• No results found

Observation of Associated Near-Side and Away-Side Long-Range Correlations in root S-NN=5.02 TeV Proton-Lead Collisions with the ATLAS Detector

N/A
N/A
Protected

Academic year: 2021

Share "Observation of Associated Near-Side and Away-Side Long-Range Correlations in root S-NN=5.02 TeV Proton-Lead Collisions with the ATLAS Detector"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

Observation of Associated Near-Side and Away-Side Long-Range Correlations

in

p

ffiffiffiffiffiffiffiffiffi

s

NN

¼ 5:02 TeV Proton-Lead Collisions with the ATLAS Detector

G. Aad et al.* (ATLAS Collaboration)

(Received 20 December 2012; published 1 May 2013)

Two-particle correlations in relative azimuthal angle () and pseudorapidity () are measured in ffiffiffiffiffiffiffiffi

sNN

p ¼ 5:02 TeV p þ Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately1 b1 of data as a function of transverse momentum (pT) and the

transverse energy (EPb

T) summed over3:1 <  < 4:9 in the direction of the Pb beam. The correlation

function, constructed from charged particles, exhibits a long-range (2 < jj < 5) ‘‘near-side’’ (  0) correlation that grows rapidly with increasingEPbT . A long-range ‘‘away-side’’ (  ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with smallEPbT, is found to match the near-side correlation in magnitude, shape (in and ) and EPbT dependence. The resultant  correlation is approximately symmetric about =2, and is consistent with a dominantcos2 modulation for all EPbT ranges and particle pT.

DOI:10.1103/PhysRevLett.110.182302 PACS numbers: 25.75.q

Proton-nucleus (p þ A) collisions at the Large Hadron Collider (LHC) provide both an interesting environment for the study of QCD at high parton density and important baseline measurements, especially for the interpretation of results from the LHCPb þ Pb program [1]. In particular, it has been suggested that p þ Pb collisions at LHC energies are an important system for the study of a possible satura-tion of the growth of parton densities at low Bjorken-x.

High-multiplicity events provide a rich environment for studying observables associated with high parton densities in hadronic collisions. An important tool to probe the physics of these events is the two-particle correlation function measured in terms of the relative pseudorapidity () and azimuthal angle () of selected particle pairs, Cð; Þ. The first studies of two-particle correlation functions in the highest-multiplicity p þ p collisions at the LHC [2] showed an enhanced production of pairs of par-ticles at   0, with the correlation extending over a wide range in , a feature frequently referred to as a ‘‘ridge.’’ Many of the physics mechanisms proposed to explain the p þ p ridge, including multiparton interactions [3], parton saturation [4–6], and collective expansion of the final state [7], are also expected to be relevant in p þ Pb

collisions. A recent measurement by the CMS

Collaboration [8] has demonstrated that a ridge is clearly visible over jj < 4 in high-multiplicity p þ Pb colli-sions at the LHC. During final preparation of this Letter, the ALICE Collaboration submitted a Letter addressing

similar physics, within the range jj < 1:8, with some differences in the analysis technique [9].

To provide further insight into the physical origin of these long-range correlations, this Letter presents ATLAS measurements of two-particle angular correlations over jj < 5 in p þ Pb collisions, based on an integrated luminosity of approximately 1 b1 recorded during a short run in September 2012. The LHC was configured with a 4 TeV proton beam and a 1.57 TeV per-nucleon Pb beam that together produced collisions with a nucleon-nucleon center-of-mass energy of pffiffiffiffiffiffiffiffisNN¼ 5:02 TeV and a rapidity shift of 0:47 relative to the ATLAS rest frame [10].

The measurements presented in this Letter are per-formed using the ATLAS inner detector (ID), forward calorimeters (FCal), minimum-bias trigger scintillators (MBTS), and the trigger and data acquisition systems [11]. The ID measures charged particles withinjj < 2:5 using a combination of silicon pixel detectors, silicon microstrip detectors, and a straw-tube transition radiation tracker, all immersed in a 2 T axial magnetic field [12]. The MBTS detect charged particles over2:1 < jj < 3:9 using two hodoscopes of 16 counters positioned at z ¼ 3:6 m. The FCal consists of two sections that cover 3:1 < jj < 4:9. The FCal modules are composed of tungsten and copper absorbers with liquid argon as the active medium, which together provide 10 interaction lengths of material. Minimum-bias p þ Pb collisions are selected by a trigger that requires a signal in at least two MBTS counters.

The p þ Pb events used for this analysis are required to have a reconstructed vertex containing at least two asso-ciated tracks, with its z position satisfying jzvtxj < 150 mm. Noncollision backgrounds and photonuclear interactions are suppressed by requiring at least one hit in a MBTS counter on each side of the interaction point,

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

and the difference between times measured on the two sides to be less than 10 ns. Events containing multiple p þ Pb collisions (pileup) are suppressed by rejecting events with two reconstructed vertices that are separated in z by more than 15 mm. The residual pileup fraction is estimated to be & 104. About 1:95  106 events pass these event selection criteria.

Charged particle tracks are reconstructed in the ID using an algorithm optimized for p þ p minimum-bias measure-ments [13]. In this analysis, the tracks are required to have pT> 0:3 GeV and jj < 2:5, at least seven hits in the silicon detectors (out of a typical value of 11), and a hit in the first pixel layer when one is expected. In addition, the transverse (d0) and longitudinal (z0sin) impact parame-ters of the tracks measured with respect to the primary vertex are required to be less than 1.5 mm and to satisfy jd0=d0j < 3 and jz0sin=zj < 3, respectively, where d0 and z are uncertainties on d0 and z0sin obtained from the track-fit covariance matrix.

The efficiency, ðpT; Þ, for track reconstruction and track selection cuts is evaluated using p þ Pb Monte Carlo events produced with the HIJINGevent gen-erator [14] with a center-of-mass boost matching the beam conditions. The response of the detector is simulated using

GEANT4[15,16] and the resulting events are reconstructed with the same algorithms as applied to the data. The efficiency increases with pT by 6% between 0.3 and 0.5 GeV, and varies only weakly for pT> 0:5 GeV, where it ranges from 82% at  ¼ 0 to 70% at jj ¼ 2 and 60% at jj > 2:4. It is also found to vary by less than 2% over the range ofEPbT observed in the p þ Pb data.

The two-particle correlation (2PC) analyses are per-formed in different intervals ofEPbT , the sum of transverse energy measured in the FCal with3:1 <  < 4:9 (in the z direction of the lead beam) with no correction for the difference in response to electrons and hadrons. The dis-tribution ofEPbT for events passing all selection criteria is shown in Fig. 1. These events are divided into 12 EPbT intervals (indicated by vertical lines in Fig.1) to study the

variation of 2PC with overall event activity. Two larger intervals, EPbT > 80 GeV and EPbT < 20 GeV, contain-ing 2% and 52% of the events, respectively, hereafter referred to as ‘‘central’’ and ‘‘peripheral,’’ are used for detailed studies of the 2PC at high and low overall event activity. The quantity EPbT instead of charged particle multiplicity is used to characterize the event activity, since the latter is observed to have strong correlations with the 2PC measurements, particularly for events selected with low and high multiplicities. However, for reference, the average (hNchi) and the standard deviation (Nch) of the efficiency-corrected multiplicity of charged particles with pT> 0:4 GeV and jj < 2:5 have been calculated for each EPb

T range, yieldinghNchi ¼ 150  7, Nch ¼ 35  2 for central events and hNchi ¼ 25  1, Nch ¼ 18  1 for peripheral events.

The correlation functions are given [17–19] by

Cð; Þ ¼Sð; Þ

Bð; Þ; CðÞ ¼

SðÞ BðÞ; (1) where  ¼ a b and  ¼ a b and S and B represent pair distributions constructed from the same event and from ‘‘mixed events,’’ [20] respectively. The labels a and b denote the two particles in the pair (conventionally referred to as ‘‘trigger’’ and ‘‘associated’’ particles, respec-tively [8]), which may be selected from different pT inter-vals. The mixed-event distribution, Bð; Þ, that measures uncorrelated pair yields was constructed by choosing pairs of particles from different events of similar zvtx and track multiplicity, to match the effects of detector acceptance, occupancy, and material on Sð; Þ, and of similarEPbT . The 1D distributions SðÞ and BðÞ are obtained by integrating Sð; Þ and Bð; Þ, respectively, over2 < jj < 5. This jj range is chosen to focus on the long-range features of the correlation func-tions. The normalization of Cð; Þ is chosen such that the -averaged value of CðÞ is unity. To correct Sð; Þ and Bð; Þ for the inefficiencies, each particle is weighted by the inverse of the tracking efficiency. Remaining detector distortions not accounted for in the efficiency largely cancel in the same-event to mixed-event ratio.

Examples of 2D correlation functions are shown in Figs.2(a)and2(b)for charged particles with0:5 < pa;bT < 4 GeV in peripheral and central events. The correlation function for peripheral events shows a sharp peak centered at ð; Þ ¼ ð0; 0Þ due to pairs originating from the same jet, Bose-Einstein correlations, as well as high-pT resonance decays, and a broad structure at   from dijets, low-pT resonances, and momentum conservation that is collectively referred to as ‘‘recoil’’ in the remainder of this Letter. In the central events, the correlation function reveals a ridgelike structure at   0 (the near-side) that extends over the full measured  range, with an amplitude of a few percent. The distribution at    [GeV] Pb T E Σ 0 50 100 150 ] -1 [GeV Pb T EΣ /d evt ) dN evt (1/N -6 10 -5 10 -4 10 -3 10 -2 10 Central Peripheral ATLAS L 1 µb-1

= 5.02 TeV, NN s p+Pb

FIG. 1 (color online). Distribution ofEPbT for minimum-bias p þ Pb events. Vertical lines indicate the boundaries of the event activity classes. Shaded bands indicate the larger peripheral and central intervals having EPbT < 20 GeV and EPbT > 80 GeV,

(3)

(the away-side) is also broadened relative to peripheral events, consistent with the presence of a long-range com-ponent in addition to that seen in peripheral events.

The strength of the long-range component is quantified by the ‘‘per-trigger yield,’’ YðÞ, which measures the average number of particles correlated with each trigger particle, folded into the0- range [2,17–19],

YðÞ ¼ R BðÞd Na  CðÞ  bZYAM; (2) where Nadenotes the number of efficiency-weighted trig-ger particles, and bZYAM represents the pedestal arising from uncorrelated pairs. The parameter bZYAM is deter-mined via a zero-yield-at-minimum (ZYAM) method [17,21] in which a second-order polynomial fit to CðÞ is used to find the location of the minimum point,ZYAM, and from this to determine bZYAM. The stability of the fit is studied by varying the  fit range. The uncertainty in bZYAM depends on the local curvature around ZYAM, and is estimated to be 0.03%–0.1% of the minimum value of CðÞ. At high pT where the number of measured counts is low, this uncertainty is of the same order as the statistical uncertainty.

The systematic uncertainties due to the tracking effi-ciency are found to be negligible for CðÞ, since detector effects largely cancel in the correlation function ratio.

However YðÞ is sensitive to the uncertainty on the track-ing efficiency correction for the associated particles. This uncertainty is estimated by varying the track quality cuts and the detector material in the simulation, reanalyzing the data using corresponding Monte Carlo efficiencies and evaluating the change in the extracted YðÞ. The resulting uncertainty on YðÞ is estimated to be 2.5% due to the track selection and 2%–3% related to the limited knowledge of detector material. The analysis procedure is validated by measuring correlation functions in fully simulated HIJING

events [15,16] and comparing it to the correlations mea-sured using the generated particles. The agreement is better than 2% for CðÞ and better than 3% for YðÞ.

Figure 2(c) shows the YðÞ distributions for 2 < jj < 5 in peripheral and central events separately. The yield for the peripheral events has an approximate 1  cos shape with an away-side maximum, characteristic of a recoil contribution. In contrast, the yield in the central events has near-side and side peaks with the away-side peak having a larger magnitude. These features are consistent with the onset of a significantcos2 compo-nent in the distribution. To quantify further the properties of these long-range components, the distributions are inte-grated overjj < =3 and jj > 2=3, and plotted as a function ofEPbT in Fig.2(d). The near-side yield is close to 0 forEPbT < 20 GeV and increases with EPbT , consis-tent with the CMS result [8]. The away-side yield shows a similar variation as a function ofEPbT, except that it starts at a value significantly above zero, even for events with low EPb

T . The yield difference between these two regions is found to be approximately independent ofEPbT, indicating that the growth in the yield with increasing EPbT is the same on the near-side and away-side.

