• No results found

Measurements of cross section of e(+)e(-) -> p(p)over-bar pi(0) at center-of-mass energies between 4.008 and 4.600 GeV

N/A
N/A
Protected

Academic year: 2021

Share "Measurements of cross section of e(+)e(-) -> p(p)over-bar pi(0) at center-of-mass energies between 4.008 and 4.600 GeV"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurements

of

cross

section

of

e

+

e

p

p

¯

π

0

at

center-of-mass

energies

between

4.008

and

4.600

GeV

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

5

,

S. Ahmed

n

,

X.C. Ai

a

,

,

O. Albayrak

e

,

M. Albrecht

d

,

D.J. Ambrose

aw

,

A. Amoroso

bb

,

bd

,

F.F. An

a

,

Q. An

ay

,

1

,

J.Z. Bai

a

,

R. Baldini Ferroli

t

,

Y. Ban

ag

,

D.W. Bennett

s

,

J.V. Bennett

e

,

N. Berger

x

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

av

,

F. Bianchi

bb

,

bd

,

E. Boger

y

,

3

,

I. Boyko

y

,

R.A. Briere

e

,

H. Cai

bf

,

X. Cai

a

,

1

,

O. Cakir

ap

,

A. Calcaterra

t

,

G.F. Cao

a

,

S.A. Cetin

aq

,

J. Chai

bd

,

J.F. Chang

a

,

1

,

G. Chelkov

y

,

3

,

4

,

G. Chen

a

,

H.S. Chen

a

,

J.C. Chen

a

,

M.L. Chen

a

,

1

,

S. Chen

at

,

S.J. Chen

ae

,

X. Chen

a

,

1

,

X.R. Chen

ab

,

Y.B. Chen

a

,

1

,

H.P. Cheng

q

,

X.K. Chu

ag

,

G. Cibinetto

v

,

H.L. Dai

a

,

1

,

J.P. Dai

aj

,

A. Dbeyssi

n

,

D. Dedovich

y

,

Z.Y. Deng

a

,

A. Denig

x

,

I. Denysenko

y

,

M. Destefanis

bb

,

bd

,

F. De Mori

bb

,

bd

,

Y. Ding

ac

,

C. Dong

af

,

J. Dong

a

,

1

,

L.Y. Dong

a

,

M.Y. Dong

a

,

1

,

Z.L. Dou

ae

,

S.X. Du

bh

,

P.F. Duan

a

,

J.Z. Fan

ao

,

J. Fang

a

,

1

,

S.S. Fang

a

,

X. Fang

ay

,

1

,

Y. Fang

a

,

R. Farinelli

v

,

w

,

L. Fava

bc

,

bd

,

O. Fedorov

y

,

F. Feldbauer

x

,

G. Felici

t

,

C.Q. Feng

ay

,

1

,

E. Fioravanti

v

,

M. Fritsch

n

,

x

,

C.D. Fu

a

,

Q. Gao

a

,

X.L. Gao

ay

,

1

,

Y. Gao

ao

,

Z. Gao

ay

,

1

,

I. Garzia

v

,

K. Goetzen

j

,

L. Gong

af

,

W.X. Gong

a

,

1

,

W. Gradl

x

,

M. Greco

bb

,

bd

,

M.H. Gu

a

,

1

,

Y.T. Gu

l

,

Y.H. Guan

a

,

A.Q. Guo

a

,

L.B. Guo

ad

,

R.P. Guo

a

,

Y. Guo

a

,

Y.P. Guo

x

,

Z. Haddadi

aa

,

A. Hafner

x

,

S. Han

bf

,

X.Q. Hao

o

,

F.A. Harris

au

,

K.L. He

a

,

F.H. Heinsius

d

,

T. Held

d

,

Y.K. Heng

a

,

1

,

T. Holtmann

d

,

Z.L. Hou

a

,

C. Hu

ad

,

H.M. Hu

a

,

J.F. Hu

bb

,

bd

,

T. Hu

a

,

1

,

Y. Hu

a

,

G.S. Huang

ay

,

1

,

J.S. Huang

o

,

X.T. Huang

ai

,

X.Z. Huang

ae

,

Y. Huang

ae

,

Z.L. Huang

ac

,

T. Hussain

ba

,

Q. Ji

a

,

Q.P. Ji

o

,

X.B. Ji

a

,

X.L. Ji

a

,

1

,

L.W. Jiang

bf

,

X.S. Jiang

a

,

1

,

X.Y. Jiang

af

,

J.B. Jiao

ai

,

Z. Jiao

q

,

D.P. Jin

a

,

1

,

S. Jin

a

,

T. Johansson

be

,

A. Julin

av

,

N. Kalantar-Nayestanaki

aa

,

X.L. Kang

a

,

X.S. Kang

af

,

M. Kavatsyuk

aa

,

B.C. Ke

e

,

P. Kiese

x

,

R. Kliemt

n

,

B. Kloss

x

,

O.B. Kolcu

aq

,

8

,

B. Kopf

d

,

M. Kornicer

au

,

A. Kupsc

be

,

W. Kühn

z

,

J.S. Lange

z

,

M. Lara

s

,

P. Larin

n

,

H. Leithoff

x

,

C. Leng

bd

,

C. Li

be

,

Cheng Li

ay

,

1

,

D.M. Li

bh

,

F. Li

a

,

1

,

F.Y. Li

ag

,

G. Li

a

,

H.B. Li

a

,

H.J. Li

a

,

J.C. Li

a

,

Jin Li

ah

,

K. Li

m

,

K. Li

ai

,

Lei Li

c

,

P.R. Li

at

,

Q.Y. Li

ai

,

T. Li

ai

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ai

,

X.N. Li

a

,

1

,

X.Q. Li

af

,

Y.B. Li

b

,

Z.B. Li

an

,

H. Liang

ay

,

1

,

Y.F. Liang

al

,

Y.T. Liang

z

,

G.R. Liao

k

,

D.X. Lin

n

,

B. Liu

aj

,

B.J. Liu

a

,

C.X. Liu

a

,

D. Liu

ay

,

1

,

F.H. Liu

ak

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.H. Liu

p

,

H.H. Liu

a

,

H.M. Liu

a

,

J. Liu

a

,

J.B. Liu

ay

,

1

,

J.P. Liu

bf

,

J.Y. Liu

a

,

K. Liu

ao

,

K.Y. Liu

ac

,

L.D. Liu

ag

,

P.L. Liu

a

,

1

,

Q. Liu

at

,

S.B. Liu

ay

,

1

,

X. Liu

ab

,

Y.B. Liu

af

,

Y.Y. Liu

af

,

Z.A. Liu

a

,

1

,

Zhiqing Liu

x

,

H. Loehner

aa

,

X.C. Lou

a

,

1

,

7

,

H.J. Lu

q

,

J.G. Lu

a

,

1

,

Y. Lu

a

,

Y.P. Lu

a

,

1

,

C.L. Luo

ad

,

M.X. Luo

bg

,

T. Luo

au

,

X.L. Luo

a

,

1

,

X.R. Lyu

at

,

F.C. Ma

ac

,

H.L. Ma

a

,

L.L. Ma

ai

,

M.M. Ma

a

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

af

,

X.Y. Ma

a

,

1

,

Y.M. Ma

ai

,

F.E. Maas

n

,

M. Maggiora

bb

,

bd

,

Q.A. Malik

ba

,

Y.J. Mao

ag

,

Z.P. Mao

a

,

S. Marcello

bb

,

bd

,

J.G. Messchendorp

aa

,

G. Mezzadri

w

,

J. Min

a

,

1

,

T.J. Min

a

,

R.E. Mitchell

s

,

X.H. Mo

a

,

1

,

Y.J. Mo

f

,

C. Morales Morales

n

,

N.Yu. Muchnoi

i

,

5

,

H. Muramatsu

av

,

P. Musiol

d

,

Y. Nefedov

y

,

F. Nerling

n

,

I.B. Nikolaev

i

,

5

,

Z. Ning

a

,

1

,

S. Nisar

h

,

S.L. Niu

a

,

1

,

X.Y. Niu

a

,

S.L. Olsen

ah

,

Q. Ouyang

a

,

1

,

S. Pacetti

u

,

Y. Pan

ay

,

1

,

P. Patteri

t

,

M. Pelizaeus

d

,

H.P. Peng

ay

,

1

,

K. Peters

j

,

9

,

J. Pettersson

be

,

J.L. Ping

ad

,

R.G. Ping

a

,

R. Poling

av

,

V. Prasad

a

,

H.R. Qi

b

,

M. Qi

ae

,

http://dx.doi.org/10.1016/j.physletb.2017.05.033

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

S. Qian

a

,

1

,

C.F. Qiao

at

,

L.Q. Qin

ai

,

N. Qin

bf

,

X.S. Qin

a

,

Z.H. Qin

a

,

1

,

J.F. Qiu

a

,

K.H. Rashid

ba

,

C.F. Redmer

x

,

M. Ripka

x

,

G. Rong

a

,

Ch. Rosner

n

,

X.D. Ruan

l

,

A. Sarantsev

y

,

6

,

M. Savrié

w

,

C. Schnier

d

,

K. Schoenning

be

,

S. Schumann

x

,

W. Shan

ag

,

M. Shao

ay

,

1

,

C.P. Shen

b

,

P.X. Shen

af

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

M. Shi

a

,

W.M. Song

a

,

X.Y. Song

a

,

S. Sosio

bb

,

bd

,

S. Spataro

bb

,

bd

,

G.X. Sun

a

,

J.F. Sun

o

,

S.S. Sun

a

,

X.H. Sun

a

,

Y.J. Sun

ay

,

1

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

1

,

Z.T. Sun

s

,

C.J. Tang

al

,

X. Tang

a

,

I. Tapan

ar

,

E.H. Thorndike

aw

,

M. Tiemens

aa

,

I. Uman

as

,

G.S. Varner

au

,

B. Wang

af

,

B.L. Wang

at

,

D. Wang

ag

,

D.Y. Wang

ag

,

K. Wang

a

,

1

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ai

,

P. Wang

a

,

P.L. Wang

a

,

S.G. Wang

ag

,

W. Wang

a

,

1

,

W.P. Wang

ay

,

1

,

X.F. Wang

ao

,

Y. Wang

am

,

Y.D. Wang

n

,

Y.F. Wang

a

,

1

,

Y.Q. Wang

x

,

Z. Wang

a

,

1

,

Z.G. Wang

a

,

1

,

Z.H. Wang

ay

,

1

,

Z.Y. Wang

a

,

Z.Y. Wang

a

,

T. Weber

x

,

D.H. Wei

k

,

J.B. Wei

ag

,

P. Weidenkaff

x

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

be

,

L.H. Wu

a

,

L.J. Wu

a

,

Z. Wu

a

,

1

,

L. Xia

ay

,

1

,

L.G. Xia

ao

,

Y. Xia

r

,

D. Xiao

a

,

H. Xiao

az

,

Z.J. Xiao

ad

,

Y.G. Xie

a

,

1

,

Q.L. Xiu

a

,

1

,

G.F. Xu

a

,

J.J. Xu

a

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

at

,

X.P. Xu

am

,

L. Yan

bb

,

bd

,

W.B. Yan

ay

,

1

,

W.C. Yan

ay

,

1

,

Y.H. Yan

r

,

H.J. Yang

aj

,

H.X. Yang

a

,

L. Yang

bf

,

Y.X. Yang

k

,

M. Ye

a

,

1

,

M.H. Ye

g

,

J.H. Yin

a

,

B.X. Yu

a

,

1

,

C.X. Yu

af

,

J.S. Yu

ab

,

C.Z. Yuan

a

,

W.L. Yuan

ae

,

Y. Yuan

a

,

A. Yuncu

aq

,

2

,

A.A. Zafar

ba

,

A. Zallo

t

,

Y. Zeng

r

,

Z. Zeng

ay

,

1

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

1

,

C. Zhang

ae

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

an

,

H.Y. Zhang

a

,

1

,

J. Zhang

a

,

J.J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

1

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

a

,

S.Q. Zhang

af

,

X.Y. Zhang

ai

,

Y. Zhang

a

,

Y.H. Zhang

a

,

1

,

Y.N. Zhang

at

,

Y.T. Zhang

ay

,

1

,

Yu Zhang

at

,

Z.H. Zhang

f

,

Z.P. Zhang

ay

,

Z.Y. Zhang

bf

,

G. Zhao

a

,

J.W. Zhao

a

,

1

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

1

,

Lei Zhao

ay

,

1

,

Ling Zhao

a

,

M.G. Zhao

af

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

bh

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

1

,

Z.G. Zhao

ay

,

1

,

A. Zhemchugov

y

,

3

,

B. Zheng

az

,

J.P. Zheng

a

,

1

,

W.J. Zheng

ai

,

Y.H. Zheng

at

,

B. Zhong

ad

,

L. Zhou

a

,

1

,

X. Zhou

bf

,

X.K. Zhou

ay

,

1

,

X.R. Zhou

ay

,

1

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

1

,

S. Zhu

a

,

S.H. Zhu

ax

,

X.L. Zhu

ao

,

Y.C. Zhu

ay

,

1

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

1

,

L. Zotti

bb

,

bd

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangXiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany yJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

zJustus-Liebig-UniversitaetGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany aaKVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

