• No results found

Determination of the Ratio of b-Quark Fragmentation Fractions f(s)/f(d) in pp Collisions at root s=7 TeV with the ATLAS Detector

N/A
N/A
Protected

Academic year: 2021

Share "Determination of the Ratio of b-Quark Fragmentation Fractions f(s)/f(d) in pp Collisions at root s=7 TeV with the ATLAS Detector"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

Determination of the Ratio of b-Quark Fragmentation Fractions f

s

=f

d

in pp Collisions at

p

ffiffi

s

¼ 7 TeV with the ATLAS Detector

G. Aadet al.* (ATLAS Collaboration)

(Received 3 August 2015; published 30 December 2015)

With an integrated luminosity of2.47 fb−1recorded by the ATLAS experiment at the LHC, the exclusive decays B0s → J=ψϕ and B0d→ J=ψK0of B mesons produced in pp collisions at

ffiffiffi s

p ¼ 7 TeV are used to determine the ratio of fragmentation fractions fs=fd. From the observed B0s→ J=ψϕ and B0d→ J=ψK0 yields, the quantityðfs=fdÞ½BðB0s→ J=ψϕÞ=BðB0d→ J=ψK0Þ is measured to be 0.199  0.004ðstatÞ 0.008ðsystÞ. Using a recent theory prediction for ½BðB0

s → J=ψϕÞ=BðB0d→ J=ψK0Þ yields ðfs=fdÞ ¼ 0.240  0.004ðstatÞ  0.010ðsystÞ  0.017ðthÞ. This result is based on a new approach that provides a significant improvement of the world average.

DOI:10.1103/PhysRevLett.115.262001 PACS numbers: 14.40.Nd, 14.65.Fy

The production rate of B0s (B0d) mesons is a product of the b ¯b cross section, the instantaneous luminosity and the probability that the ¯b quark is bound to an s (d) quark. The latter, denoted by the fragmentation fraction fs (fd), depends on the probability that in pQCD-inspired calcu-lations [1,2], a soft gluon splits into s¯s (d ¯d) and that the overlap of the ¯b and sðdÞ wave functions is sufficiently large to produce a B0s(B0d) bound state. In a similar fashion, Bþ mesons, Bcmesons, and b baryons are produced at the LHC with respective fragmentation fractions fu, fc, and fbaryon. The fragmentation fractions are about 40% each for u and d quarks, 10% for s quarks, at the percent level for c quarks, and ∼8% for baryon production satisfying the constraint fuþ fdþ fsþ fcþ fbaryon¼ 1. Precise knowledge of the fragmentation fractions is essential for measuring b-hadron cross sections and branching fractions at the LHC. In particular, for rare decays, such as the branching fraction measurement of B0s → μþμ− [3–5], a precise knowledge of fs=fdis important since it improves the sensitivity of searches for new physics processes beyond the standard model (SM). The fragmentation ratio fs=fd is a universal quantity that was measured by LEP experiments [6], CDF [7], and LHCb [8,9]. This Letter presents a measurement of fs=fd using B0s→ J=ψϕ and B0d→ J=ψK0 decays.

The ratio of fragmentation fractions fs=fd is extracted from the measured B0s → J=ψϕ and B0d→ J=ψK0 signal yields, NB0s, and NB0d. These are converted into B

0 s and B0d meson yields after dividing by the branching fractions of

the relevant decays and correcting for the relative efficiency Reff that is expressed as a product of acceptance and selection efficiency ratios for the two modes and is determined from Monte Carlo (MC) simulations:

fs fd ¼NB0s NB0d BðB0 d→ J=ψK0Þ BðB0 s → J=ψϕÞ BðK0→ KþπÞ Bðϕ → KþKÞ Reff; ð1Þ where the J=ψ, ϕ, and K0 are reconstructed in their J=ψ → μþμ−, ϕ → KþK−, and K0→ Kþπ− final states [10], respectively. The data sample consists of pp colli-sions collected with the ATLAS detector at pffiffiffis¼ 7 TeV corresponding to an integrated luminosity of 2.47  0.04 fb−1. The ATLAS multipurpose detector is described in detail in Ref. [11].

The PYTHIA 6 and 8 [12,13] MC generators with

parameters tuned to reproduce ATLAS data[14]are used to simulate background and signal events, respectively. For the signal channels, the angular distributions are produced with the measured polarization parameters [15]. The detector response for the generated events is simulated with GEANT4 [16,17].