To further investigate the connection between the near-side and away-near-side, the YðÞ distributions for peripheral and central events are shown in Fig.3in various paTranges with 0:5 < pb

T< 4 GeV. Distributions of the difference between central and peripheral yields, YðÞ, are also shown in this Figure. This difference is observed to be nearly symmetric around  ¼ =2. To illustrate this symmetry, theYðÞ distributions in Fig.3are overlaid with functions a0þ 2a2cos2 and a0þ 2a2cos2 þ 2a3cos3, with the coefficients calculated as an¼ hYðÞ cosni. Using only the a0 and a2 terms describes theY distributions reasonably well, indicating that the long-range component of the two-particle correla-tions can be approximately described by a recoil contribu-tion plus a-symmetric component. The inclusion of the a3 term improves slightly the agreement with the data.

The near-side and away-side yields integrated over jj < =3 and jj > 2=3, respectively (Yint), and the differences between those integrated yields in central and peripheral events (Yint) are shown in Fig. 4 as a function of pa

T. The yields are shown separately for the twoEPbT ranges in panels (a) and (b) and the differences φ ∆ 0 2 4 η ∆ 1 1.1 -4 -2 0 2 4 (a) φ ∆ 0 2 4 η ∆ C( ∆φ ,∆η ) 1 1.04 -4 -2 0 2 4 (b) ATLAS p+Pb sNN=5.02 TeV -1 b µ 1 ≈ L ∫ 0.5<pa,bT<4 GeV <20 GeV Pb T E Σ ΣEPbT>80 GeV |∆φ| Y( ∆φ ) 0 0.2 0.4 0.6 (c) ATLAS -1 b µ 1 ≈ L ∫ =5.02 TeV, NN s p+Pb |<5 η <4 GeV, 2<|∆ a,b T 0.5<p >80 GeV Pb T E Σ <20 GeV Pb T E Σ =14.3 C ZYAM b =3.2 P ZYAM b [GeV] 〉 Pb T 〈ΣE 0 1 2 3 0 50 100 int Y 0 0.2 0.4 0.6 /3 π |< φ Near: |∆ /3 π |>2 φ Away: |∆ Difference ATLAS -1 b µ 1 ≈ L ∫ =5.02 TeV, NN s p+Pb |<5 η <4 GeV, 2<|∆ a,b T 0.5<p (d) C( ∆φ ,∆η )

FIG. 2 (color online). Two-dimensional correlation functions for (a) peripheral events and (b) central events, both with a truncated maximum to suppress the large correlation at ð; Þ ¼ ð0; 0Þ; (c) the per-trigger yield  distribution together with pedestal levels for peripheral (bPZYAM) and central

(bCZYAM) events, and (d) integrated per-trigger yield as function

ofEPbT for pairs in2 < jj < 5. The shaded boxes represent the systematic uncertainties, and the statistical uncertainties are smaller than the symbols.

(4)

are shown in panels (c) and (d). Qualitatively, the differ-ences have a similar pa

Tdependence and magnitude on the near-side and away-side; they rise with pa

T and reach a maximum around 3–4 GeV. This pattern is visible for the near-side even before subtraction, as shown in panel (a), but is less evident in the unsubtracted away-side due to the dominant contribution of the recoil component. A similar dependence is observed for long-range correlations in Pb þ Pb collisions at approximately the same pT[22,23]. The relative amplitude of the cosn modulation of YðÞ, cn, for n ¼ 2; 3 can be estimated using an, and the extracted value of bZYAMfor central events,

cn¼ an=ðbCZYAMþ a0Þ: (3)

Figure4(e)shows c2 and c3 as a function of paTfor0:5 < pb

T< 4 GeV. The value of c2 is much larger than c3 and exhibits a behavior similar toYðÞ at the near-side and away-side. Using the techniques discussed in Ref. [23], cn can be converted into an estimate of sn, the average nth Fourier coefficient of the event-by-event single-particle  distribution, by assuming the factorization relation cnðpaT; pbTÞ ¼ snðpTaÞsnðpbTÞ. From this, snðpaTÞ is calculated as snðpaTÞ ¼ cnðpaT; pbTÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cnðpbT; pbTÞ q

, where cnðpbT; pbTÞ is obtained from Eq. (3) using the an extracted from the difference between the central and peripheral data shown in Fig.2(c). The s2ðpaTÞ values obtained this way exceed 0.1

at2–4 GeV, as shown in Fig.4(f ). The s3ðpaTÞ values are smaller than s2ðpaTÞ over the measured pT range. The factorization relation used to compute s2ðpaTÞ is found to be valid within 10%–20% when selecting different sub-ranges of pb

T within 0.5–4 GeV, while the precision of s3ðpaTÞ data does not allow a quantitative test of the facto-rization. The analysis is also repeated for correlation func-tions separately constructed from like-sign pairs and unlike-sign pairs, and the resulting cn and sn coefficients are found to be consistent within their statistical and sys-tematic uncertainties.

In summary, ATLAS has measured two-particle correla-tion funccorrela-tions in pffiffiffiffiffiffiffiffisNN¼ 5:02 TeV p þ Pb collisions in different intervals of EPbT over2 < jj < 5. An away-side contribution is observed that grows rapidly with increasingEPbT and which matches many essential features of the near-side ridge observed here, as well as in previous high-multiplicity p þ p, p þ Pb and Pb þ Pb data at the LHC. Thus, while the ridge in p þ p and p þ Pb collisions has been characterized as a near-side phenomenon, these results show that it has both near-side and away-side com-ponents that are symmetric around  =2, with a  dependence that is approximately described by a cos2

Y( ∆φ ) 0 0.1 0.2 0.3 ATLAS p+Pb sNN=5.02 TeV |<5 η , 2<|∆ -1 b µ 1 ≈ L ∫ <4 GeV b T 0.5<p a<0.5 GeV T 0.3<p =14.5 C ZYAM b =3.0 P ZYAM b 0 0.2 0.4 > 80 GeV Pb T E Σ < 20 GeV Pb T E Σ Difference <1 GeV a T 0.5<p =14.4 C ZYAM b =3.1 P ZYAM b 0 0.2 0.4 0.6 0.8 a<2 GeV T 1<p =14.3 C ZYAM b =3.3 P ZYAM b 0 0.5 1 <3 GeV a T 2<p =14.1 C ZYAM b =3.4 P ZYAM b |∆φ| 0 0.5 1 <4 GeV a T 3<p =14.1 C ZYAM b =3.5 P ZYAM b |∆φ| 0 0.5 1 1.5 a<5 GeV T 4<p =14.1 C ZYAM b =3.5 P ZYAM b 0 1 2 3 0 1 2 3

FIG. 3 (color online). Distributions of per-trigger yield in the peripheral and the central event activity classes and their differ-ences (solid symbols), for different ranges of pa

Tand0:5 < pbT<

4GeV, together with functions a0þ 2a2cos2 (solid line) and

a0þ 2a2cos2 þ 2a3cos3 (dashed line) obtained via a

Fourier decomposition (see text). The values for the ZYAM-determined pedestal levels are indicated on each panel for peripheral (bPZYAM) and central (bCZYAM)EPbT bins.

int Y 0 0.2 0.4 ATLASp+Pb -1 b µ 1 ≈ L ∫ =5.02 TeV, NN s < 4 GeV b T 0.5 < p | < 5 η 2 < |∆ (a) /3 π |< φ |∆ 0 0.5 1 1.5 ΣEPbT > 80 GeV < 20 GeV Pb T E Σ Difference (b) /3 π |>2 φ |∆ [GeV] a T p int Y∆ 0 0.2 0.4 (c) /3 π |< φ |∆ [GeV] a T p 0 2 4 6 0 2 4 6 0 0.2 0.4 (d) /3 π |>2 φ |∆ [GeV] a T p n c 0 0.005 0.01 n = 2 n = 3 ATLAS p+Pb =5.02 TeV NN s -1 b µ 1 ≈ L ∫ > 80 GeV Pb T E Σ |<5 η 2<|∆ <4 GeV b T 0.5<p (e) [GeV] a T p 0 2 4 6 0 2 4 6 n s 0 0.05 0.1 0.15 n = 2 n = 3 ATLAS p+Pb =5.02 TeV NN s -1 b µ 1 ≈ L ∫ > 80 GeV Pb T E Σ |<5 η 2<|∆ <4 GeV b T 0.5<p (f)

FIG. 4 (color online). Integrated per-trigger yields, Yint (see

text), vs pa

T for 0:5 < pbT< 4 GeV in peripheral and central

events, on the (a) near-side and (b) away-side. The panels (c) and (d) show the difference,Yint. Panels (e) and (f ) show the pT

dependence of cn and sn for n ¼ 2; 3, respectively. The error

bars and shaded boxes represent the statistical and systematic uncertainties, respectively.

(5)

modulation. A Fourier decomposition of the correlation function, CðÞ, yields a pair cos2 amplitude of about 0.01 at pT 3 GeV, corresponding to a single-particle amplitude of about 0.1. Similar findings are obtained inde-pendently by the ALICE Collaboration [9], albeit over a more restricted phase space (jj < 1:8 and pT< 2–4 GeV). The two results are found to be consistent within this common region.

Some of the features of the data, including the presence of an away-side component, are qualitatively predicted in the color glass condensate approach [6], which models saturation of the parton distribution in the Pb nucleus. The estimated amplitudes of the modulation on the single-particle level are also found to be comparable in magnitude and pT dependence to similar modulations observed in heavy-ion collisions, commonly attributed to collective expansion of the hot, dense matter [23]. Thus, although the original motivation for this work was to study the possible effects of high parton density in the initial state of p þ Pb collisions, the results presented here are also consistent with contributions of final-state collective ef-fects in high-multiplicity events [24,25].

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP,

Brazil; NSERC, NRC, and CFI, Canada; CERN;

CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and

VSC CR, Czech Republic; DNRF, DNSRC, and

Lundbeck Foundation, Denmark; EPLANET and ERC,

European Union; IN2P3-CNRS, CEA-DSM/IRFU,

France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and

AvH Foundation, Germany; GSRT, Greece; ISF,

MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland;

GRICES and FCT, Portugal; MERYS (MECTS),

Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; and the DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and

the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/

GridKA (Germany), INFN-CNAF (Italy), NL-T1

(Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), and in the Tier-2 facilities worldwide.

[1] C. Salgado et al.,J. Phys. G 39, 015010 (2012).

[2] CMS Collaboration,J. High Energy Phys. 09 (2010) 091. [3] M. Ryskin, A. Martin, and V. Khoze, J. Phys. G 38,

085006 (2011).

[4] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi, and R. Venugopalan,Phys. Lett. B 697, 21 (2011). [5] K. Dusling and R. Venugopalan, Phys. Rev. Lett. 108,

262001 (2012).

[6] K. Dusling and R. Venugopalan,Phys. Rev. D 87, 054014 (2013).

[7] E. Avsar, C. Flensburg, Y. Hatta, J.-Y. Ollitrault, and T. Ueda,Phys. Lett. B 702, 394 (2011).

[8] CMS Collaboration,Phys. Lett. B 718, 795 (2013). [9] ALICE Collaboration,Phys. Lett. B 719, 29 (2013). [10] ATLAS uses a right-handed coordinate system with its

origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ) are used in the transverse plane,  being the azimuthal angle around the beam pipe. For the p þ Pb collisions, the incident Pb beam traveled in theþz direction. The pseu-dorapidity is defined in laboratory coordinates in terms of the polar angle  as  ¼  lntanð=2Þ.

[11] ATLAS Collaboration,JINST 3, S08003 (2008). [12] ATLAS Collaboration,Eur. Phys. J. C 70, 787 (2010). [13] ATLAS Collaboration,New J. Phys. 13, 053033 (2011). [14] X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501

(1991).

[15] S. Agostinelli et al.,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[16] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [17] PHENIX Collaboration,Phys. Rev. C 78, 014901 (2008). [18] PHOBOS Collaboration, Phys. Rev. Lett. 104, 062301

(2010).

[19] STAR Collaboration,Phys. Rev. C 82, 024912 (2010). [20] PHENIX Collaboration, Phys. Rev. Lett. 107, 172301

(2011).