abLanzhouUniversity,Lanzhou730000,People’sRepublicofChina acLiaoningUniversity,Shenyang110036,People’sRepublicofChina adNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina aeNanjingUniversity,Nanjing210093,People’sRepublicofChina afNankaiUniversity,Tianjin300071,People’sRepublicofChina agPekingUniversity,Beijing100871,People’sRepublicofChina ahSeoulNationalUniversity,Seoul,151-747RepublicofKorea aiShandongUniversity,Jinan250100,People’sRepublicofChina

ajShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina akShanxiUniversity,Taiyuan030006,People’sRepublicofChina

alSichuanUniversity,Chengdu610064,People’sRepublicofChina amSoochowUniversity,Suzhou215006,People’sRepublicofChina anSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina

(3)

aoTsinghuaUniversity,Beijing100084,People’sRepublicofChina apAnkaraUniversity,06100Tandogan,Ankara,Turkey aqIstanbulBilgiUniversity,34060Eyup,Istanbul,Turkey arUludagUniversity,16059Bursa,Turkey

asNearEastUniversity,Nicosia,NorthCyprus,Mersin10,Turkey

atUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina auUniversityofHawaii,Honolulu,HI 96822,USA

avUniversityofMinnesota,Minneapolis,MN 55455,USA awUniversityofRochester,Rochester,NY 14627,USA

axUniversityofScienceandTechnology, Liaoning,Anshan 114051,People’sRepublicofChina ayUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina azUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

baUniversityofthePunjab,Lahore 54590,Pakistan bbUniversityofTurin,I-10125,Turin,Italy

bcUniversityofEasternPiedmont,I-15121,Alessandria,Italy bdINFN,I-10125,Turin,Italy

beUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bfWuhanUniversity,Wuhan430072,People’sRepublicofChina bgZhejiangUniversity,Hangzhou310027,People’sRepublicofChina bh

ZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received17January2017

Receivedinrevisedform26April2017 Accepted11May2017

Availableonline15May2017 Editor: V.Metag

Keywords: Hadrons

Crosssectionmeasurements Y(4260)

Based one+e− annihilationdata samples collectedwith the BESIII detectorat the BEPCIIcollider at 13center-of-massenergiesfrom4.008to4.600GeV,measurementsoftheBorncrosssectionofe+e pp¯

π

0areperformed.Nosignificantresonantstructureisobservedinthemeasuredenergydependenceof

thecrosssection.TheupperlimitontheBorncrosssectionofe+e−→Y(4260)p¯p

π

0atthe90%C.L.

isdeterminedtobe0.01pb.Theupperlimitontheratioofthebranchingfractions B(BY((4260Y(4260)→π)→+pπp¯−π0J/ψ)) atthe90%C.L.isdeterminedtobe0.02%.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

TheBorncross sectionofe+e

pp

¯

π

0 inthe vicinityofthe

ψ(

3770

)

hasbeenmeasuredrecentlybyBESIII[1].Informationon thecrosssection ofe+e

pp

¯

π

0 athigherenergiesis however

stilllacking.Theexperimentaldataonthecrosssectionofe+e

hadrons canbeusedasaninputtocalculatethehadronicvacuum polarizationviadispersionintegrals[2–5].

The charmonium-like state Y

(

4260

)

was first observed in its decayto

π

+

π

J

[6].Sofar,thereisnoevidenceoftheY

(

4260

)

in the measured open charm decay channels [7,8] and R value

scans[9–15].Manytheoreticalmodelshavebeenproposed to in-terpretthenatureofY

(

4260

)

,e.g. asatetraquarkstate[16],aD1D

¯

or D0D

¯

∗ hadronic molecule [17], a hybrid charmonium [18,19],

ora baryonium state [20]. Searchesfor newdecaymodes ofthe

Y

(

4260

)

mayprovideinformationthatcanshedlightonitsnature. Inparticular,thehybridmodel[18]predictsasizablecoupling be-tweentheY

(

4260

)

andcharmlessdecays.

*

Correspondingauthor.

E-mailaddress:aixc@ihep.ac.cn(X.C. Ai).

1 Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049,Hefei230026,People’sRepublicofChina.

2 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

3 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 4 Alsoat theFunctional ElectronicsLaboratory,Tomsk StateUniversity,Tomsk, 634050,Russia.

5 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 6 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 7 AlsoatUniversityofTexasatDallas,Richardson,TX 75083,USA. 8 AlsoatIstanbulArelUniversity,34295Istanbul,Turkey.

9 AlsoatGoetheUniversityFrankfurt,60323FrankfurtamMain,Germany.

In thisanalysis, we report measurements of thecross section of e+e

pp

¯

π

0 based on the e+eannihilation samples

col-lected with the BESIII detector at 13 center-of-mass energies in therange

s

=

4

.

008–4

.

600 GeV asshownin Table 1.Results of the measurements can be used to estimate the cross section of

pp

¯

Xc¯c

π

0 [21], which is of high importance for the planned PANDAexperiment[22]atFAIRinDarmstadt,Germany.

