• No results found

Biochars produced with fast/flash pyrolysis in conical spouted bed reactor: potential for carbon sequestration

N/A
N/A
Protected

Academic year: 2021

Share "Biochars produced with fast/flash pyrolysis in conical spouted bed reactor: potential for carbon sequestration"

Copied!
1
0
0

Loading.... (view fulltext now)

Full text

(1)

Linnaeus ECO-TECH 2020 Kalmar, Sweden, November 23-25, 2020

©2020 Author/s. This is an Open Access abstract distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ISBN: 978-91-89081-03-1

BIOCHARS PRODUCED WITH FAST/FLASH

PYROLYSIS IN CONICAL SPOUTED BED

REACTOR: POTENTIAL FOR CARBON

SEQUESTRATION

Renato Rocha Batista

1

Gartzen Lopez²

Marcia Marques

1

1

Dep. of Sanitary and Env. Eng., Rio de Janeiro State University, RJ, Brazil

2

Dep. of Chemical Eng., Univ. of the Basque Country-UPV/EHU, Bilbao, Spain

Abstract

With the objective of verifying the potential for environmental applications of different chars produced by fast/flash pyrolysis in a conical spouted bed reactor (CSBR), data/information was taken from previous studies, including 23 pyrogenic carbonaceous materials (PCM) produced with different anatomic parts of eight lignocellulosic biomasses as feedstocks, as follows: pinewood sawdust (Pin); poplar wood (Po); eucalyptus (Euc); orange waste (Ow); acacia (Ac); gorse (Car); rice husk (Rh) and; brow species mixture (Mix). These PCMs were classified according to Van Krevelen diagram (VK) (based on their O/C and H/C molar atomic ratios) and according to Spokas’ approach (based on their O/C molar atomic ratio). Since PCMs obtained with fast/flash pyrolysis tends to have underdeveloped structures as a result of short operation residence time (SRT) (0.05-0.11 s) and high heating rate (HR) (10³-104 °C/s), their properties are not favorable, for instance, for carbon sequestration. Even though, based on the O/C and H/C atomic ratios, all 23 PCMs met the international standards established by the Initiative Biochar Certificate (IBI) (H/C ≤ 0.7) and by the European Biochar Certificate (EBC) (O/C ≤ 0.4; H/C ≤ 0.7), being entitled to be named biochars. When the focus is placed on carbon sequestration applications, according to the EBC criterium (C ≥ 50%), besides the O/C and H/C ratio limits, four biochars obtained with rice husk biomasses were not eligible since their Carbon (C) content is <50%. Mix biochar (O/C=0.25; H/C=0.35; T=500°C) was also excluded according to Spolas’ criterium which requires O/C <0.2. The remaining 18 biochars were stable with half lifetime ≥1000 years and for these biochars, the atomic ratios and the final temperature achieved during pyrolysis (O/C, H/C, T°C respectively) were: Pin: (0.19; 0,57, 450°C), (0.10; 0.42, 500°C), (0.05; 0.19, 600°C), (0.05; 0.19, 500°C), (0.05; 0.19, 500°C), (0.16;0.51, 400°C), (0.11; 0.40, 500°C); Ac: (0.16; 0.35, 500°C); Car: (0.06; 0.34, 500°C); Euc: (0.13; 0.35, 500°C); Ow: (0.15; 0.60, 425°C), (0.15; 0.48, 500°C), (0.13; 0.43, 600°C); Po: (0.16; 0.60, 435°C), (0.14; 0.61, 455°C), (0.10; 0.55, 485°C), (0.08; 0.51, 505°C), (0.14; 0.56, 525°C). A more restrictive raking still focusing on carbon soil sequestration was made, prioritizing higher temperatures for pyrolysis (500 ≤ T ≤ 600°C), higher C content (C ≥ 50%) and O/C < 0.2, as follows: Pin (0.05; 0.19, 600°C) > Car (0.06; 0.34, 500°C) > Euc: (0.13; 0.35, 500°C) > Ow: (0.13; 0.43, 600°C) > Po: (0.14; 0.56, 525°C) > Ac: (0.16; 0.35, 500°C). However, the potential for environmental applications of these six biochars must be experimentally demonstrated since applications of biochars produced through CSBR are seldom reported in literature.

References

Related documents

Linköpings universitet | Institutionen för beteendevetenskap och lärande Examensarbete, 15 hp | Speciallärarprogrammet 90 hp Vårterminen 2019 | ISRN LIU-IBL/ SPLÄR-A-19/01-SE..

Then pyrolysis was run several times (with no sample) with changing current of the second pulse, to both measure the diode voltage with the Labview program and to

2) Comparing the results of different turbulence calculation methods, the turbulence calculation method selected is the standard k- ϵ model. The results are compared to q-DNS

14 used the same technique with an AFM inside an SEM measuring the Young’s modulus for another type of carbon fibres (Figure 9). Their fibres had a cone structure

There are mainly three different methods to utilize energy from biomass, combustion, gasification and pyrolysis. Combustion of biomass was developed from the

Based on the general design scheme of the primary system that has been discussed in section 2.1 and 2.2. The primary system employs the natural circulation, in which the coolant

Parameters from the literature as well as from the model project in Tanzania were used to estimate income and cost for four different agroforestry systems in Sierra Leone: