• No results found

An improved limit for Gamma(ee) of X(3872) and Gamma(ee) measurement of psi(3686)

N/A
N/A
Protected

Academic year: 2021

Share "An improved limit for Gamma(ee) of X(3872) and Gamma(ee) measurement of psi(3686)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

An

improved

limit

for



ee

of

X

(3872)

and



ee

measurement

of

ψ (3686)

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

1

,

X.C. Ai

a

,

O. Albayrak

e

,

M. Albrecht

d

,

D.J. Ambrose

av

,

A. Amoroso

az

,

bb

,

F.F. An

a

,

Q. An

aw

,

J.Z. Bai

a

,

R. Baldini Ferroli

t

,

Y. Ban

ag

,

D.W. Bennett

s

,

J.V. Bennett

e

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

au

,

F. Bianchi

az

,

bb

,

E. Boger

y

,

8

,

O. Bondarenko

aa

,

I. Boyko

y

,

R.A. Briere

e

,

H. Cai

bd

,

X. Cai

a

,

O. Cakir

ap

,

2

,

A. Calcaterra

t

,

G.F. Cao

a

,

S.A. Cetin

aq

,

J.F. Chang

a

,

G. Chelkov

y

,

3

,

G. Chen

a

,

H.S. Chen

a

,

H.Y. Chen

b

,

J.C. Chen

a

,

M.L. Chen

a

,

S.J. Chen

ae

,

X. Chen

a

,

X.R. Chen

ab

,

Y.B. Chen

a

,

H.P. Cheng

q

,

X.K. Chu

ag

,

G. Cibinetto

v

,

D. Cronin-Hennessy

au

,

H.L. Dai

a

,

J.P. Dai

aj

,

A. Dbeyssi

n

,

D. Dedovich

y

,

Z.Y. Deng

a

,

A. Denig

x

,

I. Denysenko

y

,

M. Destefanis

az

,

bb

,

F. De Mori

az

,

bb

,

Y. Ding

ac

,

C. Dong

af

,

J. Dong

a

,

L.Y. Dong

a

,

M.Y. Dong

a

,

S.X. Du

bf

,

P.F. Duan

a

,

J.Z. Fan

ao

,

J. Fang

a

,

S.S. Fang

a

,

X. Fang

aw

,

Y. Fang

a

,

L. Fava

ba

,

bb

,

F. Feldbauer

x

,

G. Felici

t

,

C.Q. Feng

aw

,

E. Fioravanti

v

,

M. Fritsch

n

,

x

,

C.D. Fu

a

,

Q. Gao

a

,

X.Y. Gao

b

,

Y. Gao

ao

,

Z. Gao

aw

,

I. Garzia

v

,

C. Geng

aw

,

K. Goetzen

j

,

W.X. Gong

a

,

W. Gradl

x

,

M. Greco

az

,

bb

,

M.H. Gu

a

,

Y.T. Gu

l

,

Y.H. Guan

a

,

A.Q. Guo

a

,

L.B. Guo

ad

,

Y. Guo

a

,

Y.P. Guo

x

,

Z. Haddadi

aa

,

A. Hafner

x

,

S. Han

bd

,

Y.L. Han

a

,

X.Q. Hao

o

,

F.A. Harris

at

,

K.L. He

a

,

Z.Y. He

af

,

T. Held

d

,

Y.K. Heng

a

,

Z.L. Hou

a

,

C. Hu

ad

,

H.M. Hu

a

,

J.F. Hu

az

,

bb

,

T. Hu

a

,

Y. Hu

a

,

G.M. Huang

f

,

G.S. Huang

aw

,

H.P. Huang

bd

,

J.S. Huang

o

,

X.T. Huang

ai

,

Y. Huang

ae

,

T. Hussain

ay

,

Q. Ji

a

,

Q.P. Ji

af

,

X.B. Ji

a

,

X.L. Ji

a

,

L.L. Jiang

a

,

L.W. Jiang

bd

,

X.S. Jiang

a

,

J.B. Jiao

ai

,

Z. Jiao

q

,

D.P. Jin

a

,

S. Jin

a

,

T. Johansson

bc

,

A. Julin

au

,

N. Kalantar-Nayestanaki

aa

,

X.L. Kang

a

,

X.S. Kang

af

,

M. Kavatsyuk

aa

,

B.C. Ke

e

,

R. Kliemt

n

,

B. Kloss

x

,

O.B. Kolcu

aq

,

4

,

B. Kopf

d

,

M. Kornicer

at

,

W. Kühn

z

,

A. Kupsc

bc

,

W. Lai

a

,

J.S. Lange

z

,

M. Lara

s

,

P. Larin

n

,

C. Leng

bb

,

C.H. Li

a

,

Cheng Li

aw

,

D.M. Li

bf

,

F. Li

a

,

G. Li

a

,

H.B. Li

a

,

J.C. Li

a

,

Jin Li

ah

,

K. Li

m

,

K. Li

ai

,

Lei Li

c

,

P.R. Li

as

,

T. Li

ai

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ai

,

X.M. Li

l

,

X.N. Li

a

,

X.Q. Li

af

,

Z.B. Li

an

,

H. Liang

aw

,

Y.F. Liang

al

,

Y.T. Liang

z

,

G.R. Liao

k

,

D.X. Lin

n

,

B.J. Liu

a

,

C.X. Liu

a

,

F.H. Liu

ak

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.H. Liu

a

,

H.H. Liu

p

,

H.M. Liu

a

,

J. Liu

a

,

J.P. Liu

bd

,

J.Y. Liu

a

,

K. Liu

ao

,

K.Y. Liu

ac

,

L.D. Liu

ag

,

P.L. Liu

a

,

Q. Liu

as

,

S.B. Liu

aw

,

X. Liu

ab

,

X.X. Liu

as

,

Y.B. Liu

af

,

Z.A. Liu

a

,

Zhiqiang Liu

a

,

Zhiqing Liu

x

,

H. Loehner

aa

,

X.C. Lou

a

,

5

,

H.J. Lu

q

,

J.G. Lu

a

,

R.Q. Lu

r

,

Y. Lu

a

,

Y.P. Lu

a

,

C.L. Luo

ad

,

M.X. Luo

be

,

T. Luo

at

,

X.L. Luo

a

,

M. Lv

a

,

X.R. Lyu

as

,

F.C. Ma

ac

,

H.L. Ma

a

,

L.L. Ma

ai

,

Q.M. Ma

a

,

S. Ma

a

,

T. Ma

a

,

X.N. Ma

af

,

X.Y. Ma

