• No results found

Search for Higgs Boson Pair Production in the gamma gamma b(b)over-bar Final State Using pp Collision Data at root s=8 TeV from the ATLAS Detector

N/A
N/A
Protected

Academic year: 2021

Share "Search for Higgs Boson Pair Production in the gamma gamma b(b)over-bar Final State Using pp Collision Data at root s=8 TeV from the ATLAS Detector"

Copied!
19
0
0

Loading.... (view fulltext now)

Full text

(1)

Search for Higgs Boson Pair Production in the

γγb¯b Final State Using pp

Collision Data at

p

ffiffi

s

¼ 8 TeV from the ATLAS Detector

G. Aad et al.* (ATLAS Collaboration)

(Received 19 June 2014; published 26 February 2015)

Searches are performed for resonant and nonresonant Higgs boson pair production in theγγb¯b final state using20 fb−1of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of nonresonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrowX → hh resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.

DOI:10.1103/PhysRevLett.114.081802 PACS numbers: 12.60.Fr, 13.85.Rm, 14.80.Da, 14.80.Ec

Within two years of discovering a new boson with a mass near 125 GeV[1,2], the ATLAS and CMS Collaborations have completed a slate of measurements demonstrating that its spin and couplings conform to the predictions of the standard model (SM) Higgs boson within current exper-imental and theoretical uncertainties[3,4]. Despite the lack of deviations from SM predictions, the Higgs boson h offers a rich potential for new physics searches. This Letter reports on searches for non-SM physics with events consistent with either resonant (X → hh) or nonresonant pair production of Higgs bosons in thehh → γγb¯b channel. The predicted rate for Higgs boson pair production in the SM is several orders of magnitude smaller than the rate for the single h process [5–8]; hh production is thus not expected to be observable with current LHC data sets. However, a variety of extensions to the SM predict an enhancement of Higgs boson pair production. In two Higgs doublet models (2HDMs)[9–11]the heavier of the neutral scalar Higgs bosonsH may decay to a pair of its lighter scalar partners, h. Depending on the parameters of the 2HDM, theH → hh production cross section may exceed a picobarn[11]. A deviation of the Higgs boson self-coupling λhhh from the SM predicted value could also increase the

nonresonant production rate. Such deviations could be observed with future data sets [8]. Larger enhancements in thepp → hh rate could arise from the top-Higgs quartic t¯thh coupling predicted in composite models [12,13], or from the addition of light colored scalars to the SM [14]. Resonant production of two Higgs bosons could appear from the production and decay of gravitons, radions, or

stoponium[15–17], as well as from a hidden sector mixing with the observed Higgs boson[18].

Theγγb¯b channel is an excellent final state for a search for Higgs boson pair production[19] thanks to the large h → b¯b branching ratio, clean diphoton trigger, excellent diphoton invariant mass resolution, and low backgrounds. This channel is particularly important in the search for resonances with mass mX in the range 260 < mX< 500 GeV considered in this Letter, where backgrounds and combinatorics make other channels such as b¯bb¯b or b¯bτþτchallenging.

Processes that do not contain Higgs bosons are estimated from data; all other processes are simulated using Monte Carlo techniques. The standard ATLAS detector simulation [20] based on GEANT4 [21] is used. The

simulation parameters are tuned to describe soft compo-nents of hadronic final states[22,23]. Simulated minimum bias collisions are overlaid on the hard scatter process, and events are reweighted so that the average number of interactions per bunch crossing (∼20) matches the observed distribution.

Background events with a single Higgs boson produced in association with aW or Z boson or t¯t (Wh, Zh, t¯th) are simulated with PYTHIA8 [24] using CTEQ6L1 parton distribution functions of the proton (PDFs) [25]. Higgs boson production via gluon or vector-boson fusion (ggF, VBF) is simulated using CT10 PDFs[26]with POWHEG -BOX [27,28] interfaced to PYTHIA8 for showering and

hadronization. Cross sections and associated uncertainties are taken from Ref.[29].

Two benchmark signal models are defined: SM Higgs boson pair production for the nonresonance search, and a gluon-initiated, spin-zero resonant state in the narrow-width approximation for the resonance search. The SM hh process is too small to observe with current data sets, but the SM kinematics are used to model generic nonresonant beyond-SM physics. Both models are generated using * Full author list given at the end of the article.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 3.0 License. Further

distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

MADGRAPH5 [30,31] and CTEQ6L1 PDFs. A generator filter requires a pair of b quarks and a pair of photons in each event. PYTHIA8 is used to decay the two Higgs

bosons, and to shower and hadronize the events. The implementation of SM Higgs boson pair production includes the interference between diagrams with trilinear Higgs boson couplings and box diagrams. For the SMhh process, which is a background to the resonance search, the next-to-leading-order inclusive production cross section of 9.2 fb is taken from Ref. [8]. Resonant samples are generated with a width of 10 MeV (corresponding to a narrow width approximation) at masses mX¼ 260, 300, 350, and 500 GeV. Production cross sections for bench-mark 2HDMs are calculated with SUSHI[32], and branch-ing ratios with 2HDMC [33].

The analysis described in this Letter uses the full ffiffiffi

s p

¼ 8 TeV data set of proton-proton collisions recorded by the ATLAS experiment in 2012, corresponding to an integrated luminosity of20.3  0.6 fb−1[34]. Data quality criteria are applied to reject events with diminished detector performance[35,36]. A description of the ATLAS detector can be found elsewhere [37].

The photon and event selection for the present search largely follows those of published ATLASh → γγ analyses

[3,38]. Events are selected using a loose diphoton trigger that is nearly 100% efficient for events passing the off-line photon selection. Photons are reconstructed starting from clusters of energy deposited in the electromagnetic calorimeter. Events are required to contain two photon candidates whose calorimeter energy clusters match the expectations for photon-induced electromagnetic showers

[39,40]. The pseudorapidity[41]η of the two photons must

fall within the geometric acceptance of the detector for photons, jηj < 2.37, excluding the region between the barrel and end-cap calorimeters (1.37 < jηj < 1.56). The ratio of the transverse momentum of the leading (sublead-ing) photon to the invariant mass of the pair,pT=mγγ, must exceed 0.35(0.25). The invariant mass of the pair is calculated as in Ref. [3]. Photons are required to be isolated: the energy in the calorimeter[3,42]within a cone of size ΔR ≡pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiΔη2þ Δϕ2¼ 0.4 around the photon direction must be less than 6 GeV, and the scalar sum of thepTof the tracks in a cone ofΔR ¼ 0.2 must be less than 2.6 GeV. In addition, the photon pair must satisfy a broad requirement 105 < mγγ < 160 GeV for an event to be considered[3,38].

Jets are reconstructed from clusters of energy in the electromagnetic and hadronic calorimeters using the anti-kt algorithm[43]with a radius parameter of 0.4, starting from energy deposits grouped into topological clusters [44]. Simulation is used to correct jets for instrumental effects

[45]and to account for the average energy in the detector in the event due to additionalpp interactions and the under-lying event [46]. The calibration is refined using in situ measurements. Jets are required to fall within the tracker

acceptance ofjηj < 2.5 and satisfy pT > 35 GeV, with the leading jet in the event required to have pT > 55 GeV. Events with jets arising from noisy regions in the calo-rimeters, beam backgrounds, or cosmic rays are rejected

[45]. Low-pT jets from additional proton-proton inter-actions in the same bunch crossing are rejected with a requirement on the scalar sum of thepTof tracks associated with the jet: for jets with jηj < 2.4 and pT < 50 GeV, tracks associated with the hard scatter vertex must con-tribute over 50% of the sum.

Jets from the decay of long-lived heavy-flavor hadrons are selected using a multivariate tagging algorithm (b tagging)[47] with an efficiency of 70% for jets from b-quark fragmentation in t¯t simulation. The four-momenta of muons[48]closer thanΔR ¼ 0.4 to a b-tagged jet and withpT > 4 GeV are included in the jet four-momentum. Events with at least two photons and two or more jets are selected for further analysis if the invariant mass of the two leading jets is consistent with the decay of a Higgs boson. While the invariant mass resolution for the pairs ofb-tagged jets is approximately 13 GeV, the mass window is chosen as 95 < mjj< 135 GeV to account for the downward shift of

the mean from the true value due to effects such as unmeasured neutrinos from semileptonicb decays.

In the nonresonance search, the background and poten-tial signal are fit to the unbinned mγγ distribution of all events passing the dijet and diphoton selections described above. This fit has three components: the signal with a pair of Higgs bosons, the background processes with a single Higgs boson resonant at mγγ ¼ mh, and the continuum background. The single Higgs boson backgrounds are dominated by the processes with pairs ofb quarks, namely t¯th and ðZ → b¯bÞh, with smaller contributions from ggF, VBF, and Wh. The combined acceptance and selection efficiency for the SM Higgs boson pair production signal is 7.4%. Simulation studies show that the continuum con-tribution in the signal region is split between events with two photons and events with a single photon in association with a jet faking the second photon. The b-tagged jets include real heavy-flavor jets and mistagged light-flavor jets. The contribution from dileptonic decays oft¯t events where two electrons fake the two photons is roughly 10% of the total background. The contribution from other processes is negligible.

The fit is performed simultaneously in two categories. The first category is the signal region, in which at least two jets areb-tagged. The second is a control region, containing events with fewer than twob tags. The two classes of events are kinematically identical: in the signal region, the mass andpT requirements defined above must be satisfied by the two leading tagged jets, whereas in the control region, they are met by the two leading jets.

Following earlier ATLAS analyses, the shape of themγγ resonance is described by the sum of a Crystal Ball function and a wide Gaussian component that models the tails of the

(3)

distribution [3]. An exponential function describes the continuum backgrounds that fall with mγγ. The slope of the exponential is shared in the fit between the two categories so that the control region constrains the back-ground shape in the signal region. Figure 1 shows the separate diphoton mass distributions for events with≥ 2b tags and events with ≤ 1b tag.

The search for resonant production of pairs of Higgs bosons starts with the same signal selection as above but imposes an additional requirement onmγγb¯b. Because of the small number of expected events after this additional requirement, the resonance analysis uses a counting experi-ment with cuts onmγγandmγγb¯b, in place of the unbinned fit inmγγ. The cut on the diphoton mass is set as a window of twice the mass resolution,2σmγγ, around the Higgs boson massmh¼ 125.5 GeV[3]. For this cut, themγγresolution is set to the expected value of 1.6 GeV. The acceptance of this requirement on background events without Higgs bosons, ϵmγγ, is measured by fitting an exponential function to the

mγγsidebands for events with fewer than twob-tagged jets.

For this fit, the mγγ region of mh 5 GeV is excluded to eliminate any potential contamination from resonant Higgs boson production. ForN observed events with two b tags in the sideband (jmγγ− mhj > 2σmγγ), the number of expected non-Higgs boson background events Nmγγ within 2σmγγ aroundmh is given by

Nmγγ ¼ N

ϵmγγ

1 − ϵmγγ

; ð1Þ

where the denominator compensates for the fact that ϵmγγ ¼ 0.13 is derived relative to the full mγγ spectrum

whileN contains only those events in the sidebands. Before reconstructing the four-object mass, mγγb¯b, a scaling factor ofmh=mb¯bis applied to the four-momentum of theb¯b system, where mhis set to the value of 125 GeV used in simulation. This improves themγγb¯bresolution by 30%–60% depending on the mass hypothesis, without biasing or significantly altering the shape of the back-ground. Requirements are then made onmγγb¯bto select the smallest window containing 95% of the previously selected events, simulated for the narrow resonant signal hypoth-eses. These requirements vary linearly with the massmXof the resonance considered. The width of the signal window varies from 17 GeV at mX ¼ 260 GeV to 60 GeV at mX¼ 500 GeV. The acceptance for the continuum

back-ground to pass this requirement,ϵmγγb¯b, also varies withmX. It is measured using events in data withjmγγ− mhj < 2σmγγ and fewer than twob tags. Studies in both data sidebands and simulation show that the shapes of mγγb¯b and mγγjj agree within statistical uncertainties. The distribution of mγγjj in data is fitted with a Landau function, which is

integrated in the signal window to obtainϵmγγb¯b for each mass hypothesis. The bottom panel of Fig.2shows this fit. The value ofϵmγγb¯bis small (< 8%) at low and high mX, and peaks at 18% for mX ¼ 300 GeV. The combined accep-tance and selection efficiency for a resonance signal to pass

110 120 130 140 150 160 Events / 2.5 GeV 0 20 40 60 80 100

< 2 b-Tag Control Region

Events / 2.5 GeV 0 2 4 6 8 10 Signal Region Data Fitted Signal + Bkds Single Higgs Boson + Bkd Continuum Background ATLAS

Ldt = 20 fb-1, s = 8 TeV [GeV] γ γ m

FIG. 1 (color online). Upper plot: diphoton invariant mass spectrum for data and the corresponding fitted signal and back-ground in the signal region for the nonresonance search. Lower plot: the diphoton invariant mass spectrum in the continuum background from events with fewer than two b tags and the corresponding fitted curve, the shape of which is also used in the upper plot. [GeV] bb γ γ Constrained m Events / 5 GeV -2 10 -1 10 1 10 Signal Region Data

Control Region Fit Single Higgs Boson

=1 pb hh BR × X σ =300 GeV, X m ATLAS

Ldt = 20 fb-1, s = 8 TeV [GeV] Constrained m 200 300 400 500 600 700 800 900 Events / 20 GeV 1 10

< 2 b-Tag Control Region Data Landau Fit

jj γγ

FIG. 2 (color online). Upper plot: the constrained four-object invariant mass mγγjj for data events in the resonance signal region. The expected backgrounds are also shown. A narrow width resonance at 300 GeV is displayed for comparison only. Lower plot: the diphoton invariant mass spectrum in the con-tinuum background from events with fewer than twob tags and the corresponding fitted curve, the shape of which is also used in the upper plot.

(4)

all requirements varies from 3.8% at mX ¼ 260 GeV to 8.2% at mX ¼ 500 GeV.

The total background from sources without Higgs boson decays in the resonance analysisNB is given by

NB¼ N1 − ϵϵmγγ

mγγϵmγγb¯b; ð2Þ

whereN is the number of events in the mγγ sidebands, and NB and ϵmγγb¯b are functions of mX. Uncertainties on this

extrapolation are described below.

Because they are not accounted for by the above mγγ sideband techniques, contributions from single Higgs bosons produced in association with jets (particularly with c¯c or b¯b pairs) are estimated using simulation. In the resonance analysis, the yield from the nonresonant SMhh processes is similarly included. SM cross sections and branching fractions are assumed in all cases [29].

Most systematic uncertainties are small when compared to statistical uncertainties, in particular for the resonance search.

The evaluation of experimental uncertainties on photon identification (2.4%) and isolation efficiencies (2%) follows the methods used in the inclusive ATLAS h → γγ analyses [3,38]. The theoretical uncertainties

[29]on the single Higgs boson backgrounds are similarly adopted. Because there are no heavy flavor quarks at lowest order associated with ggF or VBF production, additional uncertainties are evaluated for these higher-order processes. These uncertainties are derived from a comparison of simulated predictions to data for similar initial states: gluon-initiated production of t¯t with heavy flavor [49]

for ggF, and quark-initiated W boson production with heavy flavor [50] for VBF. Since the ggF and VBF contributions are less than 15% of the expected single Higgs boson yield in the signal region, the net impact of these uncertainties remains small. PDF and scale uncer-tainties on SM hh production are taken from Ref.[8].

Because of the cuts on the ratiopT=mγγ, photon energy scale uncertainties are negligible. The uncertainty of 13% on the diphoton mass resolutionσmγγ is propagated into the resonance search as a 1.6% uncertainty on the number of events migrating into and out of the signal region. This represents the fraction of events where an upward variation of the photon resolution causes the diphoton mass to leave themh 2σmγγwindow required for the signal region. The uncertainty onmh impacts the peak position inmγγ in the signal plus background fit of the nonresonance analysis, and in the resonance search it is transformed into a 1.7% uncertainty on the number of signal events in the mass window. The uncertainty for the acceptance of themγγ cuts on non-Higgs boson backgrounds is estimated by compar-ing fits of mγγ to data in control regions with reversed photon identification orb-tagging requirements, and using different functional forms. The largest deviation observed from these fits (11%) is used for all searches.

Three components contribute to the uncertainty onϵmγγb¯b, and are combined in quadrature. (1) The limited number of events in the control region with fewer than twob tags used for the Landau fit leads to a relative statistical uncertainty of 3%–18% that varies as a function of mX. (2) The mγγjj shape for untagged jets might not exactly mirror the one for tagged jets. The tagged and untagged samples are com-pared in simulation and the relative difference inϵmγγb¯b is taken as the uncertainty. This value varies with mX and is always less than 30%. (3) Finally, an uncertainty of 16%–30%, depending on mX, is included to cover the choice of the analytic function. This was evaluated via comparisons of Landau shapes to alternate functions in simulation, including Landau shapes where the width varies with mγγb¯b, as well as Crystal Ball functions. Potential contamination from SM single Higgs boson processes in the control region is estimated to be less than 4% and is subtracted with negligible impact on the shape. Uncertainties due to the b-tagging calibration are typ-ically 2%–4% for both the single Higgs boson and signal processes. Uncertainties due to the jet energy scale are 7% (22%) for single Higgs boson backgrounds in the non-resonance (non-resonance) analysis, and 1.4% (4.4%) for signal processes. Uncertainties due to the jet energy resolution are 4.8% (21%) for single Higgs boson backgrounds, and 6.3% (9.3%) for signal processes. The uncertainty on the inte-grated luminosity is 2.8%. It is derived, following the same methodology as that detailed in Ref.[34], from a prelimi-nary calibration of the luminosity scale derived from beam-separation scans performed in November 2012.

The combined, unbinned signal plus background fit for the nonresonance analysis is shown in Fig. 1. Within a2σmγγwindow around the Higgs boson mass, 1.5 events are expected, with 1.3  0.5 from the continuum back-ground and0.17  0.04 from single Higgs boson produc-tion, which is dominated byt¯th events. About 0.04 events are expected from SM Higgs boson pair production. Five events are observed, corresponding to 2.4σ from the background-only hypothesis, using the test statistic based on the profile likelihood ratio[51] with the hypothesized signal rate set to zero. The 95% confidence level (CL) upper limit on the Higgs boson pair production cross section is calculated using the frequentist CLS method

[52]. Exclusions and significances are evaluated using pseudoexperiments. Assuming SM branching ratios for the light Higgs boson decays, the expected upper limit is 1.0þ0.5

−0.2 pb; the observed limit is 2.2 pb.

For the resonance analysis, as before, SM branching fractions for the light Higgs boson are assumed. The expected exclusion improves from 1.7 to 0.7 pb as a function of mX from 260 to 500 GeV, as shown in Fig. 3. This behavior derives from increased event-level acceptance at larger masses. The observed exclusion ranges from 3.5 to 0.7 pb. The five events selected in themγγsignal

(5)

region are shown inmγγb¯b, in Fig.2. The local probability of compatibility to the background-only hypothesis, p0, reaches a minimum of 0.002 at mX¼ 300 GeV, corre-sponding to 3.0σ. The number of events lying within the mγγb¯bwindow of each mass hypothesis is readily apparent

in“steps” in the exclusion plot. The step size used for the limit is reduced in the range near the observed events, to show this structure. A look-elsewhere effect [53,54] is evaluated by generating pseudodatasets of the background-only hypothesis, and identifying the mass hypothesis with the lowest p value in each. The global probability of an excess as significant as the observation to occur at any mass in the range studied is found to be 0.019, corresponding to 2.1σ.

The limits derived are juxtaposed in Fig. 3 with the prediction for an illustrative type I 2HDM [32,33,55] not excluded by current data with cosðβ − αÞ ¼ −0.05 and tanðβÞ ¼ 1. The heavy Higgs bosons are taken to be degenerate in mass, and the mass of the lightestCP-even Higgs boson is set to 125 GeV. All major production mechanisms ofH → hh are considered. Cross sections and branching ratios were calculated as described in Ref.[56]. In conclusion, this Letter presents searches for resonant and nonresonant Higgs boson pair production using 20.3 fb−1 of proton-proton collision data at pffiffiffis¼ 8 TeV

generated by the Large Hadron Collider and recorded by the ATLAS detector in 2012. A 95% confidence level upper limit is placed on the nonresonant production cross section at 2.2 pb, while the expected limit is 1.0þ0.5−0.2 pb. The difference derives from a small excess of events, corre-sponding to 2.4σ.

In the search for a narrow resonance decaying to a pair of Higgs bosons, the expected exclusion on the production cross section falls from 1.7 pb for a resonance at 260 GeV to 0.7 pb at 500 GeV. The observed exclusion ranges from

0.7–3.5 pb. It is weaker than expected for resonances below 350 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (U.S.), and in the Tier-2 facilities worldwide.

[1] ATLAS Collaboration,Phys. Lett. B 716, 1 (2012). [2] CMS Collaboration,Phys. Lett. B 716, 30 (2012). [3] ATLAS Collaboration,Phys. Lett. B 726, 88 (2013). [4] CMS Collaboration,Phys. Rev. D 89, 092007 (2014). [5] S. Dawson, S. Dittmaier, and M. Spira,Phys. Rev. D 58,

115012 (1998).

[6] J. Grigo, J. Hoff, K. Melnikov, and M. Steinhauser,Nucl.

Phys. B875, 1 (2013).

[7] D. de Florian and J. Mazzitelli,Phys. Rev. Lett. 111, 201801 (2013).

[8] J. Baglio, A. Djouadi, R. Gröber, M. M. Mühlleitner, J. Quevillon, and M. Spira, J. High Energy Phys. 04 (2013) 151.

[9] A. Djouadi,Phys. Rep. 459, 1 (2008).

[10] J. Baglio, O. Eberhardt, U. Nierste, and M. Wiebusch,Phys.

Rev. D 90, 015008 (2014).

[11] N. Craig, J. Galloway, and S. Thomas,arXiv:1305.2424. [GeV] X m 300 350 400 450 500 hh) [pb] → BR(X× X σ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ATLAS ∫Ldt = 20 fb-1 at s = 8 TeV Observed 95% CL Limit σ 1 ± Expected Limit σ 2 ± Expected Limit Type I 2HDM: )=-0.05 α -β =1, cos( β tan

FIG. 3 (color online). A 95% CL upper limit on the cross section times branching ratio of a narrow resonance decaying to pairs of Higgs bosons as a function ofmX (see text for more details).

(6)

[12] R. Grober and M. Muhlleitner, J. High Energy Phys. 06 (2011) 020.

[13] R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini, and A. Wulzer,J. High Energy Phys. 08 (2012) 154.

[14] G. D. Kribs and A. Martin,Phys. Rev. D 86, 095023 (2012). [15] Y. Tang,J. High Energy Phys. 08 (2012) 078.

[16] K. Cheung,Phys. Rev. D 63, 056007 (2001).