The B0s → J=ψϕ and B0d→ J=ψK0 signal candidates consist of two muons and two hadrons originating from a common secondary vertex. The J=ψ candidates are selected from the dimuon trigger sample requiring two oppositely charged muon candidates, each having a trans-verse momentum of pT > 4 GeV. Reconstructed muon candidates are categorized either as combined or segment-tagged muons. A combined muon consists of an inner detector (ID) track combined with a muon spectrometer (MS) track using tight matching criteria, while a segment-tagged muon requires an ID track and track segments in the MS that are not reconstructed as an MS track[11]. The two muons, of which at least one must be a combined muon, are fitted to originate from the same two-track vertex. The *Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

vertex fit chi-square per degree of freedom (dof) is required to be χ2=dof < 10. To improve the sample purity, each muon track must have at least one hit in the pixel detector, more than five hits in the silicon strip detector and at least one hit in the transition radiation tracker that reduces the pseudorapidity coverage tojηj < 2.0 [18].

Since the dimuon mass resolution is different for muons reconstructed in the end caps (1.05 < jηj < 2.5) and for muons reconstructed in the barrel (jηj < 1.05), all accepted J=ψ candidates are divided into three classes: two barrel muons (BB), one end-cap and one barrel muon (EB), and two end-cap muons (EE). The parameters describing the dimuon mass distribution in the J=ψ signal region for the three pseudorapidity classes in data and in B0s → J=ψϕ and B0d→ J=ψK0 MC signal samples are extracted from maximum-likelihood fits. Signal events are selected requir-ing mass windows of3σ around the J=ψ peak in data and simulations. For data, the selected signal regions are 2.991–3.197 GeV for BB, 2.955–3.235 GeV for EB, and 2.914–3.275 GeV for EE classes, while in simulations they are slightly smaller.

The B0s candidates are reconstructed from a J=ψ candi-date plus two oppositely charged hadrons with a kaon mass hypothesis assigned. The dimuon mass is constrained to the J=ψ mass [15], and the J=ψ and two kaons have to originate from the same vertex. All combinations are accepted if pTðB0sÞ > 8 GeV, χ2=dof < 3 for the vertex fit and the KþK− invariant mass lies in the range deter-mined by2 natural widths (Γϕ) around theϕ mass peak, 1011 < mKþK− < 1028 MeV. The mKþK− distribution is modeled with a Breit-Wigner line shape convolved with a Crystal Ball function [19]. The selected mass window retains 85% of signal events.

The B0d candidates are reconstructed in a similar way. Here, one track of the K0decay is assigned a kaon mass hypothesis and the other track a pion mass hypothesis. Since ATLAS has limited kaon-pion separation capability in the momentum range relevant for this analysis, both Kπ mass assignment combinations are tested. That with mass closest to the nominal K0 mass is chosen, yielding the correct Kπ selection for 86% of all K0 candidates. The probability density function (PDF) for the invariant mass of correctly selected Kπ candidates is modeled with a rela-tivistic Breit-Wigner line shape convolved with a Crystal Ball function, while that where the K and π are swapped is modeled with a Gaussian function. The decay B0s→ J=ψϕ produces a peaking background in B0d→ J=ψK0 that appears in the low K0 mass region. To remove this contribution, the selected K0 region is constrained to one K0 decay width around the K0 mass peak, corre-sponding to 847 < m < 942 MeV for data. Since the K0 line shape is narrower in the MC simulations than in data, the Kπ mass selection needs to be adjusted in simulations to produce identical efficiencies in data and

simulations. For the KþK− mass selection, a similar procedure is used.

The signal-to-background ratios for B0s → J=ψϕ and B0d→ J=ψK0 decays are optimized using three variables with high background suppression power: theχ2=dof of the B vertex fit, the transverse decay length Lxydefined as the length of the vector from the primary vertex (PV)[20]to the B decay vertex in the transverse plane, and the pointing angleα defined as the angle between the B meson trans-verse momentum and Lxy. If more than one PV candidate exists, the one is selected for which the sum of squared transverse momenta of all tracks originating from the vertex, Pp2T, yields the highest value. The χ2=dof, Lxy and α selection criteria are optimized using simulated B0s→ J=ψϕ and B0d→ J=ψK0 events for signal and data sidebands for background.

To produce similar pT and η distributions in data and MC, data-driven weights are obtained by the following procedure. Sideband-subtracted B0s→J=ψϕ (B0d→J=ψK0) pT and η distributions from data are compared with corresponding distributions in simulation in the signal region,5.32<mJ=ψϕ<5.42 ð5.21 < mJ=ψK0 < 5.35Þ GeV. The upper and lower sidebands 5.20 < mJ=ψϕ< 5.25 ð5.09 < mJ=ψK0< 5.16Þ GeV and 5.48 < mJ=ψϕ< 5.53 ð5.40 < mJ=ψK0< 5.47Þ GeV are selected such that their summed yields represent the expected backgrounds in the signal region for the data. The weights are obtained by dividing the yield in each pT and η bin in data by the corresponding yield of the MC sample using only events with odd event numbers. Thus, for each bin (i) and (j) of the pT and η distributions, a weight is determined as a product of a pT-dependent and η-dependent weights:

WijðpT; ηÞ ¼ndatai ðpTÞ nMC i ðpTÞ ndataj ðηÞ nMC j ðηÞ ; ð2Þ

where ndata=MCi ðpTÞ is the normalized number of entries in the pT bin i and ndata=MCj ðηÞ is that in the η bin j. To obtain good agreement between data and simulation, the pro-cedure is repeated twice. The two sets of weights are multiplied and are used to correct the pT andη distributions of the MC sample with even event numbers. From the corrected MC samples, distributions forχ2=dof, Lxy, andα are determined, which are in good agreement with those measured in the data. The correlation between pT andη is small and is accounted for in the systematic error.