[21] N. Ajitanand, J. Alexander, P. Chung, W. Holzmann, M. Issah, Roy Lacey, A. Shevel, A. Taranenko, and P. Danielewicz,Phys. Rev. C 72, 011902 (2005).

[22] CMS Collaboration,Eur. Phys. J. C 72, 2012 (2012). [23] ATLAS Collaboration,Phys. Rev. C 86, 014907 (2012). [24] P. Bozek,Phys. Rev. C 85, 014911 (2012).

[25] P. Bozek and W. Broniowski, Phys. Lett. B 718, 1557 (2013).

G. Aad,48T. Abajyan,21B. Abbott,111J. Abdallah,12S. Abdel Khalek,115A. A. Abdelalim,49O. Abdinov,11 R. Aben,105B. Abi,112M. Abolins,88O. S. AbouZeid,158H. Abramowicz,153H. Abreu,136B. S. Acharya,164a,164b,b L. Adamczyk,38D. L. Adams,25T. N. Addy,56J. Adelman,176S. Adomeit,98P. Adragna,75T. Adye,129S. Aefsky,23

(6)

J. A. Aguilar-Saavedra,124b,cM. Agustoni,17S. P. Ahlen,22F. Ahles,48A. Ahmad,148M. Ahsan,41G. Aielli,133a,133b T. P. A. A˚ kesson,79G. Akimoto,155A. V. Akimov,94M. A. Alam,76J. Albert,169S. Albrand,55M. Aleksa,30

I. N. Aleksandrov,64F. Alessandria,89aC. Alexa,26aG. Alexander,153G. Alexandre,49T. Alexopoulos,10 M. Alhroob,164a,164cM. Aliev,16G. Alimonti,89aJ. Alison,120B. M. M. Allbrooke,18L. J. Allison,71P. P. Allport,73

S. E. Allwood-Spiers,53J. Almond,82A. Aloisio,102a,102bR. Alon,172A. Alonso,36F. Alonso,70A. Altheimer,35 B. Alvarez Gonzalez,88M. G. Alviggi,102a,102bK. Amako,65C. Amelung,23V. V. Ammosov,128,a S. P. Amor Dos Santos,124aA. Amorim,124a,dS. Amoroso,48N. Amram,153C. Anastopoulos,30L. S. Ancu,17 N. Andari,115T. Andeen,35C. F. Anders,58bG. Anders,58aK. J. Anderson,31A. Andreazza,89a,89bV. Andrei,58a X. S. Anduaga,70S. Angelidakis,9P. Anger,44A. Angerami,35F. Anghinolfi,30A. Anisenkov,107N. Anjos,124a A. Annovi,47A. Antonaki,9M. Antonelli,47A. Antonov,96J. Antos,144bF. Anulli,132aM. Aoki,101L. Aperio Bella,5

R. Apolle,118,eG. Arabidze,88I. Aracena,143Y. Arai,65A. T. H. Arce,45S. Arfaoui,148J-F. Arguin,93 S. Argyropoulos,42E. Arik,19a,aM. Arik,19aA. J. Armbruster,87O. Arnaez,81V. Arnal,80A. Artamonov,95

G. Artoni,132a,132bD. Arutinov,21S. Asai,155S. Ask,28B. A˚ sman,146a,146bL. Asquith,6K. Assamagan,25,f R. Astalos,144aA. Astbury,169M. Atkinson,165B. Auerbach,6E. Auge,115K. Augsten,126M. Aurousseau,145a

G. Avolio,30D. Axen,168G. Azuelos,93,gY. Azuma,155M. A. Baak,30G. Baccaglioni,89aC. Bacci,134a,134b A. M. Bach,15H. Bachacou,136K. Bachas,154M. Backes,49M. Backhaus,21J. Backus Mayes,143E. Badescu,26a P. Bagnaia,132a,132bY. Bai,33aD. C. Bailey,158T. Bain,35J. T. Baines,129O. K. Baker,176S. Baker,77P. Balek,127 F. Balli,136E. Banas,39P. Banerjee,93Sw. Banerjee,173D. Banfi,30A. Bangert,150V. Bansal,169H. S. Bansil,18

L. Barak,172S. P. Baranov,94T. Barber,48E. L. Barberio,86D. Barberis,50a,50bM. Barbero,83D. Y. Bardin,64 T. Barillari,99M. Barisonzi,175T. Barklow,143N. Barlow,28B. M. Barnett,129R. M. Barnett,15A. Baroncelli,134a

G. Barone,49A. J. Barr,118F. Barreiro,80J. Barreiro Guimara˜es da Costa,57R. Bartoldus,143A. E. Barton,71 V. Bartsch,149A. Basye,165R. L. Bates,53L. Batkova,144aJ. R. Batley,28A. Battaglia,17M. Battistin,30F. Bauer,136

H. S. Bawa,143,hS. Beale,98T. Beau,78P. H. Beauchemin,161R. Beccherle,50aP. Bechtle,21H. P. Beck,17 K. Becker,175S. Becker,98M. Beckingham,138K. H. Becks,175A. J. Beddall,19cA. Beddall,19cS. Bedikian,176

V. A. Bednyakov,64C. P. Bee,83L. J. Beemster,105T. A. Beermann,175M. Begel,25S. Behar Harpaz,152 C. Belanger-Champagne,85P. J. Bell,49W. H. Bell,49G. Bella,153L. Bellagamba,20aM. Bellomo,30A. Belloni,57

O. Beloborodova,107,iK. Belotskiy,96O. Beltramello,30O. Benary,153D. Benchekroun,135aK. Bendtz,146a,146b N. Benekos,165Y. Benhammou,153E. Benhar Noccioli,49J. A. Benitez Garcia,159bD. P. Benjamin,45M. Benoit,115

J. R. Bensinger,23K. Benslama,130S. Bentvelsen,105D. Berge,30E. Bergeaas Kuutmann,42N. Berger,5 F. Berghaus,169E. Berglund,105J. Beringer,15P. Bernat,77R. Bernhard,48C. Bernius,25F. U. Bernlochner,169 T. Berry,76C. Bertella,83A. Bertin,20a,20bF. Bertolucci,122a,122bM. I. Besana,89a,89bG. J. Besjes,104N. Besson,136

S. Bethke,99W. Bhimji,46R. M. Bianchi,30L. Bianchini,23M. Bianco,72a,72bO. Biebel,98S. P. Bieniek,77 K. Bierwagen,54J. Biesiada,15M. Biglietti,134aH. Bilokon,47M. Bindi,20a,20bS. Binet,115A. Bingul,19c

C. Bini,132a,132bC. Biscarat,178B. Bittner,99C. W. Black,150J. E. Black,143K. M. Black,22R. E. Blair,6 J.-B. Blanchard,136T. Blazek,144aI. Bloch,42C. Blocker,23J. Blocki,39W. Blum,81U. Blumenschein,54 G. J. Bobbink,105V. S. Bobrovnikov,107S. S. Bocchetta,79A. Bocci,45C. R. Boddy,118M. Boehler,48J. Boek,175

T. T. Boek,175N. Boelaert,36J. A. Bogaerts,30A. Bogdanchikov,107A. Bogouch,90,aC. Bohm,146aJ. Bohm,125 V. Boisvert,76T. Bold,38V. Boldea,26aN. M. Bolnet,136M. Bomben,78M. Bona,75M. Boonekamp,136S. Bordoni,78

C. Borer,17A. Borisov,128G. Borissov,71I. Borjanovic,13aM. Borri,82S. Borroni,42J. Bortfeldt,98 V. Bortolotto,134a,134bK. Bos,105D. Boscherini,20aM. Bosman,12H. Boterenbrood,105J. Bouchami,93 J. Boudreau,123E. V. Bouhova-Thacker,71D. Boumediene,34C. Bourdarios,115N. Bousson,83S. Boutouil,135d

A. Boveia,31J. Boyd,30I. R. Boyko,64I. Bozovic-Jelisavcic,13bJ. Bracinik,18P. Branchini,134aA. Brandt,8 G. Brandt,118O. Brandt,54U. Bratzler,156B. Brau,84J. E. Brau,114H. M. Braun,175,aS. F. Brazzale,164a,164c B. Brelier,158J. Bremer,30K. Brendlinger,120R. Brenner,166S. Bressler,172T. M. Bristow,145bD. Britton,53 F. M. Brochu,28I. Brock,21R. Brock,88F. Broggi,89aC. Bromberg,88J. Bronner,99G. Brooijmans,35T. Brooks,76

W. K. Brooks,32bG. Brown,82P. A. Bruckman de Renstrom,39D. Bruncko,144bR. Bruneliere,48S. Brunet,60 A. Bruni,20aG. Bruni,20aM. Bruschi,20aL. Bryngemark,79T. Buanes,14Q. Buat,55F. Bucci,49J. Buchanan,118 P. Buchholz,141R. M. Buckingham,118A. G. Buckley,46S. I. Buda,26aI. A. Budagov,64B. Budick,108L. Bugge,117

O. Bulekov,96A. C. Bundock,73M. Bunse,43T. Buran,117H. Burckhart,30S. Burdin,73T. Burgess,14S. Burke,129 E. Busato,34V. Bu¨scher,81P. Bussey,53C. P. Buszello,166B. Butler,143J. M. Butler,22C. M. Buttar,53 J. M. Butterworth,77W. Buttinger,28M. Byszewski,30S. Cabrera Urba´n,167D. Caforio,20a,20bO. Cakir,4a

(7)

P. Calafiura,15G. Calderini,78P. Calfayan,98R. Calkins,106L. P. Caloba,24aR. Caloi,132a,132bD. Calvet,34S. Calvet,34 R. Camacho Toro,34P. Camarri,133a,133bD. Cameron,117L. M. Caminada,15R. Caminal Armadans,12S. Campana,30

M. Campanelli,77V. Canale,102a,102bF. Canelli,31A. Canepa,159aJ. Cantero,80R. Cantrill,76T. Cao,40 M. D. M. Capeans Garrido,30I. Caprini,26aM. Caprini,26aD. Capriotti,99M. Capua,37a,37bR. Caputo,81

R. Cardarelli,133aT. Carli,30G. Carlino,102aL. Carminati,89a,89bS. Caron,104E. Carquin,32b G. D. Carrillo-Montoya,145bA. A. Carter,75J. R. Carter,28J. Carvalho,124a,jD. Casadei,108M. P. Casado,12

M. Cascella,122a,122bC. Caso,50a,50b,aE. Castaneda-Miranda,173V. Castillo Gimenez,167N. F. Castro,124a G. Cataldi,72aP. Catastini,57A. Catinaccio,30J. R. Catmore,30A. Cattai,30G. Cattani,133a,133bS. Caughron,88

V. Cavaliere,165P. Cavalleri,78D. Cavalli,89aM. Cavalli-Sforza,12V. Cavasinni,122a,122bF. Ceradini,134a,134b A. S. Cerqueira,24bA. Cerri,15L. Cerrito,75F. Cerutti,15S. A. Cetin,19bA. Chafaq,135aD. Chakraborty,106 I. Chalupkova,127K. Chan,3P. Chang,165B. Chapleau,85J. D. Chapman,28J. W. Chapman,87D. G. Charlton,18

V. Chavda,82C. A. Chavez Barajas,30S. Cheatham,85S. Chekanov,6S. V. Chekulaev,159aG. A. Chelkov,64 M. A. Chelstowska,104C. Chen,63H. Chen,25S. Chen,33cX. Chen,173Y. Chen,35Y. Cheng,31A. Cheplakov,64 R. Cherkaoui El Moursli,135eV. Chernyatin,25E. Cheu,7S. L. Cheung,158L. Chevalier,136G. Chiefari,102a,102b L. Chikovani,51a,aJ. T. Childers,30A. Chilingarov,71G. Chiodini,72aA. S. Chisholm,18R. T. Chislett,77A. Chitan,26a

M. V. Chizhov,64G. Choudalakis,31S. Chouridou,9B. K. B. Chow,98I. A. Christidi,77A. Christov,48 D. Chromek-Burckhart,30M. L. Chu,151J. Chudoba,125G. Ciapetti,132a,132bA. K. Ciftci,4aR. Ciftci,4aD. Cinca,62 V. Cindro,74A. Ciocio,15M. Cirilli,87P. Cirkovic,13bZ. H. Citron,172M. Citterio,89aM. Ciubancan,26aA. Clark,49

