• No results found

Smoke, gas and heat release data for building products in the cone calorimeter

N/A
N/A
Protected

Academic year: 2021

Share "Smoke, gas and heat release data for building products in the cone calorimeter"

Copied!
51
0
0

Loading.... (view fulltext now)

Full text

(1)

D)l

D

Lazaros Tsantaridis, Birgit Östman

Smoke, Gas and Heat Release

Data for Building Products in

the Cone Calorimeter

Trätek

i T I T U T E T FÖR TRÄTEKNISK F O R S K N l t

(2)

SMOKE, GAS AND HEAT RELEASE DATA FOR BUILDING PRODUCTS IN THE CONE CALORIMETER

TräteknikCentrum, Rapport I 8903013 Nyckelord; hwilding products five tests gas release heat release smoke release Stockholm March 1989

(3)

sammanställningar av forskningsresultat eller översikter, utvecklingar och studier. Publicerade rapporter betecknas med I eller P och numreras tillsammans med alla utgåvor från Träteknik-Centrum i löpande följd.

Rapporter kan som regel beställas kostnadsfritt i ett exemplar av medlemsföretag. Ytterligare be-ställda exemplar faktureras.

Citat tillåtes om källan anges.

Reports issued by the Swedish Institute for Wood Technology Research comprise complete accounts for research results, or summaries, surveys and

stu-dies. Published reports bear the designation I or P and are numbered in consecutive order together with all the other publications from the Institute.

Member companies may generally order one copy of any report free of charge. A charge will be made for any further copies ordered.

Extracts from the text may be reproduced provided the source is acknowledged.

narna sågverk, trämanufaktur (snickeri-, trähus-, möbel- och övrig träbearbetande industri), träfi-berskivor, spånskivor och plywood. Ett avtal om forskning och utveckling mellan industrin och Styrelsen för Teknisk Utveckling (STU) utgör grunden för verksamheten som utförs med egna, samverkande och externa resurser. Träteknik-Centrum har forskningsenheter, förutom i Stock-holm, även i Jönköping och Skellefteå.

The Swedish Institute for Wood Technology Re-search serves the five branches of the industry: saw-mills, manufacturing (joinery, wooden houses, fur-niture and other woodworking plants), fibre board, particle board and plywood. A research and deve-lopment agreement between the industry and the Swedish National Board for Technical Development (STU) forms the basis for the Institutes activities. The Institute utilises its own resources as well as those of its collaborators and other outside bodies. Apart from Stockholm, research units are also located in Jönköping and Skellefteå.

(4)

Page SWEDISH SUMMARY 3 ABSTRACT 3 INTRODUCTION 4 EXPERIMENTAL 5 Test equipment 5 Products 6 Test procedure 7 C a l c u l a t i o n s 7

RESULTS AND DISCUSSION 8

Smoke, gas and heat release 8

Mass l o s s r a t e and e f f e c t i v e heat o f combustion 11

R e p e a t a b i l i t y 39

Smoke p r o d u c t i o n i n r e l a t i o n to other parameters 40

CONCLUSIONS 48

(5)

Rökalstringen från 13 o l i k a byggnadsmaterial har bestämts i en småskalig brandprovningsmetod, den s k k o n k a l o r i m e t e r n . Metoden är u r s p r u n g l i g e n ut-vecklad för a t t mäta f r i g i v e n värmeeffekt v i d brand, men ger också möjlig-het a t t s a m t i d i g t mäta andra parametrar som t i d t i l l antändning, massför-l u s t , rök- och g a s u t v e c k massför-l i n g , v i massför-l k e t framstår som a massför-l massför-l t m e r angemassför-läget i det i n t e r n a t i o n e l l a s t a n d a r d i s e r i n g s a r b e t e t . Konkalorimetern är den c e n t r a l a , nya brandprovningsmetoden för m a t e r i a l och s t a n d a r d i s e r a s inom ASTM, ISO och GEN.

Röken har mätts med två o l i k a o p t i s k a system, d e l s e t t med helium-neon-l a s e r som föreshelium-neon-lås i k o n k a helium-neon-l o r i m e t e r n , d e helium-neon-l s e t t med v i t t helium-neon-l j u s och en detek-t o r som e f detek-t e r l i k n a r d e detek-t mänskliga ögadetek-t. En jämförelse ansågs angelägen eftersom den s l u t l i g a a v s i k t e n är a t t underlätta utrymning v i d brand. Mät-ningarna v i s a r a t t de båda o p t i s k a systemen ger p r a k t i s k t t a g e t i d e n t i s k a r e s u l t a t .

Rökutvecklingen för de o l i k a provade m a t e r i a l e n v a r i e r a r ganska k r a f t i g t . Gasutvecklingen, huvudsakligen mätt som kolmonoxid, CO, v a r i e r a r också k r a f t i g t .

Rapporten v i s a r fullständiga r e s u l t a t för träbaserade, s y n t e t i s k a och mer "obrännbara" m a t e r i a l .

ABSTRACT

The smoke p r o d u c t i o n r a t e s f o r 13 d i f f e r e n t b u i l d i n g products have been de-termined i n the cone c a l o r i m e t e r a t t h r e e heat f l u x l e v e l s : 25, 50 and 75 kW/m2. Also t h e r a t e o f heat r e l e a s e , t h e gas p r o d u c t i o n , t h e mass l o s s r a t e and t h e e f f e c t i v e heat o f combustion have been c a l c u l a t e d .

The smoke p r o d u c t i o n r a t e s have been measured w i t h two l i g h t systems s i m u l taneously, a heliumneon l a s e r and a w h i t e l i g h t source, which showed a l -most i d e n t i c a l r e s u l t s . The smoke p r o d u c t i o n r a t e can be measured w i t h good accuracy f o r products w i t h both high and low smoke release.

The r e s u l t s showed t h a t the cone c a l o r i m e t e r can be used f o r smoke measure-ments as w e l l as f o r r a t e o f heat release measuremeasure-ments.

(6)

The e a r l y f i r e behaviour of products i s i m p o r t a n t f o r many aspects of f i r e s a f e t y . One o f t h e basic parameters d e s c r i b i n g t h e f i r e behaviour o f b u i l -d i n g pro-ducts i s t h e r a t e o f heat r e l e a s e . The aim o f a new ISO f i r e t e s t / I / i s t o determine and c h a r a c t e r i z e t h a t parameter.

Another basic parameter i s t o measure t h e smoke produced i n f i r e s . Measure-ments o f smoke p r o d u c t i o n from d i f f e r e n t products has so f a r been done i n s t a t i c boxes, o f which t h e NBS Smoke d e n s i t y chamber / 2 / i s best known. A dynamic, f l o w - t h r o u g h system f o r s m a l l - s c a l e t e s t i n g i s now a v a i l a b l e i n

the cone c a l o r i m e t e r /3/.

Smoke measurements i n t h e cone c a l o r i m e t e r a r e performed by a l a s e r beam /3/. The l a s e r has s e v e r a l advantages such as simple d e s i g n , high l e v e l o f beam c o l l i m a t i o n and s i m p l i f i e d t h e o r e t i c a l relevance /4, 5/. A l a s e r system may, however, c r e a t e some problems w i t h s i g n a l s t a b i l i t y and r e l a -t i o n -t o v i s i b i l i -t y . The s i g n a l s -t a b i l i -t y has been improved by a second c o n t r o l l i n g photometer. But t h e r e l a t i o n t o v i s i b i l i t y , which i s i m p o r t a n t f o r escape i n r e a l f i r e s i t u a t i o n s , has not y e t been proved. Only one d i -r e c t compa-rison between a l a s e -r beam and a w h i t e l i g h t sou-rce has been pub-l i s h e d and was performed under s t a t i c c o n d i t i o n s /6/.