2. BESIIIdetectorandMonte-Carlosimulation

TheBESIIIdetector[23]isamagneticspectrometeroperatingat BEPCII, a double-ring e+e− colliderwith center-of-massenergies between2.0and4.6GeVandapeakluminosityof1033cm−2s−1 near the

ψ(

3770

)

mass.The cylindrical coreof the BESIII detec-torconsistsofahelium-basedmaindriftchamber(MDC),aplastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromag-neticcalorimeter(EMC)thatareallenclosedinasuperconducting solenoidal magnet providinga 1.0 Tmagnetic field. The solenoid issupported byanoctagonal flux-returnyokewithresistiveplate counter muon identifier modules interleaved withsteel. The ac-ceptanceforchargedparticlesandphotonsis93%ofthe4

π

solid angle,andthe charged-particle momentum resolution is0.5% for transversemomentaof1 GeV

/

c.Theenergyresolutionforshowers intheEMC is2.5(5%) for1 GeVphotonsin thebarrel(endcaps) region.

A geant4-based [24] Monte Carlo (MC) simulation software

package isused to optimizetheevent selectioncriteria, estimate backgrounds anddetermine thedetectionefficiency.Foreach en-ergy point, we generate 200,000 signal MC events of e+e

pp

¯

π

0 uniformly in phase space. Effects of initial state radiation

(ISR) are simulatedwith kkmc [25],where the lineshape of the productioncrosssectionofe+e

pp

¯

π

0istakenfromresultsof

(4)

themeasured crosssection iteratively.Effects offinal state radia-tionoffchargedparticlesaresimulatedwith photos[26].

To study possible backgrounds, a MC sample of inclusive

Y

(

4260

)

decays, equivalent to an integrated luminosity of 825

.

6 pb−1, is also generated at

s

=

4

.

26 GeV. In these simu-lations,theY

(

4260

)

isallowedtodecaygenerically,withthemain

known decay channels being generated using evtgen [27] with

branchingfractions settoworld averagevalues[28].The remain-ingeventsassociatedwithcharmoniumdecaysaregeneratedwith lundcharm [29], while the continuum hadronic events are gen-erated with pythia[30].QED events(e+e

e+e−,

μ

+

μ

−, and

γ γ

)aregeneratedwith kkmc[25].Thesourcesofbackgroundsat otherenergypointsareassumedtobesimilar.

3. Eventselection

The final state in this decay is characterized by two charged tracksandtwophotons. Twochargedtrackswithopposite charge arerequired.Eachtrackisrequiredtohaveitspointofclosest ap-proachtothebeamaxiswithin10cmoftheinteractionpointin thebeamdirectionandwithin1cmofthebeamaxisintheplane perpendiculartothebeam.Thepolarangleofthetrackisrequired tobewithintheregionof

|

cos

θ

|

<

0.93.

The time of flight and the specific energy loss dE

/

dx of a particlemeasured in theMDC are combinedto calculateparticle identificationprobabilities forpion,kaon,andprotonhypotheses. Foreachtrack,theparticletype yieldingthelargestprobability is assigned.Inthisanalysis,onechargedtrackisrequiredtobe iden-tifiedasaprotonandtheotheroneasanantiproton.

Photon candidates are reconstructed using clusters of energy depositedintheEMC.The energydepositedinnearbyTOF coun-tersisincludedinEMCmeasurementstoimprovethe reconstruc-tion efficiency and the energy resolution. Photon candidates are selectedbyrequiringaminimumenergydeposition of25MeV in thebarrelEMC(

|

cos

θ

|

<

0.8)or50MeVintheendcapEMC(0.86

<

|

cos

θ

|

<

0.92).To reject photonsradiatedfrom charged parti-cles, the angle between the photon candidate and the proton is required to be greater than 10 degrees. A more stringent cut of 30 degrees betweenthe photon candidate and the antiproton is applied to exclude the large numberof photons fromantiproton annihilation.

Forevents with one proton, one antiproton, and atleast two photons, a kinematicfit (4C) with the total four-momenta of all particlesconstrainedtotheenergyandthree-momentum compo-nentsoftheinitiale+e− systemisapplied.Whenmorethantwo photons are found in an event, all possible pp

¯

γ γ

combinations are considered andtheone yielding the smallest

χ

2

4C is retained

forfurtheranalysis. The

χ

2

4C isrequired tobe lessthan 30.After

selectingthe pp

¯

γ γ

candidate,the

π

0 candidatesare selectedby

requiring

|

M

(γ γ

)

0

|

<

15 MeV

/

c2,where0 isthenominal

π

0 mass[28].

The Dalitzplot fortheeventspassing the above selection cri-teriafordataat

s

=

4

.

258 GeV isshowninFig. 1(a).The corre-spondinginvariant mass spectraof pp,

¯

p

π

0 and p

¯

π

0 are shown

inFig. 1(b),(c)and(d),respectively.

The potential backgrounds for e+e

pp

¯

π

0 are studied

us-ingtheinclusiveMC sampleat

s

=

4

.

26 GeV. Afterimposingall eventselectionrequirements,theremainingbackgroundeventsare foundtohavethefinal statetopologies e+e

γ

pp,

¯

γ γ

pp and

¯

γ γ γ

pp.

¯

No other background survives. The non-

π

0 background

eventscanbeevaluated fromeventsinthe

π

0 sidebands.The

π

0

sidebandregionsaredefinedas0

.

07

<

M

(γ γ

)

<

0

.

10 GeV

/

c2 and

0

.

17

<

M

(γ γ

)

<

0

.

20 GeV

/

c2.The backgroundcontamination

es-timatedusing

π

0 sidebandsat

s

=

4

.

258 GeV is0.3%.The

back-groundcontributionsareneglectedinthesubsequentanalysis.