a

,

F.E. Maas

n

,

M. Maggiora

az

,

bb

,

Q.A. Malik

ay

,

Y.J. Mao

ag

,

Z.P. Mao

a

,

S. Marcello

az

,

bb

,

J.G. Messchendorp

aa

,

J. Min

a

,

T.J. Min

a

,

R.E. Mitchell

s

,

X.H. Mo

a

,

Y.J. Mo

f

,

C. Morales Morales

n

,

K. Moriya

s

,

N.Yu. Muchnoi

i

,

1

,

H. Muramatsu

au

,

Y. Nefedov

y

,

F. Nerling

n

,

I.B. Nikolaev

i

,

1

,

Z. Ning

a

,

S. Nisar

h

,

S.L. Niu

a

,

X.Y. Niu

a

,

S.L. Olsen

ah

,

Q. Ouyang

a

,

S. Pacetti

u

,

P. Patteri

t

,

M. Pelizaeus

d

,

H.P. Peng

aw

,

K. Peters

j

,

J. Pettersson

bc

,

J.L. Ping

ad

,

R.G. Ping

a

,

R. Poling

au

,

Y.N. Pu

r

,

M. Qi

ae

,

S. Qian

a

,

C.F. Qiao

as

,

L.Q. Qin

ai

,

N. Qin

bd

,

X.S. Qin

a

,

Y. Qin

ag

,

Z.H. Qin

a

,

J.F. Qiu

a

,

K.H. Rashid

ay

,

C.F. Redmer

x

,

H.L. Ren

r

,

M. Ripka

x

,∗

,

G. Rong

a

,

X.D. Ruan

l

,

V. Santoro

v

,

A. Sarantsev

y

,

6

,

M. Savrié

w

,

K. Schoenning

bc

,

S. Schumann

x

,

W. Shan

ag

,

http://dx.doi.org/10.1016/j.physletb.2015.08.013

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

M. Shao

aw

,

C.P. Shen

b

,

P.X. Shen

af

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

W.M. Song

a

,

X.Y. Song

a

,

S. Sosio

az

,

bb

,

S. Spataro

az

,

bb

,

G.X. Sun

a

,

J.F. Sun

o

,

S.S. Sun

a

,

Y.J. Sun

aw

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

Z.T. Sun

s

,

C.J. Tang

al

,

X. Tang

a

,

I. Tapan

ar

,

E.H. Thorndike

av

,

M. Tiemens

aa

,

D. Toth

au

,

M. Ullrich

z

,

I. Uman

aq

,

G.S. Varner

at

,

B. Wang

af

,

B.L. Wang

as

,

D. Wang

ag

,

D.Y. Wang

ag

,

K. Wang

a

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ai

,

P. Wang

a

,

P.L. Wang

a

,

Q.J. Wang

a

,

S.G. Wang

ag

,

W. Wang

a

,

X.F. Wang

ao

,

Y.D. Wang

t

,

Y.F. Wang

a

,

Y.Q. Wang

x

,

Z. Wang

a

,

Z.G. Wang

a

,

Z.H. Wang

aw

,

Z.Y. Wang

a

,

T. Weber

x

,

D.H. Wei

k

,

J.B. Wei

ag

,

P. Weidenkaff

x

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

bc

,

L.H. Wu

a

,

Z. Wu

a

,

L.G. Xia

ao

,

Y. Xia

r

,

D. Xiao

a

,

Z.J. Xiao

ad

,

Y.G. Xie

a

,

Q.L. Xiu

a

,

G.F. Xu

a

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

as

,

X.P. Xu

am

,

L. Yan

aw

,

W.B. Yan

aw

,

W.C. Yan

aw

,

Y.H. Yan

r

,

H.X. Yang

a

,

L. Yang

bd

,

Y. Yang

f

,

Y.X. Yang

k

,

H. Ye

a

,

M. Ye

a

,

M.H. Ye

g

,

J.H. Yin

a

,

B.X. Yu

a

,

C.X. Yu

af

,

H.W. Yu

ag

,

J.S. Yu

ab

,

C.Z. Yuan

a

,

W.L. Yuan

ae

,

Y. Yuan

a

,

A. Yuncu

aq

,

7

,

A.A. Zafar

ay

,

A. Zallo

t

,

Y. Zeng

r

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

C. Zhang

ae

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

an

,

H.Y. Zhang

a

,

J.J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

a

,

S.H. Zhang

a

,

X.Y. Zhang

ai

,

Y. Zhang

a

,

Y.H. Zhang

a

,

Y.T. Zhang

aw

,

Z.H. Zhang

f

,

Z.P. Zhang

aw

,

Z.Y. Zhang

bd

,

G. Zhao

a

,

J.W. Zhao

a

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

Lei Zhao

aw

,

Ling Zhao

a

,

M.G. Zhao

af

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

bf

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

Z.G. Zhao

aw

,

A. Zhemchugov

y

,

8

,

B. Zheng

ax

,

J.P. Zheng

a

,

W.J. Zheng

ai

,

Y.H. Zheng

as

,

B. Zhong

ad

,

L. Zhou

a

,

Li Zhou

af

,

X. Zhou

bd

,

X.K. Zhou

aw

,

X.R. Zhou

aw

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

S. Zhu

a

,

X.L. Zhu

ao

,

Y.C. Zhu

aw

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

L. Zotti

az

,

bb

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangXiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany yJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

zJustusLiebigUniversityGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany aaKVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

