• No results found

Activities of SnS in tin-iron mattes

N/A
N/A
Protected

Academic year: 2021

Share "Activities of SnS in tin-iron mattes"

Copied!
213
0
0

Loading.... (view fulltext now)

Full text

(1)

ACTIVITIES OF SnS IN TIN - IRON MATTES

By

(2)

All rights r eserved INFORMATION TO ALL USERS

The quality of this r epr oduc t i on is d e p e n d e n t u p o n the quality of the c op y s ubmi t t ed. In the unlikely e v e n t that the a u t h o r did not send a c o m p l e t e manuscr i pt and there are missing p a g e s , these will be n o t e d . Also, if material had to be r e mo v e d ,

a n o t e will i ndi cat e the delet ion.

uest

Pr oQues t 10781808

Published by ProQuest LLO (2018). Copyri ght of the Dissertation is held by the Author. All rights reserved.

This work is pr ot ect ed a g a i n s t una ut hor i zed copying under Title 17, United States C o d e Microform Edition © ProQuest LLO.

ProQuest LLO.

789 East Eisenhower Parkway P.Q. Box 1346

(3)

A t h e s i s r e s p e c t f u l l y s u b m i t t e d t o t h e F a c u l t y a n d t h e B o a r d o f T r u s t e e s o f t h e C o l o r a d o S c h o o l o f M i n e s i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f M a s t e r o f S c i e n c e i n M e t a l l u r g i c a l E n g i n e e r i n g . G o l d e n , C o l o r a d o D a t e : , 1972 S i g n e d : J o f f r e J u a n G o l d e n , C o l o r a d o D a t e : ^ y I f . 19 72 A p p r o v e d : D r . A.W. S c h l e c h t e n T h e s i s A d v i s o r . A p p r o v e d : fie a d , D e p a r t m e n t / o f M e t a l l u r g i c a l E n g i n e e r ­ i n g .

(4)

ACTIVITIES OF SnS Iil TIN - IRON MATTES.

By

Juan E. J o f f r e ,

A B S T R A C T

The vapor p r e s s u r e of SnS a()Ove pure S n S ( c , l ) , and above t i n i r o n ma t t e s was det er mi ne d by means of t he t r a n s n o r t a t i o n method.

I t was confi rmed t h a t - a n a r t from t he o t h e r well known f a c t o r s , such as a uni for m t e mp e r a t u r e in t he r e a c t i o n z one, and a uni form f l o w r a t e - t he i n ­ f l u e n c e of t he geomet ry of t h e r e a c t i o n chamber i s ver y i mp o r t a n t f o r a c c u­ r a t e d e t e r m i n a t i o n s us i nn t h i s method.

The c a r r i e r nas u t i l i z e d f o r t h e s e d e t e r m i n a t i o n s on t i n and i r o n s u l f i d e s , s houl d be a bl e t o c o n t r o l t he s u l f u r p o t e n t i a l t o n r e v e n t e r r o r s due t o d ec o mpo s i t i o n a n d / o r s e n r e n a t i o n .

The r e s u l t s o b t a i n e d f o r SnS vapor above nure S n S ( c , l ) anree ver y wel l wi t h t he most r e l i a b l e d a t a in t he l i t e r a t u r e . There a r e no a v a i l ­ a b l e da t a on t h e t i n - i r o n m a t t e s .

I t was found t h a t t he SnS-FeS l i q u i d s o l u t i o n behaves a l mos t r e g u l a r l y , and can be r e p r e s e n t e d by:

(5)

and,

Thermodynamic r e l a t i o n s were d e r i v e d from t h i s r e n u l a r s o l u t i o n model and a p r a c t i c a l a p p l i c a t i o n t o an SnS - f u m i m o p e r a t i o n i s p r e s e n t e d .

(6)

C O N T E N T S

Chapt er no. Page no

A b s t r a c t i i

L i s t o f f i g u r e s ... v i i

L i s t o f t a b l e s ... ix

I I n t r o d u c t i o n ... 1

Tin s me l t i n g p r a c t i c e ... 1

D i s t r i b u t i o n of t i n and i r o n between metal and s l a g ... 2 Recovery o f t i n from s l a g s ... 5. Purpose o f t h i s i n v e s t i g a t i o n ... 6 II L i t e r a t u r e s ur vey ... 7 T i n - s u l f u r system ... 7 I r o n - s u l f u r system ... 13 I r o n - t i n - s u l f u r syst em... ... 15 Ir on s u l f i d e - t i n s u l f i d e syst em ... 16 Hy d r o g e n - s u l f u r system ... 17

I I I The fuming o f t i n from s l a g s and ma t t e s ... 19

D e s c r i p t i o n of t he p r o c e s s ... 19

Matt e f o r ma t i o n ... 23

Thermodynamic e v a l u a t i o n s ... 24

IV Experi ment al a p p a r a t u s and pr o c e du r e ... 34

Choice o f method ... 34 Appar at us ... 35 Experi ment al ... 41 1. M a t e r i a l s , s a mp l e s , and ma t t e p r e p a r a t i o n . 41 2. S u l f u r p o t e n t i a l c o n t r o l ... 43 3. Flowmeter c a l i b r a t i o n ... 47 4. Temperat ure c o n t r o l ... 50 5. Op e r a t i n g p r oc e d u r e ... 52 V Experi ment al r e s u l t s ... 55

(7)

Cont ent s - Continued

Chapt er no. Page no,

VI Di s c u s s i on ... 69 1, The t r a n s n o r t a t i o n method ... 69 2, I n t e r p r e t a t i o n of r e s u l t s ... 74 2. 1 Vaoor n r e s s u r e of SnS ov e r nure S n S ( c , l ) ... 74 2 . 2 Vanor p r e s s u r e o f SnS over t i n - i r o n ma t t e s ... 84 3, Thermodynamic c o n s i d e r a t i o n s ... 90 3. 1 " ur e S n S ( c , l ) ... 90 3 . 2 Li qui d t i n - i r o n ma t t e s ... 92 3. 3 Thermodynamic r e l a t i o n s d e r i v e d from t h e r e g u l a r s o l u t i o n model ... 95

3 . 4 C a l c u l a t i o n of t he FeS-SnS phase diagram from vanor n r e s s u r e measurements ... 102

3. 5 The s u h - r e g u l a r s o l u t i o n model a p p l i e d t o t he SnS-FeS system ...•... 106

3. 6 P o s s i b i l i t y of Comnlex f o r ma t i o n ... 110

VII P r a c t i c a l a p p l i c a t i o n ... I l l VIII Concl usi ons ... 119

IX Su g n e s t i o n s f o r f u r t h e r work ... 122 Acknowledgements ... 123 Ref er enc es ... 124 Apnendix I C a l c u l a t i o n s o f vanor n r e s s u r e s in t h e svst em Sn-S . . . . 128 Appendix II C a l c u l a t i o n of tlie SnS-FeS Phase diagram ... 136

Appendix I I I f l at t e a n a l y s i s r e n o r t ... 140

Appendix IV S u l f u r p o t e n t i a l c o n t r o l ... 142

(8)

Cont e nt s - Continued

Chapt er no. Page no,

Appendix V

Experi ment al d a t a f o r t h e vapor p r e s s u r e d e t e r m i n a ­

t i o n s on pure S n S ( c , l ) , and on Sn-Fe ma t t e s ... 146 Appendix VI

T i n - i r o n m a t t e s . Co r r e c t e d e q u a t i o n s f o r t h e SnS

vapor p r e s s u r e s ... 166 Appendix VII

Program SUBREG. The Gauss i an a l g o r i t h m t o c a l c u l a t e

n s i mu l t a n e o u s l i n e a r e q u a t i o n s ... 172 Appendix VIII

Numerical r e s u l t s o f Log Pg^g as a f u n c t i o n o f Sn

c o n t e n t in Sn-Fe m a t t e s , and t e m p e r a t u r e ... 175 Development of a s i mpl e computer program t o

c a l c u l a t e t h e t h e o r e t i c a l volume o f c a r r i e r gas and o i l r e q u i r e d t o fume SnS from t i n - i r o n m a t t e s ... 181

(9)

L I S T O F F I G U R E S Fi g. no. Page no 1 2 3 4 5 6 7 8 9 10 10a 11 12 13 14 15 16 17 18 19 20 21 22 23 Tin s me l t i n g f l o w s h e e t ... S h a f t f u r n a c e f o r s l a g fuming ... Vapor p r e s s u r e s in system Sn-S (1000 - 1100°K).... ... Vapor p r e s s u r e s in system Sn-S (1400 - 1500°K).... ... E f f e c t i v e t o t a l vapor p r e s s u r e of t i n in t he system Sn-S as a f u n c t i o n o f s u l f u r p r e s s u r e ... Tot al and p a r t i a l p r e s s u r e s above S n S ( c , l ) ... SnS-FeS phase diagram ... Vapor p r e s s u r e of SnS(g) above i r o n - t i n ma t t e s

( E s t i ma t e d ) ... Experi ment al s e t up ... Phot ogr aph of t he e x pe r i me n t a l a p p a r a t u s ... Furnace used in t he SnS vapor p r e s s u r e d e t e r m i n a t i o n s S a t u r a t i o n ( Re a c t i o n ) system ... SnS-FeS syst em, pj^ g/ p^ r a t i o ve r s us t e mp e r a t u r e f o r t h e SnS and FeS d i s s o c i a t i o n r e a c t i o n s ... C o r r e l a t i o n between r e a c t i o n chamber and f u r n a c e

t e mp e r a t u r e s ... Weight of sample l o s t pe r l i t e r of c a r r i e r gas as a f u n c t i o n of f l o w r a t e (Pure SnS and m a t t e s ) . The a p p a r e n t vapor p r e s s u r e p l o t t e d as a f u n c t i o n of t h e i n e r t gas f l o w r a t e . Schemat i c ... Log Pg^g ve r s u s 1/T p l o t . Sample: Pure SnS( c) .