Fig. 1. (a)Dalitzplotfortheselectede+e−→p¯0candidatesofdataand invari-antmassspectraof(b)p¯p,(c)0and(d)p¯π0ats=4.258 GeV.In(b),(c)and (d),thepointswitherrorbarsshowdataandtheredhistogramsshowMC projec-tionsofthepartialwaveanalysisfitdescribedinthetext.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

4. Studyofintermediatestructuresbypartialwaveanalysis As shown in Fig. 1, a prominent structure nearthe threshold inthepp mass

¯

spectrumisvisible.Structuresarealsoseeninthe

p

π

0 and p

¯

π

0 massspectra.Toevaluate thedetectionefficiencies

ofthedecaye+e

pp

¯

π

0properly,apartialwaveanalysis(PWA)

is performedwiththe e+e

pp

¯

π

0 candidates tostudythe

in-termediatestatespresent.

For the process e+e

pp

¯

π

0, the isospin of the pp

¯

π

0

sys-temcan be I

=

0 or I

=

1. Thequasi-two-body decayamplitudes in the sequentialdecay processes e+e

pN

¯

(

pN

¯

)

, N

( ¯

N

)

p

π

0

(

p

¯

π

0

)

, e+e

p

¯

(

p

¯



)

,



( ¯



)

p

π

0

(

p

¯

π

0

)

, e+e

ρ

0,

ρ

)

pp are

¯

constructedin the covariant tensor formalism[31,32].All1−−and3−−statesabovepp threshold,

¯

N

and



∗ states withspin up to 5/2,listed inthe summary tables ofthe PDG[28], areconsidered inthisanalysis. Accordingto the frameworkofsoft

π

mesontheory[33],theoff-shelldecayprocess shouldbeincluded.Thus, N

(

940

)

withamassof940 MeV

/

c2and zero widthrepresenting a virtual proton which could emit a

π

0

isconsidered asapossiblecomponent. Noisoscalarvectormeson isconsidered, sincethereisnocandidateabovethe pp threshold

¯

in thesummary tables ofthe PDG.The

ρ

∗ states are parameter-izedbyaconstant-widthrelativisticBreit–Wigner(BW)propagator withbarrierfactorsincluded.TheN∗ and



∗statesare parameter-ized byaBW propagatorasdescribed inRef.[31].Theresonance parametersarefixedaccordingtopreviousmeasurements[28]due tolimitedstatistics.Thecomplexcoefficientsoftheamplitudesare determinedbyanunbinnedmaximumlikelihoodfit.Thedetailsof thelikelihoodfunctionconstructioncanbefoundinRef.[34].

For

ρ

∗ states with J

=

1, the pp final

¯

state interaction (FSI) effect using the Jülich model [35] is taken into consideration by factorizing the partial wave amplitude into the amplitude with-out the FSI effect and the S wave pp scattering

¯

amplitude in the scattering length approximation given in Ref. [35]. The di-rect process of e+e

pp

¯

π

0 can be modeled by 1−− or 3−− phase space ofthe pp system

¯

(1−− or 3−− PHSP). All combina-tionsofthecomponentsinRef.[36]areevaluated.Theresonances parameters are fixed to the PDG world average values [28]. We

(5)

Table 1

Theresultsone+e−→pp¯π0.ShowninthetablearetheintegratedluminosityL,theradiativecorrectionfactor

(1+ δr),thevacuumpolarizationfactor(1+ δv),thenumberofobservedeventsNobs,thedetectionefficiency andtheBorncrosssectionσB(e+epp¯π0)ateachenergypoint.Theerrorsof arefromthePWAfit.Thefirst errorsofσBarestatistical,andthesecondonesaresystematic.

s (GeV) L[pb−1] (1+ δr ) (1+ δv ) Nobs [%] σB[pb] 4.008 482.0 0.967 1.044 1074±33 43.9±0.9 5.09±0.18+0.26 −0.24 4.085 52.6 0.992 1.052 106±11 43.7±1.4 4.47±0.46+00..2721 4.189 43.1 1.025 1.056 75±9 44.7±1.0 3.64±0.43+0.18 −0.19 4.208 54.6 1.031 1.057 93±10 44.9±1.6 3.52±0.39+0.17 −0.22 4.217 54.1 1.034 1.057 82±10 43.4±1.3 3.24±0.37±0.18 4.226 1047.3 1.037 1.056 1611±41 45.2±0.5 3.15±0.08±0.14 4.242 55.6 1.042 1.056 89±9 44.6±1.1 3.30±0.36+00..1915 4.258 825.6 1.048 1.054 1203±35 43.4±0.5 3.08±0.10+0.14 −0.15 4.308 44.9 1.063 1.053 53±8 46.0±1.4 2.32±0.33+00..1510 4.358 539.8 1.081 1.051 668±26 44.7±1.1 2.48±0.11+0.13 −0.12 4.387 55.2 1.087 1.051 57±8 47.5±1.8 1.92±0.26±0.10 4.416 1028.9 1.098 1.053 1133±34 44.6±0.6 2.16±0.10+00..1011 4.600 566.9 1.124 1.055 474±22 43.8±0.8 1.63±0.08±0.08

do not have the sensitivity to test the larger number of narrow resonancesreportedinRef.[37].Thechangesinthenegative log-likelihood (NLL) and the number of free parameters in the fit with and without a resonance are used to evaluate its statisti-calsignificance.Resonanceswithsignificancegreater than5

σ

are retainedin the PWA solution. The selection of PWA components isperformedat the energypoints withthe highstatistics, i.e.at

s

=

4

.

008, 4.226, 4.258 and 4.416 GeV, as shown in Table 1. The selected components are used to describe the data atother nearbyenergypoints. The data at

s

=

4

.

189–4

.

600 GeV can be describedbythe N

(

1440

)

,

ρ

(

2150

)

,

ρ

3(1990

)

and1−−PHSP am-plitudes. Thedataat

s

=

4

.

008–4

.

085 GeV canbe described by the N

(

1520

)

, N

(

2570

)

,

ρ

(

2150

)

,

ρ

3(1990

)

and 1−− PHSP ampli-tudes.The N

(

940

)

isnotincludedinthefitssinceitssignificance islessthan5

σ

.IfweperformanalternativePWAfitwithN

(

1440

)

,

ρ(

2150

)

,

ρ

3(1990

)

and 1−− PHSP at

s

=

4

.

