• No results found

Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

associated

production

of

a

Higgs

boson

decaying

into

b-quarks

with

a

vector

boson

at

high

transverse

momentum

in

pp

collisions

at

s

=

13 TeV with

the

ATLAS

detector

.

The

ATLAS

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history: Received6August2020

Receivedinrevisedform3February2021 Accepted5March2021

Availableonline17March2021 Editor: M.Doser

TheassociatedproductionofaHiggsbosonwithaW or Z bosondecayingintoleptonsandwherethe Higgsbosondecaystoabb pair¯ ismeasured inthehighvector-boson transversemomentumregime, above250 GeV,withtheATLASdetector.Theanalyseddata,corresponding toanintegratedluminosity of139 fb−1,werecollectedinproton–protoncollisionsattheLargeHadronColliderbetween2015and 2018atacentre-of-massenergyof√s=13 TeV.Themeasuredsignalstrength,definedastheratioofthe measuredsignalyieldtothatpredictedbytheStandardModel,is0.72+0.39

−0.36correspondingtoanobserved

(expected)significanceof2.1(2.7)standarddeviations.Cross-sectionsofassociatedproductionofaHiggs bosondecaying intob quarkpairs witha W or Z gauge boson,decaying intoleptons,are measured intwo exclusive vectorboson transverse momentumregions,250–400 GeV and above 400 GeV, and interpretedasconstraintsonanomalouscouplingsintheframeworkofaStandardModeleffectivefield theory.

©2021TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

SincethediscoveryoftheHiggsboson(H ) [1–4] withamassof around125 GeV [5] bytheATLASandCMSCollaborations [6,7] in 2012, theanalysis ofproton–proton(pp)collision dataat centre-of-massenergiesof7 TeV,8 TeVand13 TeVdeliveredbytheLarge HadronCollider(LHC) [8] hasledtoprecise measurementsofthe main production cross-sectionsand decayrates of theHiggs bo-son, aswell asmeasurements ofits massanditsspin andparity properties.Inparticular,theobservationofthedecayoftheHiggs bosonintob-quarkpairs provideddirectevidencefortheYukawa coupling of the Higgsboson to down-type quarks [9,10]. Finally, a combination of 13 TeV results searching for the Higgs boson produced inassociationwitha leptonicallydecaying W or Z

bo-son established the observation ofthis productionprocess [9]. A firstcross-section measurementasafunctionofthevector-boson transversemomentumwasalsocarriedoutbytheATLAS Collabo-ration [11].

ThepreviousATLASanalyses [9,11] inthischannelweremainly sensitivetovector bosonswithtransversemomentum(pT)inthe

rangeofapproximately100–300 GeV.Theseanalysesconsidereda pairofjetswithradiusparameterof R

=

0

.

4,referredtoas small-radius (small-R)jets, to reconstruct the Higgs boson. For higher Higgsbosontransversemomenta,thedecayproductscanbecome

 E-mail address:atlas.publications@cern.ch.

closeenoughthatthey cannotbereconstructedwithtwosmall-R jets. To explore this ‘boosted’ regime, the Higgs boson is recon-structed as a single large-R jet with R

=

1

.

0 [12]. This high-pT

regime is particularlyinteresting dueto its sensitivity to physics beyondtheStandardModel [13].

ThisLetterpresentsameasurementofcross-sectionsforthe as-sociatedproduction ofahightransversemomentum Higgsboson that decays into a bb pair

¯

with a leptonically decaying W or Z

boson.Theanalysisuses pp collisiondatarecordedbetween2015 and 2018 by the ATLAS detector [14] during Run 2 at the LHC. Thisdatasetcorrespondstoan integratedluminosityof139 fb−1. Eventsare selectedin0-,1- and2-leptonchannels, basedonthe numberofreconstructed chargedleptons,



(electronsormuons), in the final state to explore the Z H

ννb

b,

¯

W H

→ 

νb

b and

¯

Z H

→ 

bb signatures,

¯

respectively. The Higgs boson is

recon-structed as a single large-R jet and the b-quarksfrom its decay asapairofjets,reconstructedwitha pT-dependentradius

param-eter,associatedwiththelarge-R jetandidentifiedascontaininga

b-hadron.

Theanalysisusing small-R jetsandfocusingon slightlylower Higgsbosontransverse momentum regions wasrecently updated withthecompleteRun 2dataset [15].Thelarge-R jetanalysis sig-nificantlyoverlapswiththesmall-R jets analysis.The tworesults canthereforenotbestraightforwardlycombined.

The dominant background processes after the event selection correspondtotheproductionofV

+

jets,whereV referstoeither aW or Z boson,t

¯

t,single-topanddibosons.Thesignalisextracted

https://doi.org/10.1016/j.physletb.2021.136204

0370-2693/©2021TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

from a combined profile likelihood fit to the large-R jet mass, usingseveralsignalandcontrolregions.Theyieldofdiboson pro-duction V Z with Z

bb is

¯

alsomeasured usingthesamefitand provides a validation of the analysis. The cross-section measure-ments areperformedwithinthesimplifiedtemplatecross-section (STXS) framework [16,17].These measurements are then used to constrainanomalous couplingsina StandardModeleffectivefield theory(SMEFT) [18].

2. ATLASdetector

The ATLAS detector [14] at the LHC is a multipurpose parti-cle detector with a forward–backward symmetric cylindrical ge-ometry anda near4

π

coverage in solid angle.1 It consistsofan

innerdetector(ID)fortrackingsurroundedbyathin superconduct-ing solenoidprovidinga2 Taxialmagnetic field,electromagnetic andhadroniccalorimeters,andamuonspectrometer. TheID cov-ersthepseudorapidity range

|

η

|

<

2

.

5.Itconsistsofsiliconpixel, silicon microstrip, and transition radiation tracking detectors.An inner pixel layer, the insertable B-layer [19,20], was added at a meanradiusof3.3 cmduring thelongshutdownperiodbetween Run 1 and Run 2 of the LHC. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity (

|

η

|

<

3

.

2). The hadronic calorimeter uses a steel/scintillator-tile samplingdetectorinthe central pseudora-pidity range (

|

η

|

<

1

.

7) and a copper/LAr detector in the region 1

.

5

<

|

η

|

<

3

.

2. The forward regions (3

.

2

<

|

η

|

<

4

.

9) are instru-mented with copper/LAr and tungsten/LAr calorimeter modules optimisedforelectromagneticandhadronicmeasurements, respec-tively.Amuonspectrometerwithanair-coretoroidmagnetsystem surroundsthecalorimeters.Threelayersofhigh-precisiontracking chambersprovidecoverageintherange

|

η

|

<

2

.

7,whilededicated fastchambers allowmuon triggering intheregion

|

η

|

<

2

.

4. The ATLAS triggersystemconsistsofahardware-based first-level trig-gerfollowedbyasoftware-basedhigh-leveltrigger [21].

3. DataandMonteCarlosimulation

Thedatawerecollected inpp collisionsat

s

=

13 TeV during Run 2 ofthe LHC. Thedata sample corresponds to an integrated luminosityof139 fb−1 afterrequiringthatalldetectorsubsystems wereoperatingnormallyandrecordinghigh-qualitydata [22].The uncertainty in the combined 2015–2018 integratedluminosity is 1.7% [23], obtained using the LUCID-2 detector [24] for the pri-mary luminosity measurements. Collision events considered for this analysis were recorded with a combination of triggers se-lecting events with high missing transverse momentum or with ahigh-pT lepton,depending ontheanalysischannel.Moredetails

ofthetriggerselectionaregiveninSection5.

MonteCarlo(MC)simulatedeventsamplesprocessedwiththe ATLAS detector simulation [25] based on Geant 4 [26] are used to modelthesignal andbackgroundcontributions, exceptforthe multijet production, whose contribution is estimated with data-driven techniques asdetailedinSection 6. Asummary of all the signal and backgroundprocesses with thecorresponding genera-tors usedforthenominalsamplesisshowninTable1.All simu-latedprocessesare normalised usingthemostprecise theoretical

1 ATLAS usesaright-handedcoordinatesystemwithitsoriginatthenominal interactionpointinthecentreofthedetector.Thepositive

x-axis

isdefinedbythe directionfromtheinteractionpointtothecentreoftheLHCring,withthepositive y-axis pointingupwards,whilethebeamdirectiondefinesthe

z-axis.

Cylindrical coordinates(r,φ)areusedinthetransverseplane,φbeing theazimuthalangle aroundthe

z-axis.