P. J. Clark,46R. N. Clarke,15W. Cleland,123J. C. Clemens,83B. Clement,55C. Clement,146a,146bY. Coadou,83 M. Cobal,164a,164cA. Coccaro,138J. Cochran,63L. Coffey,23J. G. Cogan,143J. Coggeshall,165J. Colas,5B. Cole,35

S. Cole,106A. P. Colijn,105N. J. Collins,18C. Collins-Tooth,53J. Collot,55T. Colombo,119a,119bG. Colon,84 G. Compostella,99P. Conde Muin˜o,124aE. Coniavitis,166M. C. Conidi,12S. M. Consonni,89a,89bV. Consorti,48

S. Constantinescu,26aC. Conta,119a,119bG. Conti,57F. Conventi,102a,kM. Cooke,15B. D. Cooper,77 A. M. Cooper-Sarkar,118K. Copic,15T. Cornelissen,175M. Corradi,20aF. Corriveau,85,lA. Cortes-Gonzalez,165 G. Cortiana,99G. Costa,89aM. J. Costa,167D. Costanzo,139D. Coˆte´,30G. Cottin,32aL. Courneyea,169G. Cowan,76

B. E. Cox,82K. Cranmer,108S. Cre´pe´-Renaudin,55F. Crescioli,78M. Cristinziani,21G. Crosetti,37a,37b C.-M. Cuciuc,26aC. Cuenca Almenar,176T. Cuhadar Donszelmann,139J. Cummings,176M. Curatolo,47C. J. Curtis,18

C. Cuthbert,150P. Cwetanski,60H. Czirr,141P. Czodrowski,44Z. Czyczula,176S. D’Auria,53M. D’Onofrio,73 A. D’Orazio,132a,132bM. J. Da Cunha Sargedas De Sousa,124aC. Da Via,82W. Dabrowski,38A. Dafinca,118T. Dai,87

F. Dallaire,93C. Dallapiccola,84M. Dam,36D. S. Damiani,137H. O. Danielsson,30V. Dao,104G. Darbo,50a G. L. Darlea,26bJ. A. Dassoulas,42W. Davey,21T. Davidek,127N. Davidson,86R. Davidson,71E. Davies,118,e

M. Davies,93O. Davignon,78A. R. Davison,77Y. Davygora,58aE. Dawe,142I. Dawson,139

R. K. Daya-Ishmukhametova,23K. De,8R. de Asmundis,102aS. De Castro,20a,20bS. De Cecco,78J. de Graat,98 N. De Groot,104P. de Jong,105C. De La Taille,115H. De la Torre,80F. De Lorenzi,63L. De Nooij,105D. De Pedis,132a

A. De Salvo,132aU. De Sanctis,164a,164cA. De Santo,149J. B. De Vivie De Regie,115G. De Zorzi,132a,132b W. J. Dearnaley,71R. Debbe,25C. Debenedetti,46B. Dechenaux,55D. V. Dedovich,64J. Degenhardt,120J. Del Peso,80

T. Del Prete,122a,122bT. Delemontex,55M. Deliyergiyev,74A. Dell’Acqua,30L. Dell’Asta,22M. Della Pietra,102a,k D. della Volpe,102a,102bM. Delmastro,5P. A. Delsart,55C. Deluca,105S. Demers,176M. Demichev,64 B. Demirkoz,12,mS. P. Denisov,128D. Derendarz,39J. E. Derkaoui,135dF. Derue,78P. Dervan,73K. Desch,21 P. O. Deviveiros,105A. Dewhurst,129B. DeWilde,148S. Dhaliwal,158R. Dhullipudi,25,nA. Di Ciaccio,133a,133b L. Di Ciaccio,5C. Di Donato,102a,102bA. Di Girolamo,30B. Di Girolamo,30S. Di Luise,134a,134bA. Di Mattia,152 B. Di Micco,30R. Di Nardo,47A. Di Simone,133a,133bR. Di Sipio,20a,20bM. A. Diaz,32aE. B. Diehl,87J. Dietrich,42

T. A. Dietzsch,58aS. Diglio,86K. Dindar Yagci,40J. Dingfelder,21F. Dinut,26aC. Dionisi,132a,132bP. Dita,26a S. Dita,26aF. Dittus,30F. Djama,83T. Djobava,51bM. A. B. do Vale,24cA. Do Valle Wemans,124a,oT. K. O. Doan,5 M. Dobbs,85D. Dobos,30E. Dobson,77J. Dodd,35C. Doglioni,49T. Doherty,53T. Dohmae,155Y. Doi,65,aJ. Dolejsi,127

Z. Dolezal,127B. A. Dolgoshein,96,aM. Donadelli,24dJ. Donini,34J. Dopke,30A. Doria,102aA. Dos Anjos,173 A. Dotti,122a,122bM. T. Dova,70A. T. Doyle,53N. Dressnandt,120M. Dris,10J. Dubbert,99S. Dube,15E. Dubreuil,34

E. Duchovni,172G. Duckeck,98D. Duda,175A. Dudarev,30F. Dudziak,63I. P. Duerdoth,82L. Duflot,115 M-A. Dufour,85L. Duguid,76M. Du¨hrssen,30M. Dunford,58aH. Duran Yildiz,4aM. Du¨ren,52R. Duxfield,139

M. Dwuznik,38W. L. Ebenstein,45J. Ebke,98S. Eckweiler,81W. Edson,2C. A. Edwards,76N. C. Edwards,53 W. Ehrenfeld,21T. Eifert,143G. Eigen,14K. Einsweiler,15E. Eisenhandler,75T. Ekelof,166M. El Kacimi,135c

(8)

M. Ellert,166S. Elles,5F. Ellinghaus,81K. Ellis,75N. Ellis,30J. Elmsheuser,98M. Elsing,30D. Emeliyanov,129 R. Engelmann,148A. Engl,98B. Epp,61J. Erdmann,176A. Ereditato,17D. Eriksson,146aJ. Ernst,2M. Ernst,25 J. Ernwein,136D. Errede,165S. Errede,165E. Ertel,81M. Escalier,115H. Esch,43C. Escobar,123X. Espinal Curull,12 B. Esposito,47F. Etienne,83A. I. Etienvre,136E. Etzion,153D. Evangelakou,54H. Evans,60L. Fabbri,20a,20bC. Fabre,30

G. J. Facini,30R. M. Fakhrutdinov,128S. Falciano,132aY. Fang,33aM. Fanti,89a,89bA. Farbin,8A. Farilla,134a J. Farley,148T. Farooque,158S. Farrell,163S. M. Farrington,170P. Farthouat,30F. Fassi,167P. Fassnacht,30 D. Fassouliotis,9B. Fatholahzadeh,158A. Favareto,89a,89bL. Fayard,115P. Federic,144aO. L. Fedin,121W. Fedorko,168

M. Fehling-Kaschek,48L. Feligioni,83C. Feng,33dE. J. Feng,6A. B. Fenyuk,128J. Ferencei,144bW. Fernando,6 S. Ferrag,53J. Ferrando,53V. Ferrara,42A. Ferrari,166P. Ferrari,105R. Ferrari,119aD. E. Ferreira de Lima,53 A. Ferrer,167D. Ferrere,49C. Ferretti,87A. Ferretto Parodi,50a,50bM. Fiascaris,31F. Fiedler,81A. Filipcˇicˇ,74 F. Filthaut,104M. Fincke-Keeler,169M. C. N. Fiolhais,124a,jL. Fiorini,167A. Firan,40J. Fischer,175M. J. Fisher,109 E. A. Fitzgerald,23M. Flechl,48I. Fleck,141P. Fleischmann,174S. Fleischmann,175G. T. Fletcher,139G. Fletcher,75 T. Flick,175A. Floderus,79L. R. Flores Castillo,173A. C. Florez Bustos,159bM. J. Flowerdew,99T. Fonseca Martin,17 A. Formica,136A. Forti,82D. Fortin,159aD. Fournier,115A. J. Fowler,45H. Fox,71P. Francavilla,12M. Franchini,20a,20b

S. Franchino,30D. Francis,30T. Frank,172M. Franklin,57S. Franz,30M. Fraternali,119a,119bS. Fratina,120 S. T. French,28C. Friedrich,42F. Friedrich,44D. Froidevaux,30J. A. Frost,28C. Fukunaga,156

E. Fullana Torregrosa,127B. G. Fulsom,143J. Fuster,167C. Gabaldon,30O. Gabizon,172S. Gadatsch,105T. Gadfort,25 S. Gadomski,49G. Gagliardi,50a,50bP. Gagnon,60C. Galea,98B. Galhardo,124aE. J. Gallas,118V. Gallo,17 B. J. Gallop,129P. Gallus,126K. K. Gan,109R. P. Gandrajula,62Y. S. Gao,143,hA. Gaponenko,15F. M. Garay Walls,46

F. Garberson,176C. Garcı´a,167J. E. Garcı´a Navarro,167M. Garcia-Sciveres,15R. W. Gardner,31N. Garelli,143 V. Garonne,30C. Gatti,47G. Gaudio,119aB. Gaur,141L. Gauthier,93P. Gauzzi,132a,132bI. L. Gavrilenko,94C. Gay,168

G. Gaycken,21E. N. Gazis,10P. Ge,33dZ. Gecse,168C. N. P. Gee,129D. A. A. Geerts,105Ch. Geich-Gimbel,21 K. Gellerstedt,146a,146bC. Gemme,50aA. Gemmell,53M. H. Genest,55S. Gentile,132a,132bM. George,54S. George,76

D. Gerbaudo,12P. Gerlach,175A. Gershon,153C. Geweniger,58aH. Ghazlane,135bN. Ghodbane,34B. Giacobbe,20a S. Giagu,132a,132bV. Giangiobbe,12F. Gianotti,30B. Gibbard,25A. Gibson,158S. M. Gibson,30M. Gilchriese,15 T. P. S. Gillam,28D. Gillberg,30A. R. Gillman,129D. M. Gingrich,3,gJ. Ginzburg,153N. Giokaris,9M. P. Giordani,164c R. Giordano,102a,102bF. M. Giorgi,16P. Giovannini,99P. F. Giraud,136D. Giugni,89aM. Giunta,93B. K. Gjelsten,117

L. K. Gladilin,97C. Glasman,80J. Glatzer,21A. Glazov,42G. L. Glonti,64J. R. Goddard,75J. Godfrey,142 J. Godlewski,30M. Goebel,42C. Goeringer,81S. Goldfarb,87T. Golling,176D. Golubkov,128A. Gomes,124a,d

L. S. Gomez Fajardo,42R. Gonc¸alo,76J. Goncalves Pinto Firmino Da Costa,42L. Gonella,21

S. Gonza´lez de la Hoz,167G. Gonzalez Parra,12M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49J. J. Goodson,148 L. Goossens,30T. Go¨pfert,44P. A. Gorbounov,95H. A. Gordon,25I. Gorelov,103G. Gorfine,175B. Gorini,30 E. Gorini,72a,72bA. Gorisˇek,74E. Gornicki,39A. T. Goshaw,6C. Go¨ssling,43M. I. Gostkin,64I. Gough Eschrich,163

M. Gouighri,135aD. Goujdami,135cM. P. Goulette,49A. G. Goussiou,138C. Goy,5S. Gozpinar,23 I. Grabowska-Bold,38P. Grafstro¨m,20a,20bK-J. Grahn,42E. Gramstad,117F. Grancagnolo,72aS. Grancagnolo,16 V. Grassi,148V. Gratchev,121H. M. Gray,30J. A. Gray,148E. Graziani,134aO. G. Grebenyuk,121T. Greenshaw,73 Z. D. Greenwood,25,nK. Gregersen,36I. M. Gregor,42P. Grenier,143J. Griffiths,8N. Grigalashvili,64A. A. Grillo,137

K. Grimm,71S. Grinstein,12Ph. Gris,34Y. V. Grishkevich,97J.-F. Grivaz,115J. P. Grohs,44A. Grohsjean,42 E. Gross,172J. Grosse-Knetter,54J. Groth-Jensen,172K. Grybel,141D. Guest,176O. Gueta,153C. Guicheney,34

E. Guido,50a,50bT. Guillemin,115S. Guindon,54U. Gul,53J. Gunther,125B. Guo,158J. Guo,35P. Gutierrez,111 N. Guttman,153O. Gutzwiller,173C. Guyot,136C. Gwenlan,118C. B. Gwilliam,73A. Haas,108S. Haas,30C. Haber,15

H. K. Hadavand,8D. R. Hadley,18P. Haefner,21Z. Hajduk,39H. Hakobyan,177D. Hall,118G. Halladjian,62 K. Hamacher,175P. Hamal,113K. Hamano,86M. Hamer,54A. Hamilton,145b,pS. Hamilton,161L. Han,33b K. Hanagaki,116K. Hanawa,160M. Hance,15C. Handel,81P. Hanke,58aJ. R. Hansen,36J. B. Hansen,36J. D. Hansen,36

P. H. Hansen,36P. Hansson,143K. Hara,160T. Harenberg,175S. Harkusha,90D. Harper,87R. D. Harrington,46 O. M. Harris,138J. Hartert,48F. Hartjes,105T. Haruyama,65A. Harvey,56S. Hasegawa,101Y. Hasegawa,140 S. Hassani,136S. Haug,17M. Hauschild,30R. Hauser,88M. Havranek,21C. M. Hawkes,18R. J. Hawkings,30 A. D. Hawkins,79T. Hayakawa,66T. Hayashi,160D. Hayden,76C. P. Hays,118H. S. Hayward,73S. J. Haywood,129

S. J. Head,18T. Heck,81V. Hedberg,79L. Heelan,8S. Heim,120B. Heinemann,15S. Heisterkamp,36L. Helary,22 C. Heller,98M. Heller,30S. Hellman,146a,146bD. Hellmich,21C. Helsens,12R. C. W. Henderson,71M. Henke,58a

(9)

Y. Herna´ndez Jime´nez,167R. Herrberg,16G. Herten,48R. Hertenberger,98L. Hervas,30G. G. Hesketh,77 N. P. Hessey,105R. Hickling,75E. Higo´n-Rodriguez,167J. C. Hill,28K. H. Hiller,42S. Hillert,21S. J. Hillier,18

I. Hinchliffe,15E. Hines,120M. Hirose,116F. Hirsch,43D. Hirschbuehl,175J. Hobbs,148N. Hod,153 M. C. Hodgkinson,139P. Hodgson,139A. Hoecker,30M. R. Hoeferkamp,103J. Hoffman,40D. Hoffmann,83 M. Hohlfeld,81S. O. Holmgren,146aT. Holy,126J. L. Holzbauer,88T. M. Hong,120L. Hooft van Huysduynen,108

J-Y. Hostachy,55S. Hou,151A. Hoummada,135aJ. Howard,118J. Howarth,82M. Hrabovsky,113I. Hristova,16 J. Hrivnac,115T. Hryn’ova,5P. J. Hsu,81S.-C. Hsu,138D. Hu,35Z. Hubacek,30F. Hubaut,83F. Huegging,21 A. Huettmann,42T. B. Huffman,118E. W. Hughes,35G. Hughes,71M. Huhtinen,30T. A. Hu¨lsing,81M. Hurwitz,15

N. Huseynov,64,qJ. Huston,88J. Huth,57G. Iacobucci,49G. Iakovidis,10M. Ibbotson,82I. Ibragimov,141 L. Iconomidou-Fayard,115J. Idarraga,115P. Iengo,102aO. Igonkina,105Y. Ikegami,65K. Ikematsu,141M. Ikeno,65 D. Iliadis,154N. Ilic,158T. Ince,99P. Ioannou,9M. Iodice,134aK. Iordanidou,9V. Ippolito,132a,132bA. Irles Quiles,167

C. Isaksson,166M. Ishino,67M. Ishitsuka,157R. Ishmukhametov,109C. Issever,118S. Istin,19aA. V. Ivashin,128 W. Iwanski,39H. Iwasaki,65J. M. Izen,41V. Izzo,102aB. Jackson,120J. N. Jackson,73P. Jackson,1M. R. Jaekel,30

V. Jain,2K. Jakobs,48S. Jakobsen,36T. Jakoubek,125J. Jakubek,126D. O. Jamin,151D. K. Jana,111E. Jansen,77 H. Jansen,30J. Janssen,21A. Jantsch,99M. Janus,48R. C. Jared,173G. Jarlskog,79L. Jeanty,57G.-Y. Jeng,150 I. Jen-La Plante,31D. Jennens,86P. Jenni,30P. Jezˇ,36S. Je´ze´quel,5M. K. Jha,20aH. Ji,173W. Ji,81J. Jia,148Y. Jiang,33b

M. Jimenez Belenguer,42S. Jin,33aO. Jinnouchi,157M. D. Joergensen,36D. Joffe,40M. Johansen,146a,146b K. E. Johansson,146aP. Johansson,139S. Johnert,42K. A. Johns,7K. Jon-And,146a,146bG. Jones,170R. W. L. Jones,71

T. J. Jones,73C. Joram,30P. M. Jorge,124aK. D. Joshi,82J. Jovicevic,147T. Jovin,13bX. Ju,173C. A. Jung,43 R. M. Jungst,30V. Juranek,125P. Jussel,61A. Juste Rozas,12S. Kabana,17M. Kaci,167A. Kaczmarska,39P. Kadlecik,36

M. Kado,115H. Kagan,109M. Kagan,57E. Kajomovitz,152S. Kalinin,175S. Kama,40N. Kanaya,155M. Kaneda,30 S. Kaneti,28T. Kanno,157V. A. Kantserov,96J. Kanzaki,65B. Kaplan,108A. Kapliy,31D. Kar,53M. Karagounis,21

K. Karakostas,10M. Karnevskiy,81V. Kartvelishvili,71A. N. Karyukhin,128L. Kashif,173G. Kasieczka,58b R. D. Kass,109A. Kastanas,14Y. Kataoka,155J. Katzy,42V. Kaushik,7K. Kawagoe,69T. Kawamoto,155 G. Kawamura,81S. Kazama,155V. F. Kazanin,107M. Y. Kazarinov,64R. Keeler,169P. T. Keener,120R. Kehoe,40

M. Keil,54J. S. Keller,138M. Kenyon,53H. Keoshkerian,5O. Kepka,125N. Kerschen,30B. P. Kersˇevan,74 S. Kersten,175K. Kessoku,155J. Keung,158F. Khalil-zada,11H. Khandanyan,146a,146bA. Khanov,112 D. Kharchenko,64A. Khodinov,96A. Khomich,58aT. J. Khoo,28G. Khoriauli,21A. Khoroshilov,175V. Khovanskiy,95

E. Khramov,64J. Khubua,51bH. Kim,146a,146bS. H. Kim,160N. Kimura,171O. Kind,16B. T. King,73M. King,66 R. S. B. King,118J. Kirk,129A. E. Kiryunin,99T. Kishimoto,66D. Kisielewska,38T. Kitamura,66T. Kittelmann,123 K. Kiuchi,160E. Kladiva,144bM. Klein,73U. Klein,73K. Kleinknecht,81M. Klemetti,85A. Klier,172P. Klimek,146a,146b A. Klimentov,25R. Klingenberg,43J. A. Klinger,82E. B. Klinkby,36T. Klioutchnikova,30P. F. Klok,104S. Klous,105 E.-E. Kluge,58aT. Kluge,73P. Kluit,105S. Kluth,99E. Kneringer,61E. B. F. G. Knoops,83A. Knue,54B. R. Ko,45 T. Kobayashi,155M. Kobel,44M. Kocian,143P. Kodys,127S. Koenig,81F. Koetsveld,104P. Koevesarki,21T. Koffas,29 E. Koffeman,105L. A. Kogan,118S. Kohlmann,175F. Kohn,54Z. Kohout,126T. Kohriki,65T. Koi,143H. Kolanoski,16 V. Kolesnikov,64I. Koletsou,89aJ. Koll,88A. A. Komar,94Y. Komori,155T. Kondo,65K. Ko¨neke,30A. C. Ko¨nig,104 T. Kono,42,rA. I. Kononov,48R. Konoplich,108,sN. Konstantinidis,77R. Kopeliansky,152S. Koperny,38L. Ko¨pke,81

A. K. Kopp,48K. Korcyl,39K. Kordas,154A. Korn,46A. Korol,107I. Korolkov,12E. V. Korolkova,139 V. A. Korotkov,128O. Kortner,99S. Kortner,99V. V. Kostyukhin,21S. Kotov,99V. M. Kotov,64A. Kotwal,45 C. Kourkoumelis,9V. Kouskoura,154A. Koutsman,159aR. Kowalewski,169T. Z. Kowalski,38W. Kozanecki,136

A. S. Kozhin,128V. Kral,126V. A. Kramarenko,97G. Kramberger,74M. W. Krasny,78A. Krasznahorkay,108 J. K. Kraus,21A. Kravchenko,25S. Kreiss,108F. Krejci,126J. Kretzschmar,73K. Kreutzfeldt,52N. Krieger,54 P. Krieger,158K. Kroeninger,54H. Kroha,99J. Kroll,120J. Kroseberg,21J. Krstic,13aU. Kruchonak,64H. Kru¨ger,21 T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64M. K. Kruse,45T. Kubota,86S. Kuday,4aS. Kuehn,48A. Kugel,58c

T. Kuhl,42V. Kukhtin,64Y. Kulchitsky,90S. Kuleshov,32bM. Kuna,78J. Kunkle,120A. Kupco,125H. Kurashige,66 M. Kurata,160Y. A. Kurochkin,90V. Kus,125E. S. Kuwertz,147M. Kuze,157J. Kvita,142R. Kwee,16A. La Rosa,49

L. La Rotonda,37a,37bL. Labarga,80S. Lablak,135aC. Lacasta,167F. Lacava,132a,132bJ. Lacey,29H. Lacker,16 D. Lacour,78V. R. Lacuesta,167E. Ladygin,64R. Lafaye,5B. Laforge,78T. Lagouri,176S. Lai,48E. Laisne,55 L. Lambourne,77C. L. Lampen,7W. Lampl,7E. Lancon,136U. Landgraf,48M. P. J. Landon,75V. S. Lang,58a C. Lange,42A. J. Lankford,163F. Lanni,25K. Lantzsch,30A. Lanza,119aS. Laplace,78C. Lapoire,21J. F. Laporte,136 T. Lari,89aA. Larner,118M. Lassnig,30P. Laurelli,47V. Lavorini,37a,37bW. Lavrijsen,15P. Laycock,73O. Le Dortz,78

(10)

E. Le Guirriec,83E. Le Menedeu,12T. LeCompte,6F. Ledroit-Guillon,55H. Lee,105J. S. H. Lee,116S. C. Lee,151 L. Lee,176M. Lefebvre,169M. Legendre,136F. Legger,98C. Leggett,15M. Lehmacher,21G. Lehmann Miotto,30 A. G. Leister,176M. A. L. Leite,24dR. Leitner,127D. Lellouch,172B. Lemmer,54V. Lendermann,58aK. J. C. Leney,145b

T. Lenz,105G. Lenzen,175B. Lenzi,30K. Leonhardt,44S. Leontsinis,10F. Lepold,58aC. Leroy,93J-R. Lessard,169 C. G. Lester,28C. M. Lester,120J. Leveˆque,5D. Levin,87L. J. Levinson,172A. Lewis,118G. H. Lewis,108 A. M. Leyko,21M. Leyton,16B. Li,33bB. Li,83H. Li,148H. L. Li,31S. Li,33b,tX. Li,87Z. Liang,118,uH. Liao,34

B. Liberti,133aP. Lichard,30K. Lie,165J. Liebal,21W. Liebig,14C. Limbach,21A. Limosani,86M. Limper,62 S. C. Lin,151,vF. Linde,105J. T. Linnemann,88E. Lipeles,120A. Lipniacka,14M. Lisovyi,42T. M. Liss,165 D. Lissauer,25A. Lister,49A. M. Litke,137D. Liu,151J. B. Liu,33bL. Liu,87M. Liu,33bY. Liu,33bM. Livan,119a,119b

S. S. A. Livermore,118A. Lleres,55J. Llorente Merino,80S. L. Lloyd,75F. Lo Sterzo,132a,132bE. Lobodzinska,42 P. Loch,7W. S. Lockman,137T. Loddenkoetter,21F. K. Loebinger,82A. E. Loevschall-Jensen,36A. Loginov,176

C. W. Loh,168T. Lohse,16K. Lohwasser,48M. Lokajicek,125V. P. Lombardo,5R. E. Long,71L. Lopes,124a D. Lopez Mateos,57J. Lorenz,98N. Lorenzo Martinez,115M. Losada,162P. Loscutoff,15M. J. Losty,159a,aX. Lou,41