008 GeV, the NLL worsensby37.8.Thechangeofefficiencydeterminedwiththe al-ternative fit with respect to the nominal value is considered as a source of systematicuncertainty. Comparisons of the dataand thefitprojection(weightedbyMCefficiencies)intermsofthe in-variantmassspectraof pp,

¯

p

π

0 andp

¯

π

0 at

s

=

4

.

258 GeV are

showninFig. 1(b),(c)and(d),respectively.The

χ

2 overthe

num-berofbinsisdisplayedinthosefigures. 5. Crosssectionfore+e

pp

¯

π

0

TheBorncrosssectionfore+e

pp

¯

π

0 isdeterminedas

σ

B

=

N

obs

L

· (

1

+ δ

r

)

· (

1

+ δ

v

)

·

·

B

π0

,

(1)

whereNobs isthenumberofobservedevents;

L

istheintegrated luminosity;

is the detectionefficiency derived fromMC events generatedaccordingtothe resultsofthe PWAfit;

(

1

+ δ

r

)

isthe radiativecorrection factor,whichistakenfroma QEDcalculation takingtheline shape ofthe crosssection e+e

pp

¯

π

0 ofdata

asinput inan iterativeprocedure;

(

1

+ δ

v

)

is thevacuum polar-izationfactor,includingleptonicandhadroniccontributions,taken froma QED calculation with an accuracy of 0.5% [38]; and

B

π0

isthe branching fractionof

π

0 decayingto

γ γ

accordingto the

PDG[28]. The measured Born cross section of e+e

pp

¯

π

0 at

eachenergypointislistedinTable 1.Themeasuredcrosssection ofe+e

pp

¯

π

0 ismuch larger than that ofe+e

pp at

¯

the sameenergy[39].

UncorrelatedsystematicuncertaintiesintheBorncrosssection measurements mainly originate from the

π

0 mass window

re-quirement, kinematicfitandtheintermediate statesinPWA.The systematicuncertaintyfromtherequirementonthe

π

0 signal

re-gionisestimatedbysmearingtheinvariantmassofthe

γ γ

pairin thesignalMCwithaGaussianfunctiontocompensateforthe reso-lutiondifferencebetweendataandMC.Theparametersfor smear-ingaredeterminedbyfittingthe

π

0 distributionofdatawiththe

MC shapeconvoluted withaGaussian function.The difference in thedetectionefficiencybetweensignalMCsampleswithand with-outtheextrasmearingistakenasthesystematicuncertainty.The systematicuncertaintyduetothekinematicfitisestimatedby cor-rectingthe helix parameters ofcharged tracks forthe signal MC sample according the method described in Ref. [40]. The differ-enceinthedetectionefficiencybetweentheMCsampleswithand withoutthiscorrectionistakenasthesystematicuncertainty.The systematic uncertainty from the intermediate states in PWA in-cludes thosefromtheBW parametrization, resonanceparameters andextraresonances. UncertaintiesfromtheBW parametrization ofintermediatestatesareestimatedbyreplacingtheBW formula of N

(

1440

)

and N

(

1520

)

as used in Ref. [31] with a constant BW formula andreplacing those of

ρ

(

2150

)

and

ρ

3(1990

)

with the BW formula with the Gounaris–Sakurai (GS) model [41]. In thePWA fit,the resonanceparameters arefixed accordingto the previous measurements [42,43]. Alternativefits are performed in whichtheresonanceparametersaresetasfreeparametersandthe changes in the resultsare takenassystematic uncertainties. Un-certaintiesfromadditionalresonancesareestimatedbyaddingthe mostsignificant additionalresonanceamongeach JP assignment inRef.[36]intothePWAsolutionindividually,andtheirinfluences onthecrosssectionmeasurementsaretakenasthesystematic un-certainties.

Correlatedsystematicuncertaintiesamongthedifferentenergy points include those from luminosity measurement (1.0%) [44], MDC tracking (2% for two charged tracks) [45], particle identifi-cation(2%in totalforprotonandantiproton)[46],photon detec-tion efficiency (2%) [47] and radiative correction. The difference in

(

1

+ δ

r

)

between the third and fourth iteration is taken as the systematicuncertaintydueto theradiative correction, asthe radiative-correction-dependent quantity

(

1

+ δ

r

)

converges after threeiterations.

Thetotal systematicuncertaintyofthedifferentenergypoints iscalculated byadding theindividual uncertainties inquadrature asshowninTable 2.

(6)

Table 2

SummaryofsystematicuncertaintiesontheBorncrosssectionofe+e−→pp¯π0(%).

Sources/s (GeV) 4.008 4.085 4.189 4.208 4.217 4.226 4.242 4.258 4.308 4.358 4.387 4.416 4.600 Luminosity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 MDC tracking 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 PID 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Photon detection 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Kinematic fit 2.1 1.9 1.8 1.6 1.7 1.6 1.6 2.1 1.5 1.8 1.5 1.8 1.6 π0mass resolution 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.4 0.6 0.4 0.3 0.4 0.4 Radiative correction 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

Intermediate states in PWA +2.4

−1.3 + 4.1 −1.3 + 2.1 −2.6 + 2.2 −4.4 + 3.3 −3.5 + 1.0 −1.1 + 3.8 −1.0 + 0.4 −1.9 + 4.8 −0.9 + 2.8 −1.7 + 3.1 −2.3 + 0.9 −2.1 ±1.9 Total +5.2 −4.8 + 6.1 −4.7 + 4.9 −5.2 + 4.9 −6.2 + 5.5 −5.6 ±4.5 + 5.8 −4.5 + 4.6 −5.0 + 6.5 −4.5 + 5.3 −4.8 + 5.4 −4.9 + 4.6 −4.9 ±4.8

Fig. 2. Fittoσ(e+e−→pp¯π0)withresonanceandcontinuum(solidline),oronly continuumterm(dashedline).DotswitherrorbarsarethemeasuredBorncross sections.Theuncertaintiesarestatisticalonly.