Thepseudorapidityηisdefinedintermsofthepolarangleθ

byη= −ln tan(θ/2).Theangular distanceisdefined as R ≡( η)2+ ( φ)2. Rapidityisdefinedas y = 0.5ln[(E+pz)/(Epz)]where

E denotes

theenergy

and

p

zisthecomponentofthemomentumalongthebeamdirection.

predictions currentlyavailable of their cross-sections. In addition to the hard scatter, each event was overlaid with additional pp

collisions(pile-up)generatedwith Pythia 8.1 [27] usingtheATLAS A3setoftuned parameters [28] andtheNNPDF23LO [29] parton distributionfunction(PDF)set.Simulatedeventswerethen recon-structedwiththesamealgorithmsasthoseappliedtodataandare weightedtomatchthepile-updistributionobservedinthedata.

Forthe signal events,the AZNLO [30] modelof parton show-ers and the underlying event (UE) was used. For the top-quark pairandsingle-top-quarkproductionprocesses,theUEmodelwas takenfromtheATLASA14 [31] setoftuned Pythia 8.1 [27] param-eters and for the other backgrounds the default Sherpa [32–35] tunesetwasused.Forallsamplesofsimulatedevents,exceptfor thosegeneratedusing Sherpa,the EvtGenv1.2.0program [36] was used to describe the decays of bottom and charm hadrons. The nominal PDF set used for W

/

Z +jets and diboson processes was NNPDF3.0NNLO [37] while for the top-quark pair and single-top productiontheNNPDF3.0NLO [37] setwasused.Samplesproduced withalternativegeneratorswhich areusedto estimatemodelling systematicuncertaintiesaredescribedinSection7.

Allqq-initiatedsignalprocessesweresimulatedwithuptoone

additionalpartonatnext-to-leading-order (NLO)accuracy inQCD usingthe Powheg-Box v2 [41] andthe GoSam [43] generatorwith theMiNLO (Multiscale Improved NLO) [44,45] procedureapplied, interfacedto Pythia 8.212forthesimulationofthepartonshower (PS), UE and multiple parton interactions. The gg

Z H

contri-butionwassimulatedatleadingorder(LO) inQCDwith Powheg-Box v2.The gg

Z H cross-sectionprocesswascalculatedatNLO in QCD including soft gluon resummation up to next-to-leading logarithms (NLL) [53–57]. Signal MC events were generated us-ingtheNNPDF3.0NLOPDFsetandsubsequentlyreweightedtothe PDF4LHC15NLOPDF set [38].Thetotalinclusivecross-sectionsfor allsignalprocesses(W H andZ H )werecalculatedat next-to-next-to-leading-order(NNLO) QCD andNLOelectroweak (EW) [46–52] accuracy, including photon-inducedcontributions calculated with Hawk[39,40].

Thenominaltop-quarkpairproductiongeneratorwas Powheg-Box v2withreal andvirtual correctionsatNLO accuracy inQCD and interfaced to Pythia 8.230 for the parton showering. The nominal top-quark pair production cross-section is from a re-summedNNLOandnext-to-next-to-leadinglogarithm(NNLL) pre-diction [59].

Singletop-quarkproductionwasalsogeneratedwith Powheg-Boxv2interfacedto Pythia 8.230.Thenominalcross-section nor-malisationsforthesingletop-quarkproductions- andt-processes

wereestimatedfromresummedcalculationsatNLO,whileforthe

W t processapproximateNNLOwasused [61,62,64].Athigher or-dersinQCD, the definitionofthe W t process can correspondto leading-ordertop-quarkpairproductionprocesses.Toaccount for theseambiguities and relatedinterference effects when generat-ingtheprocessesseparately,thediagramremoval(DR)subtraction schemewasused [68].

The nominal W

/

Z +jets backgroundsamples used Sherpa2.2.1 [33–35] forthematrixelement(ME)andpartonshowerwith vir-tualcorrectionsatNLOaccuracyforup totwo additionaljetsand at LO forup to four additional jets using OpenLoops [32,34,35]. Inthesesamples,the simulationof theemission ofhard partons matchedwithapartonshowerwasbasedontheCatani–Seymour subtractionterm [32,34,35] andthemulti-parton MEwasmerged withthe parton shower using an improved ckkw matching pro-cedure extendedto NLO accuracyusing the MEPS@NLO prescrip-tion [66]. The nominalnormalisation ofthisbackgroundwas ob-tainedfromanNNLOfixed-orderestimate [67].

Thedibosonnominalsamplesweregeneratedusing Sherpa2.2.1 forthedominantqq-initiatedprocessesforwhichzeroorone ad-ditional parton was calculated at NLO in the ME, while two or

(3)

Table 1

Signalandbackgroundprocesseswiththecorrespondinggeneratorsusedforthenominalsamples.Ifnotspecified,theorderofthecross-sectioncalculationreferstothe expansioninthestrongcouplingconstant(αS).()TheeventsweregeneratedusingthefirstPDFintheNNPDF3.0NLOsetandsubsequentlyreweightedtothePDF4LHC15NLO set [38] usingtheinternalalgorithmin Powheg-Boxv2.()TheNNLO(QCD)+NLO(EW)cross-sectioncalculationforthe

pp

Z H process alreadyincludesthe ggZ H contribution.The

qq

Z H process isnormalisedusingthecross-sectionforthe

pp

Z H process, aftersubtractingthe

gg

Z H contribution. Anadditionalscalefactor isappliedtothe

qq

V H processes asafunctionofthetransversemomentumofthevectorboson,toaccountforelectroweak(EW)correctionsatNLO.Thismakesuseof the

V H differential

cross-sectioncomputedwith Hawk [39,40].

Process ME generator ME PDF PS and hadronisation UE model tune Cross-section order

Signal (mH=125 GeV and bb branching fraction set to 58%)¯

qqW H→ νbb¯ Powheg-Box v2[41] + NNPDF3.0NLO()[37] Pythia8.212 [42] AZNLO [30] NNLO(QCD)+

GoSam[43] + MiNLO [44,45] NLO(EW) [46–52]

qqZ Hννbb¯/bb¯ Powheg-Box v2+ NNPDF3.0NLO() Pythia8.212 AZNLO NNLO(QCD)()+

GoSam+ MiNLO NLO(EW)

ggZ Hννbb¯/bb¯ Powheg-Box v2 NNPDF3.0NLO() Pythia8.212 AZNLO NLO+

NLL [53–57] Top quark (mt=172.5 GeV)

t¯t Powheg-Box v2[41,58] NNPDF3.0NLO Pythia8.230 A14 [31] NNLO+NNLL [59]

s-channel Powheg-Box v2[41,60] NNPDF3.0NLO Pythia8.230 A14 NLO [61]

t-channel Powheg-Box v2[41,60] NNPDF3.0NLO Pythia8.230 A14 NLO [62]

W t Powheg-Box v2[41,63] NNPDF3.0NLO Pythia8.230 A14 Approximate NNLO [64]

Vector boson + jets

W→ ν Sherpa 2.2.1[32–35] NNPDF3.0NNLO Sherpa 2.2.1[65,66] Default NNLO [67]

Z/γ→  Sherpa 2.2.1 NNPDF3.0NNLO Sherpa 2.2.1 Default NNLO

Zνν Sherpa 2.2.1 NNPDF3.0NNLO Sherpa 2.2.1 Default NNLO

Diboson

qqW W Sherpa 2.2.1 NNPDF3.0NNLO Sherpa 2.2.1 Default NLO

qqW Z Sherpa 2.2.1 NNPDF3.0NNLO Sherpa 2.2.1 Default NLO

qqZ Z Sherpa 2.2.1 NNPDF3.0NNLO Sherpa 2.2.1 Default NLO

ggV V Sherpa 2.2.2 NNPDF3.0NNLO Sherpa 2.2.2 Default NLO

threeadditionalpartonswereincludedatLOinQCD.The subdom-inant gg-initiatedprocessesweregeneratedwith Sherpa2.2.2.For thesesamples,zerooroneadditionalpartonwas calculatedatLO intheME.Thesegeneratorsalsoprovidedthenominal normalisa-tionforthisprocess.

4. Objectreconstruction

Ofallthereconstructed pp collisionverticeswithatleasttwo reconstructed trajectories of charged particles in the ID (tracks) with pT

>

0

.

5 GeV,thehard-scatteringprimary vertexisselected

asthe onewiththe highestsumofsquaredtransverse momenta ofassociatedtracks [69].