[17] N. Kumar and S. P. Martin,Phys. Rev. D 90, 055007 (2014). [18] M. J. Dolan, C. Englert, and M. Spannowsky,Phys. Rev. D

87, 055002 (2013).

[19] U. Baur, T. Plehn, and D. L. Rainwater, Phys. Rev. D 69, 053004 (2004).

[20] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [21] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[22] ATLAS Collaboration, Report No. ATL-PHYS-PUB-2012-003 (2012),http://cdsweb.cern.ch/record/1474107. [23] ATLAS Collaboration, Report No.

ATL-PHYS-PUB-2011-014 (2011),http://cdsweb.cern.ch/record/1400677. [24] T. Sjostrand, S. Mrenna, and P. Z. Skands,Comput. Phys.

Commun. 178, 852 (2008).

[25] P. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008).

[26] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [27] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy

Phys. 04 (2009) 002.

[28] P. Nason and C. Oleari,J. High Energy Phys. 02 (2010) 037.

[29] LHC Higgs Cross Section Working Group, Report No. 10.5170/CERN-2013-004 (2013).

[30] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[31] B. Hespel and E. Vryonidou, Higgs Pair Production,https:// cp3.irmp.ucl.ac.be/projects/madgraph/wiki/

HiggsPairProduction.

[32] R. V. Harlander, S. Liebler, and H. Mantler,Comput. Phys.

Commun. 184, 1605 (2013).

[33] D. Eriksson, J. Rathsman, and O. Stal, Comput. Phys.

Commun. 181, 189 (2010).

[34] ATLAS Collaboration,Eur. Phys. J. C 73, 2518 (2013). [35] ATLAS Collaboration,JINST 9, P07024 (2014).

[36] J. Adelman et al.,J. Phys. Conf. Ser. 219, 042018 (2010). [37] ATLAS Collaboration,JINST 3, S08003 (2008).

[38] ATLAS Collaboration,Phys. Lett. B 726, 120 (2013). [39] ATLAS Collaboration, Report No.

ATL-PHYS-PUB-2011-007 (2011),http://cdsweb.cern.ch/record/1345329. [40] ATLAS Collaboration, Report No.

ATLAS-CONF-2012-123 (2012),http://cdsweb.cern.ch/record/1473426. [41] ATLAS uses a right-handed coordinate system with its

origin at the nominal interaction point in the center of the detector and the z axis along the beam pipe. The x axis points from the interaction point to the center of the LHC ring, and they axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angleθ as η ¼ − ln tanðθ=2Þ. [42] ATLAS Collaboration,Phys. Rev. D 83, 052005 (2011). [43] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 063.

[44] T. Barillari et al., Report No. ATL-LARG-PUB-2009-001-2 (2008),http://cdsweb.cern.ch/record/1112035.

[45] ATLAS Collaboration,arXiv:1406.0076.

[46] M. Cacciari and G. P. Salam,Phys. Lett. B 659, 119 (2008). [47] ATLAS Collaboration, Report No.

ATLAS-CONF-2014-004 (2014),http://cdsweb.cern.ch/record/1664335. [48] ATLAS Collaboration, Report No.

ATLAS-CONF-2013-088 (2013),http://cdsweb.cern.ch/record/1580207. [49] ATLAS Collaboration,Phys. Rev. D 89, 072012 (2014). [50] ATLAS Collaboration, J. High Energy Phys. 06 (2013)

084.

[51] G. Cowan, K. Cranmer, E. Gross, and O. Vitells,Eur. Phys. J. C 71, 1554 (2011).

[52] A. L. Read,J. Phys. G 28, 2693 (2002). [53] L. Lyons,Ann. Appl. Stat. 2, 887 (2008).

[54] E. Gross and O. Vitells,Eur. Phys. J. C 70, 525 (2010). [55] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, and

J. Silva,Phys. Rep. 516, 1 (2012).

[56] R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira, and O. Stål,arXiv:1312.5571.

G. Aad,84B. Abbott,112 J. Abdallah,152 S. Abdel Khalek,116O. Abdinov,11R. Aben,106 B. Abi,113M. Abolins,89 O. S. AbouZeid,159H. Abramowicz,154 H. Abreu,153 R. Abreu,30 Y. Abulaiti,147a,147bB. S. Acharya,165a,165b,b

L. Adamczyk,38a D. L. Adams,25J. Adelman,177S. Adomeit,99T. Adye,130T. Agatonovic-Jovin,13a

J. A. Aguilar-Saavedra,125a,125f M. Agustoni,17S. P. Ahlen,22F. Ahmadov,64,c G. Aielli,134a,134bH. Akerstedt,147a,147b T. P. A. Åkesson,80 G. Akimoto,156A. V. Akimov,95 G. L. Alberghi,20a,20bJ. Albert,170 S. Albrand,55

M. J. Alconada Verzini,70M. Aleksa,30I. N. Aleksandrov,64C. Alexa,26aG. Alexander,154G. Alexandre,49T. Alexopoulos,10 M. Alhroob,165a,165cG. Alimonti,90aL. Alio,84J. Alison,31B. M. M. Allbrooke,18L. J. Allison,71P. P. Allport,73J. Almond,83 A. Aloisio,103a,103bA. Alonso,36F. Alonso,70C. Alpigiani,75A. Altheimer,35B. Alvarez Gonzalez,89M. G. Alviggi,103a,103b K. Amako,65Y. Amaral Coutinho,24a C. Amelung,23D. Amidei,88S. P. Amor Dos Santos,125a,125cA. Amorim,125a,125b S. Amoroso,48N. Amram,154G. Amundsen,23C. Anastopoulos,140L. S. Ancu,49N. Andari,30T. Andeen,35C. F. Anders,58b

G. Anders,30K. J. Anderson,31A. Andreazza,90a,90bV. Andrei,58a X. S. Anduaga,70S. Angelidakis,9 I. Angelozzi,106 P. Anger,44A. Angerami,35F. Anghinolfi,30A. V. Anisenkov,108N. Anjos,125aA. Annovi,47A. Antonaki,9M. Antonelli,47

(7)

Y. Arai,65J. P. Araque,125aA. T. H. Arce,45J-F. Arguin,94S. Argyropoulos,42M. Arik,19aA. J. Armbruster,30O. Arnaez,30 V. Arnal,81H. Arnold,48M. Arratia,28O. Arslan,21A. Artamonov,96G. Artoni,23S. Asai,156N. Asbah,42A. Ashkenazi,154

B. Åsman,147a,147bL. Asquith,6 K. Assamagan,25R. Astalos,145aM. Atkinson,166 N. B. Atlay,142B. Auerbach,6 K. Augsten,127M. Aurousseau,146b G. Avolio,30G. Azuelos,94,eY. Azuma,156M. A. Baak,30A. Baas,58aC. Bacci,135a,135b

H. Bachacou,137K. Bachas,155M. Backes,30M. Backhaus,30J. Backus Mayes,144 E. Badescu,26a P. Bagiacchi,133a,133b P. Bagnaia,133a,133bY. Bai,33aT. Bain,35J. T. Baines,130O. K. Baker,177P. Balek,128F. Balli,137E. Banas,39Sw. Banerjee,174

A. A. E. Bannoura,176V. Bansal,170 H. S. Bansil,18L. Barak,173 S. P. Baranov,95 E. L. Barberio,87D. Barberis,50a,50b M. Barbero,84T. Barillari,100M. Barisonzi,176T. Barklow,144N. Barlow,28B. M. Barnett,130R. M. Barnett,15Z. Barnovska,5 A. Baroncelli,135aG. Barone,49A. J. Barr,119F. Barreiro,81J. Barreiro Guimarães da Costa,57R. Bartoldus,144A. E. Barton,71 P. Bartos,145aV. Bartsch,150 A. Bassalat,116 A. Basye,166 R. L. Bates,53L. Batkova,145aJ. R. Batley,28M. Battaglia,138 M. Battistin,30F. Bauer,137H. S. Bawa,144,fT. Beau,79P. H. Beauchemin,162R. Beccherle,123a,123bP. Bechtle,21H. P. Beck,17

K. Becker,176 S. Becker,99M. Beckingham,171C. Becot,116 A. J. Beddall,19c A. Beddall,19c S. Bedikian,177 V. A. Bednyakov,64C. P. Bee,149L. J. Beemster,106T. A. Beermann,176M. Begel,25K. Behr,119C. Belanger-Champagne,86 P. J. Bell,49W. H. Bell,49G. Bella,154 L. Bellagamba,20a A. Bellerive,29M. Bellomo,85K. Belotskiy,97 O. Beltramello,30

O. Benary,154 D. Benchekroun,136aK. Bendtz,147a,147bN. Benekos,166 Y. Benhammou,154 E. Benhar Noccioli,49 J. A. Benitez Garcia,160b D. P. Benjamin,45J. R. Bensinger,23K. Benslama,131 S. Bentvelsen,106D. Berge,106 E. Bergeaas Kuutmann,16N. Berger,5F. Berghaus,170 J. Beringer,15C. Bernard,22P. Bernat,77C. Bernius,78 F. U. Bernlochner,170T. Berry,76P. Berta,128 C. Bertella,84G. Bertoli,147a,147bF. Bertolucci,123a,123bD. Bertsche,112 M. I. Besana,90aG. J. Besjes,105O. Bessidskaia Bylund,147a,147bM. F. Bessner,42N. Besson,137C. Betancourt,48S. Bethke,100 W. Bhimji,46R. M. Bianchi,124 L. Bianchini,23 M. Bianco,30O. Biebel,99S. P. Bieniek,77K. Bierwagen,54J. Biesiada,15

M. Biglietti,135aJ. Bilbao De Mendizabal,49H. Bilokon,47M. Bindi,54S. Binet,116 A. Bingul,19c C. Bini,133a,133b C. W. Black,151J. E. Black,144K. M. Black,22D. Blackburn,139R. E. Blair,6J.-B. Blanchard,137T. Blazek,145aI. Bloch,42

C. Blocker,23W. Blum,82,a U. Blumenschein,54G. J. Bobbink,106V. S. Bobrovnikov,108S. S. Bocchetta,80A. Bocci,45 C. Bock,99C. R. Boddy,119 M. Boehler,48T. T. Boek,176 J. A. Bogaerts,30A. G. Bogdanchikov,108 A. Bogouch,91,a

C. Bohm,147aJ. Bohm,126V. Boisvert,76T. Bold,38a V. Boldea,26aA. S. Boldyrev,98M. Bomben,79M. Bona,75 M. Boonekamp,137A. Borisov,129G. Borissov,71M. Borri,83S. Borroni,42J. Bortfeldt,99V. Bortolotto,135a,135bK. Bos,106

D. Boscherini,20a M. Bosman,12H. Boterenbrood,106J. Boudreau,124 J. Bouffard,2 E. V. Bouhova-Thacker,71 D. Boumediene,34C. Bourdarios,116N. Bousson,113S. Boutouil,136d A. Boveia,31J. Boyd,30I. R. Boyko,64J. Bracinik,18

A. Brandt,8 G. Brandt,15O. Brandt,58a U. Bratzler,157 B. Brau,85J. E. Brau,115 H. M. Braun,176,a S. F. Brazzale,165a,165c B. Brelier,159K. Brendlinger,121A. J. Brennan,87R. Brenner,167S. Bressler,173K. Bristow,146cT. M. Bristow,46D. Britton,53

F. M. Brochu,28I. Brock,21R. Brock,89C. Bromberg,89J. Bronner,100G. Brooijmans,35T. Brooks,76W. K. Brooks,32b J. Brosamer,15E. Brost,115 J. Brown,55P. A. Bruckman de Renstrom,39D. Bruncko,145b R. Bruneliere,48S. Brunet,60