For both modes, the dominant background originates from a J=ψ produced at the PV plus two oppositely charged hadrons (direct J=ψ) [21]. Since the hadrons are not associated with any B0sðB0dÞ decay, the J=ψKþK−ðJ=ψKþπ−Þ invariant-mass spectrum does not peak but decreases with mass. Another large background consists of two random low-momentum, oppositely

(3)

charged muons combined with two random charged hadrons. Here, the dimuon mass distribution does not peak at the J=ψ nor does the four-particle mass show any peaking structure. Inclusive decays B → J=ψX, where X is a single hadron or a collection of hadrons, provide a source of background that is very similar to the signal. If X consists of exactly two charged-particle tracks (without any π0), the mode is topologically indistinguishable from the signal mode. Self-cross-feed, in which one or both hadrons from theϕðK0Þ decay are replaced with random hadrons, is negligible. In addition, peaking backgrounds from B0d→ J=ψK0 and B0d→ J=ψKþπ− contribute to B0s→ J=ψϕ while B0d→ J=ψKþπ− also contributes to B0d→ J=ψK0. To reduce these backgrounds, the χ2=dof, Lxy and α selections are optimized for each mode separately by determining the maximum value of S=pffiffiffiffiffiffiffiffiffiffiffiffiS þ B as a function of selected values for the observable to be optimized, where S represents the signal yield obtained from simulation and B is the background extracted from data sidebands. For the B0s (B0d) mode, the optimization yields χ2=dof < 2.4 ð2.6Þ, Lxy> 0.26 ð0.30Þ mm, and α < 0.14 ð0.12Þ rad. In combination with the J=ψ mass requirement, the χ2=dof selection reduces the combinato-rial background significantly, while the Lxyandα selections remove most of the direct J=ψ background.

In the final sample, the signal yields NB0

s and NB0d are extracted from unbinned extended maximum-likelihood fits to the J=ψKþK−and J=ψKþπ−invariant-mass spectra, respectively. The B0s signal PDF is modeled with three Gaussian functions with common mean that is determined from the fit, while widths and fractions are fixed to the values obtained from MC simulations. To account for possible width differences in the two narrowest Gaussian functions between data and simulation, an additional scale factor is introduced, which is left free in the fit. The peaking background PDF is modeled with a Crystal Ball function with parameters fixed to the values obtained in simulations.

The peaking background yield of 652  93 events is calculated from the B0dsignal yield. The selection efficien-cies of both peaking background modes are determined from simulation and are fixed in the fit to data. The remaining residual backgrounds are modeled with an exponential function leaving fraction and exponent free in the fit to data.

The B0dsignal PDF is parametrized with three Gaussian functions that describe both the correctly reconstructed and swapped Kþπ− events. The PDF of the peaking back-ground is modeled with a sum of Crystal Ball and Gaussian functions for which the relative B0d→ J=ψKþπ−yield with respect to that of the B0d→ J=ψK0 signal is determined from the corresponding branching fractions and selection efficiencies, yielding ð4.7  2.4Þ%. Most of the residual background is modeled with an exponential function, while partially reconstructed B → J=ψX decays require para-metrization with a complementary error function. All parameters of the residual background PDFs are left free in the fit.

Figure 1 shows the measured J=ψϕ and J=ψK0 invariant-mass spectra with fits overlaid. The fits yield NB0

s ¼ 6640  100 B 0

s→ J=ψϕ and NB0d ¼ 36290  320 B0d→ J=ψK0 signal events. Theχ2=dof values of the fits are 0.959 for B0sand 0.945 for B0d, indicating that both fits describe the data well.

The additive systematic uncertainties result from the B0s→ J=ψϕ and B0d→ J=ψK0 signal and background parametrizations. The contribution from the signal shape parametrization is calculated by varying the five fixed parameters within1σ in a multivariate Gaussian function that takes into account all correlations. For nonpeaking backgrounds, the exponential function is replaced with a second-order polynomial for the B0s and with a second-order polynomial plus an error function for the B0d. The difference in signal yield with respect to the nominal fit is taken as a systematic error. For peaking backgrounds, the

candidate mass (GeV)

-K + K ψ J/ 5.1 5.2 5.3 5.4 5.5 5.6 Events / 0.01 GeV 0 200 400 600 800 1000 1200 1400 1600 Data Fit signal φ ψ J/ → s 0 B Residual bkg. Peaking bkg. ATLAS -1 2.47 fb = 7 TeV s pp

candidate mass (GeV)

-π + K ψ J/ 5 5.1 5.2 5.3 5.4 5.5 Events / 0.01 GeV 0 1000 2000 3000 4000 5000 6000 Data Fit signal *0 K ψ J/ → d 0 B Residual bkg. Partially rec. decays Peaking bkg. ATLAS -1 2.47 fb = 7 TeV s pp

FIG. 1 (color online). The invariant-mass spectra of B0s→ J=ψϕ (left panel) and B0d→ J=ψK0decays (right panel) for data (points with error bars), total fit (solid line), signal (dashed line), residual background (yellow shaded), partially reconstructed events (magenta shaded) and peaking background (blue shaded).

(4)

fixed parameters are varied by1σ, and the difference with respect to the nominal yield is taken as a systematic error. In addition, since S-wave contributions from B0s→ J=ψKþK− and B0s → J=ψf0ð980Þ decays to B0s→ J=ψϕ and B0d→ J=ψK0are neglected in the fits, an uncertainty is derived using the ATLAS measured contribution of 2.4% [22]for B0s → J=ψϕ, and the contribution of 1% for B0d→ J=ψK0 derived from the MC simulation. All additive systematic errors are added in quadrature, yielding total additive uncertainties of 220 NB0s and 650 NB0d events.

The multiplicative systematic uncertainty includes con-tributions from the relative efficiency and the branching fractions of theϕ and K0decays. The uncertainty on the relative efficiency is dominated by the uncertainty on theϕ=K0selection (1.2%), which is obtained by varying the fixed fit parameters in theϕ and K0 fits by1σ and adding all contributions in quadrature. Other uncertainties from the J=ψ selection (0.2%), reweighting (0.4%), B0sand B0d lifetimes (0.002%), and the contribution due to uncer-tainties in the polarization parameters (0.01%) are

negligible. Varying the selection criteria of χ2=dof, Lxy andα gives negligible contributions. Table I summarizes the contributions of the additive and multiplicative sys-tematic errors.

From the ratio NB0

s=NB0d after efficiency correction and division byϕ and K0decay branching fractions, ATLAS measures fs fd BðB0 s→ J=ψϕÞ BðB0 d → J=ψK0Þ ¼ 0.199  0.004ðstatÞ  0.008ðsystÞ: ð3Þ A perturbative QCD prediction [23] yields

BðB0 s → J=ψϕÞ BðB0 d→ J=ψK0Þ ¼ 0.83þ0.03 −0.02ðωBÞþ0.01−0.00ðfMÞþ0.01−0.02ðaiÞþ0.01−0.02ðmcÞ; where the uncertainties result from the shape parameterωB of the B meson wave function, meson decay constants fM, Gegenbauer moments aiin the wave functions of the light vector mesons and the c-quark mass. Adding all contri-butions linearly yields a 7.1% theory error. Using this prediction, the ratio of fragmentation fractions is measured to be

fs fd

¼ 0.240  0.004ðstatÞ  0.010ðsystÞ  0.017ðthÞ: ð4Þ Figure 2 (right panel) shows the ATLAS fs=fd meas-urement in comparison with results from LEP [6], CDF [6,7], and LHCb[8,9]. The ratio fs=fdmay depend on pT andη of the B meson; e.g., LHCb observes a pT but no η dependence of fs=fd[8]. Figure2(left panel) shows the pT dependence of fs=fd for ATLAS and that of other

TABLE I. Measured B0s and B0d signal yields, the efficiency ratio Reff extracted from simulations, world averages for ϕ and K0 decay branching fractions, as well as corresponding systematic uncertainties σ on ðfs=fdÞ½BðB0s → J=ψϕÞ= BðB0

d → J=ψK0Þ.

Observable Value σ Reference

NB0s 6640  100  220 3.3% NB0d 36290  320  650 1.8% Reff 0.799  0.001  0.010 1.3% Bðϕ → KþKÞ 0.489  0.005 1.0% [15] BðK0→ KþπÞ 0.66503  0.00014 0.02% [15] Total 4.1% (GeV) T p 0 10 20 30 40 50 d /fs f 0.15 0.2 0.25 0.3 0.35 ATLAS LHCb (hadronic decays) CDF

LEP (HFAG average) ATLAS -1 2.47 fb s = 7 TeV d /f s f 0.1 0.15 0.2 0.25 0.3 0.35 1 2 3 4 5 6 ATLAS

LEP (HFAG average) CDF LHCb average LHCb (hadronic decays) ATLAS Z m = s = 1.96 TeV s = 7 TeV s = 7 TeV s = 7 TeV s HFAG average d /f s f

FIG. 2 (color online). (Left panel) Measurements of fs=fdversus B meson pTfor CDF[7], LHCb[8], and ATLAS, where the ATLAS data points are plotted at the average pT of the events in each bin. The error bars show statistical and systematic errors added in quadrature. The LEP ratio, taken from Ref.[6], is plotted at an average pTvalue in Z decays. (Right panel) Measurements of fs=fd (black and blue points with error bars) from LEP[6], CDF[6], LHCb[8,9], and ATLAS. The total experimental error (thin black line) is added linearly to the theory error (thick red line). The green-shaded region shows the HFAG average obtained using the blue points.