Leptons areused foreventcategorisationasdescribed in Sec-tion5.ElectronsarereconstructedfromtracksintheIDassociated with topological clusters of energy depositions in the calorime-ter [70,71]. The identification criteria closely follow those de-scribed in Ref. [9]. Baseline electrons are required to have pT

>

7 GeVand

|

η

|

<

2

.

47,tobeisolatedfromothertracksandenergy deposit clusters, to meet looselikelihood selection criteria based on shower shapes and to satisfy

|

d0

/

σ

(

d0

)

|

<

5 and

|

z0sin

θ

|

<

0

.

5 mm,whered0 andz0 arethetransverseandlongitudinal

im-pact parameters defined relative to the primary vertex position2 and

σ

(

d0

)

is the d0 uncertainty. Signal electrons are a subset of

the baseline electron set and are selected using a tighter likeli-hood requirement,which alsoincludes trackingandtrack–cluster matchingvariables,andusingatightercalorimeter-basedisolation criterion.

Muon candidates are identified by matching ID tracks to full tracks or track segments reconstructed in the muon spectrome-ter within the inner detector coverage and using only informa-tionfromthemuonspectrometeroutsideofthatcoverage.Muons are required to have pT

>

7 GeV and

|

η

|

<

2

.

7 and to have

|

d0

/

σ

(

d0

)

|

<

3 and

|

z0sin

θ

|

<

0

.

5 mm.Twomuoncategoriesare 2 Forthecomputationoftheimpactparameters,thebeamlineisusedto approx-imatetheprimaryvertexpositioninthetransverseplane.

usedintheanalysis:baseline muonsareselectedusingthe‘loose’ identificationcriterionofRef. [72] andaloosetrackisolation; sig-nal muonsare requiredtohave

|

η

|

<

2

.

5,tosatisfy the‘medium’ identificationcriterion [72] andatightertrack-basedisolation cri-terion.

Thelow-threshold (7 GeV) baseline leptonsare usedto define thethreemain channelsrequiringexactly zero,one andtwo lep-tons. The latter1- and 2-lepton channelsfurther requireat least

one signal lepton, with identification and isolation requirements

chosen to optimise the suppression of the multijet background. Signal leptons must have a pT

>

27 GeV (except inthe 1-lepton

muonsub-channelwherea pT

>

25 GeVisused).

Calorimeterjetsarereconstructedfromnoise-suppressed topo-logical clusters (topoclusters) of calorimeter energy depositions [73], usingthe anti-kt algorithm [74] with radius parameter R

=

1

.

0 (large-R jets) or R

=

0

.

4 (small-R jets) implementedin Fast-Jet [75]. Small-R jets are built from topoclusters calibrated at the electromagnetic scale [76], while large-R jets are built from topoclusterscalibratedatthelocalhadronicscale [73].Large-R jets aregroomedusingtrimming [77,78] toimprovethejetmass res-olutionanditsstability withrespectto pile-upby discardingthe softer components of jets that originate from initial-state radia-tion,pile-upinteractions,ortheunderlyingevent.Thisisdoneby reclusteringtheconstituentsoftheinitiallarge-R jet,usingthekt

algorithm [79,80], into subjets with radius parameter Rsub

=

0

.

2

andremoving anysubjet that hasa pT lessthan 5% ofthe

par-ent jet pT. The large-R jet mass mJ is computed using tracking

andcalorimeter information [81]. A dedicated MC-based calibra-tion,similartotheprocedureusedinRef. [81],isappliedtocorrect thepTandmassofthetrimmedjetstotheparticlelevel.Large-R

jetsarerequiredtohavepT

>

250 GeV,mJ

>

50 GeVand

|

η

|

<

2

.

0,

thelastduetotrackingacceptance.

Small-R jets are used in building the missingtransverse mo-mentumandeventcategorisation.Theyarecalibratedwithaseries ofsimulation-based correctionsand in situ techniques, including correctionsto accountforpile-upenergyentering thejetarea, as describedinRef. [76].Theyarerequiredtohave pT

>

30 GeVand

(4)

pile-upinteractions,small-R jetsarerequiredtopassthejetvertex tagger(JVT) [82] requirementiftheyareintherangepT

<

120 GeV

and

|

η

|

<

2

.

5 duetotrackingacceptance.

Track-jets formedfromcharged-particle tracks are usedto re-constructacandidatetwo-bodyH

bb decay

¯

withinthelarge-R jet. Track-jetsarebuiltwiththeanti-kt algorithm witha variable

radius(VR) pT-dependentparameter,fromtracksreconstructedin

the inner detector with pT

>

0

.

5 GeVand

|

η

|

<

2

.

5 [83–85]. VR

track-jets havean effectivejet radius Reff proportional to the

in-verse ofthejet pT inthe jetfinding procedure: Reff

(

pT

)

=

ρ

/

pT,

wherethe

ρ

-parameterissetto30 GeV.Therearetwoadditional parameters, Rmin and Rmax,used toset theminimumand

maxi-mumcut-offs onthejetradius,andtheseare setto0.02 and0.4, respectively. Only VR track-jets with pT

>

10 GeV,

|

η

|

<

2

.

5 and

withatleasttwoconstituentsareconsidered [86].VRtrack-jetsare matchedtothelarge-R calorimeterjetsviaghost-association [87]. Track-jets not associated with large-R jets are also used in the analysisforeventcategorisationasdescribedinSection5.

The ‘truth’flavour labelling oftrack-jets insimulation isdone by geometricallymatchingthe jetto ‘truth’hadrons, using‘truth’ informationfromthegenerator’seventrecord.Ifab-hadronwith

pT above 5 GeVisfoundwithin

R

=

0

.

3 ofthedirectionofthe

track-jet, the track-jet is labelled as a b-jet. If the b-hadron is matched to more than one track-jet,only the closest track-jet is labelled asa b-jet. Ifno b-hadron is found, the procedure is re-peatedfirstforc-hadronstolabelc-jetsandthenfor

τ

-leptonsto label

τ

-jets.Asisthecasefordefiningab-jet,thelabellingisalso exclusiveforc- and

τ

-jets. Ajetforwhichnosuch matchingcan bemadeislabelledasalight-flavourjet.

To identify track-jets containing b-hadron decay products, track-jets are tagged using the multivariate algorithm MV2c10, whichexploitsthepresenceoflarge-impact-parametertracks,the topological decaychain reconstruction andthe displaced vertices fromb-hadrondecays [88,89].TheMV2c10algorithmisconfigured toachieveanaverageefficiencyof70%fortaggingjetslabelledas

b-jets inan MC sample oft

¯

t events. Thisrequirementhas corre-sponding rejectionfactorsof9 and304forjetslabelledasc-jets

andlight-flavourjets,respectively,insimulatedtt events.

¯

The tag-gingefficiencies perjet flavour arecorrectedinthe simulationto matchthosemeasuredindata [86,90,91].

Two additional corrections are applied to the large-R jets to improve the scale and the resolution of their energy and mass measurements. First, to account for semileptonic decays of

the b-hadrons, the four-momentum of the closest reconstructed

non-isolated muon candidate within

R

=

min

(

0

.

4

,

0

.

04

+

10 GeV

/

pmuon

T

)

of a track-jet matched to the large-R jet by ghost

association is added to the calorimeter-based component of the large-R jet four-momentum while its expected calorimeter en-ergydepositsareremoved [85].Thisisknownasthemuon-in-jet correction.Non-isolatedmuonssatisfythe‘medium’identification criterion [72],butnoisolationorimpactparametercriteriaare ap-plied.Second,inthe2-leptonchannelonly,aper-eventlikelihood usesthefullreconstructionoftheeventkinematicstoimprovethe estimate ofthe energy of the b-jets [92]. The kinematic fit con-strainsthe



+



bb systemandtheadditional small-R jetsinthe eventtobebalancedinthetransverseplaneandthedilepton

sys-tem tothe Z boson mass, byscaling the four-momentumof the

objects inthe eventincluding thelarge-R jet, additionalsmall-R jets and leptons within their detector response resolutions. The large-R jet mass is then scaled by the ratio of the energies af-terand before thecorrection. For theevent selection detailedin Section 5,thelarge-R jetmassresolution improvesby5% to10% afterthefirstcorrection(dependingontheleptonchannel),while thesecond correctionbringsan additionalimprovementinthe 2-leptonchannelofupto40%.