This study presents complete r e s u l t s o f smoke, gas and heat release f o r a set o f d i f f e r e n t b u i l d i n g products. I t a l s o compares d i r e c t l y t h e l a s e r beam w i t h a w h i t e l i g h t source f o r smoke measurements i n t h e cone c a l o r i -meter .

Comparisons w i t h f u l l - s c a l e room f i r e t e s t s and some f u r t h e r a n a l y s i s are given elsewhere /9, 10/.

(7)

Test equipment

The cone c a l o r i m e t e r used i s shown i n F i g u r e 1. I t i s a f u r t h e r development of an e a r l i e r v e r s i o n /7/ used t o t e s t the e f f e c t o f specimen s i z e . New items a r e t h e cone h e a t e r , t h e spark i g n i t e r , t h e hood, the exhaust duct and t h e paramagnetic oxygen c e l l . I t i s a l s o equipped w i t h two l i g h t

systems t o measure smoke p r o d u c t i o n .

thermocouples exhousf duct 110 mm id i=C> ^0 fan orifice plate smoke to gas measurements analyzers (02,C0,C02) from above:

/

\ cone heater 1 c r" \ cone heater 1 L_

spark plug — J specimen holder fhermal shield detector g photocell 1 1 laser lamp balance ' i g u r e 1. Cone C a l o r i m e t e r .

The cone heater and spark i g n i t e r w i t h motor has been d e l i v e r e d from t h e U n i v e r s i t y o f Ghent ( B e l g i u m ) . I n order t o c h a r a c t e r i z e t h e r a d i a t i o n from

the cone heater a water cooled heat f l u x meter o f t h e Schmidt-Boelter type was used (Medtherm). I t was r e c e n t l y c a l i b r a t e d i n t h e ISO Cone Calorimeter round r o b i n t e s t program.

The hood i s formed as a square ( w i t h 400 mm s i d e and 140 mm h e i g h t ) . The c i r c u l a r exhaust duct has an i n n e r diameter of 110 mm and i s connected w i t h an exhaust system which has a constant volume r a d i a l f a n (Bahco, Sweden). The volume flow can be v a r i e d by d i f f e r e n t dampers. The o r i f i c e p l a t e i s placed 825 mm from t h e curve o f t h e exhaust duct and t h e s t r a i g h t f r e e

sec-t i o n a f sec-t e r i sec-t i s 1200 mm l o n g .

To determine t h e gas d e n s i t y i n t h e exhaust d u c t , t h e temperature i s mea-sured w i t h two Chromel Alumel thermocouples, one l o c a t e d 90 mm a f t e r t h e o r i f i c e p l a t e and t h e o t h e r 55 mm b e f o r e t h e l a s e r beam.

(8)

IR (Siemens Ultramat 22 P ) . The gas sample i s taken from a r i n g sampler placed 675 mm a f t e r t h e o r i f i c e p l a t e . The gas sample passes a c o l d t r a p where moisture i s removed, then a f i l t e r o f l o o s e l y packed glass wool and a tube w i t h w a t e r - f r e e CaSO^ f o r e x t r a d r y i n g . The gas then goes through a pump and f i n a l l y passes a 2.7 ^jm glass f i b e r f i l t e r . I n order t o minimize the t r a n s i e n t t i m e , p a r t o f t h e f l o w i s wasted a f t e r t h e pump.

The smoke i s measured by two d i f f e r e n t l i g h t systems placed c l o s e l y t o -gether a t a 50 mm d i s t a n c e and 100 mm a f t e r t h e gas sampler. F i r s t , there i s a helium-neon-laser, /\ = 633 nm, w i t h two s i l i c o n photodiodes as main beam and r e f e r e n c e d e t e c t o r s d e l i v e r e d from t h e U n i v e r s i t y o f Ghent. Then there i s a white l i g h t source from a 10 W tungsten f i l a m e n t lamp f o r which the beam i s made p a r a l l e l by a lens system. The d e t e c t o r has a s p e c t r a l l y d i s t r i b u t e d response t h a t d u p l i c a t e s t h e human eye ( U n i t e d Detector Techn., USA).

Products

The 13 b u i l d i n g products l i s t e d i n Table 1 have been t e s t e d as 100 x 100 mm specimens. The specimens were c o n d i t i o n e d a t 65 % r e l a t i v e h u m i d i t y and 20 °C before being t e s t e d .

Table 1. B u i l d i n g products t e s t e d .

Product Thickness Density

mm kg/m^

P a r t i c l e board 10 670

I n s u l a t i n g f i b e r board 13 250

Medium d e n s i t y f i b e r board 12 655

Wood panel (spruce) 11 450

Melamine-faced p a r t i c l e board 13 870

Gypsum board 13 725

Paper w a l l - c o v e r i n g on gypsum board 13 + 0.5 725 P l a s t i c w a l l - c o v e r i n g on gypsum board 13 + 0.7 725 T e x t i l e w a l l - c o v e r i n g on gypsum board 13 + 0.5 725 T e x t i l e w a l l - c o v e r i n g on rock-wool 42 + 0.5 150 Paper w a l l - c o v e r i n g on p a r t i c l e board 10 -1- 0.5 670 R i g i d polyurethane foam 30 32 Expanded p o l y s t y r e n e 49 18

(9)

The h o r i z o n t a l specimen h o l d e r c o n s i s t s o f a specimen pan and a 60 mm deep r e t a i n e r frame, a l l made o f s t a i n l e s s s t e e l . The specimen were wrapped i n aluminium f o i l and non-combustible boards (Promatek, 450 kg/m^) were used t o f i l l up t h e depth o f t h e r e t a i n i n g frame.

S i n g l e or double t e s t s were performed a t t h r e e d i f f e r e n t heat f l u x l e v e l s : 25, 50 and 75 kW/m2. f o r a few p r o d u c t s w i t h r a p i d f i r e behaviour only t h e two lower l e v e l s were used.

C a l c u l a t i o n s

I n both l a s e r and w h i t e l i g h t systems t h e smoke r e l e a s e i s expressed as r a t e o f smoke p r o d u c t i o n i n ob'm^/s and smoke p o t e n t i a l i n ob-m^/g

according t o Rasbash /8/. The l a t t e r parameter i s d i r e c t l y p r o p o r t i o n a l t o the s p e c i f i c e x t i n c t i o n area i n m^/kg /3/.

The b a s i c parameter i s a q u a n t i t y c a l l e d obscure ( o b ) which expresses the smoke i n t e n s i t y . One ob i s t h e smoke c o n c e n t r a t i o n g i v i n g a l i g h t absorp-t i o n o f 1 dB/m, which i s e q u i v a l e n absorp-t absorp-t o a v i s i b i l i absorp-t y o f abouabsorp-t 10 m. The smoke i n t e n s i t y i s d e f i n e d as:

D = ( 1 0 / L ) - l o g ( I Q / I ) ( o b ) ( 1 ) where

L path l e n g t h i n m

I Q l i g h t i n t e n s i t y i n absence o f smoke I l i g h t i n t e n s i t y i n presence o f smoke. The r a t e o f smoke p r o d u c t i o n i s d e f i n e d as:

RSP r D-V (ob-m^/s) ( 2 ) where

V volume f l o w o f gases i n t h e exhaust duct a t atmospheric pressure and ambient temperature i n m^/s.

The smoke p o t e n t i a l i s d e f i n e d as:

SP = RSP/mi (ob-m^/g) ( 3 ) where

mi mass l o s s r a t e i n g/s.