(5)

experiments. To investigate the pT and η dependence of fs=fd, the data sample is divided into six pT bins in the range 8 GeV < pT < 50 GeV and into four η bins for jηj < 2.5 such that the number of events in each bin is approximately equal. The fs=fddistributions as a function of pT and η have been fitted with a uniform (first-order polynomial) distribution yielding fit p values 0.54 (0.66) and 0.66 (0.49), respectively. No significant fs=fd depend-ence on pT andjηj is seen at the present level of accuracy. In summary, this Letter reports on the first ATLAS measurement of the ratio of B0s → J=ψϕ and B0d → J=ψK0 branching fractions multiplied by the ratio of fragmentation fractions fs=fdfrom which fs=fdis determined. The data were produced at the LHC in pp collisions atpffiffiffis¼ 7 TeV and correspond to an integrated luminosity of 2.47 fb−1 . This fs=fd measurement, obtained with a new approach, agrees with the LHCb [8,9] results, improving the world average considerably. A comparison with the CDF [6,7] measurement and the LEP [6] average confirms the universality of fs=fd. The ATLAS data show no depend-ence on pT nor on jηj within the kinematic range tested.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF,

European Union; IN2P3-CNRS, CEA-DSM/IRFU,

France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide.

[1] E. Braaten, K. Cheung, S. Fleming, and T. C. Yuan, Perturbative QCD fragmentation functions as a model for heavy-quark fragmentation, Phys. Rev. D 51, 4819 (1995).

[2] K. Cheung, Recent progress on perturbative QCD fragmen-tation functions,arXiv:hep-ph/9505365.

[3] ATLAS Collaboration, Search for the decay B0s → μþμ− with the ATLAS detector,Phys. Lett. B 713, 387 (2012). [4] R. Aaij et al. (LHCb Collaboration), Measurement of the

B0s → μþμ−Branching Fraction and Search for B0→ μþμ− Decays at the LHCb Experiment, Phys. Rev. Lett. 111, 101805 (2013).

[5] CMS Collaboration, Measurement of the B0s → μþμ− Branching Fraction and Search for B0→ μþμ− with the CMS Experiment,Phys. Rev. Lett. 111, 101804 (2013). [6] Y. Amhis et al. (Heavy Flavor Averaging Group), Averages

of b-hadron, c-hadron, and τ-lepton properties as of summer 2014,arXiv:1412.7515.

[7] T. Aaltonen et al. (CDF Collaboration), BRðB0s→ J=ψϕÞ measurement and extraction of the fragmentation fractions, Public CDF Note No. 10795, 2012.

[8] R. Aaij et al. (LHCb Collaboration), Measurement of the fragmentation fraction ratio fs=fd and its dependence on B meson kinematics, J. High Energy Phys. 04 (2013) 001.

[9] R. Aaij et al. (LHCb Collaboration), Updated average fs=fd b-hadron production fraction ratio for 7 TeV pp collisions, Report No. LHCb-CONF-2013-011, 2013.

[10] Charge conjugation is implied unless stated otherwise. [11] ATLAS Collaboration, The ATLAS experiment at

the CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008).

[12] T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual,J. High Energy Phys. 05 (2006) 026.

[13] T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief intro-duction to PYTHIA 8.1,Comput. Phys. Commun. 178, 852 (2008).

[14] ATLAS Collaboration, ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11, Report No. ATL-PHYS-PUB-2011-009,http://cdsweb.cern.ch/record/1363300.

[15] K. A. Olive et al. (Particle Data Group), Review of particle physics,Chin. Phys. C 38, 090001 (2014).

[16] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4—a

simulation toolkit,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[17] ATLAS Collaboration, The ATLAS simulation infrastruc-ture,Eur. Phys. J. C 70, 823 (2010).

[18] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane,ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.

[19] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, Ph.D. thesis, Report No. DESY-F31-86-02, 1986.

[20] The PV is the parton interaction vertex. The one of interest is that where the B meson is produced.

(6)

[21] ATLAS Collaboration, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J=ψ production in proton-proton collisions at pffiffiffis¼ 7 TeV,

Nucl. Phys. B850, 387 (2011).

[22] ATLAS Collaboration, Flavour tagged time-dependent an-gular analysis of the B0s → J=ψϕ decay and extraction of

ΔΓs and the weak phaseϕs in ATLAS,Phys. Rev. D 90,

052007 (2014).