abLanzhouUniversity,Lanzhou730000,People’sRepublicofChina acLiaoningUniversity,Shenyang110036,People’sRepublicofChina adNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina aeNanjingUniversity,Nanjing210093,People’sRepublicofChina afNankaiUniversity,Tianjin300071,People’sRepublicofChina agPekingUniversity,Beijing100871,People’sRepublicofChina ahSeoulNationalUniversity,Seoul,151-747,RepublicofKorea aiShandongUniversity,Jinan250100,People’sRepublicofChina

ajShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina akShanxiUniversity,Taiyuan030006,People’sRepublicofChina

alSichuanUniversity,Chengdu610064,People’sRepublicofChina amSoochowUniversity,Suzhou215006,People’sRepublicofChina anSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina aoTsinghuaUniversity,Beijing100084,People’sRepublicofChina apIstanbulAydinUniversity,34295Sefakoy,Istanbul,Turkey aqDogusUniversity,34722Istanbul,Turkey

arUludagUniversity,16059Bursa,Turkey

asUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina atUniversityofHawaii,Honolulu,HI 96822,USA

(3)

auUniversityofMinnesota,Minneapolis,MN 55455,USA avUniversityofRochester,Rochester,NY 14627,USA

awUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina axUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

ayUniversityofthePunjab,Lahore-54590,Pakistan azUniversityofTurin,I-10125,Turin,Italy

baUniversityofEasternPiedmont,I-15121,Alessandria,Italy bbINFN,I-10125,Turin,Italy

bcUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bdWuhanUniversity,Wuhan430072,People’sRepublicofChina beZhejiangUniversity,Hangzhou310027,People’sRepublicofChina bfZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received11May2015

Receivedinrevisedform20July2015 Accepted4August2015

Availableonline7August2015 Editor:V.Metag Keywords: X(3872) ψ(3686) ee Charmoniumspectroscopy BESIII

Using thedatasetstakenatcenter-of-massenergiesabove4 GeVbytheBESIII detectorattheBEPCII

storage ring, we search for the reaction e+e−→

γ

ISRX(3872)

γ

ISR

π

+

π

J/ψ via the Initial State

Radiation technique. The production of aresonance with quantum numbers JPC=1++ such as the

X(3872) viasingle photon e+e− annihilation isforbidden, but isallowed by anext-to-leading order

boxdiagram.WedonotobserveasignificantsignalofX(3872),andthereforegiveanupperlimitforthe

electronic widthtimesthe branchingfractioneeX(3872)B(X(3872)

π

+

π

J/ψ)<0.13 eV atthe 90%

confidencelevel.Thismeasurementimprovesuponexistinglimitsbyafactorof46.Usingthesamefinal

state,wealsomeasuretheelectronicwidthoftheψ(3686)tobeeeψ (3686)=2213±18stat±99syseV.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The X

(

3872

)

resonance was observed in 2003by Belle [1] in thedecaychannel

π

+

π

J

.Theexistenceofthisstatewaslater confirmedbyseveralother experiments[2–6].The observationof the decay channel X

(

3872

)

γ

J

implies that the state has even C-parity [5,7,8]. The quantum numbers were finally deter-minedtobe JPC

=

1++ [5,9].However,theintrinsicnatureofthe resonance is still unknown and has led to many conjectures. It is a good candidate for a tetraquark state but also for a meson moleculeasitsmassisclosetothe D0D

¯

∗0threshold[10].The

re-centobservationofthedecay Y

(

4260

)

γ

X

(

3872

)

byBESIII [6] impliesthatthe X

(

3872

)

couldbeamesonmolecule,assuggested by a model dependent calculation [11]. On the other hand, the largedecay rateof X

(

3872

)

γ

ψ(

3686

)

observedby BaBarand LHCb, comparedto X

(

3872

)

γ

J

hintsat a tetraquark state explanation[8,12,13].Oneoftheinterestingquantities,whichmay helptorevealthestructureofthe X

(

3872

)

isitselectronic width



ee.A recentorder-of-magnitudecalculationusingaVectorMeson Dominance model predicts



eeX(3872)

0

.

03 eV [14], without any prior assumption regarding the nature ofthe X

(

3872

)

.For com-parison,calculationsforthe



ee oftheordinary1++ charmonium state

χ

c1 have beencarried out [15] andthe electronic widthis foundtobeintherangebetween0

.