C a r r i e r gas: Ng . Rea c t i on chamber: no. 1 ... Col i n and Dr o wa r t ' s p l o t of Log Pg g v e r s u s 1/T

4 22 25 26 27 28 31 32 36 38 38 40 46 51 58 59 60 61 62 63 64 70 75 76

(10)

L i s t o f f i g u r e s - Cont i nued

Fi g. no. Page no.

24 Apparat us used by St . C l a i r and c o l l a b o r a t o r s

f o r SnS vapor p r e s s u r e d e t e r m i n a t i o n s ... 79 25 I n f l u e n c e of t he geomet ry of t he r e a c t i o n chamber

and of t h e n a t u r e of c a r r i e r gas on t h e vapor p r e s s u r e measurements of pure S n S ( c , l ) by means of

t h e t r a n s p o r t a t i o n method ... 82 26 Vapor p r e s s u r e of SnS(g) above i r o n - t i n m a t t e s . Simple l e a s t - s q u a r e s f i t l i n e s ... 85 27 Alpha as a f u n c t i o n o f t e mp e r a t u r e ... 87 28 Vapor p r e s s u r e of SnS(g) above i r o n - t i n m a t t e s . Co r r e c t e d l i n e s ... 89 29 T(Log#^^g) ve r s u s p l o t ... 93 30 dC-Funct i on f o r SnS-FeS s o l u t i o n s , and s ymmet ri cal

l i n e o f Logi*^. a t lOOO^C as a f u n c t i o n of Ng^g ... 94 31 Excess and mixing f u n c t i o n s f o r t he f o r ma t i o n of

one mole o f l i q u i d SnS-FeS ma t t e a t v a r i o u s t e mp e r a t u r e s 98 32 A c t i v i t i e s in t he SnS-FeS system a t 80QO and IGOQOC . . . 99 33 The SnS-FeS phase diagram from vapor p r e s s u r e ... 105

measurements

34 Vapor p r e s s u r e o f SnS gas in t i n - i r o n ma t t e s as a --- 112 35 f u n c t i o n of c ompos i t i on and t e mp e r a t u r e ... 113 36 T h e o r e t i c a l volume o f c a r r i e r gas r e q u i r e d t o fume SnS

from one t on o f Sn-Fe ma t t e ... 116 37 T h e o r e t i c a l volume o f o i l r e q u i r e d t o be b u r n t t o

(11)

L I S T O F T A B L E S

Tabl e no. Page no,

I Phase r e l a t i o n s in t he Sn-S system ... 7

I I Heats of f o r m a t i o n , f u s i o n , and s t a n d a r d e n t r o p i e s o f Sn-S s p e c i e s ... 8

I I I Sn-S syst em. St a nda r d f r e e e n e r g i e s f o r v a p o r i z a t i o n and r e l a t e d e q u i l i b r i a ... 13

IV Free e n e r g i e s of f o r ma t i o n of i r o n s u l f i d e s p e c i e s . . . . 14

V Thermodynamic p r o p e r t i e s of hydrogen s u l f i d e and s u l f u r gases ... 18

VI Chemical c ompos i t i on of s l a g s t r e a t e d a t t h e P o d o l s ' k s m e l t e r in Russi a ... 23

VII Pt-Pt/10%Rh T.C. vs. NBS Pt27-Pt/10%Rh T. C... 50

VIII Vapor p r e s s u r e of SnS(g) o ve r pure s o l i d SnS as a f u n c t i o n o f t e m p e r a t u r e . C a r r i e r gas : . R. ch. n o . l . 65 IX Vapor p r e s s u r e of SnS(g) ove r pure S n S ( c , l ) and over Sn-Fe l i q u i d ma t t e s as a f u n c t i o n , o f t e m p e r a t u r e . C a r r i e r gas: H2S/H2 m i x t u r e s . Reac. chamber no. 2 . . . . 66

X A l p h a - f u n c t i o n from e x p e r i me n t a l measurements o f SnS vapor p r e s s u r e ... 86

XI Exp r e s s i o ns f o r t h e vapor p r e s s u r e of SnS over pure l i q u i d SnS, and ove r Sn-Fe ma t t e s as a f u n c t i o n of t e mp e r a t u r e ... 88

XII Thermodynamic f u n c t i o n s f o r t h e SnS-FeS l i q u i d syst em . . 100

XI I I The SnS-FeS phase di agram c a l c u l a t e d from vapor p r e s s u r e measurements ... 103

XIV Mal t i ng p o i n t s of ma t t e s ... 104

XV SnS-FeS syst em. S u b - r e g u l a r s o l u t i o n model ... 107

XVI SnS-FeS syst em. S u b - r e g u l a r s o l u t i o n model ... 109

(12)

L I S T O F T A B L E S I N A P P E N D I C E S

Tabl e no. Page, no

1.1 Vapor p r e s s u r e s in t h e syst em Sn-S ... 131 1. 2 E f f e c t i v e t o t a l p r e s s u r e in t he system Sn-S

as a f u n c t i o n of Pç ... 134

2

1. 3 Tot al and p a r t i a l p r e s s u r e s of vapor s p e c i e s

over pure S n S ( c ,1 ) 135

I I . 1 C a l c u l a t e d and e x p e r i me n t a l (Haan) v a l u e s f o r

t h e SnS-FeS phase diagram ... 138 I V . 1 SnS-HgS/Hg , and FeS-H2S/H2 i n t e r a c t i o n s .

S u l f u r p o t e n t i a l c o n t r o l ... 145 V . 1 Experi ment al d a t a f o r t h e vapor p r e s s u r e d e t e r ­

mi n a t i o n s over pure SnS( c ) .

C a r r i e r gas : N2 . Rea c t i on chamber: no. 1 146 V. 2 Experi ment al d a t a f o r t he vapor p r e s s u r e d e t e r ­

mi n a t i o n s on pure S n S ( c , l ) .

C a r r i e r gas : H2S/H2 m i x t u r e s . Reac t i on chamber: no. 2 148 V. 3 Experi ment al d a t a f o r t h e vapor p r e s s u r e d e t e r ­

mi n a t i o n s o f SnS over Sn-Fe m a t t e s .

C a r r i e r ga s : H2S/H2 m i x t u r e s . Rea c t i on chamber: no. 2 151 VI. 1 Co r r e c t e d v a l u e s of Log P g ^ g ... 167

(13)

I . I N T R O D U C T I O N .

Tin or es a r e i n v a r i a b l y a s s o c i a t e d wi t h i r o n m i n e r a l s . Con­ c e n t r a t i o n p r o c e s s e s i n ge n e r a l ne v e r l ead t o a c l e a n s e p a r a t i o n o f SnO^ ( C a s s i t e r i t e , t he most commercial t i n or e) from t h e i r o n mi n e r a l s (FegOg Fe^O^, FeSg, CuFe Sgpet c. ) . Removal of i r o n from c o n c e n t r a t e s p r i o r t o s mel ­ t i n g by magnet i c s e p a r a t i o n i s n o t p o s s i b l e i n a l l cas e s becaus e c a s s i t e r i t e i s o f t e n f i r m l y a t t a c h e d t o , or c o a t e d wi t h i r o n o x i d e s .

Leachi ng t h e c o n c e n t r a t e s wi t h HCl d i s s o l v e s i r o n oxi des and amounts of As, Sb, B i , Rb, Cu a r e a l s o removed by t h i s pr ocess. But when t he c o n c e n t r a t e s c o n t a i n much s u l f u r and a r s e n i c as s u l f i d e s and a r s e n i d e s , t h e e f f e c t i v e n e s s o f l e a c h i n g i s r e d uc e d.

During s m e l t i n g s u l f u r may form FeS - CUgS - SnS mat t es' which r e n d e r d i f f i ­ c u l t t he r e c o v e r y of t i n . Fu r t h e r mo r e , s u l f u r i n c r e a s e s t he l o s s of t i n by v o l a t i l i z a t i o n as SnS. Every 1%S may cause v o l a t i l i z a t i o n of 3.72%Sn.

T h e r e f o r e , t o p r e v e n t t he n e g a t i v e a c t i o n of s u l f u r and a r s e n i c d u r i n g s me l ­ t i n g , t h e c o n c e n t r a t e s s houl d be r o a s t e d .

Tin Sme l t i ng P r a c t i c e

Fi gur e 1 g i v e s a ge n e r a l f l o w s h e e t o f t he t i n s m e l t i n g p r o ­ c e s s , Tin c o n c e n t r a t e s - which may have been r o a s t e d a n d / o r l e a c he d - a r e mixed wi t h coke ( o r c o a l ) and l i me s t o n e and f e d t o a r e d u c t i o n f u r n a c e ( b l a s t ,

r e v e r b e r a t o r y , or r o t a r y ) .

B a s i c a l l y , t i n s m e l t i n g i s p r a c t i c e d in two s t a g e s :

a) Sme l t i ng of c o n c e n t r a t e s t o produce crude t i n ( hi gh grade t i n ) and a t i n -r i c h s l a g \/hich may c o n t a i n f-rom 10 t o 25 % Sn.

b) Sme l t i ng of t he t i n - r i c h s l a g under s t r o n g e r r e du c i n g c o n d i t i o n s t o p r o ­ duce a t i n - i r o n a l l o y o r " har dhead" which c o n t a i n s about BOMSn and 20%Fe

(14)

( m i s c i b i l i t y gap compos i t i on) and a f i n a l si an t o d i s c a r d .

Thi s second si an i s f r e q u e n t l y n o t low enounh in t i n t o d i s c a r d and may be t r e a t e d agai n b e f o r e bei ng s e n t t o wa s t e .