A. Lounis,115K. F. Loureiro,162J. Love,6P. A. Love,71A. J. Lowe,143,hF. Lu,33aH. J. Lubatti,138C. Luci,132a,132b A. Lucotte,55D. Ludwig,42I. Ludwig,48J. Ludwig,48F. Luehring,60W. Lukas,61L. Luminari,132aE. Lund,117

B. Lundberg,79J. Lundberg,146a,146bO. Lundberg,146a,146bB. Lund-Jensen,147J. Lundquist,36M. Lungwitz,81 D. Lynn,25R. Lysak,125E. Lytken,79H. Ma,25L. L. Ma,173G. Maccarrone,47A. Macchiolo,99B. Macˇek,74

J. Machado Miguens,124aD. Macina,30R. Mackeprang,36R. Madar,48R. J. Madaras,15H. J. Maddocks,71 W. F. Mader,44A. Madsen,166M. Maeno,5T. Maeno,25L. Magnoni,163E. Magradze,54K. Mahboubi,48 J. Mahlstedt,105S. Mahmoud,73G. Mahout,18C. Maiani,136C. Maidantchik,24aA. Maio,124a,dS. Majewski,25 Y. Makida,65N. Makovec,115P. Mal,136B. Malaescu,78Pa. Malecki,39P. Malecki,39V. P. Maleev,121F. Malek,55 U. Mallik,62D. Malon,6C. Malone,143S. Maltezos,10V. Malyshev,107S. Malyukov,30J. Mamuzic,13bA. Manabe,65

L. Mandelli,89aI. Mandic´,74R. Mandrysch,62J. Maneira,124aA. Manfredini,99L. Manhaes de Andrade Filho,24b J. A. Manjarres Ramos,136A. Mann,98P. M. Manning,137A. Manousakis-Katsikakis,9B. Mansoulie,136 R. Mantifel,85A. Mapelli,30L. Mapelli,30L. March,167J. F. Marchand,29F. Marchese,133a,133bG. Marchiori,78 M. Marcisovsky,125C. P. Marino,169F. Marroquim,24aZ. Marshall,30L. F. Marti,17S. Marti-Garcia,167B. Martin,30

B. Martin,88J. P. Martin,93T. A. Martin,18V. J. Martin,46B. Martin dit Latour,49H. Martinez,136M. Martinez,12 V. Martinez Outschoorn,57S. Martin-Haugh,149A. C. Martyniuk,169M. Marx,82F. Marzano,132aA. Marzin,111

L. Masetti,81T. Mashimo,155R. Mashinistov,94J. Masik,82A. L. Maslennikov,107I. Massa,20a,20bN. Massol,5 P. Mastrandrea,148A. Mastroberardino,37a,37bT. Masubuchi,155H. Matsunaga,155T. Matsushita,66P. Ma¨ttig,175

S. Ma¨ttig,42C. Mattravers,118,eJ. Maurer,83S. J. Maxfield,73D. A. Maximov,107,iR. Mazini,151M. Mazur,21 L. Mazzaferro,133a,133bM. Mazzanti,89aJ. Mc Donald,85S. P. Mc Kee,87A. McCarn,165R. L. McCarthy,148 T. G. McCarthy,29N. A. McCubbin,129K. W. McFarlane,56,aJ. A. Mcfayden,139G. Mchedlidze,51bT. Mclaughlan,18 S. J. McMahon,129R. A. McPherson,169,lA. Meade,84J. Mechnich,105M. Mechtel,175M. Medinnis,42S. Meehan,31

R. Meera-Lebbai,111T. Meguro,116S. Mehlhase,36A. Mehta,73K. Meier,58aC. Meineck,98B. Meirose,79 C. Melachrinos,31B. R. Mellado Garcia,173F. Meloni,89a,89bL. Mendoza Navas,162Z. Meng,151,w A. Mengarelli,20a,20bS. Menke,99E. Meoni,161K. M. Mercurio,57N. Meric,78P. Mermod,49L. Merola,102a,102b C. Meroni,89aF. S. Merritt,31H. Merritt,109A. Messina,30,xJ. Metcalfe,25A. S. Mete,163C. Meyer,81C. Meyer,31

J-P. Meyer,136J. Meyer,30J. Meyer,54S. Michal,30L. Micu,26aR. P. Middleton,129S. Migas,73L. Mijovic´,136 G. Mikenberg,172M. Mikestikova,125M. Mikuzˇ,74D. W. Miller,31R. J. Miller,88W. J. Mills,168C. Mills,57

A. Milov,172D. A. Milstead,146a,146bD. Milstein,172G. Milutinovic-Dumbelovic,13aA. A. Minaenko,128 M. Min˜ano Moya,167I. A. Minashvili,64A. I. Mincer,108B. Mindur,38M. Mineev,64Y. Ming,173L. M. Mir,12 G. Mirabelli,132aJ. Mitrevski,137V. A. Mitsou,167S. Mitsui,65P. S. Miyagawa,139J. U. Mjo¨rnmark,79T. Moa,146a,146b V. Moeller,28S. Mohapatra,148W. Mohr,48R. Moles-Valls,167A. Molfetas,30K. Mo¨nig,42J. Monk,36E. Monnier,83

J. Montejo Berlingen,12F. Monticelli,70S. Monzani,20a,20bR. W. Moore,3C. Mora Herrera,49A. Moraes,53 N. Morange,62J. Morel,54D. Moreno,81M. Moreno Lla´cer,167P. Morettini,50aM. Morgenstern,44M. Morii,57 A. K. Morley,30G. Mornacchi,30J. D. Morris,75L. Morvaj,101N. Mo¨ser,21H. G. Moser,99M. Mosidze,51bJ. Moss,109

R. Mount,143E. Mountricha,10,yS. V. Mouraviev,94,aE. J. W. Moyse,84F. Mueller,58aJ. Mueller,123K. Mueller,21 T. Mueller,81D. Muenstermann,30T. A. Mu¨ller,98Y. Munwes,153W. J. Murray,129I. Mussche,105E. Musto,152 A. G. Myagkov,128M. Myska,125O. Nackenhorst,54J. Nadal,12K. Nagai,160R. Nagai,157Y. Nagai,83K. Nagano,65

(11)

I. Nakano,110H. Namasivayam,41G. Nanava,21A. Napier,161R. Narayan,58bM. Nash,77,eT. Nattermann,21 T. Naumann,42G. Navarro,162H. A. Neal,87P. Yu. Nechaeva,94T. J. Neep,82A. Negri,119a,119bG. Negri,30

M. Negrini,20aS. Nektarijevic,49A. Nelson,163T. K. Nelson,143S. Nemecek,125P. Nemethy,108

A. A. Nepomuceno,24aM. Nessi,30,zM. S. Neubauer,165M. Neumann,175A. Neusiedl,81R. M. Neves,108P. Nevski,25 F. M. Newcomer,120P. R. Newman,18D. H. Nguyen,6V. Nguyen Thi Hong,136R. B. Nickerson,118R. Nicolaidou,136

B. Nicquevert,30F. Niedercorn,115J. Nielsen,137N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,128 I. Nikolic-Audit,78K. Nikolics,49K. Nikolopoulos,18H. Nilsen,48P. Nilsson,8Y. Ninomiya,155A. Nisati,132a

R. Nisius,99T. Nobe,157L. Nodulman,6M. Nomachi,116I. Nomidis,154S. Norberg,111M. Nordberg,30 J. Novakova,127M. Nozaki,65L. Nozka,113A.-E. Nuncio-Quiroz,21G. Nunes Hanninger,86T. Nunnemann,98

E. Nurse,77B. J. O’Brien,46D. C. O’Neil,142V. O’Shea,53L. B. Oakes,98F. G. Oakham,29,gH. Oberlack,99 J. Ocariz,78A. Ochi,66M. I. Ochoa,77S. Oda,69S. Odaka,65J. Odier,83H. Ogren,60A. Oh,82S. H. Oh,45C. C. Ohm,30

T. Ohshima,101W. Okamura,116H. Okawa,25Y. Okumura,31T. Okuyama,155A. Olariu,26aA. G. Olchevski,64 S. A. Olivares Pino,46M. Oliveira,124a,jD. Oliveira Damazio,25E. Oliver Garcia,167D. Olivito,120A. Olszewski,39 J. Olszowska,39A. Onofre,124a,aaP. U. E. Onyisi,31,bbC. J. Oram,159aM. J. Oreglia,31Y. Oren,153D. Orestano,134a,134b

N. Orlando,72a,72bC. Oropeza Barrera,53R. S. Orr,158B. Osculati,50a,50bR. Ospanov,120C. Osuna,12 G. Otero y Garzon,27J. P. Ottersbach,105M. Ouchrif,135dE. A. Ouellette,169F. Ould-Saada,117A. Ouraou,136

Q. Ouyang,33aA. Ovcharova,15M. Owen,82S. Owen,139V. E. Ozcan,19aN. Ozturk,8A. Pacheco Pages,12 C. Padilla Aranda,12S. Pagan Griso,15E. Paganis,139C. Pahl,99F. Paige,25P. Pais,84K. Pajchel,117G. Palacino,159b

C. P. Paleari,7S. Palestini,30D. Pallin,34A. Palma,124aJ. D. Palmer,18Y. B. Pan,173E. Panagiotopoulou,10 J. G. Panduro Vazquez,76P. Pani,105N. Panikashvili,87S. Panitkin,25D. Pantea,26aA. Papadelis,146a Th. D. Papadopoulou,10A. Paramonov,6D. Paredes Hernandez,34W. Park,25,ccM. A. Parker,28F. Parodi,50a,50b

J. A. Parsons,35U. Parzefall,48S. Pashapour,54E. Pasqualucci,132aS. Passaggio,50aA. Passeri,134a F. Pastore,134a,134b,aFr. Pastore,76G. Pa´sztor,49,ddS. Pataraia,175N. D. Patel,150J. R. Pater,82S. Patricelli,102a,102b

T. Pauly,30J. Pearce,169M. Pedersen,117S. Pedraza Lopez,167M. I. Pedraza Morales,173S. V. Peleganchuk,107 D. Pelikan,166H. Peng,33bB. Penning,31A. Penson,35J. Penwell,60D. V. Perepelitsa,35T. Perez Cavalcanti,42 E. Perez Codina,159aM. T. Pe´rez Garcı´a-Estan˜,167V. Perez Reale,35L. Perini,89a,89bH. Pernegger,30R. Perrino,72a

P. Perrodo,5V. D. Peshekhonov,64K. Peters,30R. F. Y. Peters,54B. A. Petersen,30J. Petersen,30T. C. Petersen,36 E. Petit,5A. Petridis,146a,146bC. Petridou,154E. Petrolo,132aF. Petrucci,134a,134bD. Petschull,42M. Petteni,142

R. Pezoa,32bA. Phan,86P. W. Phillips,129G. Piacquadio,143A. Picazio,49E. Piccaro,75M. Piccinini,20a,20b S. M. Piec,42R. Piegaia,27D. T. Pignotti,109J. E. Pilcher,31A. D. Pilkington,82J. Pina,124a,dM. Pinamonti,164a,164c,ee A. Pinder,118J. L. Pinfold,3A. Pingel,36B. Pinto,124aC. Pizio,89a,89bM.-A. Pleier,25V. Pleskot,127E. Plotnikova,64 P. Plucinski,146a,146bA. Poblaguev,25S. Poddar,58aF. Podlyski,34R. Poettgen,81L. Poggioli,115D. Pohl,21M. Pohl,49 G. Polesello,119aA. Policicchio,37a,37bR. Polifka,158A. Polini,20aJ. Poll,75V. Polychronakos,25D. Pomeroy,23

K. Pomme`s,30L. Pontecorvo,132aB. G. Pope,88G. A. Popeneciu,26aD. S. Popovic,13aA. Poppleton,30 X. Portell Bueso,30G. E. Pospelov,99S. Pospisil,126I. N. Potrap,99C. J. Potter,149C. T. Potter,114G. Poulard,30 J. Poveda,60V. Pozdnyakov,64R. Prabhu,77P. Pralavorio,83A. Pranko,15S. Prasad,30R. Pravahan,25S. Prell,63 K. Pretzl,17D. Price,60J. Price,73L. E. Price,6D. Prieur,123M. Primavera,72aM. Proissl,46K. Prokofiev,108