A. Bruni,20a G. Bruni,20a M. Bruschi,20a L. Bryngemark,80T. Buanes,14Q. Buat,143 F. Bucci,49P. Buchholz,142 R. M. Buckingham,119 A. G. Buckley,53S. I. Buda,26a I. A. Budagov,64F. Buehrer,48L. Bugge,118M. K. Bugge,118 O. Bulekov,97A. C. Bundock,73H. Burckhart,30S. Burdin,73B. Burghgrave,107S. Burke,130I. Burmeister,43E. Busato,34

D. Büscher,48V. Büscher,82 P. Bussey,53C. P. Buszello,167B. Butler,57J. M. Butler,22A. I. Butt,3 C. M. Buttar,53 J. M. Butterworth,77P. Butti,106W. Buttinger,28 A. Buzatu,53 M. Byszewski,10S. Cabrera Urbán,168D. Caforio,20a,20b

O. Cakir,4aP. Calafiura,15A. Calandri,137 G. Calderini,79P. Calfayan,99R. Calkins,107L. P. Caloba,24a D. Calvet,34 S. Calvet,34R. Camacho Toro,49S. Camarda,42D. Cameron,118L. M. Caminada,15R. Caminal Armadans,12S. Campana,30 M. Campanelli,77A. Campoverde,149V. Canale,103a,103bA. Canepa,160aM. Cano Bret,75J. Cantero,81R. Cantrill,76T. Cao,40 M. D. M. Capeans Garrido,30I. Caprini,26a M. Caprini,26a M. Capua,37a,37bR. Caputo,82R. Cardarelli,134aT. Carli,30 G. Carlino,103aL. Carminati,90a,90bS. Caron,105E. Carquin,32aG. D. Carrillo-Montoya,146cJ. R. Carter,28J. Carvalho,125a,125c

D. Casadei,77M. P. Casado,12 M. Casolino,12 E. Castaneda-Miranda,146b A. Castelli,106V. Castillo Gimenez,168 N. F. Castro,125aP. Catastini,57A. Catinaccio,30 J. R. Catmore,118 A. Cattai,30G. Cattani,134a,134bS. Caughron,89 V. Cavaliere,166D. Cavalli,90a M. Cavalli-Sforza,12 V. Cavasinni,123a,123bF. Ceradini,135a,135bB. Cerio,45K. Cerny,128

A. S. Cerqueira,24b A. Cerri,150L. Cerrito,75F. Cerutti,15M. Cerv,30A. Cervelli,17S. A. Cetin,19bA. Chafaq,136a D. Chakraborty,107 I. Chalupkova,128P. Chang,166 B. Chapleau,86J. D. Chapman,28D. Charfeddine,116D. G. Charlton,18

C. C. Chau,159C. A. Chavez Barajas,150 S. Cheatham,86A. Chegwidden,89S. Chekanov,6 S. V. Chekulaev,160a G. A. Chelkov,64,gM. A. Chelstowska,88C. Chen,63H. Chen,25K. Chen,149L. Chen,33d,hS. Chen,33cX. Chen,146cY. Chen,35

(8)

H. C. Cheng,88Y. Cheng,31A. Cheplakov,64R. Cherkaoui El Moursli,136eV. Chernyatin,25,a E. Cheu,7 L. Chevalier,137 V. Chiarella,47G. Chiefari,103a,103b J. T. Childers,6 A. Chilingarov,71G. Chiodini,72a A. S. Chisholm,18 R. T. Chislett,77 A. Chitan,26a M. V. Chizhov,64 S. Chouridou,9B. K. B. Chow,99D. Chromek-Burckhart,30M. L. Chu,152J. Chudoba,126

J. J. Chwastowski,39L. Chytka,114 G. Ciapetti,133a,133bA. K. Ciftci,4aR. Ciftci,4a D. Cinca,53V. Cindro,74A. Ciocio,15 P. Cirkovic,13b Z. H. Citron,173 M. Citterio,90aM. Ciubancan,26a A. Clark,49 P. J. Clark,46R. N. Clarke,15 W. Cleland,124

J. C. Clemens,84C. Clement,147a,147bY. Coadou,84M. Cobal,165a,165cA. Coccaro,139J. Cochran,63 L. Coffey,23 J. G. Cogan,144J. Coggeshall,166B. Cole,35S. Cole,107 A. P. Colijn,106J. Collot,55 T. Colombo,58cG. Colon,85 G. Compostella,100 P. Conde Muiño,125a,125bE. Coniavitis,48M. C. Conidi,12S. H. Connell,146bI. A. Connelly,76 S. M. Consonni,90a,90b V. Consorti,48S. Constantinescu,26a C. Conta,120a,120b G. Conti,57F. Conventi,103a,iM. Cooke,15

B. D. Cooper,77 A. M. Cooper-Sarkar,119N. J. Cooper-Smith,76K. Copic,15 T. Cornelissen,176M. Corradi,20a F. Corriveau,86,jA. Corso-Radu,164 A. Cortes-Gonzalez,12G. Cortiana,100 G. Costa,90a M. J. Costa,168D. Costanzo,140

D. Côté,8 G. Cottin,28 G. Cowan,76B. E. Cox,83K. Cranmer,109G. Cree,29S. Crépé-Renaudin,55F. Crescioli,79 W. A. Cribbs,147a,147bM. Crispin Ortuzar,119 M. Cristinziani,21 V. Croft,105 G. Crosetti,37a,37b C.-M. Cuciuc,26a T. Cuhadar Donszelmann,140J. Cummings,177M. Curatolo,47C. Cuthbert,151H. Czirr,142P. Czodrowski,3Z. Czyczula,177 S. D’Auria,53M. D’Onofrio,73M. J. Da Cunha Sargedas De Sousa,125a,125bC. Da Via,83W. Dabrowski,38aA. Dafinca,119

T. Dai,88O. Dale,14F. Dallaire,94C. Dallapiccola,85M. Dam,36A. C. Daniells,18M. Dano Hoffmann,137V. Dao,105 G. Darbo,50aS. Darmora,8 J. A. Dassoulas,42A. Dattagupta,60W. Davey,21C. David,170T. Davidek,128E. Davies,119,d

M. Davies,154 O. Davignon,79A. R. Davison,77 P. Davison,77Y. Davygora,58a E. Dawe,143I. Dawson,140 R. K. Daya-Ishmukhametova,85K. De,8 R. de Asmundis,103a S. De Castro,20a,20bS. De Cecco,79N. De Groot,105 P. de Jong,106H. De la Torre,81F. De Lorenzi,63L. De Nooij,106D. De Pedis,133aA. De Salvo,133aU. De Sanctis,165a,165b

A. De Santo,150 J. B. De Vivie De Regie,116 W. J. Dearnaley,71 R. Debbe,25C. Debenedetti,138 B. Dechenaux,55 D. V. Dedovich,64I. Deigaard,106 J. Del Peso,81T. Del Prete,123a,123bF. Deliot,137 C. M. Delitzsch,49M. Deliyergiyev,74 A. Dell’Acqua,30L. Dell’Asta,22M. Dell’Orso,123a,123b

M. Della Pietra,103a,iD. della Volpe,49M. Delmastro,5P. A. Delsart,55 C. Deluca,106S. Demers,177M. Demichev,64A. Demilly,79S. P. Denisov,129D. Derendarz,39J. E. Derkaoui,136dF. Derue,79

P. Dervan,73K. Desch,21 C. Deterre,42P. O. Deviveiros,106 A. Dewhurst,130S. Dhaliwal,106 A. Di Ciaccio,134a,134b L. Di Ciaccio,5 A. Di Domenico,133a,133bC. Di Donato,103a,103bA. Di Girolamo,30B. Di Girolamo,30A. Di Mattia,153 B. Di Micco,135a,135bR. Di Nardo,47A. Di Simone,48R. Di Sipio,20a,20b D. Di Valentino,29 F. A. Dias,46M. A. Diaz,32a E. B. Diehl,88J. Dietrich,42T. A. Dietzsch,58aS. Diglio,84A. Dimitrievska,13aJ. Dingfelder,21C. Dionisi,133a,133bP. Dita,26a

S. Dita,26a F. Dittus,30F. Djama,84T. Djobava,51bM. A. B. do Vale,24c A. Do Valle Wemans,125a,125gT. K. O. Doan,5 D. Dobos,30C. Doglioni,49T. Doherty,53T. Dohmae,156J. Dolejsi,128Z. Dolezal,128B. A. Dolgoshein,97,aM. Donadelli,24d

S. Donati,123a,123bP. Dondero,120a,120bJ. Donini,34J. Dopke,130A. Doria,103aM. T. Dova,70A. T. Doyle,53M. Dris,10 J. Dubbert,88S. Dube,15E. Dubreuil,34E. Duchovni,173 G. Duckeck,99O. A. Ducu,26a D. Duda,176 A. Dudarev,30 F. Dudziak,63L. Duflot,116L. Duguid,76M. Dührssen,30M. Dunford,58aH. Duran Yildiz,4aM. Düren,52A. Durglishvili,51b

M. Dwuznik,38a M. Dyndal,38a J. Ebke,99W. Edson,2 N. C. Edwards,46W. Ehrenfeld,21 T. Eifert,144 G. Eigen,14 K. Einsweiler,15T. Ekelof,167 M. El Kacimi,136cM. Ellert,167 S. Elles,5 F. Ellinghaus,82N. Ellis,30 J. Elmsheuser,99 M. Elsing,30D. Emeliyanov,130Y. Enari,156O. C. Endner,82M. Endo,117R. Engelmann,149J. Erdmann,177A. Ereditato,17

D. Eriksson,147aG. Ernis,176 J. Ernst,2 M. Ernst,25J. Ernwein,137 D. Errede,166S. Errede,166 E. Ertel,82M. Escalier,116 H. Esch,43C. Escobar,124 B. Esposito,47 A. I. Etienvre,137 E. Etzion,154 H. Evans,60A. Ezhilov,122L. Fabbri,20a,20b G. Facini,31R. M. Fakhrutdinov,129S. Falciano,133aR. J. Falla,77J. Faltova,128 Y. Fang,33aM. Fanti,90a,90b A. Farbin,8 A. Farilla,135aT. Farooque,12S. Farrell,164S. M. Farrington,171P. Farthouat,30F. Fassi,168P. Fassnacht,30D. Fassouliotis,9

A. Favareto,50a,50bL. Fayard,116 P. Federic,145aO. L. Fedin,122,k W. Fedorko,169M. Fehling-Kaschek,48S. Feigl,30 L. Feligioni,84C. Feng,33d E. J. Feng,6 H. Feng,88A. B. Fenyuk,129S. Fernandez Perez,30S. Ferrag,53J. Ferrando,53

A. Ferrari,167 P. Ferrari,106R. Ferrari,120aD. E. Ferreira de Lima,53A. Ferrer,168D. Ferrere,49 C. Ferretti,88 A. Ferretto Parodi,50a,50b M. Fiascaris,31F. Fiedler,82A. Filipčič,74M. Filipuzzi,42F. Filthaut,105M. Fincke-Keeler,170

K. D. Finelli,151M. C. N. Fiolhais,125a,125c L. Fiorini,168A. Firan,40A. Fischer,2 J. Fischer,176 W. C. Fisher,89 E. A. Fitzgerald,23M. Flechl,48I. Fleck,142P. Fleischmann,88S. Fleischmann,176G. T. Fletcher,140G. Fletcher,75T. Flick,176 A. Floderus,80L. R. Flores Castillo,174,lA. C. Florez Bustos,160bM. J. Flowerdew,100A. Formica,137A. Forti,83D. Fortin,160a D. Fournier,116H. Fox,71S. Fracchia,12P. Francavilla,79M. Franchini,20a,20bS. Franchino,30D. Francis,30M. Franklin,57 S. Franz,61M. Fraternali,120a,120bS. T. French,28C. Friedrich,42F. Friedrich,44D. Froidevaux,30J. A. Frost,28C. Fukunaga,157

(9)

E. Fullana Torregrosa,82B. G. Fulsom,144J. Fuster,168C. Gabaldon,55O. Gabizon,173A. Gabrielli,20a,20bA. Gabrielli,133a,133b S. Gadatsch,106S. Gadomski,49G. Gagliardi,50a,50bP. Gagnon,60C. Galea,105B. Galhardo,125a,125cE. J. Gallas,119V. Gallo,17 B. J. Gallop,130P. Gallus,127G. Galster,36K. K. Gan,110R. P. Gandrajula,62J. Gao,33b,hY. S. Gao,144,fF. M. Garay Walls,46 F. Garberson,177C. García,168J. E. García Navarro,168M. Garcia-Sciveres,15R. W. Gardner,31N. Garelli,144V. Garonne,30

C. Gatti,47G. Gaudio,120aB. Gaur,142L. Gauthier,94P. Gauzzi,133a,133bI. L. Gavrilenko,95C. Gay,169 G. Gaycken,21 E. N. Gazis,10P. Ge,33dZ. Gecse,169 C. N. P. Gee,130D. A. A. Geerts,106 Ch. Geich-Gimbel,21K. Gellerstedt,147a,147b C. Gemme,50aA. Gemmell,53M. H. Genest,55S. Gentile,133a,133bM. George,54S. George,76D. Gerbaudo,164A. Gershon,154

H. Ghazlane,136b N. Ghodbane,34B. Giacobbe,20a S. Giagu,133a,133bV. Giangiobbe,12 P. Giannetti,123a,123bF. Gianotti,30 B. Gibbard,25S. M. Gibson,76M. Gilchriese,15T. P. S. Gillam,28D. Gillberg,30G. Gilles,34D. M. Gingrich,3,eN. Giokaris,9

M. P. Giordani,165a,165c R. Giordano,103a,103bF. M. Giorgi,20a F. M. Giorgi,16P. F. Giraud,137D. Giugni,90a C. Giuliani,48 M. Giulini,58bB. K. Gjelsten,118S. Gkaitatzis,155 I. Gkialas,155,mL. K. Gladilin,98C. Glasman,81J. Glatzer,30 P. C. F. Glaysher,46A. Glazov,42 G. L. Glonti,64M. Goblirsch-Kolb,100 J. R. Goddard,75 J. Godfrey,143J. Godlewski,30 C. Goeringer,82S. Goldfarb,88T. Golling,177D. Golubkov,129A. Gomes,125a,125b,125dL. S. Gomez Fajardo,42R. Gonçalo,125a J. Goncalves Pinto Firmino Da Costa,137L. Gonella,21S. González de la Hoz,168G. Gonzalez Parra,12S. Gonzalez-Sevilla,49 L. Goossens,30P. A. Gorbounov,96H. A. Gordon,25I. Gorelov,104B. Gorini,30E. Gorini,72a,72bA. Gorišek,74E. Gornicki,39 A. T. Goshaw,6 C. Gössling,43M. I. Gostkin,64M. Gouighri,136aD. Goujdami,136cM. P. Goulette,49A. G. Goussiou,139

C. Goy,5 S. Gozpinar,23 H. M. X. Grabas,137L. Graber,54 I. Grabowska-Bold,38a P. Grafström,20a,20b K-J. Grahn,42 J. Gramling,49E. Gramstad,118S. Grancagnolo,16V. Grassi,149V. Gratchev,122 H. M. Gray,30E. Graziani,135a O. G. Grebenyuk,122Z. D. Greenwood,78,nK. Gregersen,77I. M. Gregor,42P. Grenier,144 J. Griffiths,8 A. A. Grillo,138 K. Grimm,71 S. Grinstein,12,o Ph. Gris,34Y. V. Grishkevich,98J.-F. Grivaz,116J. P. Grohs,44A. Grohsjean,42E. Gross,173

J. Grosse-Knetter,54G. C. Grossi,134a,134bJ. Groth-Jensen,173 Z. J. Grout,150L. Guan,33b F. Guescini,49D. Guest,177 O. Gueta,154C. Guicheney,34E. Guido,50a,50bT. Guillemin,116S. Guindon,2U. Gul,53C. Gumpert,44J. Gunther,127J. Guo,35

S. Gupta,119 P. Gutierrez,112 N. G. Gutierrez Ortiz,53C. Gutschow,77N. Guttman,154 C. Guyot,137 C. Gwenlan,119 C. B. Gwilliam,73A. Haas,109C. Haber,15H. K. Hadavand,8 N. Haddad,136eP. Haefner,21S. Hageböck,21 Z. Hajduk,39 H. Hakobyan,178 M. Haleem,42D. Hall,119G. Halladjian,89 K. Hamacher,176P. Hamal,114K. Hamano,170M. Hamer,54 A. Hamilton,146aS. Hamilton,162P. G. Hamnett,42L. Han,33bK. Hanagaki,117 K. Hanawa,156M. Hance,15P. Hanke,58a R. Hanna,137J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36K. Hara,161 A. S. Hard,174 T. Harenberg,176F. Hariri,116

S. Harkusha,91D. Harper,88R. D. Harrington,46O. M. Harris,139P. F. Harrison,171 F. Hartjes,106 S. Hasegawa,102 Y. Hasegawa,141 A. Hasib,112S. Hassani,137S. Haug,17M. Hauschild,30R. Hauser,89M. Havranek,126 C. M. Hawkes,18

R. J. Hawkings,30 A. D. Hawkins,80T. Hayashi,161D. Hayden,89C. P. Hays,119H. S. Hayward,73S. J. Haywood,130 S. J. Head,18T. Heck,82V. Hedberg,80L. Heelan,8S. Heim,121T. Heim,176 B. Heinemann,15L. Heinrich,109 J. Hejbal,126

L. Helary,22C. Heller,99M. Heller,30S. Hellman,147a,147bD. Hellmich,21C. Helsens,30J. Henderson,119 R. C. W. Henderson,71Y. Heng,174C. Hengler,42A. Henrichs,177A. M. Henriques Correia,30S. Henrot-Versille,116

C. Hensel,54G. H. Herbert,16Y. Hernández Jiménez,168R. Herrberg-Schubert,16 G. Herten,48R. Hertenberger,99 L. Hervas,30G. G. Hesketh,77N. P. Hessey,106R. Hickling,75E. Higón-Rodriguez,168E. Hill,170J. C. Hill,28K. H. Hiller,42

S. Hillert,21 S. J. Hillier,18 I. Hinchliffe,15 E. Hines,121M. Hirose,158D. Hirschbuehl,176J. Hobbs,149N. Hod,106 M. C. Hodgkinson,140P. Hodgson,140A. Hoecker,30M. R. Hoeferkamp,104J. Hoffman,40D. Hoffmann,84J. I. Hofmann,58a M. Hohlfeld,82T. R. Holmes,15T. M. Hong,121L. Hooft van Huysduynen,109J-Y. Hostachy,55S. Hou,152A. Hoummada,136a J. Howard,119J. Howarth,42M. Hrabovsky,114I. Hristova,16J. Hrivnac,116T. Hryn’ova,5C. Hsu,146cP. J. Hsu,82S.-C. Hsu,139 D. Hu,35X. Hu,25Y. Huang,42Z. Hubacek,30F. Hubaut,84F. Huegging,21T. B. Huffman,119E. W. Hughes,35G. Hughes,71 M. Huhtinen,30T. A. Hülsing,82M. Hurwitz,15N. Huseynov,64,c J. Huston,89J. Huth,57G. Iacobucci,49G. Iakovidis,10

I. Ibragimov,142L. Iconomidou-Fayard,116E. Ideal,177P. Iengo,103aO. Igonkina,106T. Iizawa,172Y. Ikegami,65 K. Ikematsu,142M. Ikeno,65Y. Ilchenko,31,p D. Iliadis,155N. Ilic,159Y. Inamaru,66T. Ince,100P. Ioannou,9M. Iodice,135a

K. Iordanidou,9V. Ippolito,57 A. Irles Quiles,168C. Isaksson,167M. Ishino,67 M. Ishitsuka,158R. Ishmukhametov,110 C. Issever,119S. Istin,19a J. M. Iturbe Ponce,83R. Iuppa,134a,134bJ. Ivarsson,80W. Iwanski,39H. Iwasaki,65J. M. Izen,41 V. Izzo,103aB. Jackson,121M. Jackson,73P. Jackson,1M. R. Jaekel,30V. Jain,2K. Jakobs,48S. Jakobsen,30T. Jakoubek,126 J. Jakubek,127D. O. Jamin,152D. K. Jana,78E. Jansen,77H. Jansen,30J. Janssen,21M. Janus,171G. Jarlskog,80N. Javadov,64,c T. Javůrek,48L. Jeanty,15J. Jejelava,51a,qG.-Y. Jeng,151D. Jennens,87P. Jenni,48,rJ. Jentzsch,43C. Jeske,171 S. Jézéquel,5 H. Ji,174W. Ji,82J. Jia,149Y. Jiang,33bM. Jimenez Belenguer,42S. Jin,33aA. Jinaru,26aO. Jinnouchi,158M. D. Joergensen,36

(10)

K. E. Johansson,147a,147bP. Johansson,140 K. A. Johns,7 K. Jon-And,147a,147bG. Jones,171R. W. L. Jones,71T. J. Jones,73 J. Jongmanns,58a P. M. Jorge,125a,125bK. D. Joshi,83J. Jovicevic,148X. Ju,174 C. A. Jung,43 R. M. Jungst,30P. Jussel,61

A. Juste Rozas,12,oM. Kaci,168A. Kaczmarska,39 M. Kado,116H. Kagan,110M. Kagan,144 E. Kajomovitz,45 C. W. Kalderon,119 S. Kama,40A. Kamenshchikov,129N. Kanaya,156M. Kaneda,30S. Kaneti,28V. A. Kantserov,97 J. Kanzaki,65B. Kaplan,109A. Kapliy,31D. Kar,53K. Karakostas,10N. Karastathis,10M. Karnevskiy,82S. N. Karpov,64

Z. M. Karpova,64K. Karthik,109 V. Kartvelishvili,71A. N. Karyukhin,129 L. Kashif,174 G. Kasieczka,58b R. D. Kass,110 A. Kastanas,14Y. Kataoka,156A. Katre,49J. Katzy,42V. Kaushik,7 K. Kawagoe,69T. Kawamoto,156 G. Kawamura,54 S. Kazama,156V. F. Kazanin,108 M. Y. Kazarinov,64R. Keeler,170R. Kehoe,40 M. Keil,54J. S. Keller,42J. J. Kempster,76

H. Keoshkerian,5 O. Kepka,126 B. P. Kerševan,74 S. Kersten,176K. Kessoku,156 J. Keung,159F. Khalil-zada,11 H. Khandanyan,147a,147bA. Khanov,113A. Khodinov,97 A. Khomich,58a T. J. Khoo,28G. Khoriauli,21A. Khoroshilov,176