The s p e c i f i c e x t i n c t i o n area i s d e f i n e d as:

SEA = k-V/m (m2/kg) ( 4 ) where

k e x t i n c t i o n c o e f f i c i e n t i n 1/m

V volume flow o f gases i n t h e exhaust duct a t atmospheric pressure and ambient temperature i n m3/s

m mass l o s s r a t e i n kg/s.

Equations ( 3 ) and ( 4 ) show t h a t t h e s p e c i f i c e x t i n c t i o n area and t h e smoke p o t e n t i a l are p r o p o r t i o n a l parameters w i t h SEA = 230'SP.

(10)

Smoke, gas and heat release

Smoke, gas and heat release curves a t d i f f e r e n t heat f l u x l e v e l s f o r t h e 13 b u i l d i n g products are shown i n Figures 2 t o 14.

A c h a r a c t e r i s t i c peak i n t h e r a t e o f heat r e l e a s e , RHR, i s obtained j u s t a f t e r i g n i t i o n , as shown before /7/. When the f i r e penetrates the p r o d u c t , the RHR decreases and when the rear and edges o f t h e specimen then become i n v o l v e d t h e r e i s a new r i s e i n RHR. I f a specimen c o n s i s t s o f l a y e r s o f d i f f e r e n t p r o d u c t s , more than one RHR peak i s u s u a l l y obtained.

The r a t e o f smoke p r o d u c t i o n has t h e same behaviour as RHR b u t the smoke i s released somewhat e a r l i e r than the heat. The e a r l y smoke, released b e f o r e i g n i t i o n , i s u s u a l l y w h i t e and d i f f e r e n t from the smoke t h a t i s released a f t e r i g n i t i o n which i s darker. I n some cases they appear as d i s t i n c t peaks. The r a t e o f smoke p r o d u c t i o n i s higher f o r p l a s t i c products than f o r other t e s t e d products. The two smoke measurement systems, t h e He-Ne l a s e r and the w h i t e l i g h t , showed good agreement i n most cases. Only f o r products w i t h high peak values i n a s h o r t p e r i o d o f t i m e , minor d i f f e r e n c e s may appear.

The smoke r e l e a s e , expressed as r a t e o f smoke p r o d u c t i o n (ob*m^/s),

d i f f e r s between the heat f l u x l e v e l s as the r a t e o f heat release does. But expressed as s p e c i f i c e x t i n c t i o n area (m2/kg) o r smoke p o t e n t i a l (ob*m^/g) i t i s s i m i l a r , r e g a r d l e s s o f the heat f l u x l e v e l s . However, peaks may occur at d i f f e r e n t times r e l a t e d t o the times t o i g n i t i o n a t d i f f e r e n t heat

f l u x e s . Peaks may a l s o occur at a lower heat f l u x b u t n o t a t higher heat f l u x e s .

The gas p r o d u c t i o n i s given as volume f l o w i n the exhaust duct a t atmos-p h e r i c atmos-pressure and ambient tematmos-perature. The curves f o r t h e atmos-p r o d u c t i o n o f carbon d i o x i d e a r e almost i d e n t i c a l i n shape when compared w i t h t h e RHR-curves, w h i l e t h e carbon monoxide curves are d i s s i m i l a r , p a r t l y depending on t h e low CO p r o d u c t i o n d u r i n g the t e s t . G e n e r a l l y , the peak i n CO p r o -d u c t i o n seems t o appear l a t e r than the peak i n smoke p r o -d u c t i o n an-d i n heat r e l e a s e .

I n order t o f a c i l i t a t e a comparison o f the p r o d u c t s , some smoke and gas release data are summerized i n Table 2.

(11)

peak p e r i o d , average p r o d u c t i o n o f carbon monoxide and carbon d i o x i d e per mass l o s s r a t e a t 50 kW/m2.

Product Average smoke

p o t e n t i a l (ob"m^/g) RSP d u r i n g peak p e r i o d (ob-m3) Average CO2 (kg/kg) Average CO (g/kg) P a r t i c l e board I n s u l a t i n g f i b e r board Medium d e n s i t y f i b e r board

Wood panel (spruce) Melamine-faced p a r t i c l e board Gypsum board Paper w a l l - c o v e r i n g on gypsum board P l a s t i c w a l l c o v e -r i n g on gypsum boa-rd T e x t i l e w a l l c o v e -r i n g on gypsum boa-rd T e x t i l e w a l l c o v e -r i n g on -rock-wool Paper w a l l - c o v e r i n g on p a r t i c l e board R i g i d polyurethane f cam Expanded p o l y s t y r e n e 0.4 0.4 0.4 0.4 1.3 0.4 0.5 2.8 1.0 2.9 0.3 3.8 5.5 6.7 3.5 14.1 3.5 21.9 0.5 1.0 4.5 2.2 2.7 3.1 28.5 57.3 1.2 1.4 1.2 1.2 0.8 0.3 0.4 0.4 0.4 1.8 1.2 1.1 1.9 4 15 2 25 27 28 28 25 91 3 200 54

(12)

Mass l o s s r a t e and e f f e c t i v e heat o f combustion

The mass l o s s r a t e curves, shown i n F i g u r e s 2 t o 14, have an appearance s i -m i l a r t o t h e RHR curves, which -means t h a t the -mass i s l o s t when t h e heat i s r e l e a s e d . (The time i n t e r v a l s f o r t h e c a l c u l a t i o n o f mass l o s s r a t e i s 10 s according t o /3/.)

The e f f e c t i v e heat o f combustion i s t h e heat r e l e a s e d per gram o f mass l o s t . I t has a c o n s t a n t value f o r each product a f t e r t h e i g n i t i o n and i s g u i t e independent o f t h e heat f l u x l e v e l s . Table 3 shows average values f o r the c o n s t a n t p e r i o d . A l l these values are lower than t h e t o t a l heat o f com-b u s t i o n , which i s n a t u r a l s i n c e t h e comcom-bustion i s not complete.

Table 3. Average e f f e c t i v e heat o f combustion a t t h r e e heat f l u x e s .

Product Average e f f e c t i v e heat

of combustion (k3/g) Heat f l u x . kW/m2 25 50a) 75 P a r t i c l e board 14 14 13 I n s u l a t i n g f i b e r board 14 14 14 Medium d e n s i t y f i b e r board 13 14 15

Wood panel (spruce) 15 15 15

Melamine-faced p a r t i c l e board 9 11 12

Gypsum board - -

-Paper w a l l - c o v e r i n g on gypsum board - - -P l a s t i c w a l l - c o v e r i n g on gypsum board 17 13 13 T e x t i l e w a l l - c o v e r i n g on gypsum board 13 12 14 T e x t i l e w a l l - c o v e r i n g on rock-wool - 25 -Paper w a l l - c o v e r i n g on p a r t i c l e board 13 12 13 R i g i d p o l y u r e t h a n e foam 13 13 NT Expanded p o l y s t y r e n e NI 28 NT

^) Mean values from double t e s t s a t 50 kW/m^.

Not p o s s i b l e t o c a l c u l a t e because o f i r r e g u l a r i t i e s NI = No i g n i t i o n .