F. Prokoshin,32bE. Protopapadaki,136S. Protopopescu,25J. Proudfoot,6X. Prudent,44M. Przybycien,38 H. Przysiezniak,5S. Psoroulas,21E. Ptacek,114E. Pueschel,84D. Puldon,148M. Purohit,25,ccP. Puzo,115 Y. Pylypchenko,62J. Qian,87A. Quadt,54D. R. Quarrie,15W. B. Quayle,173M. Raas,104V. Radeka,25V. Radescu,42 P. Radloff,114F. Ragusa,89a,89bG. Rahal,178A. M. Rahimi,109S. Rajagopalan,25M. Rammensee,48M. Rammes,141

A. S. Randle-Conde,40K. Randrianarivony,29C. Rangel-Smith,78K. Rao,163F. Rauscher,98T. C. Rave,48 T. Ravenscroft,53M. Raymond,30A. L. Read,117D. M. Rebuzzi,119a,119bA. Redelbach,174G. Redlinger,25 R. Reece,120K. Reeves,41A. Reinsch,114I. Reisinger,43M. Relich,163C. Rembser,30Z. L. Ren,151A. Renaud,115

M. Rescigno,132aS. Resconi,89aB. Resende,136P. Reznicek,98R. Rezvani,158R. Richter,99E. Richter-Was,5,ff M. Ridel,78P. Rieck,16M. Rijssenbeek,148A. Rimoldi,119a,119bL. Rinaldi,20aR. R. Rios,40E. Ritsch,61I. Riu,12 G. Rivoltella,89a,89bF. Rizatdinova,112E. Rizvi,75S. H. Robertson,85,lA. Robichaud-Veronneau,118D. Robinson,28

J. E. M. Robinson,82A. Robson,53J. G. Rocha de Lima,106C. Roda,122a,122bD. Roda Dos Santos,30A. Roe,54 S. Roe,30O. Røhne,117S. Rolli,161A. Romaniouk,96M. Romano,20a,20bG. Romeo,27E. Romero Adam,167 N. Rompotis,138L. Roos,78E. Ros,167S. Rosati,132aK. Rosbach,49A. Rose,149M. Rose,76G. A. Rosenbaum,158

(12)

I. Roth,172J. Rothberg,138D. Rousseau,115C. R. Royon,136A. Rozanov,83Y. Rozen,152X. Ruan,33a,ggF. Rubbo,12 I. Rubinskiy,42N. Ruckstuhl,105V. I. Rud,97C. Rudolph,44M. S. Rudolph,158F. Ru¨hr,7A. Ruiz-Martinez,63

L. Rumyantsev,64Z. Rurikova,48N. A. Rusakovich,64A. Ruschke,98J. P. Rutherfoord,7N. Ruthmann,48 P. Ruzicka,125Y. F. Ryabov,121M. Rybar,127G. Rybkin,115N. C. Ryder,118A. F. Saavedra,150I. Sadeh,153 H. F-W. Sadrozinski,137R. Sadykov,64F. Safai Tehrani,132aH. Sakamoto,155G. Salamanna,75A. Salamon,133a M. Saleem,111D. Salek,30D. Salihagic,99A. Salnikov,143J. Salt,167B. M. Salvachua Ferrando,6D. Salvatore,37a,37b

F. Salvatore,149A. Salvucci,104A. Salzburger,30D. Sampsonidis,154A. Sanchez,102a,102bJ. Sa´nchez,167 V. Sanchez Martinez,167H. Sandaker,14H. G. Sander,81M. P. Sanders,98M. Sandhoff,175T. Sandoval,28 C. Sandoval,162R. Sandstroem,99D. P. C. Sankey,129A. Sansoni,47C. Santamarina Rios,85C. Santoni,34 R. Santonico,133a,133bH. Santos,124aI. Santoyo Castillo,149K. Sapp,123J. G. Saraiva,124aT. Sarangi,173 E. Sarkisyan-Grinbaum,8B. Sarrazin,21F. Sarri,122a,122bG. Sartisohn,175O. Sasaki,65Y. Sasaki,155N. Sasao,67

I. Satsounkevitch,90G. Sauvage,5,aE. Sauvan,5J. B. Sauvan,115P. Savard,158,gV. Savinov,123D. O. Savu,30 L. Sawyer,25,nD. H. Saxon,53J. Saxon,120C. Sbarra,20aA. Sbrizzi,3D. A. Scannicchio,163M. Scarcella,150 J. Schaarschmidt,115P. Schacht,99D. Schaefer,120A. Schaelicke,46S. Schaepe,21S. Schaetzel,58bU. Scha¨fer,81

A. C. Schaffer,115D. Schaile,98R. D. Schamberger,148V. Scharf,58aV. A. Schegelsky,121D. Scheirich,87 M. Schernau,163M. I. Scherzer,35C. Schiavi,50a,50bJ. Schieck,98C. Schillo,48M. Schioppa,37a,37bS. Schlenker,30

E. Schmidt,48K. Schmieden,21C. Schmitt,81C. Schmitt,98S. Schmitt,58bB. Schneider,17Y. J. Schnellbach,73 U. Schnoor,44L. Schoeffel,136A. Schoening,58bA. L. S. Schorlemmer,54M. Schott,81D. Schouten,159a

J. Schovancova,125M. Schram,85C. Schroeder,81N. Schroer,58cM. J. Schultens,21J. Schultes,175 H.-C. Schultz-Coulon,58aH. Schulz,16M. Schumacher,48B. A. Schumm,137Ph. Schune,136A. Schwartzman,143

Ph. Schwegler,99Ph. Schwemling,136R. Schwienhorst,88J. Schwindling,136T. Schwindt,21M. Schwoerer,5 F. G. Sciacca,17E. Scifo,115G. Sciolla,23W. G. Scott,129J. Searcy,114G. Sedov,42E. Sedykh,121S. C. Seidel,103 A. Seiden,137F. Seifert,44J. M. Seixas,24aG. Sekhniaidze,102aS. J. Sekula,40K. E. Selbach,46D. M. Seliverstov,121

B. Sellden,146aG. Sellers,73M. Seman,144bN. Semprini-Cesari,20a,20bC. Serfon,30L. Serin,115L. Serkin,54 T. Serre,83R. Seuster,159aH. Severini,111A. Sfyrla,30E. Shabalina,54M. Shamim,114L. Y. Shan,33aJ. T. Shank,22

Q. T. Shao,86M. Shapiro,15P. B. Shatalov,95K. Shaw,164a,164cP. Sherwood,77S. Shimizu,101M. Shimojima,100 T. Shin,56M. Shiyakova,64A. Shmeleva,94M. J. Shochet,31D. Short,118S. Shrestha,63E. Shulga,96M. A. Shupe,7

P. Sicho,125A. Sidoti,132aF. Siegert,48Dj. Sijacki,13aO. Silbert,172J. Silva,124aY. Silver,153D. Silverstein,143 S. B. Silverstein,146aV. Simak,126O. Simard,5Lj. Simic,13aS. Simion,115E. Simioni,81B. Simmons,77 R. Simoniello,89a,89bM. Simonyan,36P. Sinervo,158N. B. Sinev,114V. Sipica,141G. Siragusa,174A. Sircar,25 A. N. Sisakyan,64,aS. Yu. Sivoklokov,97J. Sjo¨lin,146a,146bT. B. Sjursen,14L. A. Skinnari,15H. P. Skottowe,57 K. Skovpen,107P. Skubic,111M. Slater,18T. Slavicek,126K. Sliwa,161V. Smakhtin,172B. H. Smart,46L. Smestad,117 S. Yu. Smirnov,96Y. Smirnov,96L. N. Smirnova,97,hhO. Smirnova,79B. C. Smith,57K. M. Smith,53M. Smizanska,71 K. Smolek,126A. A. Snesarev,94G. Snidero,75S. W. Snow,82J. Snow,111S. Snyder,25R. Sobie,169,lJ. Sodomka,126

A. Soffer,153D. A. Soh,151,uC. A. Solans,30M. Solar,126J. Solc,126E. Yu. Soldatov,96U. Soldevila,167 E. Solfaroli Camillocci,132a,132bA. A. Solodkov,128O. V. Solovyanov,128V. Solovyev,121N. Soni,1A. Sood,15

V. Sopko,126B. Sopko,126M. Sosebee,8R. Soualah,164a,164cP. Soueid,93A. Soukharev,107D. South,42 S. Spagnolo,72a,72bF. Spano`,76R. Spighi,20aG. Spigo,30R. Spiwoks,30M. Spousta,127,iiT. Spreitzer,158B. Spurlock,8 R. D. St. Denis,53J. Stahlman,120R. Stamen,58aE. Stanecka,39R. W. Stanek,6C. Stanescu,134aM. Stanescu-Bellu,42 M. M. Stanitzki,42S. Stapnes,117E. A. Starchenko,128J. Stark,55P. Staroba,125P. Starovoitov,42R. Staszewski,39

A. Staude,98P. Stavina,144a,aG. Steele,53P. Steinbach,44P. Steinberg,25I. Stekl,126B. Stelzer,142H. J. Stelzer,88 O. Stelzer-Chilton,159aH. Stenzel,52S. Stern,99G. A. Stewart,30J. A. Stillings,21M. C. Stockton,85M. Stoebe,85

K. Stoerig,48G. Stoicea,26aS. Stonjek,99P. Strachota,127A. R. Stradling,8A. Straessner,44J. Strandberg,147 S. Strandberg,146a,146bA. Strandlie,117M. Strang,109E. Strauss,143M. Strauss,111P. Strizenec,144bR. Stro¨hmer,174 D. M. Strom,114J. A. Strong,76,aR. Stroynowski,40B. Stugu,14I. Stumer,25,aJ. Stupak,148P. Sturm,175N. A. Styles,42 D. Su,143HS. Subramania,3R. Subramaniam,25A. Succurro,12Y. Sugaya,116C. Suhr,106M. Suk,127V. V. Sulin,94

S. Sultansoy,4cT. Sumida,67X. Sun,55J. E. Sundermann,48K. Suruliz,139G. Susinno,37a,37bM. R. Sutton,149 Y. Suzuki,65Y. Suzuki,66M. Svatos,125S. Swedish,168M. Swiatlowski,143I. Sykora,144aT. Sykora,127D. Ta,105

K. Tackmann,42A. Taffard,163R. Tafirout,159aN. Taiblum,153Y. Takahashi,101H. Takai,25R. Takashima,68 H. Takeda,66T. Takeshita,140Y. Takubo,65M. Talby,83A. Talyshev,107,iJ. Y. C. Tam,174M. C. Tamsett,25K. G. Tan,86 J. Tanaka,155R. Tanaka,115S. Tanaka,131S. Tanaka,65A. J. Tanasijczuk,142K. Tani,66N. Tannoury,83S. Tapprogge,81

(13)

D. Tardif,158S. Tarem,152F. Tarrade,29G. F. Tartarelli,89aP. Tas,127M. Tasevsky,125E. Tassi,37a,37bY. Tayalati,135d C. Taylor,77F. E. Taylor,92G. N. Taylor,86W. Taylor,159bM. Teinturier,115F. A. Teischinger,30

M. Teixeira Dias Castanheira,75P. Teixeira-Dias,76K. K. Temming,48H. Ten Kate,30P. K. Teng,151S. Terada,65 K. Terashi,155J. Terron,80M. Testa,47R. J. Teuscher,158,lJ. Therhaag,21T. Theveneaux-Pelzer,34S. Thoma,48 J. P. Thomas,18E. N. Thompson,35P. D. Thompson,18P. D. Thompson,158A. S. Thompson,53L. A. Thomsen,36

E. Thomson,120M. Thomson,28W. M. Thong,86R. P. Thun,87F. Tian,35M. J. Tibbetts,15T. Tic,125 V. O. Tikhomirov,94Y. A. Tikhonov,107,iS. Timoshenko,96E. Tiouchichine,83P. Tipton,176S. Tisserant,83 T. Todorov,5S. Todorova-Nova,161B. Toggerson,163J. Tojo,69S. Toka´r,144aK. Tokushuku,65K. Tollefson,88

L. Tomlinson,82M. Tomoto,101L. Tompkins,31K. Toms,103A. Tonoyan,14C. Topfel,17N. D. Topilin,64 E. Torrence,114H. Torres,78E. Torro´ Pastor,167J. Toth,83,ddF. Touchard,83D. R. Tovey,139H. L. Tran,115 T. Trefzger,174L. Tremblet,30A. Tricoli,30I. M. Trigger,159aS. Trincaz-Duvoid,78M. F. Tripiana,70N. Triplett,25