[23] X. Liu, W. Wang, and Y. Xie, Penguin pollution in B0s → J=ψV decays and impact on the extraction of the B0s− ¯B0s mixing phase, Phys. Rev. D 89, 094010

(2014).

G. Aad,85B. Abbott,113J. Abdallah,151O. Abdinov,11R. Aben,107 M. Abolins,90O. S. AbouZeid,158 H. Abramowicz,153 H. Abreu,152 R. Abreu,116Y. Abulaiti,146a,146bB. S. Acharya,164a,164b,b L. Adamczyk,38a D. L. Adams,25J. Adelman,108

S. Adomeit,100T. Adye,131A. A. Affolder,74T. Agatonovic-Jovin,13J. Agricola,54J. A. Aguilar-Saavedra,126a,126f S. P. Ahlen,22F. Ahmadov,65,c G. Aielli,133a,133bH. Akerstedt,146a,146bT. P. A. Åkesson,81A. V. Akimov,96 G. L. Alberghi,20a,20bJ. Albert,169S. Albrand,55M. J. Alconada Verzini,71M. Aleksa,30I. N. Aleksandrov,65C. Alexa,26a

G. Alexander,153T. Alexopoulos,10 M. Alhroob,113 G. Alimonti,91a L. Alio,85J. Alison,31S. P. Alkire,35 B. M. M. Allbrooke,149 P. P. Allport,74A. Aloisio,104a,104bA. Alonso,36F. Alonso,71C. Alpigiani,76A. Altheimer,35 B. Alvarez Gonzalez,30D. Álvarez Piqueras,167M. G. Alviggi,104a,104bB. T. Amadio,15K. Amako,66Y. Amaral Coutinho,24a

C. Amelung,23 D. Amidei,89S. P. Amor Dos Santos,126a,126c A. Amorim,126a,126bS. Amoroso,48 N. Amram,153 G. Amundsen,23C. Anastopoulos,139L. S. Ancu,49N. Andari,108T. Andeen,35C. F. Anders,58bG. Anders,30J. K. Anders,74

K. J. Anderson,31A. Andreazza,91a,91b V. Andrei,58a S. Angelidakis,9 I. Angelozzi,107 P. Anger,44A. Angerami,35 F. Anghinolfi,30A. V. Anisenkov,109,dN. Anjos,12A. Annovi,124a,124bM. Antonelli,47A. Antonov,98 J. Antos,144b F. Anulli,132aM. Aoki,66L. Aperio Bella,18G. Arabidze,90Y. Arai,66J. P. Araque,126aA. T. H. Arce,45F. A. Arduh,71 J-F. Arguin,95S. Argyropoulos,42 M. Arik,19a A. J. Armbruster,30O. Arnaez,30V. Arnal,82H. Arnold,48M. Arratia,28 O. Arslan,21 A. Artamonov,97G. Artoni,23 S. Asai,155 N. Asbah,42A. Ashkenazi,153B. Åsman,146a,146bL. Asquith,149 K. Assamagan,25R. Astalos,144aM. Atkinson,165N. B. Atlay,141K. Augsten,128M. Aurousseau,145bG. Avolio,30B. Axen,15 M. K. Ayoub,117G. Azuelos,95,eM. A. Baak,30A. E. Baas,58aM. J. Baca,18C. Bacci,134a,134bH. Bachacou,136K. Bachas,154 M. Backes,30M. Backhaus,30P. Bagiacchi,132a,132bP. Bagnaia,132a,132bY. Bai,33aT. Bain,35J. T. Baines,131O. K. Baker,176 E. M. Baldin,109,dP. Balek,129T. Balestri,148F. Balli,84E. Banas,39Sw. Banerjee,173A. A. E. Bannoura,175H. S. Bansil,18

L. Barak,30E. L. Barberio,88D. Barberis,50a,50b M. Barbero,85T. Barillari,101M. Barisonzi,164a,164bT. Barklow,143 N. Barlow,28S. L. Barnes,84B. M. Barnett,131R. M. Barnett,15Z. Barnovska,5A. Baroncelli,134aG. Barone,23A. J. Barr,120 F. Barreiro,82J. Barreiro Guimarães da Costa,57R. Bartoldus,143A. E. Barton,72P. Bartos,144aA. Basalaev,123A. Bassalat,117 A. Basye,165R. L. Bates,53S. J. Batista,158 J. R. Batley,28M. Battaglia,137M. Bauce,132a,132bF. Bauer,136H. S. Bawa,143,f J. B. Beacham,111 M. D. Beattie,72T. Beau,80P. H. Beauchemin,161R. Beccherle,124a,124bP. Bechtle,21H. P. Beck,17,g K. Becker,120M. Becker,83S. Becker,100M. Beckingham,170C. Becot,117A. J. Beddall,19bA. Beddall,19bV. A. Bednyakov,65