044 eV and0

.

46 eV.Thiswas alsoconfirmedinamorerecentcalculation[14].

*

Correspondingauthor.

E-mailaddress:ripka@uni-mainz.de(M. Ripka).

1 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 2 AlsoatAnkaraUniversity,06100Tandogan,Ankara,Turkey.

3 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia

andattheFunctionalElectronicsLaboratory,TomskStateUniversity,Tomsk,634050, Russia.

4 CurrentlyatIstanbulArelUniversity,34295Istanbul,Turkey. 5 AlsoattheUniversity ofTexasatDallas,Richardson,TX 75083,USA. 6 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 7 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

8 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia.

Fig. 1. ISR production of X(3872)via a box diagram.

The currentupperlimit for



eeX(3872) isatthe

O(

102

)

eV level [16],whichis threeorders ofmagnitudelargerthan the theoret-ical prediction.The aim of this work is to obtain a significantly improvedexperimental value fortheelectronic widthof X

(

3872

)

thatmaybecontrastedwithpredictionsof



ee withinvarious the-oreticalmodelsmakingdifferentassumptionsregardingthenature oftheX

(

3872

)

.

The productionof a 1++ resonance has never been observed in e+e− annihilation sofar.Such a processmayoccur viaa two-photon box diagram as depicted in Fig. 1. In order to search for a possible signal we analyze data taken by the BESIII de-tector at center-of-mass (c.m.) energies above 3.872 GeV, using the Initial State Radiation (ISR) technique. The ISR photon re-duces the available c.m. energy, such that the X

(

3872

)

can be produced resonantly via the two-photon process. In the process

e+e

γISR

X

(

3872

)

we search for the X

(

3872

)

in its decay to

π

+

π

J

with J

→ 

+



−(



=

μ

ande).The

π

+

π

J

mass spectrumisexpectedtobedominatedbythewell knownprocess

(4)

Table 1

Valuesfortheintegrals(Iψ (3686)andIX(3872)),theefficiencies(ψ (3686)andX(3872)),theeventyieldNψ (obs3686)andtheelectronicwidths( ψ (3686)

ee and X(3872)

ee B(X(3872)

π+πJ/ψ)).Theerrorsshownarestatisticalonly.

c.m. energy [GeV] 4.009 4.230 4.260 4.360 L[pb−1] 482 1092 826 540 Iψ (3686)[pb/keV] 310 172 161 133 IX(3872)[pb/keV] 671 247 225 174 εψ (3686) 0.303 0.286 0.286 0.282 εX(3872) 0.314 0.324 0.325 0.327 Nψ (2S) 4168±65 5026±71 3547±60 1846±43 eeψ (3686)[eV] 2198±34 2232±32 2223±38 2176±51 eeX(3872)B(X(3872)π+πJ/ψ)at 90% C.L. [eV] 0.630 0.314 0.319 0.646

2. BESIIIdetector,dataandMonteCarlo

BESIIIis a generalpurposedetector,covering 93% ofthe solid angle.Itisoperatingatthee+e−double-ringcolliderBEPCII.A de-taileddescriptionofthefacilities isgiveninRef.[18].BESIII con-sists of four main components: (a) The helium-based 43 layer maindrift chamber (MDC) provides an average single-hit resolu-tionof135 μm,andamomentumresolutionof0.5%for charged-particleat1 GeV/cina1 Tmagneticfield.(b)Theelectromagnetic calorimeter (EMC) consists of 6240 CsI(Tl) crystals, arrayed in a cylindrical structure (barrel) and two endcaps. The energy reso-lution for 1.0 GeV photons is 2.5% (5%) in the barrel (endcaps), whilethepositionresolutionis6 mm(9 mm)inthebarrel (end-caps).(c) The time-of-fight system (TOF) is constructed of 5 cm thickplasticscintillatorsandincludes88detectorsof2.4 mlength in two layers in the barrel and 96 fan-shaped detectors in the endcaps.Thebarrel(endcap)timeresolutionof80 ps(110 ps) pro-vides2sigmaK

/

π

separationformomentauptoabout1.0 GeV/c. (d)The muoncounter (MUC)consistsof resistiveplatechambers inninebarrelandeightendcaplayers.Itisincorporatedinthe re-turnironofthesuperconductingmagnet.Itspositionresolutionis about2 cm.

AGEANT4[19,20]baseddetectorsimulationpackageisusedto modelthe detectorresponse. This analysisis based onfour data samplestakenatc.m.energiesof4.009 GeV,4.230 GeV,4.260 GeV and4.360 GeVbytheBESIIIdetector.Theintegratedluminosityof each data sample islisted in Table 1. The total integrated lumi-nosityis

L

tot

=

2

.

94 fb−1.We simulatethe e+e

X

(

3872

)

γISR

signalprocess using evtgen[21,22],which invokesthe vectorisr generatormodel[23] fortheISR processandthe common

ρ

J

modelforthedecayX

(

3872

)

π

+

π

J

.TheMonteCarlo(MC) simulationofthee+e

γISR

ψ(

3686

)

processwasperformed us-ing the phokhara generator [25]. For the background study we simulatethee+e

η

J

processwith evtgen andthee+e

γISRπ

+

π

π

+

π

−processwith phokhara.