W. Trischuk,158B. Trocme´,55C. Troncon,89aM. Trottier-McDonald,142M. Trovatelli,134a,134bP. True,88 M. Trzebinski,39A. Trzupek,39C. Tsarouchas,30J.C-L. Tseng,118M. Tsiakiris,105P. V. Tsiareshka,90D. Tsionou,136

G. Tsipolitis,10S. Tsiskaridze,12V. Tsiskaridze,48E. G. Tskhadadze,51aI. I. Tsukerman,95V. Tsulaia,15 J.-W. Tsung,21S. Tsuno,65D. Tsybychev,148A. Tua,139A. Tudorache,26aV. Tudorache,26aJ. M. Tuggle,31 M. Turala,39D. Turecek,126I. Turk Cakir,4dR. Turra,89a,89bP. M. Tuts,35A. Tykhonov,74M. Tylmad,146a,146b M. Tyndel,129G. Tzanakos,9K. Uchida,21I. Ueda,155R. Ueno,29M. Ughetto,83M. Ugland,14M. Uhlenbrock,21 F. Ukegawa,160G. Unal,30A. Undrus,25G. Unel,163F. C. Ungaro,48Y. Unno,65D. Urbaniec,35P. Urquijo,21G. Usai,8 L. Vacavant,83V. Vacek,126B. Vachon,85S. Vahsen,15N. Valencic,105S. Valentinetti,20a,20bA. Valero,167L. Valery,34 S. Valkar,127E. Valladolid Gallego,167S. Vallecorsa,152J. A. Valls Ferrer,167R. Van Berg,120P. C. Van Der Deijl,105 R. van der Geer,105H. van der Graaf,105R. Van Der Leeuw,105E. van der Poel,105D. van der Ster,30N. van Eldik,30

P. van Gemmeren,6J. Van Nieuwkoop,142I. van Vulpen,105M. Vanadia,99W. Vandelli,30A. Vaniachine,6 P. Vankov,42F. Vannucci,78R. Vari,132aE. W. Varnes,7T. Varol,84D. Varouchas,15A. Vartapetian,8K. E. Varvell,150

V. I. Vassilakopoulos,56F. Vazeille,34T. Vazquez Schroeder,54F. Veloso,124aS. Veneziano,132aA. Ventura,72a,72b D. Ventura,84M. Venturi,48N. Venturi,158V. Vercesi,119aM. Verducci,138W. Verkerke,105J. C. Vermeulen,105

A. Vest,44M. C. Vetterli,142,gI. Vichou,165T. Vickey,145b,jjO. E. Vickey Boeriu,145bG. H. A. Viehhauser,118 S. Viel,168M. Villa,20a,20bM. Villaplana Perez,167E. Vilucchi,47M. G. Vincter,29E. Vinek,30V. B. Vinogradov,64

J. Virzi,15O. Vitells,172M. Viti,42I. Vivarelli,48F. Vives Vaque,3S. Vlachos,10D. Vladoiu,98M. Vlasak,126 A. Vogel,21P. Vokac,126G. Volpi,47M. Volpi,86G. Volpini,89aH. von der Schmitt,99H. von Radziewski,48

E. von Toerne,21V. Vorobel,127V. Vorwerk,12M. Vos,167R. Voss,30J. H. Vossebeld,73N. Vranjes,136 M. Vranjes Milosavljevic,105V. Vrba,125M. Vreeswijk,105T. Vu Anh,48R. Vuillermet,30I. Vukotic,31Z. Vykydal,126 W. Wagner,175P. Wagner,21H. Wahlen,175S. Wahrmund,44J. Wakabayashi,101S. Walch,87J. Walder,71R. Walker,98 W. Walkowiak,141R. Wall,176P. Waller,73B. Walsh,176C. Wang,45H. Wang,173H. Wang,40J. Wang,151J. Wang,33a K. Wang,85R. Wang,103S. M. Wang,151T. Wang,21X. Wang,176A. Warburton,85C. P. Ward,28D. R. Wardrope,77 M. Warsinsky,48A. Washbrook,46C. Wasicki,42I. Watanabe,66P. M. Watkins,18A. T. Watson,18I. J. Watson,150

M. F. Watson,18G. Watts,138S. Watts,82A. T. Waugh,150B. M. Waugh,77M. S. Weber,17J. S. Webster,31 A. R. Weidberg,118P. Weigell,99J. Weingarten,54C. Weiser,48P. S. Wells,30T. Wenaus,25D. Wendland,16 Z. Weng,151,uT. Wengler,30S. Wenig,30N. Wermes,21M. Werner,48P. Werner,30M. Werth,163M. Wessels,58a

J. Wetter,161C. Weydert,55K. Whalen,29A. White,8M. J. White,86S. White,122a,122bS. R. Whitehead,118 D. Whiteson,163D. Whittington,60D. Wicke,175F. J. Wickens,129W. Wiedenmann,173M. Wielers,79 P. Wienemann,21C. Wiglesworth,75L. A. M. Wiik-Fuchs,21P. A. Wijeratne,77A. Wildauer,99M. A. Wildt,42,r

I. Wilhelm,127H. G. Wilkens,30J. Z. Will,98E. Williams,35H. H. Williams,120S. Williams,28W. Willis,35,a S. Willocq,84J. A. Wilson,18M. G. Wilson,143A. Wilson,87I. Wingerter-Seez,5S. Winkelmann,48F. Winklmeier,30

M. Wittgen,143T. Wittig,43J. Wittkowski,98S. J. Wollstadt,81M. W. Wolter,39H. Wolters,124a,jW. C. Wong,41 G. Wooden,87B. K. Wosiek,39J. Wotschack,30M. J. Woudstra,82K. W. Wozniak,39K. Wraight,53M. Wright,53

B. Wrona,73S. L. Wu,173X. Wu,49Y. Wu,33b,kkE. Wulf,35B. M. Wynne,46S. Xella,36M. Xiao,136S. Xie,48 C. Xu,33b,yD. Xu,33aL. Xu,33bB. Yabsley,150S. Yacoob,145a,llM. Yamada,65H. Yamaguchi,155A. Yamamoto,65

K. Yamamoto,63S. Yamamoto,155T. Yamamura,155T. Yamanaka,155K. Yamauchi,101T. Yamazaki,155 Y. Yamazaki,66Z. Yan,22H. Yang,33eH. Yang,173U. K. Yang,82Y. Yang,109Z. Yang,146a,146bS. Yanush,91L. Yao,33a Y. Yasu,65E. Yatsenko,42J. Ye,40S. Ye,25A. L. Yen,57M. Yilmaz,4bR. Yoosoofmiya,123K. Yorita,171R. Yoshida,6

(14)

A. Yurkewicz,106B. Zabinski,39R. Zaidan,62A. M. Zaitsev,128S. Zambito,23L. Zanello,132a,132bD. Zanzi,99 A. Zaytsev,25C. Zeitnitz,175M. Zeman,126A. Zemla,39O. Zenin,128T. Zˇ enisˇ,144aD. Zerwas,115G. Zevi della Porta,57

D. Zhang,87H. Zhang,88J. Zhang,6L. Zhang,151X. Zhang,33dZ. Zhang,115L. Zhao,108Z. Zhao,33b A. Zhemchugov,64J. Zhong,118B. Zhou,87N. Zhou,163Y. Zhou,151C. G. Zhu,33dH. Zhu,42J. Zhu,87Y. Zhu,33b X. Zhuang,33aV. Zhuravlov,99A. Zibell,98D. Zieminska,60N. I. Zimin,64R. Zimmermann,21S. Zimmermann,21

S. Zimmermann,48Z. Zinonos,122a,122bM. Ziolkowski,141R. Zitoun,5L. Zˇ ivkovic´,35V. V. Zmouchko,128,a G. Zobernig,173A. Zoccoli,20a,20bM. zur Nedden,16V. Zutshi,106and L. Zwalinski30

(ATLAS Collaboration)

1School of Chemistry and Physics, University of Adelaide, Adelaide, Australia 2Physics Department, SUNY Albany, Albany, New York, USA

3Department of Physics, University of Alberta, Edmonton, Alberta, Canada 4aDepartment of Physics, Ankara University, Ankara, Turkey

4bDepartment of Physics, Gazi University, Ankara, Turkey

4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey 4dTurkish Atomic Energy Authority, Ankara, Turkey

5

LAPP, CNRS/IN2P3 and Universite´ de Savoie, Annecy-le-Vieux, France

6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA 7Department of Physics, University of Arizona, Tucson, Arizona, USA 8Department of Physics, The University of Texas at Arlington, Arlington ,Texas, USA

9Physics Department, University of Athens, Athens, Greece

10Physics Department, National Technical University of Athens, Zografou, Greece 11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

12Institut de Fı´sica d’Altes Energies and Departament de Fı´sica de la Universitat Auto`noma de Barcelona and ICREA,

Barcelona, Spain

13a

Institute of Physics, University of Belgrade, Belgrade, Serbia

13bVinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia 14Department for Physics and Technology, University of Bergen, Bergen, Norway

15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA 16Department of Physics, Humboldt University, Berlin, Germany

17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

19aDepartment of Physics, Bogazici University, Istanbul, Turkey 19bDivision of Physics, Dogus University, Istanbul, Turkey

19cDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey 20aINFN Sezione di Bologna, Italy

20bDipartimento di Fisica, Universita` di Bologna, Bologna, Italy 21Physikalisches Institut, University of Bonn, Bonn, Germany 22Department of Physics, Boston University, Boston, Massachusetts, USA 23Department of Physics, Brandeis University, Waltham, Massachusetts, USA 24aUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

24b

Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil

24cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil 24dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 25Physics Department, Brookhaven National Laboratory, Upton, New York, USA

26aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania 26bUniversity Politehnica Bucharest, Bucharest, Romania

26cWest University in Timisoara, Timisoara, Romania

27Departamento de Fı´sica, Universidad de Buenos Aires, Buenos Aires, Argentina 28Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

29

Department of Physics, Carleton University, Ottawa, Ontario, Canada

30CERN, Geneva, Switzerland

31Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA 32aDepartamento de Fı´sica, Pontificia Universidad Cato´lica de Chile, Santiago, Chile 32bDepartamento de Fı´sica, Universidad Te´cnica Federico Santa Marı´a, Valparaı´so, Chile

33aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 33bDepartment of Modern Physics, University of Science and Technology of China, Anhui, China

Figure

FIG. 1 (color online). Distribution of E Pb T for minimum-bias p þ Pb events. Vertical lines indicate the boundaries of the event activity classes
FIG. 2 (color online). Two-dimensional correlation functions for (a) peripheral events and (b) central events, both with a truncated maximum to suppress the large correlation at ð; Þ ¼ ð0; 0Þ; (c) the per-trigger yield  distribution together with ped
FIG. 4 (color online). Integrated per-trigger yields, Y int (see text), vs p a T for 0:5 &lt; p b T &lt; 4 GeV in peripheral and central events, on the (a) near-side and (b) away-side

References

Related documents

Barnen får själva utforska den digitala lärmiljön och inspireras av materialet och miljön de befinner sig i, och barnen interagerar mycket med det vidgade digitala

Att verksamma inom området besitter en grundläggande kunskap kring olika droger och dess effekter bör därför vara av stor vikt för att på så sätt kunna ge ett trovärdigt

Så här sa några elever: ”Man får lära sig orden på somaliska, så man vet var man kommer ifrån alltså, man får lära sig mer om sitt hemland alltså, typ om kulturen och

Studien undersöker sambandet mellan metoderna MAPSE, speckle tracking samt tredimensionell ekokardiografi (3DE) avseende bedömningen av longitudinell väggrörlighet i vänster

Objectives: To demonstrate the feasibility of GafChromic ® XR-QA2 (ISP Corp., Wayne, NJ) as a dosemeter when performing measurements of the effective dose from three cone beam CT

1) Users can use the system to analyze and compare knowledge/information and research methods in the literature review.. 2) Opportunities are offered to users for reflection.

Tobaksröken kan bland annat leda till hjärt- och blodsjukdomar, lunginflammation som leder till kronisk hosta, cancer samt nedsatt immunförsvar som i sin tur bland

Even when women were encouraged to take a more active role and participating in violence, the narrative as mothers and wives were still strong and important in the