C. P. Bee,148L. J. Beemster,107 T. A. Beermann,175M. Begel,25J. K. Behr,120C. Belanger-Champagne,87W. H. Bell,49 G. Bella,153L. Bellagamba,20a A. Bellerive,29M. Bellomo,86K. Belotskiy,98O. Beltramello,30O. Benary,153 D. Benchekroun,135aM. Bender,100K. Bendtz,146a,146bN. Benekos,10Y. Benhammou,153 E. Benhar Noccioli,49 J. A. Benitez Garcia,159bD. P. Benjamin,45J. R. Bensinger,23S. Bentvelsen,107L. Beresford,120M. Beretta,47D. Berge,107

E. Bergeaas Kuutmann,166N. Berger,5 F. Berghaus,169J. Beringer,15C. Bernard,22N. R. Bernard,86C. Bernius,110 F. U. Bernlochner,21T. Berry,77P. Berta,129 C. Bertella,83 G. Bertoli,146a,146bF. Bertolucci,124a,124bC. Bertsche,113 D. Bertsche,113M. I. Besana,91aG. J. Besjes,36O. Bessidskaia Bylund,146a,146bM. Bessner,42N. Besson,136C. Betancourt,48 S. Bethke,101A. J. Bevan,76W. Bhimji,15R. M. Bianchi,125L. Bianchini,23M. Bianco,30O. Biebel,100D. Biedermann,16

S. P. Bieniek,78M. Biglietti,134aJ. Bilbao De Mendizabal,49 H. Bilokon,47M. Bindi,54S. Binet,117A. Bingul,19b C. Bini,132a,132bS. Biondi,20a,20b C. W. Black,150J. E. Black,143 K. M. Black,22D. Blackburn,138 R. E. Blair,6 J.-B. Blanchard,136J. E. Blanco,77T. Blazek,144aI. Bloch,42C. Blocker,23W. Blum,83,aU. Blumenschein,54G. J. Bobbink,107

V. S. Bobrovnikov,109,dS. S. Bocchetta,81A. Bocci,45 C. Bock,100M. Boehler,48J. A. Bogaerts,30D. Bogavac,13 A. G. Bogdanchikov,109C. Bohm,146aV. Boisvert,77T. Bold,38aV. Boldea,26aA. S. Boldyrev,99M. Bomben,80M. Bona,76

M. Boonekamp,136A. Borisov,130 G. Borissov,72S. Borroni,42J. Bortfeldt,100V. Bortolotto,60a,60b,60cK. Bos,107 D. Boscherini,20aM. Bosman,12J. Boudreau,125J. Bouffard,2E. V. Bouhova-Thacker,72D. Boumediene,34C. Bourdarios,117

(7)

U. Bratzler,156B. Brau,86J. E. Brau,116H. M. Braun,175,aS. F. Brazzale,164a,164cW. D. Breaden Madden,53K. Brendlinger,122 A. J. Brennan,88L. Brenner,107R. Brenner,166S. Bressler,172 K. Bristow,145cT. M. Bristow,46D. Britton,53D. Britzger,42 F. M. Brochu,28I. Brock,21R. Brock,90 J. Bronner,101G. Brooijmans,35 T. Brooks,77 W. K. Brooks,32bJ. Brosamer,15

E. Brost,116J. Brown,55P. A. Bruckman de Renstrom,39D. Bruncko,144b R. Bruneliere,48A. Bruni,20a G. Bruni,20a M. Bruschi,20aN. Bruscino,21L. Bryngemark,81T. Buanes,14Q. Buat,142P. Buchholz,141A. G. Buckley,53S. I. Buda,26a

I. A. Budagov,65F. Buehrer,48 L. Bugge,119 M. K. Bugge,119 O. Bulekov,98 D. Bullock,8 H. Burckhart,30 S. Burdin,74 C. D. Burgard,48B. Burghgrave,108S. Burke,131I. Burmeister,43E. Busato,34 D. Büscher,48V. Büscher,83P. Bussey,53 J. M. Butler,22A. I. Butt,3C. M. Buttar,53J. M. Butterworth,78P. Butti,107W. Buttinger,25A. Buzatu,53A. R. Buzykaev,109,d S. Cabrera Urbán,167D. Caforio,128V. M. Cairo,37a,37bO. Cakir,4aN. Calace,49P. Calafiura,15A. Calandri,136G. Calderini,80

P. Calfayan,100L. P. Caloba,24a D. Calvet,34 S. Calvet,34R. Camacho Toro,31S. Camarda,42P. Camarri,133a,133b D. Cameron,119 R. Caminal Armadans,165S. Campana,30M. Campanelli,78 A. Campoverde,148V. Canale,104a,104b A. Canepa,159aM. Cano Bret,33e J. Cantero,82R. Cantrill,126aT. Cao,40M. D. M. Capeans Garrido,30 I. Caprini,26a M. Caprini,26a M. Capua,37a,37bR. Caputo,83R. Cardarelli,133aF. Cardillo,48T. Carli,30G. Carlino,104aL. Carminati,91a,91b