3. Eventselection

Fortheeventselection,werequirefourchargedtrackswithnet chargezero.Thepointofclosestapproachtothee+e−interaction pointisrequiredtobewithin

±

10 cminthebeamdirectionand 1 cmintheplaneperpendiculartothebeamdirection.Asthe J

resonancecarriesmostofthetotalmomentum,thefinalstate lep-tonscanbedistinguishedfrompionsbytheir momentainthelab frame.Trackswithmomentum p

>

1 GeV

/

c in thelabframe are identifiedasleptons,whereastrackswithp

<

600 MeV

/

c are iden-tifiedaspions.Theparticleidentificationforleptonsisachievedby measuringtheratiooftheenergydepositedintheEMCdividedby thetrack’smomentum measuredintheMDC(E

/

p).IfE

/

p

>

0

.

4, weassumetheleptontobeanelectron,otherwiseitisconsidered a muon candidate. The E

/

p distributions of data and MC agree well,andMCstudies showthat thebackgroundfor J

e+e

is negligible. The resolution of the invariant mass of the lepton pairs is16 MeV

/

c2. We requiretheir invariant mass M

(

+



)

to bewithin3

.

05

M

(

+



)

3

.

14 GeV

/

c2forthe J

signal

selec-tion.Furthermoretheopeninganglebetweenthetwopiontracks is required to satisfy cos

α

π π

0

.

6 to remove background from e+e

η

J

as well as background from mis-identified elec-tronswhichoriginatefrom

γ

-conversion.Dueto theboostofthe

η

meson in the laboratory frame, the opening angles of its de-cay products are small.The reaction e+e

γ

X

(

3872

)

recently observed byBESIII [6],where thephoton comes fromaradiative transitionoftheY

(

4260

)

,representsanirreduciblebackgroundto oursignalprocess.Toavoidthisbackground,theISRphotonis re-quiredtobeemittedatsmallpolarangles

|

cos

θ

ISR

|

>

0

.

95,almost

colinear to the beamdirection. The photon polar angle distribu-tion of the E1 transition Y

(

4260

)

γ

X

(

3872

)

measured in [6] proves thatthisbackgroundcontributioncanbeneglected inthis polaranglerange.SincetheISRphotoncannotbedetectedinthis region of the detector, its energy andpolar angle are calculated fromthemissingmomentumoftheevent(untaggedISRphoton). As thephotonfromtheradiative decaychannelis predominantly emittedatlargepolarangles,anoptimalsignaltobackground ra-tioisobtainedinthisway.AnMCsimulationstudyshowsthatthe

Y

(

4260

)

γ

X

(

3872

)

backgroundcan beneglected intheregion ofsmallpolaranglesoftheISRphoton.Toimprovetheresolution of the

π

+

π

J

mass spectrum and to further remove back-ground, a two-constraint (2C) kinematicfit underthe hypothesis ofthe

γ

ISRπ+

π



+



−finalstateisperformed.Thetwoconstraints arethe J

massfortheleptonpairandthemassofthemissing ISRphoton,whichiszero.Weaccepteventswith

χ

2

2C

<

15. 4.

π

+

π

J

massspectrum

The invariant mass distributions of M

(

π

+

π

J

/ψ)

for data, signal simulation, and simulation of the dominant background

e+e

η

J

are shownin Fig. 2. All the selection criteria

de-scribed above have been applied here. As expected, the mass

spectrum isdominated by the

ψ(

3686

)

resonance.No significant

X

(

3872

)

peakisobservedatanyofthefourc.m.energies.Hence, wesetanupperlimitfortheelectronicwidthofX

(

3872

)

.InFig. 2, thebluedotted histogramrepresents thesignalsimulation ofthe

X

(

3872

)

witharbitrarynormalization.Thebackgroundchannelsof

e+e

π

+

π

π

+

π

γISR

ande+e

η

J

with

η



γ π

+

π

are found to be negligible in an MC simulation study. The back-groundchannele+e

η

J

with

η

π

+

π

π

0 isdisplayedas

theorangedash-dottedlineinFig. 2.

Unbinnedmaximumlikelihoodfitsareperformedtoextractthe yieldsof

ψ(

3686

)

and X

(

3872

)

eventsateachc.m.energy,where thelineshapesofbackgroundarerepresentedbypolynomial func-tions andthelineshapesof

ψ(

3686

)

and X

(

3872

)

are described bytheMCshapeconvolutedwithaGaussianfunctionwhichtakes intoaccount resolutiondifferencesbetweendataandMC simula-tion.WeusethesameparametersoftheGaussianfunctionforthe

(5)

Fig. 2. Theπ+πJ/ψmassdistributionsat(a)√s=4.009 GeV,(b)4.230 GeV,(c)4.260 GeV and(d)4.360 GeV.Dotswitherrorbarsaredata,thesolidredlinesarethe fitcurves,thebluedashedhistogramsareMCsimulatedX(3872)signalevents,whicharenormalizedarbitrarily,andtheorangedot-dashedhistogramsareMCsimulated

ηJ/ψ backgroundevents.

tworesonances.Thefitresultsaredisplayedasthesolidredcurves inFig. 2.The eventyields of

ψ(

3686

)

fromthefitsare shownin Table 1.