The crude t i n from t he f i r s t s t a n e i s d r e s s e d t o produce pure metal and an i r o n - b e a r i n g d r o s s . Iron d r o s s e s and hardheads from t he second s t a n e a r e r e ­ c y c l e d t o t he c o n c e n t r a t e s me l t i n g s t a n e where t h e i r i r o n c o n t e n t a c t s t o reduce t i n . All fumes ( r e c o v e r e d as SnOg) a r e a l s o r e c y c l e d t o t he f i r s t s t a ­ ge.

D i s t r i b u t i o n of Tin and I r on Between Metal and Sl ag

The f r e e e n e r g i e s o f f o r ma t i o n of t he l ower oxi des of i r o n and t i n a r e ver y s i m i l a r :

FG(1) + ‘'^°2 (n) " FeO(T)

AGp = - 55, 620 + 10.83T , f o r T = 1808 t o 2000°K^^^

^ " ( 1) + %0 2(o) = SnO(i)

AGp = - 69, 336 + 2 5 . 7T , f o r T = 1143 t o 18730K^^'

T h e r e f o r e , a compl et e r e d u c t i o n of t i n as f a i r l y pure metal from t he si an i s i mp o s s i b l e because r e d u c t i o n o f i r o n occur s a t t he same t i m e , so t h a t an iron- t i n a l l o y r e s u l t s .

The e q u i l i b r i u m d i s t r i b u t i o n of t i n and i r o n between met al and s i an phases may be e x p r e s s e d by t he f o l l o w i n g r e a c t i o n :

^^( me t a l ) ^*^^(slag) ~ ^ ^ ( me t a l ) ^ ^ ^ ^ ( s l a n ) * f o r which t h e e q u i l i b r i u m c o n s t a n t K i s given by:

(15)

and,

K = *Sn ®FeO

*Fe

IlETAL ®SnO SLAG

k = wt%Sn wt%Fe wt%Fe METAL wt%Sn SLAG ( r e f , 3) where k i s t he d i s t r i b u t i o n c o e f f i c i e n t . P r a c t i c a l e x p e r i e n c e ( Re f s , 2 , 3 , 4 ) i n d i c a t e s t h a t k v a r i e s from about 50 f o r a ha r dhead o f about m i s c i b i l i t y nap compos i t i on t o about 300 f o r crude t i n .

To summari ze; compl et e removal of t i n metal from t he wa st e s l a g , a n d t he p r o ­ d u c t i o n of a met al wi t h a low c o n t e n t of i r o n c o n s t i t u t e a most d i f f i c u l t problem i n t i n m e t a l l u r g y .

Tin i s l o s t in s l a n n o t onl y by i n c o mp l e t e r e d u c t i o n from i t , bu t t h e r e are a l s o mechani cal and p h y s i c a l l o s s e s .

Mechani cal l o s s e s a r e caused by i n c o mp l e t e s e t t l i n n o f t i n d r o p l e t s from s l a n t o mol t en m e t a l .

Ph y s i c a l l o s s e s can be caused by d i s p e r s i o n and f or ma t i o n o f ver y f i n e s u s p e n ­ s i o n s of t i n i n t h e s l a g , Accordi nn t o Murach^^), t i n s o l u b i l i t y in s l a n s is n o t a d mi t t e d as a t r u e f a c t as y e t .

The l o s s e s of t i n in s l a n a r e i n f l u e n c e d by t h e chemi cal compos i t i on of s l a n s i n c e i t d e t e r mi n e s t he degr ee of r e d u c t i o n of SnO t o m e t a l , t he s p e c i f i c g r a v i t y , v i s c o s i t y , me l t i n g p o i n t , and s u r f a c e p r o p e r t i e s of s l a n s .

(16)

CONCENTRATE ' CARBON

HARDHEADS FLUX

DROSS FUMES

CRUDE TIN SLAG I FUÎ1E I

DROSS PURE TIN

HARDHEADS

DISCARD

(17)

Recovery of Tin from Sl ans

Tin c o n t e n t s i n s l a n s from f i r s t - s t a n e s me l t i n n vary from 3 . 5 t o 25%Sn, Thi s wide ranne depends on t he methods and t e mp e r a t u r e s of smel- t i n q , c omposi t i on of c o n c e n t r a t e s and s l a n s , and on many o t h e r f a c t o r s . This pr i mar y s l a n i s r e - s m e l t e d t o produce a hardhead and a f i n a l s l a n , as was men­ t i o n e d above,

Co n s i d e r i n n t he hiqh p r i c e of t i n ( ar ound $ 1 , 7 0 / f i n e pound in t h e l a s t f i v e y e a r s ) , a l o s s of 3%Sn in s l a n i s a c o n s i d e r a b l e l o s s and t h e f i n a l t i n con­ c e n t r a t i o n in wa st e s l a n s i s i n many cases n r e a t e r t han in t he o r e from which i t was e x t r a c t e d . T h e r e f o r e , any e f f o r t towards t h e r e d u c t i o n o f t i n l o s s e s i n s l a g s i s e x t r e me l y i mp o r t a n t f o r t i n - p r o d u c i n n c o u n t r i e s .

Tin can be r e c ov e r e d from s l a n s by:

a) r e s m e l t i n n t he s l a n t o produce hardhead and a s l a n l ower in t i n , b) mi ne r a l d r e s s i nn met hods ,

c) h y d r o m e t a l l u r g i c a l met hods , and d) v o l a t i l i z a t i o n p r o c e s s e s .

The f i r s t t h r e e methods a r e e x p l a i n e d i n d e t a i l by M u r a c h ^ ^ \ l i r i g h t ^ ^ \ Bel - y a y e v ^ ^ ) , and o t h e r s . They a l l have some drawbacks or l i m i t a t i o n s as f a r as e f f i c i e n c y and c o s t a r e c oncer ned. The f o u r t h , r e c o v e r y of t i n from s l a n s by v o l a t i l i z a t i o n , i s assuming i n c r e a s i n n i mpor t ance and i s based on t he v o l a t i ­ l i t y of SnO and SnS,

(18)

Purpose of t h i s I n v e s t i n a t i o n

Format ion of SnS from s t annous oxi de c o n t a i n e d in s l a p s can be e f f e c t e d by exchange r e a c t i o n s v/ith s u l f i d e s of t he o t h e r m e t a l s , u s u a l l y p y r i t e s . The r e a c t i o n p r e s e n t i m t he f i n a l r e s u l t i s ni ven belo\/:

^"' ’ ( s l a q ) ^ v o l a t i l e ) ' ' ®° ( sl an)

Along v/ith t he t i n s u l f i d e f o r ma t i o n from SnO in t he s l a n , an i r o n - t i n mat t e i s for med, p r i n c i p a l l y when t h e FeS i s i n e xces s (as i s u s u a l l y t he c a s e ) . SnS s o l u t i o n i n t h i s ma t t e i s accompanied by a d e c r e a s e in i t s a c t i v i t y , and t h e r e i s a drop in vapor p r e s s u r e of s t a nn ou s s u l f i d e which would reduce i t s v o l a t i l i t y .

To what e x t e n t i s t h i s v o l a t i l i t y reduced?

What would be t he a c t i v i t y of t i n s u l f i d e in t h i s l i g u i d ma t t e ?

There i s n o t a s p e c i f i c answer t o t h e s e q u e s t i o n s so f a r and onl y e s t i m a t e s can be made based on c e r t a i n p r o p e r t i e s of t h e s yst em.

The phase dianram of t he SnS-FeS s yst em i s k n o w n ^ ^ \ b u t no i n f o r m a t i o n e x i s t s about t h e thermodynamic p r o p e r t i e s of SnS in t i n - i r o n m a t t e s .

T h e r e f o r e , t h e purpose of t h i s i n v e s t i n a t i o n \/as t o o b t a i n t h e answers t o t he above q u e s t i o n s under t he s i m p l e s t a s s umpt i ons and c o n d i t i o n s p o s s i b l e , as a p r e l i m i n a r y s t e p toward more s o p h i s t i c a t e d s t u d i e s f o r a b e t t e r u n d e r s t a n d i n n o f t h e thermodynamics of t i n fuminn from s l a n s and m a t t e s .

(19)

I I . L I T E R A T U R E S U R V E Y

Tin - S u l f u r Svstem

The S n - S system was s t u d i e d by Al ber s and c o l l a b o r a t o r s (9) and by G,

T h e i r r e s u l t s a r e summarized in t a b l e I ,

Tabl e I

Phase R e l a t i o n s in t he S n - S System

PHASE SYMMETRY CHARACTERISTICS

SnS / g S n S g <%SnS_ Orthorhombi c Hexaqonal Cubi c ? Occurs in n a t u r e as f l e r z e n b e r q u i t e ( P o t o s i , B o l i v i a ) . Near l y s t o i c h i o m e t r i c p ha s e , ‘l e l t s a t 8700C. f l e l t s a t 7580C t o l i q u i d SngS. and ocSnSg. P o s s i b l e e x i s t e n c e of a hinh t e m p e r a t u r e polymorph. On h e a t i n q i n v e r t s t o AiSnSp a t 602OC. f l e l t s a t about SGO^C. Repor t ed by Al bers (?)