ThepresenceofneutrinosintheW H

→ 

νb

b and

¯

Z H

ννb

b

¯

signatures can be inferred from a momentum imbalance in the transverse plane. The missingtransverse momentum Emiss

T is

re-constructedasthenegativevectorsumofthemomentaofleptons and small-R jets in the event plus a ‘soft term’ built from ad-ditional tracks associated with the primary vertex [93]. Small-R jetsused forthe EmissT reconstruction are required to have pT

>

20 GeV.ThemagnitudeofEmiss

T isreferredtoasEmissT .Tosuppress

non-collision and multijet backgrounds in the 0-lepton channel, an additional track-based missing transverse momentum estima-tor,Emiss

T, trk,isbuiltindependentlyasthenegativevectorsumofthe

transversemomentaofalltracksfromtheprimaryvertex. An overlap removal procedure is applied to avoid double-countingbetweenreconstructedleptons [9],includinghadronically decaying

τ

-leptons [94],andsmall-R jets [92].

5. Eventselection

Eventsarecategorisedintothe0-,1- and2-leptonchannels de-pendingonthenumberofselectedelectronsandmuonstotarget the Z H

v vbb,

¯

W H

→ 

νb

b and

¯

Z H

→ 

bb signatures,

¯

respec-tively.

The 0-lepton selection is applied to events selected with an

EmissT trigger with thresholds varying from 70 to 110 GeV de-pendingonthedata-takingperiodtocopewithincreasingtrigger rates athigher instantaneous luminosities. In the 1-lepton chan-nel,single-electroneventsarerequiredtobetriggered byatleast oneofseveralunprescaledsingle-electrontriggers.The lowest ET

thresholdoftheseunprescaledtriggers varied withtimefrom24 to26 GeV.Eventsinthesingle-muonchannelweretriggeredusing thesame EmissT triggerasusedinthe0-leptonchannel.Giventhat muonsdonotenterintheonlineEmissT calculationandthat unin-strumentedregionsaffectthecoverageofthemuonspectrometer, the EmissT triggers translate into a requirementon the transverse momentum of the lepton and neutrino pair, pTν, which is more efficient in the analysis phase space than the single-muon trig-gers.Inthe 2-leptonchannel, thesame triggerstrategy asinthe 1-leptonchannel isadopted.Thedielectronselectionisappliedto eventstriggeredbyatleastoneoftheun-prescaledsingle-electron triggers.Thedimuonselectionisappliedtoeventstriggeredbyan

EmissT trigger.Alltriggersusedinthisanalysisarefullyefficientfor theeventsselectedusingtherequirementsdescribedbelow.

In all three channels, events are required to contain at least one large-R jet with pT

>

250 GeV and

|

η

|

<

2

.

0. To select the

Higgs boson candidate, the leading pT large-R jet is chosen, at

leasttwoVR track-jetsare requiredtobematchedtoitby ghost-association,andthetwoleadingonesarerequiredtobeb-tagged.

This jet is referred to as the ‘Higgs-jet candidate’in the follow-ing.Toavoidtheambiguouscasesofconcentricjets,eventswhere theb-taggedVRtrack-jetsoverlapwithother VRtrack-jets, satis-fying

R

/

Rs

<

1 (where

R corresponds to the distanceamong

anypairofVRtrack-jetsand Rs correspondstothesmallerradius

oftheconsideredpair),areremoved.Thereconstructedtransverse momentumpVT ofthevectorbosoncorrespondstoEmissT inthe 0-leptonchannel, tothemagnitudeofthe vectorsumof EmissT and the charged-lepton transverse momentum in the 1-lepton chan-nel, andto the transverse momentum of the 2-lepton systemin the2-leptonchannel.The pV

T isrequiredtobeabove 250 GeVin

allthreechannels.TheeventselectionisdetailedinTable2,with further explanations provided below for the non-straightforward selectioncriteria.

The multijet background in the 0-lepton channel originates mainly from jet energy mismeasurements. To reduce this back-groundtoa negligiblelevel,threededicated selectioncriteriaare applied. Events are removed if the missing transverse momen-tumis pointing towards the direction ofthe Higgs-jet candidate

(5)

Table 2

Eventselectionrequirementsfortheboosted

V H

,Hbb analysis ¯ channelsandsub-channels.

Selection 0leptonchannel 1 lepton channel 2 leptons channel

e sub-channel μsub-channel e sub-channel μsub-channel

Trigger Emiss

T Single electron EmissT Single electron EmissT

Leptons 0 baseline leptons 1 signal lepton 2 baseline leptons among which

pT>27 GeV pT>25 GeV ≥1 signal lepton, pT>27 GeV

no second baseline lepton both leptons of the same flavour

- opposite sign muons

EmissT >250 GeV >50 GeV -

-pV

T pVT>250 GeV

Large-R jets at least one large-R jet, pT>250 GeV ,|η| <2.0

Track-jets at least two track-jets, pT>10 GeV ,|η| <2.5, matched to the leading large-R jet b-tagged jets leading two track-jets matched to the leading large-R must be b-tagged (MV2c10, 70%)

mJ >50 GeV min[ φ(Emiss T , small-R jets)] >30◦ - φ(Emiss T , Hcand) >120◦ - φ(Emiss T , EmissT, trk) <90◦ - y(V,Hcand) - | y(V,Hcand)| <1.4 m - 66 GeV<m<116 GeV Lepton pTimbalance - (pT1−p 2 T)/p Z T<0.8

(

φ (

EmissT , Hcand

) >

120◦).Events are alsoremovedifthe

calori-metric EmissT andthetrack EmissT, trkarefarapart(

φ (

EmissT

,

EmissT, trk

)

<

90◦). The EmissT is required to be isolated from any calorime-ter small-R jet with transverse momentum in excess of 70 GeV (min

[ φ(

EmissT , small-R jets

)

]

>

30◦). In this case, only small-R jetsnotoverlappingwiththeHiggs-jetcandidatewithin

R

=

1

.

0 areconsidered.

In the 1-lepton channel, the isolation requirements remove most of the non-prompt lepton background. An additional Emiss

T

requirementisapplied intheelectronsub-channeltoreduce this backgroundfurther.Inordertoreduceother backgrounds,suchas topandW

+

jetsproduction,afurtherselectionontherapidity dif-ference between the Higgs-jetcandidate andthe vector boson is applied(

|

y

(

V

,

Hcand

)

|

<

1.4).TheW -bosonrapidityisestimated

assumingthat EmissT isthepT oftheneutrinoandthelongitudinal

momentumoftheneutrinoisestimatedusingtheW -bosonmass constraint. Thismethodleads toaquadraticequationforthe lon-gitudinalmomentumoftheneutrino.Incaseoftworealsolutions: theretainedsolutionistheonethatminimisesthedifference be-tweenthelongitudinalboostoftheW bosonandtheHiggsboson. Incaseofnorealsolution,theimaginarypartissetto0.3

In the 2-lepton channel, where two same-flavour leptons are required (in the dimuon sub-channelthe two muons are further requiredtobeofoppositesign,inthedielectroncasethisselection is not applied dueto thecomparatively highercharge misidenti-fication),the rapiditydifference (

|

y

(

V

,

Hcand

)

|

<

1.4)effectively

reducesthemainZ

+

jetsbackground.Arequirementisimposedon theleptonpTimbalance(

(

pT1

p

2

T

)/

pTZ

<

0.8),whichissensitive

to the Z boson polarisation [95].Since the Z bosonhasdifferent statesofpolarisationinthe Z H signalandtheZ

+

jetsbackground, thisselectionfurtherreducesthisbackground.

Since the signal-to-background ratio increases for large Higgs boson transverse momenta [12,96], events are further split into two pV

T binswith250

<

pVT

<

400 GeV andwithpVT

400 GeV. 3 Thisprocedureisequivalenttosettingthereconstructed

W transverse

massto the

W mass.

Theselectionefficiencyinthe0-,1- and2-leptonchannelsand two pTV bins ranges between approximately 6% and 16% for the

W H and Z H processes where the W and Z bosons decay

lep-tonicallyandtheHiggsbosondecaysinto apairofb-quarks.The analysisdoesnotexplicitlyselect

τ

-leptonsbuttheyareaccounted for in the case of leptonically decaying

τ

-leptons in the 1- and 2-lepton channels andhadronically decaying

τ

-leptons in the 0-leptonchanneliftheyaremisidentifiedasjets.

