Part.Nucl.Phys.86(2016)127–180. [25]N.Bendali,etal.,J.Phys.B19(1986)233.

[26]N.Frömmgen,etal.,Eur.Phys.J.D69(2015)164. [27]A.Lurio,Phys.Rev.126(1962)1768–1773.

[28]N.Stone,in:InternationalNuclearDataCommittee,vol. 0658,2014,pp. 1–171. [29]C.F.Fischer,etal.,J.Phys.B,At.Mol.Opt.Phys.49(2016)182004.

[30]C.F.Fischer,etal.,Comput.Phys.Commun.176(2007)559–579. [31]P.Jönsson,etal.,Comput.Phys.Commun.184(2013)2197–2203. [32] J.Biero ´n,etal.,inpreparation.

[33]H.Haas,etal.,Europhys.Lett.117(2017)62001. [34]W.Potzel,etal.,HyperfineInteract.12(1982)135–141. [35]M.Honma,etal.,Phys.Rev.C80(2009)064323.

[36]Y.Tsunoda,T.Otsuka,N.Shimizu,etal.,Phys.Rev.C89(2014)031301. [37]T.Otsuka,Nucl.Phys.A693(2001)383–393.

[38]S.M.Lenzi,etal.,Phys.Rev.C82(2010)054301. [39]F.Nowacki,etal.,Phys.Rev.Lett.117(2016)272501. [40]P.Vingerhoets,etal.,Phys.Rev.C82(2010)064311. [41]P.Hoff,B.Fogelberg,Nucl.Phys.A368(1981)210–236. [42]G.Neyens,Rep.Prog.Phys.66(2003)633–689. [43]B.Bayman,A.Lande,Nucl.Phys.77(1966)1–80. [44]A.deShalit,I.Talmi,NuclearShellTheory,Elsevier,1963. [45]D.T.Yordanov,etal.,Phys.Rev.Lett.110(2013)192501. [46]M.Bernas,etal.,Nucl.Phys.A413(1984)363–374. [47]J.VanDeWalle,etal.,Phys.Rev.C79(2009)014309. [48]O.Perru,etal.,Phys.Rev.Lett.96(2006)232501. [49]S.Leenhardt,etal.,Eur.Phys.J.A14(2002)1–5. [50]A.Gottardo,etal.,Phys.Rev.Lett.116(2016)182501.

Figure

Fig. 1. Hyperfine spectra for 63–79 Zn from the 4s4p 3 P 2 o → 4s5s 3 S 1 transition, including isomeric structures
Fig. 2. Low energy spectra of Zn isotopes from N = 41–49 are compared to the predictions from shell–model interactions
Fig. 3. Measured g-factors of the ground and isomeric states of 65–79 Zn. The ob- ob-served results are compared to the effective SP values (parity in brackets) and predictions of shell–model interactions (see text for details).
Fig. 5. Positive-parity levels in N = 49 isotopes due to neutron excitations across N = 50, compared the calculated levels with the PFSDG-U interaction
+2

References

Related documents

Hence, a prompt spectrum for 170 Er is received by gating on 136 Xe and on prompt coincidences in the spectrum 4.22 and Doppler correcting with binary kinematics. It is presented

Industrial Emissions Directive, supplemented by horizontal legislation (e.g., Framework Directives on Waste and Water, Emissions Trading System, etc) and guidance on operating

The EU exports of waste abroad have negative environmental and public health consequences in the countries of destination, while resources for the circular economy.. domestically

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Exakt hur dessa verksamheter har uppstått studeras inte i detalj, men nyetableringar kan exempelvis vara ett resultat av avknoppningar från större företag inklusive

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Av tabellen framgår att det behövs utförlig information om de projekt som genomförs vid instituten. Då Tillväxtanalys ska föreslå en metod som kan visa hur institutens verksamhet

The achieved results on transition probabilities agree well with predictions from MBPT and ab initio VS-IMSRG for 20 O and NCSM calculations for 16 C, showing that 3N interactions