(20)

o fO tn <U o 0» CL 1/3 c C3 4- O in CJ CL O 5- 4-> C LU -a i-fC "D C ft! 4-> CO *u c ft! c o 4-) fC E L-O Ll. 4 -o to 4-> ft! O CD z : CL o CO cr o c\j o fC Ü o <+ -O <4-DC

<3

CD O E ft! U ft: u CD O E c CO cu cr. -a o c\i \ CO r— ft) u CO CO O C\J <1 CO LU c to I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 o 1 1 O 1 1 o LO 1 O 1 LO 1 LO O 1 LO 1 1 CM LO 1 1 1 1 CO 1 T—1 1 1 O 1 1 1 1 CO 1 O 1 CO 1 CO cr> 1 1 O 1 LO CO 1 r—f 1 CM 1 t-H 1 I 11 t-H 1 00 1 11 CD 1 LO 1 r~s 1 CO 1 t-H 1 1 1 CM 1 1 1 1 C\J 1 + 1 CM 1 CM 1— 1 CM 1 1— 1 1— CO 1 h- 1 CO 1 CO 1 1 CO 1 1 I 1 C 1 1 1 O 1 o r-H t O LO 1 t-H 1 t-H t-H LO 1 • 1 to 1 1 • CO 1 1 ^ 1 r-H. «—1 1 f—1 CO 1 LO I CO CO 1 1 • CM 1 CO 1 •T—* 1 CO 1 1 t—H + CGI 1 1 1 + t-H , + 1— OI 1— h-l H— 1 1 k— CJ •! 1-HLO 1 CO h- 1 CO <0- OI CO 1 1 LOLO 1 • O 1 • O I ^ +11 1 CO t-:: 1 CO r-H 1 c I 1 11 k— 1 k— k— 1 1— 1 CO 1 CO CO 1 CO 1 1 1 1 1 1 1 I O 1 o O 1 1 CM 1 t-H 1 t-H *—t 1 t-H 1 1 " k— 1 COCM 1 CO 1 1 CMLO 1 1 1 LO O I 1 • k— 1 LO 1 • t-H 1 r-^LO 1 CO + 1 1 • 1 + O I + CvJ 1 f—1 1 CO t-H| CO 1 CO »l LO • 1 • CM.I • cr.i «e 1 1 CO 1 1 1 CO +*l o. I 1 I (D 1— 1 1 1 LO 1 1 1 1 1 1 1 1 LO OI 1 1 CO r^i 1 11 1 1 11 in 1 O 1 1 cr 1 o CJ 1 1 1 1 1 fO O I LO r-. 1 1 S- LÛ 1 LO r—1 1 1 I 1 1 1 4-> i-f| I 1 CM 1 1 1 1 CO 1 1 1 1 o o • LO 1 CJ 1 1 CO JO CO 1 1 1 1 CO CO to CO 1 1 1 11 1 O LO 1 LO LO LO t-4|1 CJ O I LO O CM OI <+ CM 1 1 1 CM OI o O I CO I—f +11 1 t—f +1 <+ +11 1 r-H +1 1 1 11 o ^ 1 1 o o 1 o 1 1—1 CD O 1 o 1 1 LO CJ 1 1 1 1 LO 1 CM t-H 1 1 1 1 +1 1 1 "— 1 1 ___ '—. 1 ___ <U 1 (D u , 1 (j D +-> 1 u >, r 1 to to ^ 1 to 0 JC 1 C L- C 1 c C 1 c 0 1 co c to 1 to to 1 to + -> c o u

(21)

•o Q) 4-> C o o CJ JD CL rr o CO CTi O CM O I -GJ O E (_) O 4 - < <0^4-< U J 00 CD O CM to CO cr, O CNJ

<3

to LxJ CL to O E fC o o o + -> c E cr o TO fO u o E fO o o o o LO o co­ CM o co CM 1 1 1 CO CO CO LO o c r f—i CM CM 1—1 1 + CM CM 1—1 1 »— CM CO CO CO 1 1 CJ o CD O 1 1—1 t—1 r—1 LO 1 r-H t—1 <+ k— O LO CM I 1 + + o k— k - k— '—1 r-H c r CO . LO T—1 CO LO r-H r-H LO LO CO f-H CO k— 1 CO CO 1 1 c C CM r-H t—1 1 k— CM CO LO o o c r + + l-H l-H. CO LO LO CO LO LO CO 1 1—1 1 1 1 1 1 1 1 1 1 t-H li­ eu L - — 1 c r , CM OD i -CM cu pH. o tn LO -H CM -H CO t-H CU -K -K » CD o o --H C 4 -o o o o c <U X3 CO 1 o O CD o S- C LO o O C o fO CM Ch. 1 1 44 1 41 c +-> fO +L> E o <U C cu CM S-to to to Lj_ LU c c c u ■K to to to ■K -K

(22)

Si nce s t a n no us s u l f i d e (SnS) i s t he compound of i n t e r e s t t o t h i s i n v e s t i g a t i o n , a l i t e r a t u r e s ur vey \/as conduct ed on t he thermodynamic n r o p c r t i e s of t h i s s p e c i e s . Tabl e II ni ves t h e h e a t and s t a n d a r d e n t r o p i e s f o r t he Sn-S s p e c i e s as qi ven by Ke11ey ^ ^ ^ ^.

f 15)

Hsi ao and Sc hl echt en^ s t u d i e d t h e v o l a t i l i t y of SnS in a vacuum f u r n a c e . T h e i r r e s u l t i s qiven in t he f ol l ov/ i nq e q u a t i o n :

Log , (mm Hg) = -8380/ T +6. 728

Temper at ur e ranqe: 503° - 704OC ( c oul d he e xt e nd e d up t o 870°C) P r e s s u r e r a n q e , log p^ ^ , (mm Ho): - 4 , 0 0 t o 1,91 .

A. W. R i c h a r d s s t u d i e d t he h e a t and f r e e e n e m y of f o r ma t i o n and v a p o r i ­ z a t i o n o f s t annous s u l f i d e u s i nq t he e n t r a i n me n t method. Based on t h i s s t u d y , he made a new e s t i m a t e of t he e n t r o p y of SnS. His d a t a a r e summarized as f o- 11ows: SnS(c) = SnS(^, Log Pg^g , atm = - 1 0 , 4 7 0 / T + 7. 088 (± 0 . 02) gO ^ ^ 9 8 ( Sn S, ^ t ) = 19. 4 ± 1 e . u . compared t o 18. 2 +1. 5 e . u . ( Ki r e e v ^ ^ ^ ^ ) .

AHf298(SnS^^j ) ^ " 24. 34 ± 1.1 Kcal / mol e. compared t o - 24. 7 Kcal/mole ( S u d o / ^ ^ ^ ) .

S t , C l a i r , S h i b l e r , a n d Sol e t ^ ^ ^ ^ o b t a i n e d t he vapor p r e s s u r e of SnS by means o f t h e t r a n s p i r a t i o n method, and c a l c u l a t e d t he h e a t and f r e e e ner gy o f vapo­ r i z a t i o n above and below t he me l t i n o p o i n t :

(23)

For SnS, \ = SnS, \

( c ) (n)

AC = - 1 , 0 6 - 3 . 6 . 1 D ‘ ^T ,

Ah”u|,, = 5 1 , 3 5 5 - 1.06T - 1 . 8 ‘ IO‘ V ( c a l / m o l e ) .

AG°ubi = 5 1 , 3 5 5 + 2.44T Loq 7 + I . S - I O ' V - 4 6 . 0 2 7 ( c a l / m o l o ) ,

Loq , atm = - — - ,533Loq 7 - 3 . 9 3 . 1 0 ' ' ’7 + 1 0 . 0 59 .

For T S n S ( , ) = SnS(^) AC = - 9. 02 , AH°g = 50, 590 - 9. 027 , ( c a l / m o l e ) , AG°g = 50,590 + 20. 777 Loq 7 - 99. 41 ( c a l / mo l e ) Loq , atm = - - 1 1 :2^ - 4. 54 Loq 7 + 21. 729

The v a por p r e s s u r e of SnS in e q u i l i b r i u m with mol t en SnS i s , a c c o r d i n g t o Kl ushi n and Chernykh^^^) ( q yo t e d by G, J . danz^^l^i, e x p r e s s e d as f o l l o w s :

Log Pg^g , (mm l!n) = -

2222

. + 9, 551

The e x i s t e n c e of o t h e r gaseous s p e c i e s t han SnS was u n c e r t a i n u n t i l P., Colin ( 2 2)

and J . Drowart^ ' made a thermodynamic s t u d y of SnS in 1964 us i n q a mass s p e c t r o m e t e r .

They found t h a t t h e maj or components of t h e t i n - s u l f u r vapor a r e gaseous SnS and SngSg , t he l a t t e r in a v e r y low p r o p o r t i o n . P o s s i b l e t r i m e r Sn^S. and t e t r a m e r Sn^S^ m o l e c u l e s , whose i n t e n s i t y r e l a t i v e t o SnS was equal t o , or s m a l l e r t han 5*10 ^ ^ coul d not be d e t e c t e d . T h e i r summarized d a t a a r e qi ven

(24)

Molecule Temp. Ranqe H D? = Di s s oc . o n e r q i e s S Ui) I « 2qg M °K Kcal/mole SnS 815 - 1005 52. 6 ± 1. 6 110.1 ± 3 Kc al / mole SngSg 815 - 1005 56. 5 ± 5

Thus, t h e thermodynamic d a t a ni ven hv Ri c h a r d s ^ ^ ^ ^ , S t , C l a i r e t _ a n d Kl ushi n and C h e r n i k l / ^ ^ ) not r e f e r r e d t o t he p a r t i a l p r e s s u r e s of SnS,^^ b ut t o t h e t o t a l vanor p r e s s u r e of t i n as a s u l f i d e ; i . e .

^T( sns ) ” ^9n(n) ^SnS(n) ^ PgPgSg (°)

I t can be assumed, w i t h o u t i n t r o d u c i n g a s i n n i f i c a n t e r r o r , t ’n a t :

^ ”y s n s ) • as w i 11 be shown l a t e r .

T h e o r e t i c a l thermodynamic c o n s i d e r a t i o n s , based mos t l y on Col i n and Dr owa r t ' s

i n v e s t i g a t i o n s ^ 2 2 ) ^ qi ven by H. H. Kellong^^^) 1966,

The s t a n d a r d f r e e e n e r g i e s f o r v a p o r i z a t i o n and r e l a t e d e q u i l i b r i a f o r t he S n - S s y s t e m, a r e qi ven in t a b l e I I I . These e q u a t i o n s were c a l c u l a t e d by a l e a s t - s q u a r e s f i t t o t he dat a t a b u l a t e d in K e l l o g g ' s p a p e r .