V. Khovanskiy,96E. Khramov,64J. Khubua,51bH. Y. Kim,8 H. Kim,147a,147bS. H. Kim,161 N. Kimura,172O. Kind,16 B. T. King,73M. King,168R. S. B. King,119S. B. King,169J. Kirk,130A. E. Kiryunin,100T. Kishimoto,66D. Kisielewska,38a

F. Kiss,48 T. Kittelmann,124 K. Kiuchi,161E. Kladiva,145bM. Klein,73U. Klein,73K. Kleinknecht,82P. Klimek,147a,147b A. Klimentov,25R. Klingenberg,43J. A. Klinger,83T. Klioutchnikova,30P. F. Klok,105E.-E. Kluge,58aP. Kluit,106S. Kluth,100 E. Kneringer,61E. B. F. G. Knoops,84A. Knue,53D. Kobayashi,158T. Kobayashi,156M. Kobel,44M. Kocian,144P. Kodys,128 P. Koevesarki,21T. Koffas,29 E. Koffeman,106L. A. Kogan,119S. Kohlmann,176Z. Kohout,127 T. Kohriki,65T. Koi,144 H. Kolanoski,16I. Koletsou,5J. Koll,89A. A. Komar,95,a Y. Komori,156T. Kondo,65N. Kondrashova,42K. Köneke,48 A. C. König,105S. König,82T. Kono,65,sR. Konoplich,109,tN. Konstantinidis,77R. Kopeliansky,153S. Koperny,38a L. Köpke,82A. K. Kopp,48K. Korcyl,39K. Kordas,155 A. Korn,77A. A. Korol,108,u I. Korolkov,12E. V. Korolkova,140

V. A. Korotkov,129 O. Kortner,100S. Kortner,100V. V. Kostyukhin,21V. M. Kotov,64A. Kotwal,45C. Kourkoumelis,9 V. Kouskoura,155 A. Koutsman,160aR. Kowalewski,170T. Z. Kowalski,38a W. Kozanecki,137 A. S. Kozhin,129V. Kral,127

V. A. Kramarenko,98G. Kramberger,74D. Krasnopevtsev,97M. W. Krasny,79A. Krasznahorkay,30J. K. Kraus,21 A. Kravchenko,25S. Kreiss,109M. Kretz,58cJ. Kretzschmar,73K. Kreutzfeldt,52P. Krieger,159K. Kroeninger,54H. Kroha,100 J. Kroll,121J. Kroseberg,21J. Krstic,13a U. Kruchonak,64 H. Krüger,21T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64 A. Kruse,174M. C. Kruse,45 M. Kruskal,22T. Kubota,87S. Kuday,4aS. Kuehn,48A. Kugel,58c A. Kuhl,138 T. Kuhl,42

V. Kukhtin,64 Y. Kulchitsky,91 S. Kuleshov,32b M. Kuna,133a,133bJ. Kunkle,121 A. Kupco,126H. Kurashige,66 Y. A. Kurochkin,91R. Kurumida,66V. Kus,126E. S. Kuwertz,148M. Kuze,158J. Kvita,114A. La Rosa,49L. La Rotonda,37a,37b

C. Lacasta,168 F. Lacava,133a,133bJ. Lacey,29H. Lacker,16D. Lacour,79V. R. Lacuesta,168 E. Ladygin,64R. Lafaye,5 B. Laforge,79T. Lagouri,177S. Lai,48H. Laier,58aL. Lambourne,77S. Lammers,60C. L. Lampen,7W. Lampl,7E. Lançon,137 U. Landgraf,48M. P. J. Landon,75V. S. Lang,58aA. J. Lankford,164F. Lanni,25K. Lantzsch,30S. Laplace,79C. Lapoire,21 J. F. Laporte,137T. Lari,90aM. Lassnig,30P. Laurelli,47W. Lavrijsen,15A. T. Law,138P. Laycock,73B. T. Le,55O. Le Dortz,79 E. Le Guirriec,84E. Le Menedeu,12T. LeCompte,6F. Ledroit-Guillon,55C. A. Lee,152H. Lee,106J. S. H. Lee,117S. C. Lee,152 L. Lee,177G. Lefebvre,79M. Lefebvre,170F. Legger,99C. Leggett,15A. Lehan,73M. Lehmacher,21G. Lehmann Miotto,30 X. Lei,7 W. A. Leight,29A. Leisos,155A. G. Leister,177M. A. L. Leite,24d R. Leitner,128D. Lellouch,173 B. Lemmer,54 K. J. C. Leney,77T. Lenz,106G. Lenzen,176B. Lenzi,30R. Leone,7S. Leone,123a,123bK. Leonhardt,44C. Leonidopoulos,46 S. Leontsinis,10C. Leroy,94C. G. Lester,28C. M. Lester,121M. Levchenko,122J. Levêque,5 D. Levin,88L. J. Levinson,173 M. Levy,18A. Lewis,119G. H. Lewis,109A. M. Leyko,21M. Leyton,41B. Li,33b,vB. Li,84H. Li,149H. L. Li,31L. Li,45L. Li,33e S. Li,45Y. Li,33c,w Z. Liang,138H. Liao,34 B. Liberti,134aP. Lichard,30 K. Lie,166J. Liebal,21 W. Liebig,14C. Limbach,21 A. Limosani,87S. C. Lin,152,xT. H. Lin,82F. Linde,106B. E. Lindquist,149J. T. Linnemann,89E. Lipeles,121A. Lipniacka,14 M. Lisovyi,42T. M. Liss,166D. Lissauer,25A. Lister,169A. M. Litke,138B. Liu,152D. Liu,152J. B. Liu,33bK. Liu,33b,yL. Liu,88 M. Liu,45M. Liu,33bY. Liu,33bM. Livan,120a,120bS. S. A. Livermore,119 A. Lleres,55J. Llorente Merino,81 S. L. Lloyd,75

F. Lo Sterzo,152 E. Lobodzinska,42P. Loch,7 W. S. Lockman,138 T. Loddenkoetter,21F. K. Loebinger,83

A. E. Loevschall-Jensen,36A. Loginov,177 C. W. Loh,169 T. Lohse,16K. Lohwasser,42M. Lokajicek,126V. P. Lombardo,5 B. A. Long,22J. D. Long,88R. E. Long,71L. Lopes,125aD. Lopez Mateos,57B. Lopez Paredes,140I. Lopez Paz,12J. Lorenz,99 N. Lorenzo Martinez,60M. Losada,163P. Loscutoff,15X. Lou,41A. Lounis,116J. Love,6P. A. Love,71A. J. Lowe,144,fF. Lu,33a

H. J. Lubatti,139 C. Luci,133a,133bA. Lucotte,55 F. Luehring,60W. Lukas,61L. Luminari,133a O. Lundberg,147a,147b B. Lund-Jensen,148 M. Lungwitz,82D. Lynn,25R. Lysak,126E. Lytken,80H. Ma,25 L. L. Ma,33dG. Maccarrone,47 A. Macchiolo,100J. Machado Miguens,125a,125bD. Macina,30D. Madaffari,84R. Madar,48H. J. Maddocks,71W. F. Mader,44

(11)

C. Maidantchik,24a A. A. Maier,100 A. Maio,125a,125b,125d S. Majewski,115 Y. Makida,65N. Makovec,116P. Mal,137,z B. Malaescu,79Pa. Malecki,39V. P. Maleev,122 F. Malek,55U. Mallik,62 D. Malon,6 C. Malone,144 S. Maltezos,10 V. M. Malyshev,108 S. Malyukov,30J. Mamuzic,13b B. Mandelli,30L. Mandelli,90a I. Mandić,74R. Mandrysch,62

J. Maneira,125a,125bA. Manfredini,100L. Manhaes de Andrade Filho,24b J. A. Manjarres Ramos,160b A. Mann,99 P. M. Manning,138A. Manousakis-Katsikakis,9B. Mansoulie,137R. Mantifel,86L. Mapelli,30L. March,168J. F. Marchand,29 G. Marchiori,79M. Marcisovsky,126C. P. Marino,170M. Marjanovic,13aC. N. Marques,125aF. Marroquim,24aS. P. Marsden,83

Z. Marshall,15 L. F. Marti,17 S. Marti-Garcia,168 B. Martin,30B. Martin,89T. A. Martin,171V. J. Martin,46 B. Martin dit Latour,14H. Martinez,137M. Martinez,12,oS. Martin-Haugh,130A. C. Martyniuk,77M. Marx,139F. Marzano,133a A. Marzin,30L. Masetti,82T. Mashimo,156R. Mashinistov,95J. Masik,83A. L. Maslennikov,108I. Massa,20a,20bN. Massol,5 P. Mastrandrea,149A. Mastroberardino,37a,37bT. Masubuchi,156P. Mättig,176J. Mattmann,82J. Maurer,26aS. J. Maxfield,73

D. A. Maximov,108,u R. Mazini,152 L. Mazzaferro,134a,134bG. Mc Goldrick,159 S. P. Mc Kee,88A. McCarn,88 R. L. McCarthy,149T. G. McCarthy,29N. A. McCubbin,130K. W. McFarlane,56,a J. A. Mcfayden,77G. Mchedlidze,54

S. J. McMahon,130 R. A. McPherson,170,jA. Meade,85J. Mechnich,106M. Medinnis,42S. Meehan,31S. Mehlhase,99 A. Mehta,73K. Meier,58aC. Meineck,99B. Meirose,80C. Melachrinos,31 B. R. Mellado Garcia,146cF. Meloni,17 A. Mengarelli,20a,20bS. Menke,100 E. Meoni,162 K. M. Mercurio,57S. Mergelmeyer,21N. Meric,137 P. Mermod,49 L. Merola,103a,103bC. Meroni,90a F. S. Merritt,31H. Merritt,110 A. Messina,30,aaJ. Metcalfe,25A. S. Mete,164 C. Meyer,82 C. Meyer,31J-P. Meyer,137J. Meyer,30R. P. Middleton,130S. Migas,73L. Mijović,21G. Mikenberg,173M. Mikestikova,126 M. Mikuž,74A. Milic,30D. W. Miller,31C. Mills,46A. Milov,173D. A. Milstead,147a,147bD. Milstein,173A. A. Minaenko,129 I. A. Minashvili,64A. I. Mincer,109B. Mindur,38a M. Mineev,64Y. Ming,174 L. M. Mir,12 G. Mirabelli,133aT. Mitani,172

J. Mitrevski,99V. A. Mitsou,168 S. Mitsui,65A. Miucci,49 P. S. Miyagawa,140 J. U. Mjörnmark,80 T. Moa,147a,147b K. Mochizuki,84S. Mohapatra,35W. Mohr,48S. Molander,147a,147bR. Moles-Valls,168K. Mönig,42C. Monini,55J. Monk,36

E. Monnier,84J. Montejo Berlingen,12F. Monticelli,70S. Monzani,133a,133bR. W. Moore,3 A. Moraes,53N. Morange,62 D. Moreno,82M. Moreno Llácer,54P. Morettini,50a M. Morgenstern,44M. Morii,57 S. Moritz,82A. K. Morley,148 G. Mornacchi,30J. D. Morris,75L. Morvaj,102H. G. Moser,100M. Mosidze,51bJ. Moss,110K. Motohashi,158R. Mount,144

E. Mountricha,25 S. V. Mouraviev,95,aE. J. W. Moyse,85 S. Muanza,84R. D. Mudd,18F. Mueller,58a J. Mueller,124 K. Mueller,21T. Mueller,28T. Mueller,82D. Muenstermann,49Y. Munwes,154J. A. Murillo Quijada,18W. J. Murray,171,130 H. Musheghyan,54E. Musto,153A. G. Myagkov,129,bbM. Myska,127O. Nackenhorst,54J. Nadal,54K. Nagai,61R. Nagai,158 Y. Nagai,84K. Nagano,65 A. Nagarkar,110 Y. Nagasaka,59M. Nagel,100A. M. Nairz,30Y. Nakahama,30K. Nakamura,65