6. UpperlimitonY(4260

)

pp

¯

π

0decay

Fig. 2showsthemeasuredBorncrosssectionofe+e

pp

¯

π

0

intheenergyregion studiedinthiswork.No significantresonant structureisobserved.TheupperlimitontheBorncrosssectionof

e+e

Y

(

4260

)

pp

¯

π

0 isdeterminedbyaleast-squaresfitof

σ

(

s

)

=





σ

con

+

σ

Y m

s

m2

+

im

exp

(

i

φ)





2

,

(2)

tothecalculatedcross sections.InEq.(2),

σ

con and

σ

Y represent the continuum cross section and resonant cross section, respec-tively,and

σ

con canbe described by afunction ofs,

σ

con

=

C

/

,

wherethe exponent

λ

isapriori unknown.The parameter

φ

de-scribes the phase between resonant and continuum production

amplitudes. The mass m and width

of the Y

(

4260

)

are fixed to the PDG values [28]. The values of C ,

λ

,

σ

Y, and the inter-ference phase

φ

are free in the fit. The uncorrelated systematic uncertaintiesinthe Borncrosssectionmeasurements aredirectly considered in the fit and the effect of the correlated systematic uncertainties on the final results is estimated by the method in Ref.[48],inwhichtheerrorpropagationisdeterminedfrom shift-ing the data by the aforementioned correlated uncertainties and addingthedeviationsinquadrature.Inaddition,theuncertainties for the beam energy measurements of all the data points taken from Ref. [49] are considered in the fit. The best fit function is showninFig. 2asthesolidline.Thedashedlinerepresentsthefit with

σ

Y

=

0. The optimal value of

σ

Y is

(

1

.

6

±

5

.

9

)

×

10−3 pb with a statistical significance of 0.5

σ

. The significance is calcu-lated based on the changes in the

χ

2 value and the number

of free parameters in the fit with and without the assumption of existence of the Y

(

4260

)

resonance. The result for the phase

between resonant and continuum production amplitudes is

φ

=

3

.

4

±

1

.

0.The parameters describing the slope ofthe continuum crosssectionare C

= (

5

.

4

±

5

.

3

)

·

105 GeV2λpb and

λ

=

4

.

2

±

0

.

4. The upper limit on

σ

Y at the 90% C.L.,

σ

Yup, is determined by



σYup

0 G

Y

,

σ

σY

)

dx

/



0 G

Y

,

σ

σY

)

dx

=

0

.

9, where G

Y

,

σ

σY

)

is a

Gaussian functionwithmeanvalue

σ

Y

=

1

.

6

×

10−3 pb and stan-dard deviation

σ

σY

=

5

.

9

×

10−3 pb.The uncertaintiesfrommass

andwidthoftheY

(

4260

)

areconsideredby varyingthemby one standarddeviationaccordingtothePDGvalues[28]andthemost conservative

σ

Yup is taken as the final result. The obtained up-per limit is 0.01 pb. Comparedto the measured cross section of

e+e

Y

(

4260

)

π

+

π

J

[50,51],theupperlimitonthe ra-tioofthe branchingfractions B(B(Y(4260Y(4260))π→+pπp¯−π0J/ψ )) atthe 90%C.L.

isdeterminedtobe0.02%.

X

(

4360

)

and

ψ(

4415

)

are also searched for. The fitted cross sectionforX

(

4360

)

and

ψ(

4415

)

are

(

0

.

8

±

2

.

9

)

×

10−3pb witha

significanceof0.5

σ

and

(

0

.

7

±

1

.

6

)

×

10−2 pb withasignificance of 1.1

σ

, respectively. The upper limit on

σ

(

e+e

X

(

4360

)

pp

¯

π

0

)

and

σ

(

e+e

→ ψ(

4415

)

pp

¯

π

0

)

atthe90% C.L.are

de-terminedtobe0.01pband0.08pb,respectively. 7. Summary

Basedon13datasamplesbetween

s

=

4

.

008 and4.600GeV collected with the BESIII detector, the process e+e

pp

¯

π

0 is

studied.TheBorncrosssectionofe+e

pp

¯

π

0 ismeasured.No

resonant structure isobserved in the shape of the cross section. The upperlimitontheBorn crosssectionofe+e

Y

(

4260

)

pp

¯

π

0 atthe90% C.L.isestimatedto be0.01 pb.Theupperlimit

ontheratioofthebranchingfractions B(YB((4260Y(4260))π→+pπp¯−π0J/ψ )) atthe

90%C.L.isdeterminedtobe0.02%. Acknowledgements

The BESIII collaboration thanks the staff of BEPCII and the IHEPcomputingcenterfortheirstrongsupport.Thisworkis sup-ported in part by National Key Basic Research Program ofChina underContractNo.2015CB856700;NationalNaturalScience Foun-dationofChina(NSFC)underContractsNos.11235011,11305178,

11322544, 11335008, 11375204, 11425524, 11635010; the

Chi-neseAcademyofSciences(CAS)Large-ScaleScientific Facility Pro-gram; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particles andInteractions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC

and CAS under Contracts Nos. U1232201, U1332201, U1532257,

U1532258; CAS under Contracts Nos.KJCX2-YW-N29,

KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Talents

Pro-gram of China; INPAC and Shanghai Key Laboratory for Particle

Physics and Cosmology; German Research Foundation DFG

un-der Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359;IstitutoNazionalediFisicaNucleare,Italy;Koninklijke

Neder-landseAkademievanWetenschappen(KNAW)underContractNo.

530-4CDP03; Ministry of Development of Turkey under Contract

No. DPT2006K-120470; The Swedish Resarch Council; U. S.

(7)

DE-SC-0010504, DE-SC0010118,DE-SC0012069; U.S. NationalScience Foundation;UniversityofGroningen(RuG)andthe

Helmholtzzen-trum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU

ProgramofNationalResearchFoundation ofKorea underContract No.R32-2008-000-10155-0.

References

[1]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D90(2014)032007. [2]S.Eidelman,F.Jegerlehner,Z.Phys.C67(1995)585.

[3]M.Davier,S.Eidelman,A.Höcker,Z.Zhang,Eur.Phys.J.C31(2003)503. [4]M.Davier,A.Höcker,B.Malaescu,Z.Zhang,Eur.Phys.J.C71(2011)1515. [5]K.Hagiwara,R.Liao,A.D.Martin,DaisukeNomura,T.Teubner,J.Phys.G38

(2011)085003.