The pr e s e nc e of SnS. in SnS samples i s n o t harmful t o SnS becaus e SnS^ de­ composes a t low t e mp e r a t u r e s t o SnS and a comnlex mi x t u r e of pol ya t omi c s u l ­ f u r mo l e c u l e s . I f , i n t u r n , samples c o n t a i n a l s o SnCL, t h e s e a r e s i m u l t a n e o u s ­ l y r educed t o SnS as shov/n by e f f u s i o n o f S0« mo l e c u l e s . These p r o c e s s e s were

(2 2)

(25)

Tabl e I I I

S n - S System. St a nd a r d Free Energy f o r V a p o r i z a t i o n and Re l a t e d Eq u i 1i b r i a ^ ^ ^ ) R E A C T I 0 Î1 AG^ = A . T + B ( c a l / mo l e ) A B Temp. Ranne, °K ± x ( c a l ) S n ( l ) = Sn(g) - 2 3 . 8 3 +70,190 505 - 1500 6. 05 S n ( l ) + = SnS(c) +24.7927 - 4 3, 704 493 - 1143 32. 41 S n ( l ) + = SnS( l ) +14.6092 - 32, 042 1143 - 1500 22. 43 SnS(c) = SnS(g) - 3 5. 35 7 +50,671 493 - 1143 10.396 SnS( l ) = SnS(g) - 2 6. 1126 +40,102 1143 - 1500 6. 117 2SnS(g) = Sn^S^j ^j +37.96 - 4 6 , 8 8 8 1100 - 1500 34. 33 I r o n - S u l f u r Svstem Ro s e n q v i s t ( 2 4 ) s t u d i e d t he i r o n - s u l f u r syst em based on d a t a s u r v e ye d by Hansen^^^) and t he work on t hermal a n a l y s i s by densen^^^) The f r e e e n e r g y o f f o r ma t i o n of FeS i s given below:

^ FS(c) ^ 2 (q) " ^

AGp = - 71, 500 + 25. 25 T ( c a l ) (500 - 988°C). (27)

Which a g r e e s ver y \ / el l wi t h d a t a o b t a i n e d by Sudo^ .*

(26)

and by Alcock and R i c h a r d s o n ^ ^ ^ ^ :

AGp = - 71,820 + 25. 12 T ( c a l ) .

More a c c u r a t e e x n r e s s i o n s , which t a k e i n t o c o n s i d e r a t i o n t he s p e c i f i c h e a t s , t he l a t e n t h e a t s of t he p h a s e s , and t h e maqnet i c t r a n s f o r m a t i o n s of i r o n and i r o n s u l f i d e a r e niven by Kubaschewski , Evans, and Alcock^^^ , These ar e r e ­ produced in t a b l e IV.

Tabl e IV

Free E n e m i e s of Format ion of I r on S u l f i d e Speci es ^^^

R E A C T I O N AGp = A • T + B ( c a l / m o l e ) A B Temp. Ranqe, 2FeS(c) oc = 2Fe( c) + - 3 1 . 1 8 +74,320 298 - 412 2FeS(c) = + ^2 (q) - 2 5. 12 +71,820 412 - 1179 2FeS{c) / 3 = 2Fg(c) + - 2 5 . 4 8 +72,140 1179 - 1261 = 2FeS(c) + - 9 0 . 0 +86,700 600 - 1100

fis)

Hsi ao and Sc h l e cht en^ ' gi ve t he f o l l o w i m appr oxi mat e e x p r e s s i o n f o r t he FeS va por p r e s s u r e :

(27)

Loq , (nm Hn) = - 10, 850/ T + 4. 162

Te mper at ur e ranne: 804 - lOOG^C.

P r e s s u r e r a n n e , Loq Pp^g , (mm Ho) = - 5 . 8 4 t o - 4 . 2 6

Ppes » (mm Hq) = 1 . 4 4 » 10"^ t o 5 . 4 9 ' 1 0 " ^

which shows t he e x t r e me l y low n r e s s u r e of t h i s s u l f i d e . To c o r r o b o r a t e t i n ' s , Ro s e n qv i s t ^^^ ) s t a t e s t h a t t he vapor p r e s s u r e of FeS i s t oo low t o be measu­ red d i r e c t l y . Advantaqe of t h i s f a c t i s t a ken t o s t u dy t he v a p o r i z a t i o n of SnS in Fe-Sn m a t t e s .

I r on - Tin - S u l f u r Svstem

The t e r n a r y syst em was i n v e s t i n a t e d by Ourach and Li k h n i z -f29)

kaya' ' i n 1938, Accordi nn t o t h e s e a u t h o r s , t he i r o n - t i n ma t t e c o n t a i n s l e s s s u l f u r t han coul d be e x n e c t e d in s o l u t i o n s of FeS and SnS, T h e r e f o r e , t he y be­ l i e v e d t h a t t i n in ma t t e s i s n r e s e n t a l s o as d i s s o l v e d m e t a l . Thev showed a m i s c i b i l i t y nap between 0%Fe and 50%Fe whi ch, a c c o r d i n n t o t h e now wel l e s t a ­ b l i s h e d l i m i t s of t he m i s c i b i l i t y nap r e qi on in t he i r o n - t i n s ys t e m, i s wronq. The c o r r e c t l i m i t s o f t h a t m i s c i b i l i t y qap a r e 29%Fe and 50%Sn^‘^ .

f1oh^^^^ i n v e s t i q a t e d t h e phase r e l a t i o n s i n t h i s syst em a t GOOOC by t he r i n i d s i l i c a t ube method and found t h a t t h e s t a b l e phases a t t h i s t e mp e r a t u r e a r e : p y r r h o t i t e (Fe^_^S) and n y r i t e (FeS^) on t h e Fe-S j o i n ; h e r z e n b e r q u i t e ( S n S ) , Sn^Sg, and SnSg on t he Sn-S j o i n ; and -Fe s o l i d s o l u t i o n wi t h up t o 6at%SnS, hexaqonal FeSn and l i q u i d on t he Fe-Sn j o i n , flo t e r n a r y compounds e x i s t a t GOQOC.

S o l i d s o l u t i o n s between phases such as FeS. and SnS, Sn S . , S n . S . , and FeS ar e r e s t r i c t e d t o l e s s t han 1%, whereas t h e mutual s o l u b i l i t i e s between SnS and FeS exceed 1%. Tlie s o l u b i l i t y of s u l f u r in e i t h e r Fe or FeSn as well as

t h a t o f t he me t a l s in l i q u i d s u l f u r was r e p o r t e d t oo small t o be d e t e c t e d ^ . There i s no o t h e r a c c o un t on t h i s svst em in t he l i t e r a t u r e .

(28)

I r o n S u l f i d e - Tin S u l f i d e Svstem

The l i t e r a t u r e ni ves onl y one r e f e r e n c e on t h i s s yst em. The phase di anram was s t u d i e d bv llaan^^^ i n Germany ( 1913) . The nraph o b t a i n e d

{31 )

by Haan i s niven in Phase Dianrams f o r Cer ami st s^ (1964) and t h e r e a r e no o t h e r d a t a a v a i l a b l e .

Tha f o l l o w i n q d a t a can be o b t a i n e d from t he phase dianram;

SnS m e l t i n q p o i n t a t 87Q0C, FeS m e l t i n q p o i n t a t I I 88OC . E u t e c t i c t e mp e r a t u r e a t 785®C a t 15%FeS (85 wt%SnS),

No s o l i d s o l u b i l i t y has been d e t e c t e d .

L a t e r , J . P . Counhlin^^^^ de t er mi ne d t he m e l t i n q p o i n t of FeS as 11950C. This v a l u e i s qi ven by Kubaschewski et , ^^ * and w i l l be t aken f o r c a l c u l a t i o n s i n t h i s work s i n c e i t i s b e l i e v e d t o be t he most r e l i a b l e .

( 33)

Davey and Fl ossbach^ ' made an e s t i m a t i o n of t he vapor p r e s s u r e o f SnS over (23) t i n - i r o n ma t t e s based on t h i s phase di anram and on d a t a ni ven by Kelloqn^ . They ni v e t he f o l l o wi n n e x p r e s s i o n f o r t h e vapor p r e s s u r e s of SnS o ve r Sn-Fe ma t t e s ;

Loq Pj 5 = - 8650/ T + 5. 62 + Loq Ng ^ + 230. 0 . Up ^ /T

f o r a t e m p e r a t u r e ranqe of 1000 - 1500OK.

The v a l u e 230. 0 c or r e s po n ds t o a c o n s t a n t (B) when assuminq r e q u l a r s o l u t i o n b e h a v i o r o f t h e l i q u i d phase:

and t o an e u t e c t i c c omposi t i on of 18wt%FeS,

The f o l l o w i n q c h a p t e r w i l l p r e s e n t some c a l c u l a t i o n s based on Davey' s e s t i m a ­ t e s .

(29)

Hvdronon - S u l f u r Svstem

Thermodynamic d a t a on t h i s system were r e q u i r e d t o c a l c u ­ l a t e t!ie HgS/H. r a t i o s f o r t he mi x t u r e s of t h e s e two e a s e s a c t i n n as a c a r r i e r nas in t he t r a n s p i r a t i o n method, and in t h i s manner ma i n t a i n a c o n t r o l l e d s u l f u r p o t e n t i a l so as to p r e v e n t any decompos i t i on of t he s u l f i d e mi xt u r e s d u r i n n t h e p r o c e s s .