As discussedin Section 1 the overlapsbetween theevent se-lectionspresentedhereinandthoseofRef. [15] arenonnegligible. In the 250 GeV

<

pTV

<

400 GeV region, approximately 40% of thesignal events are selectedby both sets ofselections, andthe fractionofsignaleventsuniquelyselectedbythelarge-R jet anal-ysisvariesbetween5%and30%withincreasing pVT.Inthe pVT

>

400 GeVregion, the overlapdecreases progressively toreach ap-proximately15%andtheuniquelarge-R jetanalysissignalevents increaseto75%ata pV

T ofaround700 GeV.

The tt process

¯

is a major background in the 0- and1-lepton

channels.Fortt events,

¯

theb-taggedtrack-jetsassociatedwiththe Higgs-jetcandidatearemainlyab- andac-jet(theformerfroma top-quarkdecayandthelatterfromthehadronicW bosondecay) andthereforethe second b-jet fromthe other top-quarkisoften expectedto be identified as an additional b-tagged track-jet not associatedwiththe Higgs-jetcandidate. Takingthisinto account, signalregions(SR)inthe0- and1-leptonchannelsaredefinedby vetoingonb-taggedtrack-jetsoutsidetheHiggs-jetcandidateand control regions (CR), enriched in tt events,

¯

are builtfromevents whichfailthisveto.TheSRsandCRsareaccountedforinthesame wayinthefit,butCRsaredominatedbybackgroundsandareused toconstrainspecificbackgroundcomponents.

Eventsinthe0- and 1-leptonchannelsarefurthercategorised depending on the number of small-R jets not matched to the Higgs-jetcandidate,i.e.with

R(Hcand,small-R jet)>1.0.Two

cat-egories are defined: a high-purity signal region (HP SR) with 0 small-R jets not matched to the Higgs-jet candidate and a

low-purity signalregion(LP SR)with

1 small-R jets notmatchedto

theHiggs-jetcandidate.

(6)

Table 3

Summaryofthedefinitionoftheanalysisregions. SignalenrichedregionsaremarkedwiththelabelSR.Thereare regionswithrelativelylargesignalpurity(HPSR)andwithlowpurity(LPSR).Backgroundenrichedregionsaremarked withthelabelCR.Theshorthand“add”standsforadditionalsmall-R jets,i.e.numberofsmall-R jetsnotmatchedto theHiggs-jetcandidate.

Channel Categories

250<pV

T <400 GeV pVT≥400 GeV

0 add. b-track-jets ≥1 add.

b-track-jets

0 add. b-track-jets ≥1 add.

b-track-jets 0add. small-R jets ≥1 add. small-R jets 0add. small-R jets ≥1 add. small-R jets 0-lepton HP SR LP SR CR HP SR LP SR CR 1-lepton HP SR LP SR CR HP SR LP SR CR 2-lepton SR SR

6. Backgroundcompositionandestimation

ThebackgroundcontributionintheSRsisdifferentforeachof the three channels. In the 0-lepton channel, the dominant back-groundsources are Z

+

jets andtt events

¯

withasignificant con-tribution from W

+

jets and dibosonproduction.In the 1-lepton channel, the largest backgrounds are tt and

¯

W

+

jets produc-tionfollowedbythesingle-topbackground.Inthe2-lepton chan-nel, Z

+

jets production isthe dominantbackgroundfollowedby the Z Z background. Contributionsfromt

¯

t V andt

¯

t H are negligi-ble. The multijet background,due to semileptonic heavy-flavour-hadron decays or misidentified jets, is found to be negligible in the0- and2-leptonchannelsaswellasinthe1-leptonmuon sub-channelafterapplyingtheeventselectionsdescribedinSection5, asconfirmedusingdata-driventechniques.Inthe1-leptonelectron sub-channelitscontributionisnotneglected.Allinitialbackground distributionshapespriortothefit(describedinSection8),except those for multijet, are estimated from the samples of simulated events.Themultijetshapeandnormalisationaredeterminedusing data.

The W

/

Z

+

jets simulated event samples are split into 6 cat-egories depending on the ‘truth’ labels of the track-jets ghost-associated to the Higgs-jet candidate: W

/

Z

+

bb, W

/

Z

+

bc, W

/

Z

+

bl, W

/

Z

+

cc, W

/

Z

+

cl and W

/

Z

+

ll; in this notation

l referstoalight-flavourjet.4 The W

/

Z

+

bb fractioncorresponds

toapproximately80%ofthetotalW

/

Z

+

jetsbackground.This cat-egorisation is used in the uncertainties variations of the ratios

V

+

bc

/

V

+

bb, V

+

bl

/

V

+

bb and V

+

cc

/

V

+

bb to cover

un-certainties on the flavour composition in V +jets production, see Section7.

In the statistical analysis described in Section 8, the compo-nentsW

/

Z

+

bb,W

/

Z

+

bc,W

/

Z

+

bl andW

/

Z

+

cc aretreatedas a singlebackgroundcomponentdenoted by W

/

Z +HF. The W +HF

and Z +HF contributions,whichtogether constitute90%of V

+

jets

background,areestimatedseparately,each withitsown normali-sationfactordeterminedfromthefittodata.

The tt productionbackground arisesfromtopologieswith

de-cays of W bosons into

τ

-leptons which then decayhadronically

inthe0-leptonchannel andfromW bosonsdecayingintoe

/

μ

in the 1-leptonchannel. Inthe 2-leptonchannel the tt contribution

is muchsmaller. Forthe 0- and1-lepton channels, two indepen-dent normalisationfactors are considered andleft floatingin the fit,wheretheyareconstrainedbytheCRs.

Single-topproductioncontributestothe0- and1-lepton

chan-nelsandW t productionisthedominantprocess(s- andt-channel

processesamounttolessthan1%globally andlessthan5%ofthe single-topcontribution).

4 Whenlabellingjetsinthe V+jets backgroundsmodelling,the labellingof τ-jetsisomittedandthenegligibleτ-leptoncontributionisincludedwith light-flavourjets.

Thedibosonbackgroundprocessconsistsoffinal statesarising mostlyfrom W Z and Z Z events,wherea Z boson decaysintoa pairofb-quarks.Thisprocesshasatopologyverysimilartothatof thesignal,exhibitingapeakinmJatthemassofthehadronically

decayingvectorboson.Althoughitisasubdominantcontribution, itprovidesanimportantreferenceforvalidation.Itsnormalisation ismeasuredsimultaneouslywiththe V H signal.

In the 1-lepton channel, the multijet background originating from jets misidentified as leptons and/or due to semileptonic heavy-flavour-hadrondecayscannotbeneglected.SinceMC simu-lationsamplesarestatisticallylimitedandarenotexpectedto re-producethemultijetproductioninthiscornerofthephasespace, itisestimatedfromatemplatefitusingthedata.ThemJtemplates

intheelectron andmuonsub-channels aretakenfromdedicated CRsenrichedin multijetbackground,obtainedfromtheinversion ofthetight leptonisolation requirementsandtheremovalofthe

EmissT requirement,andaftersubtractionoftheotherbackgrounds. ThemultijetnormalisationsareestimatedintheSRsfromafitto the transversemass5 distribution separately for the electron and

muon sub-channels. The contribution of the multijetbackground is found to be negligible in the muon sub-channel. In the elec-tron sub-channelit is approximately 2% of the total background, withan uncertainty of55% estimated mainlyfrom thestatistical uncertaintyofthetransversemassfit.Thiscontributionandits as-sociateduncertaintyaretakenintoaccountinthesignalextraction fit.

7. Systematicuncertainties

Systematicuncertaintiescanhaveanimpactontheoverall sig-nal andbackground yields, on the shapesof thejet mass distri-butions, on the CRto SR extrapolations, andon the relative ac-ceptancesbetweenthe HPandLPSRsandbetweenthe pTV bins. Systematicuncertaintiesarediscussedherein forthreemain cate-gories:experimental,signalmodelling,andbackgroundmodelling.

7.1. Experimentalsystematicuncertainties

The uncertainties in the small-R jet energy scale and resolu-tionhave contributionsfrom in situ calibrationstudies,fromthe dependency on the pile-up activity and on the flavour compo-sition of the jets [76]. For large-R jets, the uncertainties in the energyandmassscales arebasedonacomparisonoftheratioof calorimeter-based totrack-based measurements in dijetdataand simulation,asdescribedinRef. [81]. Theimpactofthejet energy scaleandresolutionuncertaintiesonthe large-R jetmassare as-sessed by applying different calibration scales and smearings to

5 The transverse mass m

T of the W boson candidate in the event

is calculated using the lepton candidate and EmissT according to mT =



2p

(7)

the jet observablesin the simulation,accordingto the estimated uncertainties.Anabsoluteuncertaintyof2%isusedforthejet en-ergyresolutionwhilearelativeuncertaintyof20% isusedforthe jet massresolution,consistent withprevious studiesfortrimmed jets [97,98].