5. Calculationof



ee

Themeasuredradiativeeventyield NA oftheprocesse+e

γISR

A canbeexpressedasafunctionofx

1

M(π+πsJ/ψ )2 [26]: dNA

dx

=

W

(

s

,

x

)

ε

A

L

σ

(

e

+e

A

)

B

(

A

f

) ,

(1)

where s is the squared c.m. energy, W

(

s

,

x

)

denotes the radi-ator function,

ε

A is the corresponding reconstruction efficiency,

L

is the integrated luminosity,

σ

(

e+e

A

)

is the Born cross section to produce A in e+e− annihilation,

B(

A

f

)

=

B(

A

π

+

π

J

/ψ)

B(

J

→ 

+



)

istheproductofthebranching frac-tionsofA decayingintothefinalstate f .

Therelationshipbetweentheelectronicwidth



ee andtheBorn crosssectionreads:

σ

(

e+e

A

)

=

12

π



ee



tot

(

s

M2A

)

2

+ 

tot2 M2A

,

(2)

wheres

= (

1

x

)

s,



ee(



tot)istheelectronic(total)widthofthe

resonanceA,andMAisitsmass.Eq.(1)mustbeintegratedovers inanappropriateregionaroundtheresonance A.Theintegralonly involvesthe Breit–Wigner functionin theBorn cross section and theradiatorfunction.Hence itcan beseparatedfromthe quanti-tiesdeterminedinthemeasurement,suchthattheintegralenters thecalculation oftheelectronic widthasafactordenoted by IA. ThisfactorisgivenbyIA

=

12

π



tot



x2 x1dx W(s,x) (s−M2 A)2+2totM2A .The lim-itsoftheintegralarechosentocoincidewiththesignalregion.

UsingEq.(1),theelectronicwidthtimesthebranchingfraction

B(

A

π

+

π

J

/ψ)

canthenbeobtainedviatherelation



eeA

B

(

A

π

+

π

J

/ψ )

=

NA

ε

A

L

IA

B

(

J

→ 

+



)

,

(3)

whichisusedtodeterminethe electronicwidthsof X

(

3872

)

and

ψ(

3686

)

.Asnosignificantsignal isfoundinthecaseof X

(

3872

)

, we calculatean upper limit for



eeX(3872). For thebranching frac-tionswetakethelatestBESIIIvalues

B(ψ(

3686

)

π

+

π

J

/ψ)

=

(

34

.

98

±

0

.

45

)

% and

B(

J

→ 

+



)

= (

11

.

96

±

0

.

05

)

%[27].The reconstruction efficiencies

ε

A are extracted from the signal MC sample e+e

γISR

X

(

3872

)

and e+e

γISR

ψ(

3686

)

, respec-tively. We apply an additional relative correction factor of 2%, whichstemsfromadata-MCdifference foundinthe

χ

2

distribu-tions.Toobtainthiscorrectionfactor,thenumberofeventsinthe background-free

ψ(

3686

)

mass region

(

3

.

62

<

M

(

π

+

π

J

/ψ)

<

3

.

75 GeV

/

c2

)

passingthe

χ

2

2C

<

15 requirementrelative toall

re-constructed events in MC is compared to the respective number obtainedfromdata.Allthevaluesfortheefficiencies andthe in-tegrals IA at each c.m. energy point are listed in Table 1. The statisticalerrorsoftheefficienciesarenegligible.Firstwecompute the electronic width of

ψ(

3686

)

, which is denoted by



eeψ (3686). This serves asa benchmark andvalidation of our method,since the electronic width of

ψ(

3686

)

isalready knownwith high ac-curacy [16].Applying thenumbers for

ψ(

3686

)

listed inTable 1 to Eq. (3), we obtain the value for



ψ (ee3686) at each of the four energy points separately, as shown in Table 1. We calculate the error weighted average of the electronic widthof

ψ(

3686

)

from the foursingle measurements in Table 1, whichgives



eeψ (3686)

=

(

2213

±

18stat

)

eV.

Since no X

(

3872

)

signal isobserved,we setan upperlimitat the 90% confidence level (C.L.) for its electronic width. Applying the Bayesianmethod,we performlikelihood scansateach ofthe four data sets of the electronic width times the branching frac-tion, whichisproportional tothe X

(

3872

)

eventyield parameter

(6)

Ni accordingtoEq.(3).Thisprovides fourlikelihood curves,that aredenotedbyLi

(

γ

)

,i

=

1

. . .

4,where

γ

= 

eeX(3872)

B(

X

(

3872

)

π

+

π

J

/ψ)

. We look for the values

γ

iup that yield 90% of the likelihood integral over

γ

from zero to infinity:



γ

up

i

0 d

γ

Li

(

γ

)

=

0

.

9



0d

γ

Li

(

γ

)

. Inorder tocombine thefour measurements, we constructthe likelihood ofthe combinedmeasurement. The four single likelihood curvesare scaled such that they havethe same valueattheirrespectivemaxima.Wetaketheproductofthe like-lihood scan curves of the single measurements. The upper limit

γ

totup atthe90%C.L.of

γ

isdeterminedfrom

γtotup



0 d

γ

4



i=1 Li

(

γ

)

=

0

.

9 ∞



0 d

γ

4



i=1 Li

(

γ

) .

Weobtain

γ

totup

= 

X(3872) ee

B(

X

(

3872

)

π

+

π

J

/ψ)

=

0

.

125 eV at the90%C.L.

6. Estimationofsystematicuncertainties

The luminosity is measured using large angle Bhabha events, andtheuncertaintyisestimatedtobe1%[28].Theuncertainty re-latedto thetracking efficiencyis1% per charged track[6].Since the final state has four charged tracks, we estimate an uncer-tainty of 4% for the whole event. Applying our J

selection both to data and the

ψ(

3686

)

γISR

MC simulation, the obtained event yield differs by 0.2%, which we take as systematic uncer-tainty for the J

selection. To correct for differences between dataandMCsimulationinthe

χ

2

2C distribution,anefficiency

cor-rectionof2% was determined.Varyingthe

χ

2

2C selectionand

cal-culating theefficiency correction factoragain ateach energy, we obtaina corresponding uncertainty of0.4% of thecorrection fac-torin theluminosity weighted average. Theintegrals IA have an uncertainty of 0.7%, due to the precision of the numerical inte-gration (0.5%)andthe calculation ofthe radiatorfunction (0.5%). Therelativeuncertainties ofthebranchingfraction

B(ψ(

3686

)

π

+

π

J

/ψ)

and

B(

J

→ 

+



)

are1.3% and0.5%,respectively. There is no correlation between these branching fractions [27]. We take 1.4% as the systematic uncertainty from the branching fractions for the electronic width of

ψ(

3686

)

. In the calculation of



eeX(3872)

B(

X

(

3872

)

π

+

π

J

/ψ)

onlythe branching fraction

B(

J

→ 

+



)

appears.Hence, thecorresponding uncertaintyis 0.5%.Toestimate thesystematicuncertaintyduetothewidth as-sumed for X

(

3872

)

, we change the width by

±

0

.

2 MeV

/

c2 and

repeat the entire fitting procedure. The maximal relative differ-enceofthese resultsfromthe resultobtained withthe standard widthisfoundtobe2.7%intheluminosity-weightedaverage.The detectionefficiency of ISR X

(

3872

)

events was determined from an MC simulation using the vectorisr model [23], since this fi-nalstate isnotavailable inthe phokhara eventgenerator.Onthe otherhand,the ISR

ψ(

3686

)

detectionefficiencywas determined usingthe phokhara event generator, whichsimulates ISR events with0.5%precision[24].ToobtaintheuncertaintyoftheISR sim-ulationwiththe vectorisr model,wecompare theefficienciesof ISR

ψ(

3686

)

eventsgeneratedwiththe phokhara eventgenerator [25]andthe vectorisr module[23].Theluminosity-weighted av-eragedifferenceisfoundtobe3.4%betweenthem,whichistaken assystematicuncertaintyforthe vectorisr model.

For



eeψ (3686)afurthersystematicuncertaintyoccursduetothe choice ofthe fit function. In orderto deal with thisuncertainty, wedeterminethenumberofNMCψ (3686)usingasecondfitfunction, whichisadoubleGaussianforthe

ψ(

3686

)

peakplusaGaussian

Table 2

Sourcesofsystematicuncertaintiesandtheircontribution(%).

Source σsysX(3872) σψ ( 3686) sys Luminosity 1.0 1.0 Tracking 4.0 4.0 J/ψselection 0.2 0.2 Kinematic fit 0.4 0.4 Integrals IA 0.7 0.7 Branching ratio 0.5 1.4 X(3872)width 2.7 – ISR simulation 3.4 – ψ(3686)fit model – 1.0 Total 6.1 4.5

forthe X

(

3872

)

plusaconstantforbackground.Inthe luminosity-weightedaverage,thisfitmodeldiffersby1.0%,whichistakenas systematicuncertainty.Signal eventswitha hardfinal state radi-ation (FSR)photon arerejectedsince the J

mass isconstraint inthekinematicfit.ThusFSReffectsarenegligible.Systematic un-certaintiesfromthebackgroundshapeandthefitrangehavebeen found to be negligible.The full list ofsystematicuncertainties is showninTable 2.Assumingthesourcestobeindependent,the to-tal systematicuncertainty forthe electronic width of X

(

3872

)

is 6

.

1%, while in the case of

ψ(

3686

)

we find a systematic uncer-taintyof4

.

5%.

7. Summary

We have performed a search of the process e+e

γISR

X

(

3872

)

γISRπ

+

π

J

using the ISR untagged method,

where the production of X

(

3872

)

in e+e− annihilations is pos-sibleviaatwo-photonboxdiagram.Nosignificant X

(

3872

)

signal is observed in the

π

+

π

J

mass spectrum. We set an upper limit for the electronic width of X

(

3872

)

. By combiningall four datasets,wefinallyobtain



eeX(3872)

B

(

X

(

3872

)

π

+

π

J

/ψ ) <

0

.

13 eV

at the 90% C.L. Here we have multiplied the upper limit by a factor 1

/(

1

σsys

)

in order to take the systematic uncertain-ties into account. Our measurement improves upon the current limit



eeX(3872)

B(

X

(

3872

)

π

+

π

J

/ψ)

<

6

.

2 eV at the 90% C.L.

[17] by a factor of 46. If we assume the branching fraction

B(

X

(

3872

)

π

+

π

J

/ψ) >

3% [16,29],weobtain anupperlimit forthe electronic width of X

(

3872

)

to be



eeX(3872)

<

4

.

3 eV. For the firsttime we obtaina value for



eeX(3872) onthe

O(

eV

)

level, whichisthelevelpredictedforordinarycharmoniumstates[15]. However, ourupperlimitisstill largerthan atheoretical calcula-tion[14]whichpredicts



ee



0

.

03 eV.Theresultsshould encour-age theorists to compute the electronic width of X

(

3872

)

under differentassumptionsregardingitsintrinsicnatureandtoconfront thesecalculationswithourmeasurement.Thismightleadtonew insightsregardingthenatureof X

(

3872

)

.