Kubaschewski e t a l [ ^ ^ l i s t t he f o l l o wi n n dat a f o r t h e f o r ma t i o n of H.S nas;

^"2{q) '^2(n)---AGp = - 4 0, 2 10 + 7.27T Loq T - 1.21T (+ 700 c a l ) f o r T = 298 to 175Q0K o r : AGp = - 43, 160 + 23.61T (± 1000 c a l ) f o r T = 293 to ISOO^K .

E l l i o t t and Ol e i s e r ^ ^ ^ ^ ni ve f o r t h e same e q u a t i o n a t a b l e of v a l u e s , from which a l e a s t - s q u a r e s f i t c a l c u l a t i o n n i v e s :

AGp = -43, 006 +23.407T (± 21. 2 c a l ) f o r T = 900 t o 1600OK.

Haner^^^) made a c a r e f u l s u r ve y o f t he l i t e r a t u r e on t h e h y d r o n e n - s u l f u r s y s ­ tem and c a l c u l a t e d e q u a t i o n s o f AG^ of ILS, \ , MS, \ , and S, \ s p e c i e s a t

F 2 (n) (n) (n) / . . t

hiqh t e mp e r a t u r e s based on v a l u e s of AGp niven in t he dAilAF t a b l e s ' ' ' and g i ve s t he e q u a t i o n s f o r AG^ of S^, \ and S . , \ from Ri char ds on and J e f f e s ^ ^ ^ ^

F 6 (n) 8 (n)

These e q u a t i o n s , al onq \ / i t h above ni ven d a t a a r e l i s t e d i n Tabl e V.

The r e f e r e n c e s t a t e s f o r s u l f u r and hvdronen a r e t he i d e a l S . , \ and i d e a l 2 (q)

^^2(q) r e s p e c t i v e l y in a l l t he e q u a t i o n s qiven in Tabl e V.

I t can be seen t h a t f o r t he f o r ma t i o n of ILS, x , t h e anreement in a l l cas es f 1 )

i s qood. The va l ue s qiven by Kubaschewski fJL' were t aken f o r c a l c u l a t i o n s i n t h i s work s i n c e t hev a r e based on most r e c e n t d a t a .

(30)

Tabl e V

Thermodynamic e r n n e r t i e s of llydronen S u l f i d e and S u l f u r Oases

SPECIES AGp , c a l o r i e s Temp. Ranqe, °K SOURCE

REFERENCE. " 2^ ( 0 ) - 2 0, 105 (; + 3.635T LoqT - .605T t 350 c a l ) 298 - 1750 1 , 12 - 2 1, 580 + 11.805T (+ 500 c a l ) 298 - 1800 1 , 36 - 21, 580 + 11.80 T (+ 500 c a l ) 298 - 1723 14. 37 - 21, 570 + 11.79 T (± 200 c a l ) 900 - 1700 34, 35 "S( 9) +20,070 - 3.70T (+ 300 c a l ) 900 - 1700 34, 35 S(n) +51,170 - 14.44T (± 1000 c a l ) 900 - 1700 34, 35 ^6 (q) - 6 6, 450 + 73.74T (+ 3000 c a l ) 298 - 1300 34, 35 - 99, 200 + H 3 . 1 6 T ( + 4000 c a l ) 298 - 1300 34, 35

(31)

I I I . T H E F U f1 I M 0 O F T I M F R O M

S L A G S A N D M A T T E S

Apart from t i n , s l a n s from t i n s mo l t i n q c o n t a i n c o n s i d e r a b l e q u a n t i t i e s of , Zn, Cu; as well as r a r e me t a l s which a r e v a l u a b l e t o t he economy of t he t i n - p r o d u c i n q c o u n t r i e s .

As s t a t e d above (Ch. I ) , and as p r a c t i c a l e x p e r i e n c e has shown, amonn a l l t he e x i s t i n q p r o c e s s e s t o r e c o v e r t i n from s e c o n d - s t a o e s l a n s , t h e most e f f e c t i v e and e c o no mi c a l l y advant aneous i s t he s l a q fuminn p r o c e s s .

D e s c r i p t i o n o-^ t he Pr ocess

The e s s e n c e of t h e p r o c e s s c o n s i s t s i n t he c on v e r s i o n of SnO i n s l a q s i n t o t he more v o l a t i l e compound SnS, which i s t hen r e c o v e r e d as a d u s t in t he form of SnCU.

S t u d i e s on t he v o l a t i l i t y of SnS a r e no t s c a r c e ; some of them ( t h e i mp o r t a n t ones) were a l r e a d y c i t e d in Chapt er I I .

Some of t he works a t a p i l o t p l a n t o r a t i n d u s t r i a l l e v e l ni ven in t he l i t e ­ r a t u r e a r e ment i oned below;

A devel opment of a pr oc e s s of t i n fuminn a p p l i c a b l e t o t h e e nr i c hme n t of low- qr ade B o l i v i a n and German t i n c o n c e n t r a t e s by Lanne and B a r t h e l ^ ^ ^ ) .

Be l y a y e v ^ ^ ) , Murach^^^, Kolodin^^^^ d e s c r i b e t he fuminn pr oc e s s i n d e t a i l . Wri qht ^^) a l s o q uot e s t h e s e a u t h o r s in hi s book.

l i r i q h t h i ms e l ^ conduct ed a o i l o t - n l a n t i n v e s t i n a t i o n , us i nn a m o d i f i c a t i o n of t h e Ko l od i n- t vn e f u r n a c e , b u i l t bv t he I n s t i t u t e of Mininn and Metal 1u r n i c a l I n v e s t i n a t i o n s a t Or ur o, B o l i v i a . There i s no p u b l i s h e d a c c o u n t of t h i s .

(32)

Format ion of SnS ^rom s t annous oxi de in si an can be e f f e c t e d by exchan- qe r e a c t i o n s v/ith s u l f i d e s of o t h e r m e t a l s :

SnO + MS SnS + MO

where MS could he Al^S^, CaS, ZnS, or f e S , t he most e f f e c t i v e and most e x ­ p e n s i v e bei nq Al^Sg.

Si nce n y r i t e , F e S. , t r a n s f o r ms e a s i l y t o FeS a t t e mp e r a t u r e s above GOO^C, and as i t i s t he c h e a p e s t , i t i s most commonly used f o r t i n s u l f i d i z a t i o n .

Si a n from s e c o n d - s t a n e t i n s me l t i n n i s m e l t e d , or k e ot in t he molten s t a t e , in a r e v e r b e r a t o r ' / or r o t a r v f u r n a c e , and wlien in t h e mol t en s t a t e i t i s c a ­ r r i e d in s t e e l l a d l e s ( b a t c h e s of G - 8 t o n s ) and poured i n t o t h e fuminn f u r n a c e where i t i s blown by a mi x t u r e of coal d u s t , or o i l , a i r , and p y r i t e . The p y r i t e mixes wi t h t he s l a q and decomposes wi t h f o r ma t i o n o f f e r r o u s s u l ­ f i d e which e x t r a c t s t h e t i n from i t s s i l i c a t e s in t he s i an:

ZFeSg = = 2FeS + S.

Zi nc oxi de in s l a q r e a c t s 'with CO a c c o r d i n q t o:

' -(coal o r o i l ) ^ ^2 " "

ZnO + CO Zn + CO.

This reduced Zn v a p o r i z e s and i s t r a p p e d as ZnO in t he e l e c t r o s t a t i c p r e c i ­ p i t a t o r s when t h e e x h a u s t f u r n a c e gases are c l e a n e d .

Lead i s removed from s l a n as PbO, PbS, and Pb vapor .

Rare el ement s t h a t form v o l a t i l e s p e c i e s a r e a l s o removed as vapors from t he s l a g and t r a p p e d as d u s t .

(33)

The f u r n a c e used in t i n fuminn i s b a s i c a l l y t he same as f o r t h e z i n c fuminq p r o c e s s . I t i s a w a t e r - j a c k e t e d r e c t a n n u l a r s h a f t - f u r n a c e , as shown i n Fi q. 2, 'with 12 c o n v e r t e r - t y p e t u y e r e s (G on each s i i o r t s i d e of t he f u r n a c e ) throunli wliich t he c o a l , or o i l and p y r i t e s a r e blown i n t o t he f u r n a ­ ce by compressed a i r . The h e a r t h of t h e f u r n a c e i s a c a s t i r o n p l a t e wi t h 12 w a t e r - c o o l e d s t e e l pi ne s c a s t i n t o i t . I t is i n s t a l l e d on G c a s t - i r o n s u p p o r t s . Blowinq be qi ns a t t he time t he s l a q i s bei nq poured i n t o t he f u r n a c e and con­ t i n u e s f o r about 2 t o 3 ho ur s .

The p r o c e s s , a c c o r d i n n t o Bel yaye v^^^, can be d i v i d e d i n t o t h r e e p e r i o d s : a) ! l e a t i nq- up of t he s l a n . b) Reduct i on and s u l f i d i z a t i o n . c) Reheat i nq o-^ t he s l a n b e f o r e t a p p i n q . Sl an t e mp e r a t u r e s a r e from 1150 t o 1300^0, The o p e r a t i o n c o n d i t i o n s , as summarized by l l r i n h t(

6

) a r e : Furnace char ne Du r a t i o n of c y c l e Coal consumption

(When o i l i s not used) P y r i t e consumption Ai r s uppl y approx. 8 . 5 t o n. 2 - 3 h o u r s . 18wt% of s l a n t r e a t e d 4,lwt% of s l a q , 67% of t h e o r e t i c a l f o r compl et e combust i on.

Typi ca l c har ne and p r o d u c t comp o s i t i on s a r e niven in Ta bl e VI.