The b-tagging uncertainties are assessed from the calibration

data in various kinematic regions and separately for b-, c-, and light-flavourjets. The uncertainties are then decomposedineach of the flavour categories intoindependent components. An addi-tional uncertaintyis includedto account forthe extrapolation to jets with pT beyond the kinematic reach of the data calibration

(the thresholdsare 250 GeV,140 GeVand300 GeVforb-,c- and

light-flavourjets,respectively) [86,90,91].

Other experimental systematic uncertainties with a smaller impact are those in the lepton energy and momentum scales, in lepton reconstruction and identification efficiency, and in the efficiency of the triggers. An uncertainty associated with the modelling of pile-up in the simulation is included to cover the difference between the predicted and measured inelastic cross-sections [99].Theuncertaintiesintheenergyscaleandresolution ofthe small-R jetsandleptons are propagatedto thecalculation of EmissT , which also has additional uncertainties from the scale, resolutionandreconstructionefficiencyofthetracksusedto com-pute the soft term, along with the modelling of the underlying event [93].

7.2. Signalmodellingsystematicuncertainties

The systematic uncertainties that affect the modelling of the signal are derived closely following the procedure outlined in Refs. [11,16,92] andinRefs. [100,101] foruncertaintiesspecific to STXS. The systematicuncertainties in thecalculations ofthe V H

production cross-sectionsandthe H

bb branching

¯

fraction are assigned following the recommendations ofthe LHC Higgs Cross Section Working Group [56,57,102–104]. Acceptance and shape systematicuncertaintiesarederivedtoaccountformissing higher-order QCDandEW corrections, forPDF+

α

S uncertainties, andfor

variations of thePS andUE models. Factorisationand renormali-sation scales are varied by factors of 0.5 and2. PDF-related un-certainties are derived following Ref. [38]. The effects of the un-certaintiesfrommissinghigher-orderEWcorrections,PDF+

α

Sand

QCD scalevariations onthejetmass shapearenegligible.The PS andUEuncertaintyisevaluated bycomparingthenominalsignal Powheg-Boxsamplesshoweredby Pythia8withalternative sam-plesshoweredby Herwig 7 [105].

7.3. Backgroundmodellingsystematicuncertainties

The principal additional modelling uncertainties for the back-grounds that were considered are the following: renormalisation andfactorisationscalevariationsbyfactorsof0.5and2forhigher order in QCD corrections of the matrix element of the process; mergingscalevariationsfrommulti-legsimulations; resummation scale orparton shower uncertainties;PDF uncertainties; and dif-ferenceswithalternativeMCgenerators. Theimpactofthese sys-tematicuncertaintiesintermsofnormalisation,shape,acceptance andextrapolationbetweenanalysisregions isthenestimatedand includedinthe fitmodel(describedinSection 8).Giventhat the analysisis basedonthe fitofthemJ variableonly, all shape

un-certaintiesareestimatedwithrespecttothisobservable.

The normalisations of the W

/

Z +HF backgrounds are free pa-rameters in the fit. They are determined thanks to the use of the jet mass distributions in SRs once tt is

¯

constrained from

C R enriched in t

¯

t events. In addition to scale variations within Sherpa2.2.1, alternative samples foracceptance andshape varia-tions generatedwith MadGraph interfacedto Pythia8were

con-sidered.Finally,variationsintheV

+

bc

/

V

+

bb,V

+

bl

/

V

+

bb and

V

+

cc

/

V

+

bb ratiosareaccountedforindependentlyfortheW

-andZ -bosonbackgrounds.

Fortop-quarkpair productionmodellinguncertainties, specific initial-state radiation (ISR) and final-state radiation (FSR) Pythia parametersareusedtoassesstherelatedsystematicuncertainties. In addition to the typical scale variations, alternative NLO sam-ples using the MadGraph5_aMC@NLO and Herwig7 generators wereconsidered.Thett normalisationisfreeinthefitandmainly constrained in the CRs for the 0- and 1-lepton channel. For the 2-lepton channel it isconstrained to its nominalpredicted value withanuncertaintyof20%.Duetotopdecaysnotfullycontained withinthelarge-R jet,therelativenumberofeventswhereexactly two andwhere three or more VR track-jets are ghost-associated tothelarge-R jetcan modifythelarge-R jetmasstemplate.This isaccountedforby an additional uncertaintyestimatedfromthe impact onthe tt background template of a 20% variation in this relativeratio.

The normalisations, acceptances and shapes of all single-top production processes are constrained to their predictions within the corresponding uncertainties. For the dominant W t channel,

ISR/FSR uncertainties as well as alternative generator samples, Herwig7 and Madgraph5_aMC@NLO, are considered. Since the

W t channelhasthesameflavourcompositionandasimilarshape

inthe0- and1-leptonchannels,themodellinguncertainties were studied in the 1-lepton channel and then propagated to the 0-lepton channel. An associated extrapolation uncertainty is taken intoaccount.

Toaccount forthe ambiguitiesin the interferencebetweentt

¯

and single-top production,an alternative sample generated with Powheg-Boxinterfacedto Pythia 8,usingthediagramsubtraction (DS)scheme,isused [68]. ThedifferencebetweentheDSandDR schemesforthe W t single-topproduction isaccountedforasan additionalsystematicuncertainty.

Fordibosonproduction,in additionto the scalevariations for acceptance, extrapolation and shape systematic uncertainties, al-ternative dibosonsampleswere generated using Powheg-Box in-terfacedto Pythia8andthedifferencewithrespecttothe Sherpa nominalsampleswasusedasanadditionaluncertainty.

8. Results

The results are obtained from a binned maximum-profile-likelihoodfittothedataofthemJdistribution,usingallthesignal

andcontrolregionsdefinedinSection5.Thefitisperformedusing the RooStats framework [106,107].SignalandbackgroundmJ

tem-platesaredeterminedfromMCsimulation(describedinSection3) in all cases except for the multijet background in the 1-lepton channel, which is extracted from the data as discussed in Sec-tion6.

Thelikelihoodfunction isconstructedfromtheproductofthe Poissonprobabilitiesofeachbinofthemassdistributionsand aux-iliarytermsusedtomodelsystematicuncertainties.Thelikelihood function isdescribed inmore detail in Ref. [92]. The parameters ofinterest(POI) arethe signalstrengths

μ

, multiplicationfactors thatscaletheexpectedSMHiggsbosonsignal,inoneormore sub-channels, or the V Z process.The signal strength parameters are extractedsimultaneouslywiththeoverall dibosonsignal strength

μ

bb

V Z bymaximisingthelikelihood.

Systematicuncertaintiesaremodelledinthelikelihoodfunction by parameterised variations of the number of signal and back-ground events, and of the templates through nuisance parame-ters(NP). Systematic variations ofthe templates that are subject to large statisticalfluctuationsare smoothed, andsystematic un-certainties that have a negligible impact on the final results are pruned away region-by-region [108]. NPs corresponding to most

(8)

Fig. 1. The

m

Jpost-fitdistributionsin(a,b)the0-lepton,(c,d)1-leptonand(e,f)2-leptonsignalregionsfor2-b-taggedeventsfor(a,c,e)250 GeV<pVT<400 GeV and (b,d,f)

p

V

T≥400 GeV.Thelow-purityandhigh-puritycategoriesinthecaseofthe0-leptonand1-leptonchannelsaremergedinthisfigure.Thebackgroundcontributions afterthelikelihoodfitareshownasfilledhistograms.TheHiggsbosonsignal(mH=125 GeV)isshownasafilledhistogramontopofthefittedbackgroundsnormalised

tothesignalyieldextractedfromdata(μbb

V H=0.72),andunstackedasanunfilledhistogram,scaledbytheSMpredictiontimesafactoroftwo.Thesizeofthecombined

statisticalandsystematicuncertaintyforthesumofthefittedsignalandbackgroundisindicatedbythehatchedband.Thehighestbininthedistributionscontainsthe overflow.Theratioofthedatatothesumofthefittedsignalandbackgroundisshowninthelowerpanel.

(9)

Table 4

Factorsappliedtothenominalnormalisationsofthe

tt,

W+HF and

Z

+HF backgrounds,asobtainedfromthe likelihoodfit.Theerrorsrepresentthecombined statisti-calandsystematicuncertainties.