(13)

PARTICLE BOARD 400 300 200 100 kRHR (kW/m2) 75 kW/m^ 50 kW/m^ 25 kW/m^ RHR MLR EHC C 0 2 CO RSP SEA SP Rate o f heat r e l e a s e Mass l o s s r a t e E f f e c t i v e heat o f combustion Carbon d i o x i d e Carbon monoxide Rate o f smoke p r o d u c t i o n S p e c i f i c e x t i n c t i o n area Smoke p o t e n t i a l 0 100 200 300 400 500 600 TIME (S) 0.2h MLR (g/s 0. 1 h O H 80 50 h 40 h 20 EHC (kJ/g) 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME Is) TIME Is)

200 100 h 0 k h C02 (ml/s 0 100 200 300 400 TIME (S) 500 600 b CO (ml/s) 0 100 200 300 TIME (s) 400 500 600

(14)

0.2 \- RSP (obxm3/s) O . l h O h O 100 200 300 400 500 600 TIME (S) 0.2 h RSP (obxm3/s) 0.1 LASER 100 200 300 400 TIME (s) 500 600 L SP (ob*m3/g) A I I ' ' l > > ' I o 100 200 300 400 500 TIME (s) 600 SEA (m2/kg) 1000 r 800 \-500 h 400 h O 100 200 300 400 500 600 TIME (s)

I iqure 2. P H I ; Lcle board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. Mass l o s s r a t e and e f f e c t i v e heat o f cvTibustion a r c 4 ! .so presented.

(15)

400 h RHR lkW/m2)

300 h

PAPER W^LL-COVERING ON PARTICLE BOARD

75 kW/m^ 25 kW/m'

RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion

C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0 100 200 300 400 500 50( TIME (S) 0.2 h MLR (g/sl 0.1 Oh 80 60 40 20 LEHC (kJ/g) 0 hf-^-0 1hf-^-0hf-^-0 2hf-^-0hf-^-0 3hf-^-0hf-^-0 4hf-^-0hf-^-0 5hf-^-0hf-^-0 6hf-^-0hf-^-0 hf-^-0 1hf-^-0hf-^-0 2hf-^-0hf-^-0 3hf-^-0hf-^-0 4hf-^-0hf-^-0 5hf-^-0hf-^-0 6hf-^-0hf-^-0 TIME (S) TIME (S) 200 L C02 (ml/s) 100 O h : 5 4 3 h 2 1 Ö CO [ml/s] 0 100 200 300 400 TIME (S) 500 600 0 100 200 300 400 500 600 TIME (S)

(16)

0.2 L RSP (ooms/s] O . l h 0.2 I- RSP (ob*m3/s) 0.1 LAMP LASER 100 200 300 400 TIME (S) 500 600 100 200 300 . 400 TIME (S) 500 600 -SP (Qb)*m3/g) 1000 800 600 h 400 200 O -I- SEA ((n2/kgl O 100 200 300 400 500 TIME (s) 600 O 100 200 300 400 500 600 TIME (S) r i g u r e 3. Paper w a l l - c o v e r i n g on p a r t i c l e board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m^. Mass l o s s r a t e and e f f e c t i v e heat o f combustion are a l s o presented.

(17)

MELAMINE-FACED PARTICLE BOARD 400 L RHR (kW/m2) 300 h 200 h 100 h 75 kW/n^ 50 kW/m' 25 kW/m' 0.2 0.1 MLR (g/s) RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0 100 200 300 400 500 600 TIME (s) r . . « , 1 1 80 60 40 20 h OH U EHC (kJ/g) 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME (S) TIME (S) 200 100 Oh L C02 (ml/s) - i I . . I I . 15 10 h CO (ml/s) 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME (s) TIME (s)

(18)

0,8 0.6 0.4 0.2 K RSP lob»m3/5) L A M P 0 100 200 300 400 500 600 TIME (S) 0.8 0.6 0.4 0.2 l R S P [ob*m3/s] L A S E R O 100 200 300 400 500 600 TIME (s) U S P (oö»m3/g) 1000 800 600 400 200 SEA (m2/kg) O h 100 200 300 400 TIME (s) 500 600 M TIME (s) F i g u r e 4. Melamine-faced p a r t i c l e board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Mass l o s s r a t e and e f f e c t i v e heat of combustion a r e also presented. Note the d i f f e r e n t s c a l e s i n CO p r o d u c t i o n and i n R5P.

(19)

MEDIUM DENSITV FIBER BOARD 400 I- RHR (kW/m2) 300 h 75 kW/m^ 200 h 100 h 50 kW/m^ 25 kW/m' O F -100 200 300 400 500 600 TIME ( S ) RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.2 h MLR (g/s) O.lH 80 60 40 h EHC (kJ/g) 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME (S) TIME ( S ) 200 L CG2 (ml/s) h CO (ml/sl 1 — 1 — • I • I — . — . — i I I I I i -0 1-0-0 2-0-0 3-0-0 4-0-0 5-0-0 6-0-0 TIME (s) -1 I I — • I u 0 100 200 300 400 TIME (s) 500 600

(20)

0.2 1-RSP (od»(m3/s) 0.1 h 100 200 300 400 TIME (S) 500 600 0.2 \- RSP (QD^m3/s) 0.1 LASER 100 200 300 TIME (s) 400 500 600 SP (oöxm3/g) SEA (m2/kg) 400 h-200 h O 100 200 300 400 500 600 TIME (S) 100 200 300 400 500 600 TIME (s)

Figure 5. Medium d e n s i t y f i b e r board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. Mass l o s s r a t e and e f f e c t i v e heat o f combustion are a l s o presented.

(21)

400 h RHR (kW/m2) 300 h 200 h 100 h 75 kW/m^ 25 kW/m^ 50 kW/m^

INSULATING FIBER BOARD

RHR MLR EHC CO 2 CO o h r -RSP SEA SP Rate o f heat r e l e a s e Mass l o s s r a t e E f f e c t i v e heat o f combustion Carbon d i o x i d e Carbon monoxide Rate o f smoke p r o d u c t i o n S p e c i f i c e x t i n c t i o n area Smoke p o t e n t i a l 0 100 200 300 400 500 600 TIME (S) 0.2 ^MLR (g/s) O . l h 0 h L EHC (kJ/g) 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME (S) TIME (S) 200 - C02 ml/s - CO (ml/s 100 h 0 100 200 300 400 500 600 TIME (s) 0 100 200 300 400 500 600 TIME (sl

(22)

0 . 2 1-RSP (oöi(m3/s) LAMP 0 . 1 0 . 2 [-RSP (obxm3/s) O 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 5 0 0 TIME (S) 0 . 1 H LASER O 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 TIME (s) l S P (ob*ni3/g) O 100 2 0 0 3 0 0 4 0 0 5 0 0 TIME (s) dOO SEA 1 0 0 0 8 0 0 6 0 0 4 0 0 2 0 0 O (m2/l<g) O 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 TIME (S) F i g u r e 6. I n s u l a t i n g f i b e r board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. Mass loss r a t e and e f f e c t i v e heat o f combustion are a l s o presented.

(23)

400 300 200 100 \- RHR (kW/m2) 75 kW/m' 50 kW/m' 25 kW/m' ^

WOOD PANEL (SPRUCE)

RHR MLR EHC C02 CO O 100 200 300 400 500 600 TIME (s) RSP SEA SP Rate o f heat r e l e a s e Mass l o s s r a t e E f f e c t i v e heat o f combustion Carbon d i o x i d e Carbon monoxide Rate o f smoke p r o d u c t i o n S p e c i f i c e x t i n c t i o n area Smoke p o t e n t i a l 0.2 h MLR (g/s 0.1k I . l U 200 300 400 500 TIME ( S ) 80 60 40 EHC (kU/g) 600 200 300 400 500 TIME (S) 600 200 L C02 (ml/s) LCD (ml/s) 200 300 400 TIME ( S ) 500 600 0 100 200 300 400 500 600 TIME ( S )

(24)

0.2 h RSP loö*m3/s) 0.1 LAMP 100 200 300 400 TIME (s) 500 600 0.2 h RSP (oö»^m3/s) 0.1 LASER 100 200 300 400 TIME (S) 500 600 I- SP (oDxtn3/g) 100 200 300 400 TIME (s) 500 600 SEA (m2/kg) 1000 r 800 600 400 200 O h 100 200 300 TIME (sl 400 500 600

F i g u r e 7. Wood panel (spruce)

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m^. Mass l o s s r a t e and e f f e c t i v e heat o f combustion are a l s o presented.

(25)

GYPSUM BOARD 400 300 200 h L RHR lkW/m2) 100 F 75 kW/m^ 25 kW/m' 0 100 200 300 400 500 600 TIME (S) RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.2 h^^'^ O.lF 80 60 40 20 0 F EHC (kJ/g) 0 100 200 300 400 500 6C0 o 100 200 300 400 500 600 TIME (s) TIME (s) 200 h C02 (ml/31 100 CO (ml/s 100 200 300 400 500 600 0 TIME (s) 100 200 300 400 500 600 TIME (s)

(26)

0-2 h nsP (0D«m3/s) 0.1 LAMP o 100 200 300 400 TIME (S) 500 600 0.2 1-RSP (obHni3/s) 0.1 LASER 200 300 400 TIME (S) O HP^ SP (ob»*m3/g) o 100 200 300 400 500 600 TIME (S) SEA (m2/kg) 1000 800 600 400 200 'v V,' • ^ O 1 ' J V l ' O 100 200 300 ^CO 500 600 TIME (3)

Figure 8. Gypsum board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s ah '^0 kW/m^. Mass loss r a t e and e f f e c t i v e heat o f combustion P P C a l s o presente'J.

(27)

400 h RHR (kW/m2)

300 h

^ PER WAi._-COVERlN'C 3N GYPSUM BOARD

• 75 kW/m' 50 kW/m' 25 kW/m' O 100 200 300 400 500 600 TIME (s) RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.2 h MLR (g/s) 0.1 0 100 200 300 400 TIME Is) 80 [- EHC (kJ/g) 60 h 40 20 500 600 0 100 200 300 400 500 600 TIME (s) 200I-C02 (ml/s) 100 0 100 200 300 400 TIME (s) h CO (ml/s) 500 600 100 200 300 400 500 TIME (s) 600

(28)

0.2 h RSP (oö'fm3/s) 0.1 / I I , 100 LAMP 200 300 400 TIME (S) 500 600 0.2 h RSP loD*m3/s) 0.1 LASER 100 200 300 400 500 600 TIME (s) L SP (obJ^ni3/g) 0 100 200 300 400 500 600 TIME (S) SEA (m2/kg) 1000 h 800 600 400 -200 0 100 200 300 400 TIME (S) 500 600

F i g u r e 9. Paper w a l l - c o v e r i n g on gypsum board

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. ^gss l o s s r a t e and e f f e c t i v e heat o f combustion are a l s o presented.

(29)

PLASTIC WALL-COVERING ON GYPSUM BOARD 400 300 200 100 F

OK

L RHR (kW/m2)

F

I 75 kW/m^ 50 kW/m^ 25 kW/m 0 100 200 300 400 TIME (S) 500 600 RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.2

F

MLR (g/s) O.lF

OF

BO 60 40 20 F EHC (kJ/g)

O b

0 100 200 300 400 500 600 TIME (S) 0 100 200 300 400 500 600 TIME (S) 200 100 F C02 (ml/s) 15 10 F CO (ml/s) 0 100 200 300 400 500 600 TIME (s) 0 100 200 300 400 500 600 TIME (S)

(30)

0.8 0.6 0.4 0.2 h LRSP lob»m3/s) LAMP O 100 200 300 400 500 TIME (s) 600 0.8[-RSP (obJ(m3/s) 0.6 h 0.4 h 0.2 \- LASER 100 200 300 400 TIME (S) 500 600 5 |_ SP (ob*m3/g) O 100 200 300 400 500 600 TIME (S) 1000 800 600 400 200 SEA (m2/kg) 100 200 300 400 500 600 TIME (s)

Figure 10. P l a s t i c w a l l - c o v e r i n g on gypsum board

Smoke, gas and heat release data a t three heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. Mass l o s s r a t e and e f f e c t i v e heat o f combustion a r e a l s o presented.

(31)

TZ/TILF WALL-COVERING ON GYPSUM BOARD 800 |- RHR (kW/m2) 75 kW/m' 200 h O K 600 h 400 \- i 50 kW/m' 25kW/m' 0 100 200 300 400 500 600 TIME (s) RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.3 h MLR (g/s) 0.2h O . l h 80 60 40 20 h EHC (kJ/g) 0 100 200 300 400 500 600 TIME (S) 100 200 300 400 500 600 TIME ( S ) 300 200 100 h C02 (ml/s) t CO (ml/s) 0 100 200 300 400 TIME ( S ) 500 600 100 200 300 400 500 TIME (s) 600

(32)

0.8 h RSP (obxm3/s) 0.6 h 0.4 0.2 LAMP O 100 200 300 400 500 600 TIME (s) 0.8 0.6 0.4 0.2 h RSP (ob»m3/s) LASER 100 200 300 400 500 600 TIME (S) rSP (oD«n3/'g) 100 200 300 400 TIME (S) 500 600 SEA (fii2/kg) 800 \-600 h 400 h 200 h 100 200 300 400 TIME (s) 500 600

Figure 11. T e x t i l e w a l l - c o v e r i n g on gypsum board

Smoke, gas and heat r e l e a s e data a t three heat f l u x l e v e l s . Double t e s t s a t 50 kW/m^. Mass l o s s r a t e and e f f e c t i v e heat o f combustion are a l s o presented.

Note t h e d i f f e r e n t scales i n RHR, MLR, C02 p r o d u c t i o n and i n RSP.

(33)

800 600 400 \-200 h O h RHR (kW/m2) 75 kW/m^ 50 kW/m^ 25 kW/m^ T E > T I L E W A L . - C O V E R I N G ON ROCK-WOOL O 100 200 300 400 500 600 TIME (s) RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.3 U , MLR (g/sl 0.2 h 0.1 h 80 h EHC (kJ/g) 60 h 40 20 100 200 300 400 TIME (S) 500 600 100 200 300 400 TIME (S) 500 600 300 200 100 U C02 (ml/s) I- CO (ml/s) 0 100 200 300 400 500 600 TIME (S) 100 200 300 400 500 600 TIME (S)

(34)

0.8 0.6 0.4 h 0.2 h L RSP (ob*m3/s) LAMP J4: 100 200 300 400 TIME (S) 500 600 0.8 0.6 0.4 0.2 [-RSP (odHm3/s) 100 LASER 200 300 TIME (s) 400 500 600 5 U SP (oD>(m3/g) A ' v . _ _ 100 200 300 400 TIME (S) 500 600 SEA (m2/kg) 1000 r 800 h 600 H 100 200 300 400 TIME (S) f i g u r e 12. T e x t i l e w a l l - c o v e r i n g on rock-wool

Smoke, gas and heat r e l e a s e data a t t h r e e heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. Mass l o s s r a t e and e f f e c t i v e heat o f combustion a r e a l s o presented.

Note the d i f f e r e n t scales i n RHR, MLR, C02 p r o d u c t i o n and i n RSP.