P r i v a t e c o m m u n i c a t i o n ^ n i v e s t he f o l l o wi n n r e c e n t d a t a from a Russi an and a B o l i v i a n p l a n t r e s n e c t i v e l v : Russi an p l a n t ; B o l i v i a n n i a n t : char ne wa s t e s l a n c har ne wast e s l a n avne. l%Sn 0 . 1 - 0.09%Sn. avne. G%Sn 0,5%Sn.

(34)

Ç=3

a

FIG. 2. SHAFT FURNACE FOR SLAG FUMING.

1. COOLING PLATES 3. TUYERES

2. HEARTH 4. FLUE.

(35)

Tabl e VI.

Chemical Composi tion of Sl ans T r e a t e d a t t he Po d o l s '

(6)

Sme l t e r in Russi a

% ELEMENT IN CHARGE DUST PRODUCT (%) WASTE SLAG {%) RECOVERY (%)

Sn 1 . 5 - 1. 8 15 - 18 < 0 . 2 90 -95 Pb 0 . 8 - 1.0 10 - 12 < 0 . 1 90 -95 Zn 3. 5 - 4. 5 27 - 32 < 2 . 5 60 -65 Cu 0 . 8 - 1.0 - - -S 1. 5 - 2 . 0 4 - 6 - -Fe 20 . 0 - 25. 0 - - -As - 1. 5 - 2. 0 - -Matte Formation

The use of e xc e s s n y r i t e or s u l f u r blown i n t o t h e molten s l a q r e d uc e s t he r e c o v e r y of t i n as t he v o l a t i l e Sn s u l f i d e , be caus e of t h e f o r ma t i o n o f an i r o n - t i n ma t t e due t o undecomposed f e r r o u s s u l f i d e . Thi s ma­ t t e c o n s i s t s n o t onl y o f FeS and SnS b u t a l s o o f t h e s u l f i d e s of t h e o t h e r me t a l s p r e s e n t i n s l a n (Pb, Cu, Zn, e t c . ) .

Ma t t e , bei nn h e a v i e r t han s l a n , c o l l e c t s under t h e l a t t e r i n t he h e a r t h of t h e fuminq f u r n a c e and i s n e r i o d i c a l l y t apped as i t a c c u mu l a t e s .

I t i s e v e n t u a l l y t r e a t e d a n a i n t o v o l a t i l i z e t he SnS, e i t h e r s e p a r a t e l y , or mixed wi th new b a t c h e s of s l a n .

I t i s o f q r e a t i n t e r e s t t o t h e t i n m e t a l l u r n i s t t o know t h e e x t e n t t o which SnS v o l a t i l i t y i s hamnered by t h e s o l u t i o n of s t a nn ou s s u l f i d e in t h i s m a t t e , so as t o de t e r mi ne t h e optimum c o n d i t i o n s f o r t h i s p r o c e s s .

(36)

I t i s a d v i s a b l e a t t h i s p o i n t t o a n a l y s e in more d e t a i l t he d a t a a v a i l a b l e on t he t i n - s u l f u r svst em.

Thermodvnamic Ev a l u a t i o n s

Fi our es 3 and 4 were o b t a i n e d by c a l c u l a t i o n s from dat a qi ven in Tabl e IV, Chapt er I I . Complété c a l c u l a t i o n s a r e niven in Appendix I . The s t a b i l i t y r e n i o n s , deoendi nn on t he p a r t i a l p r e s s u r e of S^, a r e i n d i c a t e d a t t h e top of t h e two f i n u r e s . I t can be seen t h a t , as t he t e mn e r a t u r e i n c r e a ­ s e s , t he p a r t i a l p r e s s u r e s of Sn^Sp naseous s n e c i e s a l s o i n c r e a s e in i mpor­ t a n c e as do t h os e of SnS/^\ , b u t t h e p e r c e n t a n e of SnpSp/^x r e l a t i v e t o t h a t of SnS^^j d e c r e a s e s .

The e f f e c t i v e t o t a l n r e s s u r e of Sn - S naseous s p e c i e s i s p l o t t e d a n a i n s t s u l f u r p r e s s u r e in Fi n, 5, and a n a i n s t 1/T in Fi n, 6 , The p a r t i a l p r e s s u r e s of SnS^^j and Sn^Sp^^j ve r s us 1/T a r e a l s o ni ven in Fi n, 6 , t o show t h e im­ p o r t a n c e of Pg^^g over t h e t o t a l p r e s s u r e and t he very smal l c o n t r i b u t i o n s of SnpSpÇq) and of Sn^^^ t o t he e f f e c t i v e t o t a l , p r e s s u r e , ni ven as:

' T(SnS) ^ ^ '

T h e r e f o r e , Pg^ and pg^ g can be n e n l e c t e d w i t h o u t i n t r o d u c i n n any s i n n i f i - c a n t e r r o r t o t he thermodynamic p r o p e r t i e s of :

The s t a b i l i t y zones of i n t e r e s t t o t h i s i n v e s t i n a t i o n a r e ttie zones t o t he r i q h t of t he 5 n ( l ) - S n S ( c , l ) l i n e , t h a t i s ; t he zones a t which t he vapor p r e s s u r e s of SnS/ ^ and $^2^ 2 ( 0 ) i nd e p e n de nt of s u l f u r nas p r e s s u r e s s i n c e no de c omn os i t i o n of SnS, ,x i s d e s i r e d ,

(37)

C\J o o oo o n C-o> O) C\J CO cv CVI CO CO *o LD 00 o (O 00 or> CO in VO I CO E +-> ro CO CO CL CD o CO I c CO CO > CO CO UJ c: Z3 CO CO LU cr c_ c: o c_ < lu E 5 0 *1

(38)

o o o o ^ LT> O Cl LU en D> CT) co CM CM ro LD t/) Oî cc I n un o r-4 CM V? CL Cr O cr I (y? > -(y? œ LU cr. =) cc cc LU cr c^ cr c c U t? d b 0 1

(39)

o o o o o c o o LD CVJ < T ) in (/) CL 00 Q. CL LD n c r-4 E 4-> fO C\J vo CL cr O a: =) oo l/l LU CL: CL oc I/O u_ o o H -O to <c to I c to LU I— to > to H— Ll_ O LU C:: ro to to LU CL: CL CL o CL-c h -o (_) LU LU LD LU B ( s u s ) i d

(40)

E +J (t3 o> o

1

T(SnS) SnS 2 3 - 4 7 6 8 9 10 11 10*/ I OK

- 1

(41)

The p e r c e n t a g e of ove r t he e f f e c t i v e t o t a l p r e s s u r e rannes between ^"2^2( n)

2 , 4 t o 4% ( i n t he f l a t zones) a t t e mp e r a t u r e s between 1500 t o IOOQOk i n t h a t o r d e r . In a l l cas e s p~ ^ i s l e s s t han 1% of t h e t o t a l p r e s s u r e when i t

^^2^2( n) i s de pendent on t he s u l f u r p r e s s u r e ( F i n s , 3 , 4 , and 5 ) , C a l c u l a t i o n s a r e gi ven in Appendix I , T h e r e f o r e , f o r t he p r e s e n t work, t h e t o t a l vapor p r e s s u r e of SnS s p e c i e s w i l l be c o n s i d e r e d as bei ng t he vapor p r e s s u r e of SnS^^^ o n l y , n e g l e c t i n g t he o t h e r gaseous s p e c i e s .

Crude e s t i m a t i o n s based on t h e thermodynamic p r o p e r t i e s of FeS and SnS, and on t h e FeS-SnS phase diagram a r e p r e s e n t e d below.

The p r e s s u r e of SnS v a por over t h e mat t e i s p r o p o r t i o n a l t o i t s a c t i v i t y t h e r e ­ i n , s ay:

= c

'^"^lATTE

'

^''^flATTE

where c = c o n s t a n t a t each t e mp e r a t u r e = .

(2)

R e f e r r i n g a gai n t o t he s u l f i d i z i n g r e a c t i o n of SnS from s l a g s , and a p p l y i n g i t t o t h e ma t t e f o r ma t i o n :

S"0(SLAG) '"°^(!1ATTE) ~ ^"^{MATTE) * '"°°{SLAG) (1) f o r which:

K =

S u b s t i t u t i n g (2) i n t o ( 3 ) :

®SnS *FeO (3)

®FeS

MATTE *SnO SLAG

'SnS MATTE ‘SnS,

1ATTE FeSMATTE

'SnO TeO

(42)

Th e r e f o r e : a. PsnS ~ ^ * ^FeS ^"^MATTE ^ Î1ATTE ‘SnO ®FeO SLAG

Hence, t h e vapor p r e s s u r e of nure SnS i s h i g h e r , t h e h i g h e r t he a c t i v i t y o f SnO i n t he s l a g , and t h e lower t he FeO c o n t e n t t h e r e i n .

Now t h e vapor p r e s s u r e o f pure SnS can be c a l c u l a t e d from d a t a gi ven in Tabl e I I I (Ch, I I ) , and t he a c t i v i t y of SnS i n i r o n - t i n ma t t e s can be o b t a i n e d from t h e phase di agram given by Haan^^) and t he e n t h a l p y o f f u s i o n o f FeS^^^, Thus, t h e p a r t i a l p r e s s u r e of SnS vapor ove r Sn-Fe ma t t e s i s e s t i m a t e d t o be r e p r e ­ s e n t e d by t h e f o l l o wi n g e q u a t i o n s :

Log PsnS = - —

+

f'sns +

'

"leS

(4)

AG° 2

PsnS

^ ~ pj

^

^^SnS

• ''VeS

*

Where and AG° a r e t h e f r e e ener gy of v a p o r i z a t i o n and s u b l i m a t i o n r e s -

V s '

p e c t i v e l y . T h e i r e x p r e s s i o n s a r e gi ven in Tabl e I I I ( C h . I I ) ,

The compl et e d e r i v a t i o n of t h e s e two e q u a t i o n s i s gi ven i n Appendix I I , al ong wi t h t h e c a l c u l a t i o n o f t he phase diagram knowing t h e t e mn e r a t u r e s of f u s i o n , t h e e u t e c t i c t e mp e r a t u r e and c o mp o s i t i o n , and t h e e n t h a l p y o f f u s i o n of FeS assuming a r e g u l a r s o l u t i o n b e h a v i o r of t he l i q u i d phase and t h a t t h e r e i s no s o l i d s o l u b i l i t y i n t h e s ys t e m. The agreement of t h e s e r e s u l t s wi t h t h e d i a ­ gram in t h e l i t e r a t u r e a ppea r s t o be good. Fi gur e 7 shows t h e phase diagram as o b t a i n e d by Haan^^^, and as c a l c u l a t e d assuming t h e r e g u l a r s o l u t i o n model f o r t h e l i q u i d phase.