Process and category Normalisation factor tt 0-lepton 0.88±0.10 tt 1-lepton 0.83±0.09

W+HF 1.12±0.14

Z+HF 1.32±0.16

uncertainties discussed in Section 7 are constrained using Gaus-sianorlog-normalprobability densityfunctionsasauxiliaryterms inthelikelihood.Thenormalisationsofthelargestbackgrounds,t

¯

t

(in the 0- and 1-lepton channels), W +HFand Z +HF, are left un-constrainedinthefit.Thebackgroundnormalisationfactorvalues fromthe fitcorrespond to 0

.

88

±

0

.

10 and0

.

83

±

0

.

09 for tt,

¯

in the0- and 1-leptonchannels,respectively; 1

.

12

±

0

.

14 forW +HF

and1

.

32

±

0

.

16 for Z +HFandarealsosummarisedinTable4.The fitmodelusesasinglenormalisationfactorforZ +HFand compat-ibleresultswerefoundwhenusingtwodifferentfactorsforthe 0-and2-lepton channels. Toaccountfor theuncertaintydueto the limitedsizeoftheMCsimulationsamples,anNPisusedforeach binofthetemplates [109].

ThemJ distributionswithsignalstrengths,background

normal-isationsandallNPssetattheirbest-fitvalues,areshowninFig.1

forallthreechannels’SRsandinFig.2fortheCRs.Thelow-purity andhigh-puritycategoriesinthecaseofthe0-leptonand1-lepton channelsaremergedinFig.1.InallSRsandCRsagoodagreement betweenthedataandthepredictionisobserved.

ForaHiggs bosonmassof125 GeV,whenall leptonchannels arecombined,theobservedexcesswithrespecttothe background-only hypothesis has a significance of 2.1 standard deviations, to be compared withanexpectationof 2.7standarddeviations.The fitted

μ

bb

V H valueis:

μ

bbV H

=

0

.

72+00..3936

=

0

.

72+00..2928

(

stat

.)

+00..2622

(

syst

.).

In this result, the largest uncertainties are statistical and in-cludetheimpactfromthefloatingbackgroundnormalisations un-constrainedin the fit.The lattercomponentis subdominant.The impact of systematic uncertainties is almost asimportant as the totalstatisticaluncertainty.Thedominantsourceofsystematic un-certaintyisexperimentalandrelatedtothelarge-R jetcalibration, inparticular inthemJ resolution,amounting toan impactof

ap-proximately0.13on

μ

bb

V H.Thesecondlargestsourceofsystematic

uncertaintyisthebackgroundmodelling,whichoverallhasan im-pact ofapproximately 0.10on the result. The limitedsize of the MC simulation sampleshas a non-negligible impactof 0.09. Sys-tematic uncertainties in the signal modelling have an impact of approximately 0.04, on par withuncertainties relatedto small-R jets. The breakdown of the systematic uncertainties in the mea-surementofthesignalstrengthisdisplayed inTable5.

ThemJdistributionisshowninFig.3(a)summedoverall

chan-nelsandsignalregions,weightedbytheirrespectivevaluesofthe ratio of the fitted Higgs boson signal to background yields and after subtraction of all backgrounds except for the W Z and Z Z

dibosonprocesses.

Fig.3(b)showstheresultsof:afitwithsixV H POIsmeasuring the individual signal strengths ineach of thethree channelsand

pV

T bins separately; a three V H POI fit measuring the combined

signal strengthsin eachchannel;atwo V H POIfit combiningall channelsinthetwo pVT binsseparately;andtheoverallsingle V H

POIcombination.

ForV Z productionthefittedsignalstrength

μ

bb V Z is

μ

V Zbb

=

0

.

91+00..2923

=

0

.

91

±

0

.

15

(

stat

.)

+00..2417

(

syst

.),

Table 5

Breakdownofthe absolutecontributionstothe uncer-taintyinμbb

V H inclusivein

p

VT.Thesuminquadratureof the systematicuncertaintiesattachedtothecategories differsfromthetotalsystematicuncertaintydueto cor-relations.Thereportedvaluesrepresenttheaverage be-tweenthepositiveandnegativeuncertaintiesonμbb

V H.

Source of uncertainty Avg. impact

Total 0.372 Statistical 0.283 Systematic 0.240 Experimental uncertainties Small-R jets 0.038 Large-R jets 0.133 Emiss T 0.007 Leptons 0.010 b-tagging b-jets 0.016 c-jets 0.011 light-flavour jets 0.008 extrapolation 0.004 Pile-up 0.001 Luminosity 0.013

Theoretical and modelling uncertainties

Signal 0.038

Backgrounds 0.100

Z + jets 0.048

W + jets 0.058

→t¯t 0.035

→Single top quark 0.027

→Diboson 0.032

→Multijet 0.009

MC statistical 0.092

in agreement with the SM prediction and the W±Z differential

cross-sectionmeasurementperformedbyATLASathightransverse momentum ofthe Z boson(pTZ

>

220 GeV)in thefully leptonic channel (W±Z

→ 



ν



+



−) [110]. The simultaneous fit teststhe performance of the analysis on an irreducible background, the known V Z production, with a topology similar to the V H

sig-nal.Withallthreeleptonchannelscombined,asignificanceof5.4 standarddeviations isobserved forthe V Z process, comparedto anexpectationof5.7standarddeviations.Thecorrelationwiththe

μ

bb

V H signal strength is approximately11%. The statistical

uncer-taintiesamounttoapproximately60%ofthetotaluncertainty.The dominantsourceofsystematicuncertaintyisthebackground mod-elling,which has an impact of approximately0.16 on the result. Thesourceofsystematicuncertaintyrelatedtothelarge-R jet re-constructionfollowsclosely,withanimpactofapproximately0.09 on

μ

bb

V Z.

Thecross-sectionsinthe STXSframework are measured sepa-ratelyfor Z H and W H productionintwo pV

T regions,250 GeV

<

pV

T

<

400 GeV and pTV

400 GeV.Theanalysiscloselyfollowsthe

strategyusedinRef. [11].Theexpectedsignaldistributionsand ac-ceptancetimesefficienciesforeachSTXSregionareestimatedfrom thesimulatedsignal samplesby selectingeventsusingthe gener-ator’s‘truth’ information,inparticular the‘truth’ pV

T,denoted by

pVT,t. Thelikelihood function usedis differentfromtheone used toextractthe

μ

bb

V H and

μ

bb

V Z resultspresentedbefore.Ithas

mul-tiplePOIs corresponding tothe cross-sectionsinthefour regions usedintheanalysis, multipliedbythe H

bb and

¯

V

leptons branching fractions. These four regions, i.e. Z H and W H

pro-duction and the two pVT,t bins, are known as reduced stage-1.2 regions in the STXS framework [111]. The sources of systematic uncertaintyareidenticalto thosedefinedinSection 7,exceptfor thetheoretical cross-section andbranching fractionuncertainties, which are not included in the likelihood function because they affect the signal strength measurements but not the STXS mea-surements.

(10)

Fig. 2. The

m

J post-fitdistributions inthe

t

t control ¯ regionfor (a,b)the 0-leptonchanneland the1-leptonchannelfor250 GeV<pTV<400 GeV and(c, d)the 0-leptonchannelandthe1-leptonchannelfor

p

VT>400 GeV.Thebackgroundcontributionsafterthelikelihoodfitareshownasfilledhistograms.TheHiggsbosonsignal (mH=125 GeV)isshownasafilledhistogramontopofthefittedbackgroundsnormalisedtothesignalyieldextractedfromdata(μbbV H=0.72),andunstackedasan

unfilledhistogram,scaledbytheSMpredictiontimesafactorof2.Thesizeofthecombinedstatisticalandsystematicuncertaintyforthesumofthefittedsignaland backgroundisindicatedbythehatchedband.Thehighestbininthedistributionscontainstheoverflow.Theratioofthedatatothesumofthefittedsignalandbackground isshowninthelowerpanel.

Thecross-sectionsarenotconstrainedtobepositiveinthefit. Themeasuredreducedstage-1.2V H cross-sectiontimesbranching fraction

σ

×

B ineachSTXSbin,togetherwiththeSMpredictions are summarised in Fig. 4 where the red error bands correspond to thetheoretical uncertaintyofthefiducialcross-section predic-tion ineach bin.The measurements are alsoreported inTable 6

andareinagreementwiththeSMpredictionsfromthesignalMC sample.Theprincipalsourcesofsystematicuncertaintiesare simi-lartothoseaffecting

μ

bb

V H.