T. Nakamura,156I. Nakano,111 H. Namasivayam,41G. Nanava,21R. Narayan,58b T. Nattermann,21T. Naumann,42 G. Navarro,163R. Nayyar,7 H. A. Neal,88 P. Yu. Nechaeva,95T. J. Neep,83 P. D. Nef,144A. Negri,120a,120bG. Negri,30 M. Negrini,20aS. Nektarijevic,49A. Nelson,164T. K. Nelson,144S. Nemecek,126P. Nemethy,109A. A. Nepomuceno,24a

M. Nessi,30,ccM. S. Neubauer,166 M. Neumann,176R. M. Neves,109P. Nevski,25 P. R. Newman,18D. H. Nguyen,6 R. B. Nickerson,119R. Nicolaidou,137B. Nicquevert,30J. Nielsen,138N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,129,bb I. Nikolic-Audit,79K. Nikolics,49K. Nikolopoulos,18P. Nilsson,8Y. Ninomiya,156A. Nisati,133aR. Nisius,100T. Nobe,158 L. Nodulman,6 M. Nomachi,117 I. Nomidis,155S. Norberg,112 M. Nordberg,30 S. Nowak,100 M. Nozaki,65L. Nozka,114 K. Ntekas,10G. Nunes Hanninger,87T. Nunnemann,99E. Nurse,77F. Nuti,87B. J. O’Brien,46F. O’grady,7D. C. O’Neil,143 V. O’Shea,53F. G. Oakham,29,eH. Oberlack,100T. Obermann,21J. Ocariz,79A. Ochi,66M. I. Ochoa,77S. Oda,69S. Odaka,65 H. Ogren,60A. Oh,83S. H. Oh,45C. C. Ohm,30H. Ohman,167T. Ohshima,102W. Okamura,117H. Okawa,25Y. Okumura,31

T. Okuyama,156A. Olariu,26a A. G. Olchevski,64 S. A. Olivares Pino,46D. Oliveira Damazio,25E. Oliver Garcia,168 A. Olszewski,39J. Olszowska,39 A. Onofre,125a,125e P. U. E. Onyisi,31,pC. J. Oram,160aM. J. Oreglia,31Y. Oren,154

D. Orestano,135a,135bN. Orlando,72a,72bC. Oropeza Barrera,53R. S. Orr,159 B. Osculati,50a,50b R. Ospanov,121 G. Otero y Garzon,27H. Otono,69M. Ouchrif,136d E. A. Ouellette,170 F. Ould-Saada,118A. Ouraou,137 K. P. Oussoren,106

Q. Ouyang,33aA. Ovcharova,15M. Owen,83V. E. Ozcan,19a N. Ozturk,8 K. Pachal,119A. Pacheco Pages,12 C. Padilla Aranda,12M. Pagáčová,48S. Pagan Griso,15E. Paganis,140 C. Pahl,100 F. Paige,25P. Pais,85K. Pajchel,118 G. Palacino,160bS. Palestini,30M. Palka,38bD. Pallin,34A. Palma,125a,125bJ. D. Palmer,18Y. B. Pan,174E. Panagiotopoulou,10

J. G. Panduro Vazquez,76P. Pani,106N. Panikashvili,88S. Panitkin,25D. Pantea,26a L. Paolozzi,134a,134b

Th. D. Papadopoulou,10K. Papageorgiou,155,mA. Paramonov,6 D. Paredes Hernandez,34M. A. Parker,28F. Parodi,50a,50b J. A. Parsons,35U. Parzefall,48E. Pasqualucci,133a S. Passaggio,50a A. Passeri,135aF. Pastore,135a,135b,a Fr. Pastore,76 G. Pásztor,29S. Pataraia,176N. D. Patel,151J. R. Pater,83 S. Patricelli,103a,103bT. Pauly,30J. Pearce,170 M. Pedersen,118

(12)

S. Pedraza Lopez,168 R. Pedro,125a,125bS. V. Peleganchuk,108 D. Pelikan,167H. Peng,33b B. Penning,31J. Penwell,60 D. V. Perepelitsa,25 E. Perez Codina,160a M. T. Pérez García-Estañ,168 V. Perez Reale,35L. Perini,90a,90bH. Pernegger,30 R. Perrino,72aR. Peschke,42V. D. Peshekhonov,64K. Peters,30R. F. Y. Peters,83B. A. Petersen,30T. C. Petersen,36E. Petit,42

A. Petridis,147a,147bC. Petridou,155 E. Petrolo,133aF. Petrucci,135a,135bN. E. Pettersson,158 R. Pezoa,32bP. W. Phillips,130 G. Piacquadio,144E. Pianori,171A. Picazio,49E. Piccaro,75M. Piccinini,20a,20bR. Piegaia,27D. T. Pignotti,110J. E. Pilcher,31

A. D. Pilkington,77J. Pina,125a,125b,125d M. Pinamonti,165a,165c,dd A. Pinder,119J. L. Pinfold,3 A. Pingel,36B. Pinto,125a S. Pires,79 M. Pitt,173 C. Pizio,90a,90bL. Plazak,145aM.-A. Pleier,25 V. Pleskot,128 E. Plotnikova,64P. Plucinski,147a,147b S. Poddar,58a F. Podlyski,34R. Poettgen,82L. Poggioli,116D. Pohl,21 M. Pohl,49G. Polesello,120aA. Policicchio,37a,37b

R. Polifka,159A. Polini,20a C. S. Pollard,45 V. Polychronakos,25K. Pommès,30L. Pontecorvo,133aB. G. Pope,89 G. A. Popeneciu,26bD. S. Popovic,13aA. Poppleton,30X. Portell Bueso,12S. Pospisil,127 K. Potamianos,15I. N. Potrap,64

C. J. Potter,150C. T. Potter,115G. Poulard,30 J. Poveda,60V. Pozdnyakov,64P. Pralavorio,84A. Pranko,15S. Prasad,30 R. Pravahan,8 S. Prell,63D. Price,83 J. Price,73L. E. Price,6 D. Prieur,124M. Primavera,72a M. Proissl,46K. Prokofiev,47 F. Prokoshin,32bE. Protopapadaki,137S. Protopopescu,25J. Proudfoot,6 M. Przybycien,38a H. Przysiezniak,5E. Ptacek,115 D. Puddu,135a,135bE. Pueschel,85D. Puldon,149 M. Purohit,25,eeP. Puzo,116J. Qian,88G. Qin,53Y. Qin,83 A. Quadt,54 D. R. Quarrie,15W. B. Quayle,165a,165bM. Queitsch-Maitland,83D. Quilty,53A. Qureshi,160b V. Radeka,25V. Radescu,42

S. K. Radhakrishnan,149 P. Radloff,115P. Rados,87 F. Ragusa,90a,90bG. Rahal,179 S. Rajagopalan,25 M. Rammensee,30 A. S. Randle-Conde,40C. Rangel-Smith,167K. Rao,164F. Rauscher,99T. C. Rave,48T. Ravenscroft,53M. Raymond,30 A. L. Read,118N. P. Readioff,73D. M. Rebuzzi,120a,120bA. Redelbach,175 G. Redlinger,25R. Reece,138 K. Reeves,41

L. Rehnisch,16H. Reisin,27M. Relich,164 C. Rembser,30H. Ren,33aZ. L. Ren,152A. Renaud,116M. Rescigno,133a S. Resconi,90a O. L. Rezanova,108,uP. Reznicek,128R. Rezvani,94R. Richter,100 M. Ridel,79P. Rieck,16J. Rieger,54 M. Rijssenbeek,149A. Rimoldi,120a,120bL. Rinaldi,20aE. Ritsch,61I. Riu,12F. Rizatdinova,113E. Rizvi,75S. H. Robertson,86,j A. Robichaud-Veronneau,86D. Robinson,28J. E. M. Robinson,83A. Robson,53C. Roda,123a,123bL. Rodrigues,30S. Roe,30 O. Røhne,118S. Rolli,162A. Romaniouk,97M. Romano,20a,20bE. Romero Adam,168N. Rompotis,139L. Roos,79E. Ros,168

S. Rosati,133aK. Rosbach,49M. Rose,76P. L. Rosendahl,14O. Rosenthal,142V. Rossetti,147a,147bE. Rossi,103a,103b L. P. Rossi,50a R. Rosten,139M. Rotaru,26a I. Roth,173J. Rothberg,139D. Rousseau,116C. R. Royon,137 A. Rozanov,84

Y. Rozen,153 X. Ruan,146c F. Rubbo,12 I. Rubinskiy,42V. I. Rud,98C. Rudolph,44 M. S. Rudolph,159F. Rühr,48 A. Ruiz-Martinez,30Z. Rurikova,48N. A. Rusakovich,64A. Ruschke,99J. P. Rutherfoord,7N. Ruthmann,48Y. F. Ryabov,122

M. Rybar,128G. Rybkin,116 N. C. Ryder,119 A. F. Saavedra,151S. Sacerdoti,27A. Saddique,3 I. Sadeh,154 H. F-W. Sadrozinski,138 R. Sadykov,64F. Safai Tehrani,133aH. Sakamoto,156Y. Sakurai,172 G. Salamanna,135a,135b

A. Salamon,134aM. Saleem,112 D. Salek,106P. H. Sales De Bruin,139D. Salihagic,100A. Salnikov,144 J. Salt,168 B. M. Salvachua Ferrando,6D. Salvatore,37a,37b F. Salvatore,150A. Salvucci,105A. Salzburger,30D. Sampsonidis,155

A. Sanchez,103a,103bJ. Sánchez,168V. Sanchez Martinez,168 H. Sandaker,14R. L. Sandbach,75H. G. Sander,82 M. P. Sanders,99M. Sandhoff,176 T. Sandoval,28C. Sandoval,163R. Sandstroem,100D. P. C. Sankey,130 A. Sansoni,47 C. Santoni,34R. Santonico,134a,134bH. Santos,125aI. Santoyo Castillo,150K. Sapp,124A. Sapronov,64J. G. Saraiva,125a,125d

B. Sarrazin,21 G. Sartisohn,176O. Sasaki,65Y. Sasaki,156 G. Sauvage,5,a E. Sauvan,5P. Savard,159,e D. O. Savu,30 C. Sawyer,119L. Sawyer,78,nD. H. Saxon,53 J. Saxon,121 C. Sbarra,20a A. Sbrizzi,3 T. Scanlon,77D. A. Scannicchio,164

M. Scarcella,151V. Scarfone,37a,37b J. Schaarschmidt,173 P. Schacht,100D. Schaefer,121 R. Schaefer,42S. Schaepe,21 S. Schaetzel,58bU. Schäfer,82 A. C. Schaffer,116 D. Schaile,99R. D. Schamberger,149V. Scharf,58aV. A. Schegelsky,122

D. Scheirich,128M. Schernau,164M. I. Scherzer,35C. Schiavi,50a,50bJ. Schieck,99C. Schillo,48M. Schioppa,37a,37b S. Schlenker,30E. Schmidt,48K. Schmieden,30C. Schmitt,82C. Schmitt,99S. Schmitt,58bB. Schneider,17Y. J. Schnellbach,73 U. Schnoor,44L. Schoeffel,137A. Schoening,58bB. D. Schoenrock,89A. L. S. Schorlemmer,54M. Schott,82D. Schouten,160a J. Schovancova,25S. Schramm,159M. Schreyer,175C. Schroeder,82N. Schuh,82M. J. Schultens,21H.-C. Schultz-Coulon,58a