(35)

cXPANDEL) POLYSTYRENE 400 h RHR (kW/m21 300 h 200 h 100 h O k 50 kW/tn^ 25 kW/m^ RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.2 O . l h 0 h U MLR (g/s 100 200 300 400 TIME (s) 500 600 80 ^ EHC (kJ/g) 60 40 h 20 -0 - r 100 200 300 400 500 600 TIME (S) ^00 I- C02 (ml/5) 100 O h 100 200 300 400 500 600 TIME (s) 15 10 L CO (ml/sl O h J — I — I — . — . 1 I . • • ' 0 100 200 300 400 500 600 TIME (s)

(36)

0.8 r "^^P (ob)*m3/s) 0.6 h 0.4 h 0.2 h LAMP O 100 200 300 400 500 600 TIME (s) 0.8 0.6 0.4 0.2 h O h h RSP (ob*m3/s) LASER O 100 200 300 400 500 600 TIME (s) L SP (oö*n3/g) 5 h

L ^ _ . .

100 200 300 400 TIME (s) 500 600 2500 2000 1500 1000 500 L SEA (m2/kg) O 100 200 300 400 TIME (s) 500 600 Figure 15. Expanded p o l y s t y r e n e

Smoke, gas and heat r e l e a s e data a t two heat f l u x l e v e l s . Double t e s t s a t 50 kW/m^. Mass l o s s r a t e and e f f e c t i v e heat o f com-b u s t i o n are a l s o presented.

(37)

RIGID POLYURETHANE FOAM 400 300 200 100 L RHR (kW/m2) 50 kW/m^ 0 100 200 300 400 TIME (s) 500 600 RHR MLR EHC C02 CO RSP SEA SP Rate o f heat r e l e a s e Mass loss r a t e E f f e c t i v e heat o f combustion Carbon d i o x i d e Carbon monoxide Rate o f smoke p r o d u c t i o n S p e c i f i c e x t i n c t i o n area Smoke p o t e n t i a l 0.2 h MLR ig/5i o.lh 0 100 200 300 TIME (Sl 400 500 600 80 60 40 20 U EHC (kJ/g) O h 0 100 200 300 400 500 500 TIME (S) 200 L C02 (ml/5) 100 100 200 300 400 TIME (s) 500 600 1 s 10 O h I- CD (ml/s) 0 100 200 300 400 500 TIME (S) 600

(38)

0.8 0.6 0.4 0.2 RSP (ob>*m3/s) O h LAMP O 100 200 300 400 500 600 TIME (s) 0.8 0.6 0.4 0.2 h 0 -U RSP (obxm3/s) LASER O 100 200 300 400 500 600 TIME (S)

L SP (oD*m3/g) GEA (in2/kg)

1500 h 500 h O 100 200 300 400 500 600 TIME (s) 100 200 300 400 TIME (s) 500 600 Figure 14. R i g i d p o l y u r e t h a n e foam

Smoke, gas and heat release data a t two heat f l u x l e v e l s . Double t e s t s a t 50 kW/m2. Mass loss r a t e and e f f e c t i v e heat o f com-b u s t i o n a r e a l s o presented.

(39)

PARTICLE BOARD 400 h RHR (l<W/fii2) 300 h 200 100

r ^

50 l<W/m2 0 100 200 300 400 500 TIME (s) 600 RHR = Rate o f heat r e l e a s e MLR = Mass l o s s r a t e

EHC = E f f e c t i v e heat o f combustion C02 = Carbon d i o x i d e CO = Carbon monoxide RSP = Rate o f smoke p r o d u c t i o n SEA = S p e c i f i c e x t i n c t i o n area SP = Smoke p o t e n t i a l 0.2 K MLR ( g / s 0.1 h 80 h EHC (kj/g) 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME (S) TIME (S) 200 \- CG2 [ml/5] 100 5 ^ CO (ml/s) 4 3 2 1 OP 0 100 200 300 400 500 600 0 100 200 300 400 500 600 TIME (s) TIME (s)

(40)

0 . 1 • , , u 0 . 1 h LASER O 100 200 3 0 0 400 5 0 0 6 0 0 O TIME (S) 100 200 300 400 5 0 0 6 0 0 TIME (S) 4 3 -2 1 O SP (ob»(m3/g) 100 ^'^•'^ 300 400 5C( " -ME (s) ' 0 0 1000 800 h 600 400 200 O SEA (m2/kg) 100 200 3 0 0 400 500 I ME (s' F i g u r e 15. R e p e a t a b i l i t y ^"or p a r t i c l e board

Smoke, gas and heat release data a t 50 kW/m^. Four t e s t s per-formed on d i f f e r e n t days. Mass loss r a t e and e f f e c t i v e heat o f combustion are also presented.

R e p e a t a b i l i t y

The r e p e a t a b i l i t y i s good f o r most o f t h e p r o d u c t s . When some minor d i f f e -rences appear i n r a t e o f heat r e l e a s e , d i f f e r e n c e s also appear i n r a t e o f smoke and gas p r o d u c t i o n . P a r t i c l e board i n F i g u r e 15 i s one i l l u s t r a t i v e example o f such d i f f e r e n c e s .

Double t e s t s a t 50 kW/m^ f o r a l l t e s t e d products a r e also shown i n Figures 2 t o 14. I n s p i t e o f t h e g e n e r a l l y good r e p e a t a b i l i t y , a t l e a s t douhle t e s t s fjre recommended.

(41)

Smoke p r o d u c t i o n i n r e l a t i o n t o d i f f e r e n t parameters

I t may be o f i n t e r e s t t o study how t h e smoke p r o d u c t i o n i s r e l a t e d t o other f i r e parameters measured i n t h e cone c a l o r i m e t e r a b i t f u r t h e r . Three examples a r e given below.

The r a t e o f smoke p r o d u c t i o n d i v i d e d by t h e r a t e o f heat release as shown i n F i g u r e 16 have a c h a r a c t e r i s t i c peak j u s t before i g n i t i o n . Then t h e curves have an almost plane appearance. The smoke i s released j u s t before i g n i t i o n and t h e heat j u s t a f t e r i g n i t i o n . This e x p l a i n s t h e peak. Table 4 shows average RSP/RHR values a f t e r t h e c h a r a c t e r i s t i c peak a t 50 kW/m^ heat f l u x . This r a t i o i s i n t h e order o f 15 t o 35 f o r most products except those c o n t a i n i n g mainly s y n t h e t i c polymers, which have r a t i o s 100 t o 200. A higher r a t i o i n d i c a t e s a higher smoke release i n r e l a t i o n t o t h e heat r e -lease .

Figure 17 presents t h e r a t e o f smoke p r o d u c t i o n d i v i d e d by t h e carbon mo-noxide p r o d u c t i o n . The RSP/CO curves have a peak, l i k e t h e RSP/RHR curves, f o r some products but f o r o t h e r s t h e curves have a more i r r e g u l a r appea-rance. The smoke i s u s u a l l y r e l e a s e d before t h e release o f carbon

mo-noxide. This e x p l a i n s t h e peak before i g n i t i o n f o r some products. For the other products the peak a f t e r i g n i t i o n appears when t h e CO decreases t o near zero. An average RSP/CO r a t i o i n t h e order o f 0.1 t o 2 i s obtained f o r most products. A lower average r a t i o i s o b t a i n e d only f o r r i g i d p o l y

-urethane foam, i n d i c a t i n g a h i g h CO release i n r e l a t i o n t o smoke release f o r t h i s product.

F i n a l l y , t h e carbon d i o x i d e p r o d u c t i o n d i v i d e d by t h e carbon monoxide p r o -d u c t i o n curves shown i n F i g u r e 18 have a s i m i l a r appearance as t h e RSP/CO curves. The average r a t i o i s i n t h i s case u s u a l l y i n t h e order o f 100 t o 2000, again w i t h t h e e x c e p t i o n o f r i g i d polyurethane foam which has a r a t i o of less than 10, i n d i c a t i n g a h i g h release o f CO a l s o i n r e l a t i o n t o CO2.