These results complement and extend those obtained by the small-R jetsanalysis [15] usingthesamedataset.The latter pro-videsa moreprecisemeasurementofthecross-section inthe in-clusive pVT

>

250 GeVregion.Thiscanbe attributedtothelarger acceptance atlower pV

T value, the usage ofmore precisephysics

objects calibration and to the use of multivariate analysis tech-niques.Theresultsobtainedbythetwoanalysesinthisregionare compatiblewithinonestandarddeviation.

9. ConstraintsonanomalousHiggsbosoninteractions

The STXSresults presented inSection 8are interpreted in an effectivefield theoryapproach wherethe scaleofnew physicsis significantly largerthan the SM electroweak scale soas toaffect themeasuredobservablesattheLHConlythrougheffective inter-actionsamongSMparticles.

In thisSMEFT approach, the SM Lagrangian is extended with higher-dimensionaloperatorsthatcapturethelow-energylimit ef-fectsofafundamental ultraviolettheory,withouta priori knowl-edgeofthistheory [18]

L

SMEFT

=

L

SM

+



d 1



d−4





i c(id)

O

(d) i



,

where

O

(id)aredimension-d operatorsandc(id)arethe correspond-ing numerical coefficients called Wilson coefficients. All Wilson coefficients are assumed real. In the SM, all Wilson coefficients

(11)

Fig. 3. (a)

m

Jdistributionindataaftersubtractionofallbackgroundsexceptforthe

W Z and Z Z diboson

processes.Thecontributionsfromallleptonchannelsandsignal regionsaresummedandweightedbytheirrespectivevaluesoftheratiooffittedHiggsbosonsignalandbackgroundyields.Theexpectedcontributionoftheassociated W H and Z H production ofaSMHiggsbosonwith

m

H=125 GeVisshownscaledbythemeasuredcombinedsignalstrength(μbbV H=0.72).Thedibosoncontributionis

normalisedtoitsbest-fitvalueofμbb

V Z=0.91.Thesizeofthecombinedstatisticalandsystematicuncertaintyisindicatedbythehatchedband.Thiserrorbandiscomputed

fromafullsignal-plus-backgroundfitincludingallthesystematicuncertaintiesdefinedinSection7,exceptforthe V H/V Z experimental andtheoryuncertainties.(b) FittedvaluesoftheHiggsbosonsignalstrengthparameter,μbb

V H,for

m

H=125 GeVforthe0-,1- and2-leptonchannelsindifferent

p

VT regionsseparatelyandforvarious combinations.

Table 6

Measuredandpredicted

V H

,V→leptons reducedstage-1.2simplifiedtemplatecrosssectionstimesthe

H

bb¯ and

V

→leptonsbranchingfractionswithcorrespondinguncertainties.Allpossible

Z decays

intoneutraland chargedleptonsareconsidered.

STXS region(|yH| <2.5,Hbb¯) SM prediction [fb] Result (Tot.) (Stat.) (Syst.) [fb]

W→ ν;pWT,t∈ [250,400]GeV 5.83±0.26 3.3 +4 .8 −4.6 +3 .6 −3.4 +3 .2 −3.0 W→ ν;pWT,t∈ [400,∞]GeV 1.25±0.06 2.1 +1 .2 −1.1 +1 .0 −0.9 +0 .6 −0.5 Z→ ,νν; pZT,t∈ [250,400]GeV 4.12±0.45 1.4 +3 .1 −2.9 +2 .4 −2.3 +1 .9 −1.7 Z→ ,νν; pZT,t∈ [400,∞]GeV 0.72±0.05 0.2 +0 .7 −0.6 +0 .6 −0.5 +0 .3 −0.3

Fig. 4. Measured

V H reduced

stage-1.2simplifiedtemplatecross-sectionstimesthe Hbb and V¯ →leptonsbranchingfractions.

are zero.The scale of newphysics



is a free parameter set to 1 TeV.Inthisanalysis,theWarsawbasis [112] ofdimensiond

=

6 operatorsisused,takingintoaccountonlythelepton- and baryon-number-conserving ones. Furthermore, it only considers the CP-eventermsrespectingaU

(

3

)

5 flavoursymmetry,whichaffectthe

pp

V

(

leptons

)

H

(

bb

)

process [113].The operators affect-ingthesignalprocessesarelistedinTable7[114].

The Wilson coefficients are used to parameterise the STXS andtheHiggsbosondecayrates [114] fromleading-order predic-tions [113] andcanbeconstrainedusingtheSTXSmeasurements presented in Section 8. The parameterisation of the STXS takes

Table 7

Wilsoncoefficientsandtheircorrespondingdimension-6 operatorsintheWarsawformulationconsideredinthis analysis [112,114]. Coefficient Operator cH (HH)(HH) cH D D (HDμH)(HDμH) cdH (HH)(qpdrH) cH W HH WμνI WIμν cH B HH BμνBμν cH W B HτIH WμνI Bμν c(Hl1) Hi ←→ DμH(lpγμlr) c(Hl3) Hi←→DI μH(lpτIγμlr) c(He1) Hi ←→ DμH(epγμer) c(Hq1) Hi←→DμH(qpγμqr) c(Hq3) Hi←→DI μH(qpτIγμqr) cHu Hi←→DμH(upγμur) cHd Hi←→DμH(dpγμdr) cll (lpγμlr)(lsγμlt)

intoaccountthelineartermsoriginatingfromtheinterference be-tween SM andnon-SMamplitudes aswell asthe quadraticones from the squared non-SM amplitudes. The former are of order 1

/

2 and the latter of order 1

/

4. Given that the current pa-rameterisationtakesneither next-to-leading-order effects northe interferencebetweenSManddimension-8operatorsintoaccount, the1

/

4 termsare incomplete.Whereapplicable, fitresultswill be shownforboth the linear-onlyparameterisation andthe case wherequadratictermsarealsoincluded.Sincethe gg

Z H

Figure

Fig. 1. The m J post-fit distributions in (a, b) the 0-lepton, (c, d) 1-lepton and (e, f) 2-lepton signal regions for 2-b-tagged events for (a, c, e) 250 GeV &lt; p V T &lt; 400 GeV and (b, d, f) p V T ≥ 400 GeV
Fig. 2. The m J post-fit distributions in the t t control ¯ region for (a, b) the 0-lepton channel and the 1-lepton channel for 250 GeV &lt; p T V &lt; 400 GeV and (c, d) the 0- 0-lepton channel and the 1-lepton channel for p V T &gt; 400 GeV
Fig. 4. Measured V H reduced stage-1.2 simplified template cross-sections times the H → b b and¯ V → leptons branching fractions.
Fig. 5. Summary of the observed individual confidence interval at 68% (solid lines) and 95% (dashed lines) CL for the c ( Hq3) , c Hu , c H W , c H W B and c dH Wilson coefficients from a fit of the STXS, using a linear-only parameterisation (in blue) and incl
+2

References

Related documents

Agneta menar att målen uppfylls och att arbetssättet för att uppnå detta är välkänt och alla får ta del av det, vilket enligt Agneta innebär att det är en

Sjuksköterskorna i studierna av Kerr, Lu m.fl (2014) och Kullberg, Sharp m.fl (2018) menade att en förutsättning för att patienten skulle kunna vara delaktig var att hen visste hur

Läroplanskommittén visar alltså en hög tilltro till de lokala enheternas potential och förmåga att utveckla skolan och jämfört med Tydliga mål och kunskapskrav i grundskolan

Åkerbäck menar även att det finns svårigheter för lärare att förhålla sig neutralt till nyreligiositet och nyreligiösa rörelser och att de flesta religiösa

Även om de inte direkt använder ordet synliggörande så talar fritidslärarna om situationer där de synliggör det genom att diskutera, beskriva, påvisa, illustrera eller dokumentera

Enligt min undersökning verkar det vara så att pojkar och flickor ofta vill leka med olika typer av leksaker, men ändå väljer en könsstereotyp leksak, som är bunden till det

Att verksamma inom området besitter en grundläggande kunskap kring olika droger och dess effekter bör därför vara av stor vikt för att på så sätt kunna ge ett trovärdigt

micra showed very low Kgp activity (47, 77, 7 RFU/min respectively) and no increase in gingipain activity in the presence of P.. Unlike Rgp activity Kgp activity in suspensions