H. Schulz,16M. Schumacher,48B. A. Schumm,138Ph. Schune,137 C. Schwanenberger,83A. Schwartzman,144 Ph. Schwegler,100Ph. Schwemling,137R. Schwienhorst,89J. Schwindling,137T. Schwindt,21M. Schwoerer,5F. G. Sciacca,17 E. Scifo,116G. Sciolla,23W. G. Scott,130F. Scuri,123a,123bF. Scutti,21J. Searcy,88G. Sedov,42E. Sedykh,122S. C. Seidel,104 A. Seiden,138F. Seifert,127 J. M. Seixas,24a G. Sekhniaidze,103a S. J. Sekula,40K. E. Selbach,46D. M. Seliverstov,122,a G. Sellers,73N. Semprini-Cesari,20a,20b C. Serfon,30L. Serin,116L. Serkin,54T. Serre,84R. Seuster,160aH. Severini,112 T. Sfiligoj,74F. Sforza,100A. Sfyrla,30E. Shabalina,54M. Shamim,115L. Y. Shan,33aR. Shang,166J. T. Shank,22M. Shapiro,15

(13)

M. Shimojima,101M. Shiyakova,64A. Shmeleva,95M. J. Shochet,31D. Short,119S. Shrestha,63E. Shulga,97M. A. Shupe,7 S. Shushkevich,42P. Sicho,126O. Sidiropoulou,155D. Sidorov,113A. Sidoti,133aF. Siegert,44Dj. Sijacki,13aJ. Silva,125a,125d Y. Silver,154D. Silverstein,144 S. B. Silverstein,147a V. Simak,127O. Simard,5 Lj. Simic,13a S. Simion,116E. Simioni,82 B. Simmons,77R. Simoniello,90a,90bM. Simonyan,36P. Sinervo,159N. B. Sinev,115V. Sipica,142G. Siragusa,175A. Sircar,78 A. N. Sisakyan,64,aS. Yu. Sivoklokov,98J. Sjölin,147a,147bT. B. Sjursen,14H. P. Skottowe,57K. Yu. Skovpen,108P. Skubic,112 M. Slater,18T. Slavicek,127 K. Sliwa,162V. Smakhtin,173B. H. Smart,46L. Smestad,14S. Yu. Smirnov,97Y. Smirnov,97

L. N. Smirnova,98,gg O. Smirnova,80K. M. Smith,53M. Smizanska,71K. Smolek,127 A. A. Snesarev,95G. Snidero,75 S. Snyder,25R. Sobie,170,jF. Socher,44A. Soffer,154D. A. Soh,152,ffC. A. Solans,30M. Solar,127J. Solc,127E. Yu. Soldatov,97 U. Soldevila,168E. Solfaroli Camillocci,133a,133bA. A. Solodkov,129A. Soloshenko,64O. V. Solovyanov,129V. Solovyev,122 P. Sommer,48H. Y. Song,33b N. Soni,1 A. Sood,15A. Sopczak,127 B. Sopko,127V. Sopko,127 V. Sorin,12M. Sosebee,8

R. Soualah,165a,165c P. Soueid,94A. M. Soukharev,108D. South,42S. Spagnolo,72a,72bF. Spanò,76W. R. Spearman,57 F. Spettel,100 R. Spighi,20a G. Spigo,30M. Spousta,128 T. Spreitzer,159B. Spurlock,8 R. D. St. Denis,53,a S. Staerz,44 J. Stahlman,121R. Stamen,58a E. Stanecka,39R. W. Stanek,6C. Stanescu,135aM. Stanescu-Bellu,42M. M. Stanitzki,42 S. Stapnes,118E. A. Starchenko,129J. Stark,55P. Staroba,126P. Starovoitov,42R. Staszewski,39P. Stavina,145a,aP. Steinberg,25

B. Stelzer,143 H. J. Stelzer,30O. Stelzer-Chilton,160aH. Stenzel,52S. Stern,100G. A. Stewart,53J. A. Stillings,21 M. C. Stockton,86M. Stoebe,86G. Stoicea,26aP. Stolte,54S. Stonjek,100A. R. Stradling,8A. Straessner,44M. E. Stramaglia,17

J. Strandberg,148 S. Strandberg,147a,147bA. Strandlie,118E. Strauss,144 M. Strauss,112P. Strizenec,145b R. Ströhmer,175 D. M. Strom,115R. Stroynowski,40S. A. Stucci,17B. Stugu,14N. A. Styles,42D. Su,144J. Su,124 HS. Subramania,3 R. Subramaniam,78A. Succurro,12Y. Sugaya,117C. Suhr,107M. Suk,127V. V. Sulin,95S. Sultansoy,4cT. Sumida,67X. Sun,33a

J. E. Sundermann,48K. Suruliz,140 G. Susinno,37a,37bM. R. Sutton,150Y. Suzuki,65 M. Svatos,126S. Swedish,169 M. Swiatlowski,144 I. Sykora,145aT. Sykora,128D. Ta,89C. Taccini,135a,135bK. Tackmann,42J. Taenzer,159A. Taffard,164 R. Tafirout,160aN. Taiblum,154Y. Takahashi,102H. Takai,25R. Takashima,68H. Takeda,66T. Takeshita,141Y. Takubo,65

M. Talby,84 A. A. Talyshev,108,u J. Y. C. Tam,175 K. G. Tan,87J. Tanaka,156 R. Tanaka,116 S. Tanaka,132 S. Tanaka,65 A. J. Tanasijczuk,143B. B. Tannenwald,110N. Tannoury,21S. Tapprogge,82S. Tarem,153F. Tarrade,29G. F. Tartarelli,90a

P. Tas,128M. Tasevsky,126T. Tashiro,67 E. Tassi,37a,37bA. Tavares Delgado,125a,125bY. Tayalati,136d F. E. Taylor,93 G. N. Taylor,87W. Taylor,160bF. A. Teischinger,30 M. Teixeira Dias Castanheira,75P. Teixeira-Dias,76K. K. Temming,48 H. Ten Kate,30P. K. Teng,152J. J. Teoh,117S. Terada,65K. Terashi,156J. Terron,81S. Terzo,100M. Testa,47R. J. Teuscher,159,j

J. Therhaag,21T. Theveneaux-Pelzer,34J. P. Thomas,18J. Thomas-Wilsker,76E. N. Thompson,35P. D. Thompson,18 P. D. Thompson,159 A. S. Thompson,53L. A. Thomsen,36E. Thomson,121M. Thomson,28W. M. Thong,87R. P. Thun,88,a F. Tian,35M. J. Tibbetts,15V. O. Tikhomirov,95,hhYu. A. Tikhonov,108,uS. Timoshenko,97E. Tiouchichine,84P. Tipton,177 S. Tisserant,84T. Todorov,5S. Todorova-Nova,128B. Toggerson,7J. Tojo,69S. Tokár,145aK. Tokushuku,65K. Tollefson,89 L. Tomlinson,83M. Tomoto,102L. Tompkins,31K. Toms,104N. D. Topilin,64E. Torrence,115H. Torres,143E. Torró Pastor,168 J. Toth,84,ii F. Touchard,84D. R. Tovey,140H. L. Tran,116 T. Trefzger,175L. Tremblet,30A. Tricoli,30I. M. Trigger,160a S. Trincaz-Duvoid,79M. F. Tripiana,12N. Triplett,25W. Trischuk,159B. Trocmé,55C. Troncon,90aM. Trottier-McDonald,143

M. Trovatelli,135a,135bP. True,89M. Trzebinski,39A. Trzupek,39C. Tsarouchas,30J. C-L. Tseng,119 P. V. Tsiareshka,91 D. Tsionou,137G. Tsipolitis,10N. Tsirintanis,9 S. Tsiskaridze,12V. Tsiskaridze,48E. G. Tskhadadze,51aI. I. Tsukerman,96

V. Tsulaia,15S. Tsuno,65D. Tsybychev,149 A. Tudorache,26a V. Tudorache,26a A. N. Tuna,121 S. A. Tupputi,20a,20b S. Turchikhin,98,gg D. Turecek,127 I. Turk Cakir,4dR. Turra,90a,90bP. M. Tuts,35A. Tykhonov,49M. Tylmad,147a,147b M. Tyndel,130K. Uchida,21I. Ueda,156R. Ueno,29M. Ughetto,84M. Ugland,14M. Uhlenbrock,21F. Ukegawa,161G. Unal,30 A. Undrus,25G. Unel,164F. C. Ungaro,48Y. Unno,65D. Urbaniec,35P. Urquijo,87G. Usai,8A. Usanova,61L. Vacavant,84

V. Vacek,127 B. Vachon,86 N. Valencic,106S. Valentinetti,20a,20bA. Valero,168L. Valery,34S. Valkar,128 E. Valladolid Gallego,168 S. Vallecorsa,49J. A. Valls Ferrer,168 W. Van Den Wollenberg,106 P. C. Van Der Deijl,106 R. van der Geer,106 H. van der Graaf,106R. Van Der Leeuw,106D. van der Ster,30 N. van Eldik,30P. van Gemmeren,6

J. Van Nieuwkoop,143I. van Vulpen,106M. C. van Woerden,30M. Vanadia,133a,133bW. Vandelli,30R. Vanguri,121 A. Vaniachine,6 P. Vankov,42F. Vannucci,79G. Vardanyan,178 R. Vari,133aE. W. Varnes,7 T. Varol,85D. Varouchas,79 A. Vartapetian,8 K. E. Varvell,151F. Vazeille,34T. Vazquez Schroeder,54J. Veatch,7 F. Veloso,125a,125c S. Veneziano,133a

A. Ventura,72a,72bD. Ventura,85M. Venturi,170N. Venturi,159A. Venturini,23V. Vercesi,120aM. Verducci,133a,133b W. Verkerke,106 J. C. Vermeulen,106 A. Vest,44M. C. Vetterli,143,eO. Viazlo,80I. Vichou,166 T. Vickey,146c,jj O. E. Vickey Boeriu,146cG. H. A. Viehhauser,119 S. Viel,169R. Vigne,30M. Villa,20a,20bM. Villaplana Perez,90a,90b

References

Related documents

Studien syftar till att belysa arbetssituationen för Områdespoliser i Sverige, huruvida förutsättningar finns för att till fullo uppfylla sina arbetsdirektiv samt belysa om

Undersökningen visade även att pedagoger inte har några riktigt fasta metoder för flerspråkiga elevernas språkutveckling, de anser att det är väldigt individuellt från elev

Objectives: To demonstrate the feasibility of GafChromic ® XR-QA2 (ISP Corp., Wayne, NJ) as a dosemeter when performing measurements of the effective dose from three cone beam CT

Att använda språket i alla skolans ämne och i olika sammanhang är en avgörande aspekt för eleverna språkutveckling anser många läraren när de berättade om nyanländas

Cummins fyrdomänmodell (figur 1) visar hur läraren kan arbeta med flerspråkiga elever. Läraren kan utmana och stödja eleverna för att hjälpa dem att lära sig

Det är inte lätt att sluta röka bland annat på grund av abstinensbesvären (Anthenelli 2005; von Bothmer 2010) men om sjuksköterskan lär sig behärska MI, har hon ett

(2014) agree that the usage of digital literature in the classroom can become a challenging matter due to aspects such as the digital can cause distractions in students'

Eftersom majoriteten av eleverna med svenska som andraspråk samt nyanlända elever har svårigheter med det svenska språket, tar specialpedagog och andra lärare hjälp av