(42)

Table 4. Time t o i g n i t i o n a t three heat f l u x e s and average RSP/RHR a f t e r peak near i g n i t i o n .

Product Time t o i g n i t i o n ( s ) Average RSP/RHR

a f t e r peak near i g n i t i o n (ob-m3/MJ) H e 25 a t f 50a) l u x , 75 k W / m 2 50 P a r t i c l e board 123 34 16 21 I n s u l a t i n g f i b e r board 43 12 6 26 Medium d e n s i t y f i b e r board 123 28 14 34

Wood panel (spruce) 169 21 11 22

Melamine-faced p a r t i c l e board NI 42 12 201

Gypsum board NI 34 13 16

Paper w a l l - c o v e r i n g on gypsum board 106 21 6 26 P l a s t i c w a l l - c o v e r i n g on gypsum board 41 10 4 29 T e x t i l e w a l l - c o v e r i n g on gypsum board 115 20 7 26 T e x t i l e w a l l - c o v e r i n g on rock-wool 30 11 9 26 Paper w a l l - c o v e r i n g on p a r t i c l e board 139 27 12 16 R i g i d polyurethane foam 4 2 NT 139 Expanded p o l y s t y r e n e NI 52 NT 111

a) Time t o i g n i t i o n i s mean value from double t e s t s a t 50 kW/m2. NI = No i g n i t i o n .

(43)

2500 2000 1500 1000 500 h O -il Y RSP/RHR (0Ö«m3/MJ) PARTICLE BOARD O 100 200 300 400 500 500 TIME (S) 1000 h RSP/RHR (0bMm3/MJ) 800 -600 '400 -200 O -O 100 200 300 400 500 600 TIME (S) 500 h 1—. •—^ > _ i -O 100 200 300 400 500 600 TIME (S) 1000 800 600 400 200 O h RSP/RHR (od>*m3/MJ) PAPER WALL-COVERING ON GYPSUM BOARD O 100 200 300 400 500 TIME (s) 600 1000 800 600 400 200 h 0 -Y RSP/RHR (00«m3/MJ)

INSULATING FIBER BOARD

1000 MEDIUM DENSITY FIBER BOARD 800

600 400 200 0 0 I'O 200 300 400 500 TIME (s) Y RSP/RHR (ob»m3/MJ)

WOOD PANEL (SPRUCE)

- I • _ . • • '

\- RSP/RHR (ob»*m3/MJ)

MELAMINE-FACED PARTICLE BOARD 800 600 1000 I- RSP/RHR (obxmS/MJ) GYPSUM BOARD 600 0 100 200 300 400 500 600 TIME (s) 0 100 200 300 400 500 600 TIME (s)

(44)

6000 h 4000 h 2000 PLASTIC WALL-COVERING ON GYPSUM BOARD 100 200 300 400 500 600 TIME (S) 400 h ON GYPSUM BOARD 100 200 300 400 500 600 TIME ( S ) 1000 BOO 600 400 200 0 RSP/RHR (obxmS/MJ) 2500 [• RSP/RHR (ob*m3/MJ) TEXTILE WALL-COVERING ON ROCK-WOOL 0 100 200 300 400 500 600 TIME (S) - RSP/RHR (ob»m3/MJ) 6000 h 4000 -2000 _ i — , — , — I I I 2000 1500 1000 500 0 2500 2000 1500 1000 500 0 PAPER WALL-COVERING ON PARTICLE BOARD 1 . , I I I -0 1-0-0 2-0-0 3-0-0 4-0-0 5-0-0 6-0-0 TIME (s) RSP/RHR (ob»*ni3/MJ) EXPANDED POLYSTYRENE 0 100 200 300 400 500 600 TIME (s) 0 100 200 300 400 500 600 TIME (S)

Figure 16. The r a t e o f smoke p r o d u c t i o n ( R S P ) d i v i d e d by the r a t e o f heat release (RHR) a t 50 kW/m^ f o r t h e 13 b u i l d i n g products. Note t h e d i f f e r e n t s c a l e s .

(45)

8 6 4 2 O 5 4 3 2 1 O PARTICLE BOARD O 100 200 300 400 500 600 TIME (s) RSP/CO (obxm3/ml)

MEDIUM DENSITY FIBER 80AR0

- I I . I . 1_ J I : I I I

o 100 200 300 400 500 600

TIME (s) L RSP/CO (ob»m3/ml)

MELAMINE-FACED PARTICLE BOARD

0.5 O '.00 200 300 400 500 600 TIME (S) U RSP/C'u lub»m3/mll PAPER WALL-COVERING ON GYPSUM BOARD I i _ i_ 100 200 300 400 500 600 TIME (s) INSULATING FIBER BOARD 0 100 200 300 400 500 600 TIME (S)

WOOD PANEL (SPRUCE) - RSP/CO (obxm3/ml 0 100 200 300 400 500 TIME (s) L RSP/CO (ob»m3/ml) 600 GYPSUM BOARD 0 100 200 300 400 500 600 TIME (s)

(46)

PLASTIC WALL-COVERING ON GYPSUM BOARD 100 200 300 400 500 600 TIME (S) 0.5 O h ON GYPSUM BOARD 100 200 300 400 TIME (s) 500 600 1 h RSP/CO (0D»m3/ml) 0.5 O h TEXTILE WALL-COVERING ON ROCK-WOOL 1 0 100 200 300 400 500 600 TIME (S) h RSP/CO (0D'*ni3/ml)

RIGID POLYURETHANE FOAM

0.5 h O h 0 100 200 300 400 500 600 TIME (S) 1 h RSP/CO loDi*m3/mll 0.5 0 h PAPER WALL-COVERING ON PARTICLE BOARD 0 100 200 300 400 500 600 TIME (s) h RSP/CO {ohm3/ml) EXPANDED POLYSTYRENE 0 100 200 300 400 500 600 TIME (s)

Figure 17. The r a t e o f smoke p r o d u c t i o n (RSP) d i v i d e d by t h e carbon m o noxide p r o d u c t i o n (CO) a t 50 kW/m2 f o r t h e 1 ^ b u i l d i n r ] [ i r o -d u c t b . N o t e t h e d i f f e r e n t s c a l e s .

(47)

PARTICLE BOARD 5000 h 4000 2000 h 8000 6000 4000 2000

INSULATING FIBER BOARD

100 200 300 400 TIME (s) 500 600 100 200 300 400 TIME (s) 500 600 10000 8000 6000 4000 h 2000 '0 -h C02/C0 (ml/ml) 10000 k C02/C0 (inl/ml) MEDIUM DENSITY FIBER BOARD

WOOD PANEL (SPRUCE)

-1—< _ i I L.