[6]B.Aubert,etal.,BABARCollaboration,Phys.Rev.Lett.95(2005)142001. [7]G.Pakhlova,etal.,BelleCollaboration,Phys.Rev.Lett.98(2007)092001,Phys.

Rev.D77(2008)011103,Phys.Rev.Lett.100(2008)062001,Phys.Rev.D80 (2009)091101.

[8]B.Aubert,etal.,BABARCollaboration,Phys.Rev.D79(2009)092001. [9]J.Burmester,etal.,PLUTOCollaboration,Phys.Lett.B66(1977)395. [10]R.Brandelik,etal.,DASPCollaboration,Phys.Lett.B76(1978)361. [11]J.Siegrist,etal.,Phys.Rev.D26(1982)969.

[12]A.Osterheld,etal.,SLACReportNo.SLAC-PUB-4160,1986.

[13]J.Z.Bai,etal.,BESCollaboration,Phys.Rev.Lett.84(2000)594,Phys.Rev.Lett. 88(2002)101802.

[14]D.Cronin-Hennessy,etal.,CLEOCollaboration,Phys.Rev.D80(2009)072001. [15]M.Ablikim,etal.,BESCollaboration,Phys.Lett.B677(2009)239.

[16]L.Maiani,V.Riquer,F.Piccinini,A.D.Polosa,Phys.Rev.D72(2005)031502. [17]G.J.Ding,Phys.Rev.D79(2009)014001.

[18]F.E.Close,P.R.Page,Phys.Lett.B628(2005)215. [19]S.L.Zhu,Phys.Lett.B625(2005)212.

[20]C.F.Qiao,Phys.Lett.B639(2006)263.

[21]A.Lundborg,T.Barnes,U.Wiedner,Phys.Rev.D73(2006)096003. [22]M.Lutz,etal.,PANDACollaboration,arXiv:0903.3905.

[23]M.Ablikim,etal.,BESIIICollaboration,Nucl.Instrum.MethodsPhys.Res.,Sect. A614(2010)345.

[24]S.Agostinelli,etal.,GEANT4Collaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A506(2003)250.

[25]S.Jadach,B.F.L.Ward,Z.Was,Comput.Phys.Commun.130(2000)260,Phys. Rev.D63(2001)113009.

[26]P.Golonka,Z.Was,Eur.Phys.J.C45(2006)97.

[27]D.J.Lange,Nucl.Instrum.MethodsPhys.Res.,Sect.A462(2001)152,Phys.C 38(2014)090001.

[28]K.A. Olive,et al.,ParticleDataGroupCollaboration,Chin. Phys.C38(2014) 090001.

[29]R.G.Ping,Chin.Phys.C32(2008)599. [30]T.Sjöstrand,etal.,arXiv:hep-ph/0108264.

[31]M.Ablikim,etal.,BESCollaboration,Phys.Rev.D80(2009)052004. [32]W.H.Liang,P.N.Shen,J.X.Wang,B.S.Zou,J.Phys.G28(2002)333.

[33]L.Adler,R.F.Dashen,CurrentAlgebraandApplicationtoParticlePhysics, Ben-jamin,NewYork,1968;

B.W.Lee,ChiralDynamics,GordonandBreach,NewYork,1972. [34]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D87(2013)092009. [35]A.Sibirtsev,etal.,Phys.Rev.D71(2005)054010.

[36] WeconsideredthefollowingresonancecandidatesinPDG:ρ(1700),ρ(1900), ρ(2150),ρ(2000),ρ(2270),ρ3(1690),ρ3(1990),ρ3(2250),N(1535),N(1650), N(1710), N(1440), N(2100),N(2300),N(1520),N(1720),N(1675),N(2060), N(2570), N(1680),N(940), (1620),(1910),(1700),(1232),(1600),

(1920),(1930),(1905),1−−PHSPand3−−PHSP. [37]B.Tatischeff,etal.,Phys.Rev.C72(2005)034004. [38]S.Actis,etal.,Eur.Phys.J.C66(2010)585.

[39]B.Aubert,etal.,BABARCollaboration,Phys.Rev.D73(2006)012005. [40]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D87(2013)012002. [41]J.P.Lees,etal.,BABARCollaboration,Phys.Rev.D86(2012)032013. [42]A.V.Anisovich,etal.,Phys.Lett.B491(2000)47,Phys.Lett.B508(2001)6,

Phys.Lett.B513(2001)281,Phys.Lett.B542(2002)8.

[43]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.Lett.110(2013)022001. [44]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C39(2015)093001. [45]W.L.Yuan,etal.,Chin.Phys.C40(2016)026201.

[46]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D86(2012)032014. [47]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D83(2011)112005. [48]M.Botje,J.Phys.G28(2002)779.

[49]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C40(2016)063001. [50]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.Lett.110(2013)252001. [51]Z.Q.Liu,etal.,BelleCollaboration,Phys.Rev.Lett.110(2013)252002.

Figure

Fig. 1. (a) Dalitz plot for the selected e + e − → p ¯ p π 0 candidates of data and invari- invari-ant mass spectra of (b) p ¯ p, (c) p π 0 and (d) p¯ π 0 at √

References

Related documents

In the present study, when the participant teachers direct the students’ at- tention to metalinguistic knowledge as well as metacognitive reading strategies, I regard it as a

For example, the online resource from which the teacher excerpted texts used early in the course (Clio, 2020) contains separate sections for contrasting sources representing

Precis som i ett tidigare samtal om algebra och multiplikation framstår lärarens, och i detta fall även elevernas, erfarenheter från att bo i andra länder som en resurs

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

fastighetsbolag för att bemöta efterfrågan på marknaden. Den stora frågan för fastighetsägaren har därför blivit hur de ska hantera uthyrningen av coworking. Där måste de

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

The overall aim was to study periodontitis prevalence and severity in two Swedish adult populations, and to describe the changes over time. Further aims were to examine the effect

In this work, we present data of lipid exchange between pooled li- poprotein fractions extracted from human blood (of healthy donors) and model membranes composed of either saturated