Fi gur e 8 shows t he v a r i a t i o n of t he p a r t i a l p r e s s u r e of SnS as a f u n c t i o n of SnS c o n t e n t i n t he ma t t e s f o r d i f f e r e n t t e mp e r a t u r e s as c a l c u l a t e d from equa ­ t i o n s ( 4 ) , and ( 5 ) ,

(43)

in CO cri CO o cr. CO CM o c CD o o ro CM O O O CO O o o o CM cr o oo o o o CO CO CD D: CO <0 LU CO < CO 0) CO c CO CO vr D: c >-LU < cr a LU cr =3 LU O CL _ J X < LU C J

o □

cCJ <3 CO Do '3WniVo3dW31

(44)

E 4-> TO OO c tr> CL cr o

0

1

2 3 -4 100 90 80 70 60 20 30 40 50 10 0 SnS, wt,%

(45)

The a c c ur a c y o f t h e s e e s t i m a t e s i s dependent upon t h e a c c ur a c y t o which t he phase dianram was determined i n 1 9 1 3, and t h e v a l i d i t y o f t he r e n u l a r s o l u t i o n as sumption f o r t h e l i q u i d p has e. T h e r e f o r e , t he d e t e r m i n a t i o n o f t he vapor p r e s s u r e s o f SnS o ve r Fe-Sn ma ttes i n t h e l a b o r a t o r y i s not o n l y j u s t i f i e d but n e c e s s a r y f o r a b e t t e r c o n t r o l o f t h e t i n fuminq p r o c e s s .

(46)

IV. E X P E R I M E N T A L A P P A R A T U S

A N D P R O C E D U R E

Choice of Method

The t r a n s p o r t a t i o n ( t r a n s p i r a t i o n ) method was s e l e c t e d b e ­ caus e i t r e q u i r e s a r e l a t i v e l y s i mp l e d e s i qn of a p p a r a t u s and be caus e i t has proved t o be s u c c e s s f u l i n meas ur i nq vapor p r e s s u r e s of a number o f e l e m e n t s , t h e i r h a l i d e s , o x i d e s , and s u l f i d e s , ove r a wide ranne of vapor p r e s s u r e s

-4

(between 10" t o lO"" mm Hn). I t has a l s o been e x t e n s i v e l y used t o d e t e r mi n e t he p a r t i a l p r e s s u r e s of v o l a t i l e components of an a l l o y o v e r t h e l i q u i d , or s o l i d a l l o y .

The l i t e r a t u r e q i v e s numerous a cc ount s of i n v e s t i n a t i o n s u s i n q t h i s method. There a r e ve r y many, and onl y t h e c l a s s i c a l and most i mp o r t a n t t o t h i s s t u d y a r e l i s t e d h e r e .

I t i s a dynamic met hod, by which a measured volume of an i n e r t nas ove r t he s o l i d or l i q u i d ma t t e becomes s a t u r a t e d wi t h t i n s u l f i d e v a p o r s . Thi s c a r r i e r gas i s pa s s e d a t a c o n s t a n t v e l o c i t y o v e r t h e s u b s t a n c e in t h e s a t u r a t i o n cham­ b e r , a t a c o n s t a n t t e m p e r a t u r e , and c a r r i e s away t he v o l a t i l e component s.

The vapor p r e s s u r e i s t hen de t e r mi ne d from t he l o s s in we i n h t of t he sample p e r u n i t volume of c a r r i e r nas.

The i mp o r t a n t c o n d i t i o n s of t h e t r a n s p o r t a t i o n method a r e : ( i ) A uni f or m t e mp e r a t u r e zone in t h e f u r n a c e , and

( i i ) t he geomet ry o f t he r e a c t i o n o r s a t u r a t i o n chamber.

(47)

Apparat us

The t r a n s p o r t a t i o n method t o de t e r mi ne t he vapor p r e s s u r e s of t i n s u l f i d e r e q u i r e d an a p p a r a t u s s u i t a b l e t o :

a) d e t e r mi n e t h e l o s s in we i n ht of a sample i n c o n t a c t wi t h a movinn qas pha­ se a t c o n s t a n t f l o w r a t e , a t a un i f or m, e l e v a t e d t e m p e r a t u r e , and

b) change f l o w r a t e s and t e mp e r a t u r e s f o r d i f f e r e n t s e t s of e x p e r i me n t s .

The a p p a r a t u s u t i l i z e d f o r t h i s purpose i s shown s c h e m a t i c a l l y i n Fi g . 9 , and a phot ogr aph i s gi ven in Fi g. 10, I t c o n s i s t e d o f two nas p u r i f i c a t i o n s y s t e ms , a gas mixing s ys t e m, a s a t u r a t i o n , and a c o n d e n s a t i o n s yst em.

Ni t r o ne n was used a t a high f l o w r a t e t o purge t h e f u r n a c e F3 and t he gas t r a i n s . I t was a l s o used as a c a r r i e r nas f o r measurements of SnS vapor p r e s s u r e s

over pure SnS(c) t o prove t h e r e l i a b i l i t y of t he a p p a r a t u s . Su r f a c e o x i d a t i o n took p l a c e in t he f i r s t e x p e r i me n t s . T h e r e f o r e n i t r o n e n was pass ed ove r pure copper t u r n i n g s a t 500^0 ( f u r n a c e FI) and t hen t hr ough two dr yi ng chambers c o n t a i n i n g s i l i c a gel and anhydrone (Mg(C10^)2) r e s p e c t i v e l y ( DI , D2) t o r e ­ move t he w a t e r va por . Thi s pr oc e dur e proved t o be s u f f i c i e n t t o p r e v e n t o x i ­ d a t i o n a t t he t e mp e r a t u r e s ment i oned.

Ni t r og e n coul d be f l u s h e d from t h e o p p o s i t e s i d e of t h e r e a c t i o n t ube i n f u r ­ nace F3 by means of two s t o pc o c k s (T2 and S4 in Fi g. 9) so as t o make s u r e t h a t a i r was e v a c u a t e d as c o mp l e t e l y as p o s s i b l e .

The second gas p u r i f i c a t i o n syst em was used f o r t h e hydronen. Thi s gas was a l s o pas s e d over c opper t u r n i n g s a t 500^0 in f u r n a c e F2 t o remove oxygen i f p r e s e n t . From t h e r e , i t pass ed t hrough a c o n d u i t c o n t a i n i n g s i l i c a gel t o remove mo i s t u r e i f s t i l l p r e s e n t . Si nc e llg gas had t o be mixed 'with HgS gas t o a c t as t h e c a r r i e r gas a t d i f f e r e n t H2S/H2 r a t i o s , and in o r d e r t o p r e ­ v e n t p o s s i b l e s e g r e g a t i o n due t o d i f f e r e n c e s in t e mp e r a t u r e and mo l e c u l a r we i g ht s d u r i n g t he mixing o p e r a t i o n , hydrogen was pass ed through a pyrex g l a s s s p i r a l (SF) a f t e r l e a v i n g t he p u r i f i c a t i o n f u r n a c e F2 and t h e d r y i n g t u b e . Thi s al l owed t he hydrogen t o cool do\/n t o room t e mp e r a t u r e b e f o r e e n ­ t e r i n g flo' wmeter F;12.

(48)

CM f—f Li-

\

3 CO

r %

oo X LU r o CO

L

CO - 0 - J CO o o <_> C-c CO LU CO c_> LU c C_) o CO CO > X CU c (— LU CO CO cu LU c X < C3 1— L U o LU CO _U LU LU CO CO _u CO CL c CO ro > <0 o GO CU CO CM CO =0 Q c u_ CM CO CÛ LU ro 1—( CO CO CO h -CM CO uu CV^ C_) f—1 c CO L_ *—1 cu CO H-C3 LU c _ c . . CO o = 3 LU I— 1 CO CO c CO < 1— 0 0 cu CU LU H ” LU ( _ ) > CO h - < C -CO LU CO CO _ J 1 < LU CO 1— 1— O X LU o r _ 1 CU LU o Li_ -J Cl- h- c c _ CO c c: 0 3 CM c CO LU CO CO CM cu *—4 X CL LU c lZ 1— CO cr> CO

Figure

Tabl e  no.  Page,  no
FIG,  1.  TIN  SMELTING  FLOUSHEET,
Tabl e  IV
FIG.  2.   SHAFT  FURNACE  FOR  SLAG  FUMING.
+7

References

Related documents

Generally, a transition from primary raw materials to recycled materials, along with a change to renewable energy, are the most important actions to reduce greenhouse gas emissions

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

Coad (2007) presenterar resultat som indikerar att små företag inom tillverkningsindustrin i Frankrike generellt kännetecknas av att tillväxten är negativt korrelerad över

Från den teoretiska modellen vet vi att när det finns två budgivare på marknaden, och marknadsandelen för månadens vara ökar, så leder detta till lägre

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

På många små orter i gles- och landsbygder, där varken några nya apotek eller försälj- ningsställen för receptfria läkemedel har tillkommit, är nätet av