4000 h

0 100 200 300 400 500 600

TIME (s) 0 100 200 300 400 500 600 TIME (s)

[. C02/C0 (ml/ml) 0 h C02/C0 (ml/ml) MELAMINE-FACED PARTICLE BOARD

100 h 0 100 200 300 400 500 600 TIME (S) GYPSUM BOARD 0 100 200 300 400 500 600 TIME (s) 500 400 300 200 100 F 0 -L C02/C0 (ml/ml) PAPER WALL-COVERING ON GYPSUM BOARD 0 100 200 300 400 500 600 TIME (s)

(48)

10000 8000 6000 4000 2000 O 500 400 300 200 100 O h C02/C0 (ml/ml) l-J 10000 PLASTIC HALL-COVERING QQQQ ON GYPSUM BOARD 6000 4000 2000 — \ — 0 h C02/C0 (ml/mi; I . — . • L. TEXTILE WALL-COVERING ON GYPSUM BOARD -1 < . . . \ I . I • 1 -0 1-0-0 2-0-0 3-0-0 4-0-0 5-0-0 6-0-0 TIME (s) 0 100 200 300 400 500 600 TIME (s) U C02/C0 (ml/ml) TEXTILE WALL-COVERING ON ROCK-WOOL 5000 h 8000 h 4000 2000 -0 PAPER WALL-COVERING ON PARTICLE BOARD 0 100 200 300 400 500 600 TIME (s) 500 h C02/C0 (ml/ml)

[ RIGID POLYURETHANE FOAM 400 300 -200 : 100 : : \ 0 0 100 200 300 400 500 6uO TIME (S) • - ' - . I . . . I 500 400 300 200 100 0 L C02/C0 (ml/ml) EXPANDED POLYSTYRENE K v _ - - - A a J v / W 0 100 200 300 400 500 600 TIME (s) 0 100 200 300 400 500 600 TIME (s)

Figure 18. The carbon d i o x i d e p r o d u c t i o n (CO?) d i v i d e d by t h e carbon mo-noxide p r o d u c t i o n (CO) a t 50 kW/m^ f o r t h e 13 b u i l d i n g pro-d u c t s . Note t n e pro-d i f f e r e n t s c a l e s .

(49)

CONCLUSIONS

Smoke p r o d u c t i o n can be measured w i t h good accuracy and r e p e a t a b i l i t y i n t h e cone c a l o r i m e t e r f o r products t h a t have a high smoke release such as r i g i d polyurethane foam and a l s o f o r products t h a t have a low smoke release such as gypsum board.

The two smoke measurement systems, t h e helium-neon l a s e r and the w h i t e l i g h t , g i v e almost i d e n t i c a l r e s u l t s f o r a l l t e s t e d products a t a l l heat f l u x l e v e l s .

The p r o d u c t i o n o f carbon d i o x i d e and carbon monoxide can a l s o be measured a c c u r a t e l y .

The wood products have a lower p r o d u c t i o n o f smoke and carbon monoxide than the s y n t h e t i c polymers. Gypsum board products have a s u r p r i s i n g l y high r e -lease o f carbon monoxide i n r e l a t i o n t o other products.

The p r o d u c t i o n o f smoke i s more or l e s s p r o p o r t i o n a l t o the r a t e o f heat r e -lease, b u t n o t so c l o s e l y r e l a t e d t o the gas p r o d u c t i o n f o r most products. The data obtained a l s o i n c l u d e mass l o s s r a t e and e f f e c t i v e heat o f com-b u s t i o n . They a r e a l l w e l l s u i t e d f o r i n c l u s i o n i n models p r e d i c t i n g l a r g e r f i r e s , e.g. room f i r e s .

(50)

REFERENCES

/ I / ISO DP 5660: F i r e t e s t s - Reaction t o f i r e - Rate o f heat release from b u i l d i n g products. ISO/TC 92/SC 1/WG 5 - Doc. No. 96 (1988).

/2/ ASTM E 662-83: Standard t e s t method f o r s p e c i f i c o p t i c a l d e n s i t y o f smoke generated by s o l i d m a t e r i a l s . Annual Book o f ASTM Standards V o l . 04.07 (1987).

/3/ ASTM E-5 Proposal P 190: Proposed t e s t method f o r heat and v i s i b l e smoke r a t e s f o r m a t e r i a l s and products using an oxygen consumption c a l o r i m e t e r . Annual Book o f ASTM Standards Vol. 04.07 (1987). /4/ Babrauskas, V. and M u l h o l l a n d , G.: Smoke and soot data d e t e r m i n a t i o n s

i n t h e cone c a l o r i m e t e r . Mathematical M o d e l l i n g o f F i r e s . ASTM STP 983, Am. Society f o r T e s t i n g M a t e r i a l s , p 83-104 (1987).

/5/ M u l h o l l a n d , G.V.: How w e l l a r e we measuring smoke? F i r e and M a t e r i a l s 6 ( 2 ) , p 65-67 (1982).

/6/ Clark, F.R.S: Assessment o f smoke d e n s i t y w i t h a helium-neon l a s e r . F i r e and M a t e r i a l s 9 ( 1 ) , p 30-35 (1985).

/ I / Nussbaum, R.M. and Ostman, B.A-L.: Larger specimens f o r d e t e r m i n i n g r a t e o f heat release i n t h e cone c a l o r i m e t e r . F i r e and M a t e r i a l s 10, p 151-160 (1986).

/8/ Rasbash, D.3. and P r a t t , B.T.: E s t i m a t i o n o f t h e smoke produced i n f i r e s . F i r e Safety J. 2, p 23-37 (1979/80).

/9/ östman, B.AL.: Comparison o f smoke r e l e a s e r a t e from b u i l d i n g p r o -d u c t s . Paper presente-d a t t h e I n t e r n a t i o n a l Conference " C o n t r o l t h e Heat - Reduce t h e Hazard", London, October 1988. TräteknikCentrum, Report P 8811075 (1988).

/lO/ Ostman, B.A-L. and T s a n t a r i d i s , L.D.: Smoke release r a t e s f o r b u i l d i n g products i n t h e cone c a l o r i m e t e r . I n p r e p a r a t i o n f o r F i r e Safety 3. (1989).

Acknowledgements

The authors g r a t e f u l l y acknowledge t h e f i n a n c i a l support from t h e Swedish F i r e Research Board and t h e h e l p f u l d i s c u s s i o n s w i t h Mr R. Nussbaum.

(51)

skapades med anslag från

Stiftelsen Nils och Dorthi Troédssons forskningsfond

Trätel<nikCentrum

I N S T I T U T E T FÖR TRÄTEKNISK FORSKNIN(

Box 5609, 114 86 S T O C K H O L M

Besöksadress: Drottning Kristinas väg 67 Telefon: 08-145300

Telex: 14445 tratek s Telefax: 08-116188 Huvudenhet med kansli

Asenvägen 9, 55258 JÖNKÖPING Telefon: 036-126041 Telefax: 036-168798 ISSN 0283-4634 931 87 SKELLEFTEÅ Besöksadress: Bockholmsvägen II Telefon: 0910-65200 Telefax: 0910-65265 Telex: 65031 expolar s

References

Related documents

In this thesis it has been investigated if LQG control could be used to mitigate torsional oscillations in a variable speed, fixed pitch wind turbine.. The wind turbine is a

In this study the question was investigated whether an activation of the core and its muscles through the 90/90 breathing technique can increase the short-term core

Neonatalvården skulle kunna genomföra utbildning till personalen i hur information kring hälsa, i detta fall fördelar med hud mot hud, kan framföras utifrån föräldrars

Framtagen metod upplevs som verkningsfull och tydliggör det grundläggande konceptet av Toyota Kata som enligt Rother (2013) är att skapa en företagskultur av ständiga

Vidare redovisar studien för de utmaningar och möjligheter som finns för en artist att idag i arbetet med sitt varumärke och image genom sociala medier samt vilken positiv

Climate services support the achievement of the recently established landmark global agendas, including the Sendai Framework for Disaster Risk Reduction 2015-2030 (UNISDR, 2015),

For ten classes of NYU Depth Dataset V2 [41], the real data shape is distributed as shown in Figure 3.2a; 100% of the dataset is labeled with 3D bounding boxes while only around 40%

The mapping between acoustic gestures and their corresponding articulatory movement is learnt using one of the state-of-the-art machine learning algorithms, Gaussian Mixture