Wehavealsomeasuredtheelectronicwidthofthewell-known

ψ(

3686

)

resonancewiththeresult:



eeψ (3686)

=



2213

±

18stat

±

99sys



eV

.

ThisisinagreementwiththePDG[16]fit,whichis

(

2360

±

40

)

eV. Withasimilaraccuracyastheonereportedin[30],thisisthebest individualmeasurementof



eeψ (3686)todate.

Acknowledgements

The BESIII collaboration thanks the staff of BEPCII and the IHEPcomputingcenterfortheirstrongsupport.Thisworkis

(7)

sup-ported in part by the National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Sci-enceFoundation of China (NSFC) under Contract Nos. 11125525,

11235011,11322544, 11335008,11425524; theChinese Academy

of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS

un-der Contract Nos. 11179007, U1232201, U1332201; CAS under

Contract Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents

Pro-gram of CAS; INPAC and Shanghai Key Laboratory for Particle

Physics and Cosmology; German Research Foundation DFG

un-der Contract No. CRC-1044; Seventh Framework Programme of

the European Union under Marie Curie International Incoming

Fellowship Grant Agreement No. 627240; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under ContractNo. DPT2006K-120470;Russian FoundationforBasic Re-searchunderContractNo. 14-07-91152;U.S.DepartmentofEnergy

under Contract Nos. DE-FG02-04ER41291, DE-FG02-05ER41374,

DE-FG02-94ER40823, DESC0010118; U.S. National Science

Foun-dation;UniversityofGroningen(RuG)andtheHelmholtzzentrum

für Schwerionenforschung GmbH (GSI), Darmstadt; WCU

Pro-gram of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

References

[1]S.K.Choi,etal.,BelleCollaboration,Phys.Rev.Lett.91(2003)262001.

[2]D.Acosta,etal.,CDFCollaboration,Phys.Rev.Lett.93(2004)072001.

[3]V.M.Abazov,etal.,D0Collaboration,Phys.Rev.Lett.93(2004)162002.

[4]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.D71(2005)071103.

[5]R.Aaij,etal.,LHCbCollaboration,Phys.Rev.Lett.110(2013)222001.

[6]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.Lett.112(2014)092001.

[7]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.D74(2006)071101.

[8]V.Bhardwaj,etal.,BelleCollaboration,Phys.Rev.Lett.107(2011)091803.

[9]A.Abulencia,etal.,CDFCollaboration,Phys.Rev.Lett.98(2007)132002.

[10]N.Brambilla,S.Eidelman,etal.,Eur.Phys.J.C71(2011)1534.

[11]F.K.Guo,C.Hanhart,U.G.Meißner,Q.Wang,Q.Zhao,Phys.Lett.B725(2013) 127.

[12]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.Lett.102(2009)132001.

[13]R.Aaij,etal.,LHCbCollaboration,Nucl.Phys.B886(2014)665.

[14]A.Denig,F.K.Guo,C.Hanhart,A.V.Nefediev,Phys.Lett.B736(2014)221.

[15]J.H.Kühn,J.Kaplan,E.G.O.Safiani,Nucl.Phys.B157(1979)125.

[16]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001.

[17]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.D71(2005)052001.

[18]M.Ablikim,etal.,BESIIICollaboration,Nucl.Instrum.MethodsA614(2010) 345.

[19]S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. MethodsA 506 (2003)250.

[20]J.Allison,etal.,IEEETrans.Nucl.Sci.53(2006)270.

[21]D.J.Lange,Nucl.Instrum.MethodsA462(2001)152.

[22]R.G.Ping,Chin.Phys.C32(2008)599.

[23]G.Bonneau,F.Martin,Nucl.Phys.B27(1971)381.

[24]G.Rodrigo,H.Czyz,J.H.Kuhn,M.Szopa,Eur.Phys.J.C24(2002)71–82.

[25]H.Czy ˙z,A.Grzeli ´nska,J.H.Kühn,Phys.Rev.D81(2010)094014.

[26]V.P.Druzhinin,S.I.Eidelman,S.I.Serednyakov,E.P.Solodov,Rev.Mod.Phys.83 (2011)1545.

[27]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D88(2013)032007.

[28]M.Ablikim,etal.,BESIIICollaboration,arXiv:1503.03408[hep-ex].

[29]C.Z.Yuan,BelleCollaboration,arXiv:0910.3138[hep-ex].

Figure

Fig. 1. ISR production of X ( 3872 ) via a box diagram.
Fig. 2. The π + π − J /ψ mass distributions at (a) √

References

Related documents

historieundervisning. Klassisk historieundervisning var gällande ända fram till hälften av 1900-talet. Man kan säga att klassisk historieundervisning var

In the present study, when the participant teachers direct the students’ at- tention to metalinguistic knowledge as well as metacognitive reading strategies, I regard it as a

For example, the online resource from which the teacher excerpted texts used early in the course (Clio, 2020) contains separate sections for contrasting sources representing

Liksom i den inledande kommunikationen kring bilder från sagan om Askungen går det att se hur logiska samband bidrar till att signalera hur texten rör sig mot fullbordan genom

Precis som i ett tidigare samtal om algebra och multiplikation framstår lärarens, och i detta fall även elevernas, erfarenheter från att bo i andra länder som en resurs

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

The overall aim was to study periodontitis prevalence and severity in two Swedish adult populations, and to describe the changes over time. Further aims were to examine the effect