S. Caron,106E. Carquin,32a G. D. Carrillo-Montoya,30J. R. Carter,28J. Carvalho,126a,126c D. Casadei,78M. P. Casado,12 M. Casolino,12E. Castaneda-Miranda,145bA. Castelli,107 V. Castillo Gimenez,167 N. F. Castro,126a,h P. Catastini,57

A. Catinaccio,30J. R. Catmore,119 A. Cattai,30J. Caudron,83V. Cavaliere,165D. Cavalli,91a M. Cavalli-Sforza,12 V. Cavasinni,124a,124bF. Ceradini,134a,134bB. C. Cerio,45K. Cerny,129A. S. Cerqueira,24bA. Cerri,149L. Cerrito,76F. Cerutti,15 M. Cerv,30A. Cervelli,17S. A. Cetin,19cA. Chafaq,135aD. Chakraborty,108I. Chalupkova,129P. Chang,165J. D. Chapman,28

D. G. Charlton,18C. C. Chau,158 C. A. Chavez Barajas,149 S. Cheatham,152A. Chegwidden,90S. Chekanov,6 S. V. Chekulaev,159aG. A. Chelkov,65,iM. A. Chelstowska,89C. Chen,64H. Chen,25K. Chen,148L. Chen,33d,jS. Chen,33c X. Chen,33f Y. Chen,67 H. C. Cheng,89Y. Cheng,31 A. Cheplakov,65E. Cheremushkina,130R. Cherkaoui El Moursli,135e

V. Chernyatin,25,a E. Cheu,7 L. Chevalier,136 V. Chiarella,47G. Chiarelli,124a,124bG. Chiodini,73aA. S. Chisholm,18 R. T. Chislett,78A. Chitan,26a M. V. Chizhov,65K. Choi,61S. Chouridou,9 B. K. B. Chow,100V. Christodoulou,78 D. Chromek-Burckhart,30J. Chudoba,127 A. J. Chuinard,87J. J. Chwastowski,39L. Chytka,115 G. Ciapetti,132a,132b A. K. Ciftci,4aD. Cinca,53 V. Cindro,75I. A. Cioara,21A. Ciocio,15 F. Cirotto,104a,104b Z. H. Citron,172M. Ciubancan,26a A. Clark,49B. L. Clark,57P. J. Clark,46R. N. Clarke,15W. Cleland,125C. Clement,146a,146bY. Coadou,85M. Cobal,164a,164c A. Coccaro,49J. Cochran,64L. Coffey,23J. G. Cogan,143L. Colasurdo,106B. Cole,35S. Cole,108A. P. Colijn,107J. Collot,55

T. Colombo,58c G. Compostella,101 P. Conde Muiño,126a,126bE. Coniavitis,48S. H. Connell,145b I. A. Connelly,77 V. Consorti,48S. Constantinescu,26a C. Conta,121a,121bG. Conti,30 F. Conventi,104a,kM. Cooke,15 B. D. Cooper,78 A. M. Cooper-Sarkar,120T. Cornelissen,175 M. Corradi,20aF. Corriveau,87,lA. Corso-Radu,163A. Cortes-Gonzalez,12 G. Cortiana,101G. Costa,91aM. J. Costa,167D. Costanzo,139D. Côté,8G. Cottin,28G. Cowan,77B. E. Cox,84K. Cranmer,110 G. Cree,29S. Crépé-Renaudin,55F. Crescioli,80W. A. Cribbs,146a,146bM. Crispin Ortuzar,120M. Cristinziani,21V. Croft,106 G. Crosetti,37a,37bT. Cuhadar Donszelmann,139J. Cummings,176M. Curatolo,47C. Cuthbert,150H. Czirr,141P. Czodrowski,3 S. D’Auria,53M. D’Onofrio,74

M. J. Da Cunha Sargedas De Sousa,126a,126bC. Da Via,84W. Dabrowski,38aA. Dafinca,120 T. Dai,89O. Dale,14F. Dallaire,95C. Dallapiccola,86M. Dam,36J. R. Dandoy,31N. P. Dang,48A. C. Daniells,18 M. Danninger,168M. Dano Hoffmann,136V. Dao,48G. Darbo,50aS. Darmora,8J. Dassoulas,3A. Dattagupta,61W. Davey,21

C. David,169 T. Davidek,129 E. Davies,120,m M. Davies,153 P. Davison,78Y. Davygora,58a E. Dawe,88I. Dawson,139 R. K. Daya-Ishmukhametova,86K. De,8R. de Asmundis,104aA. De Benedetti,113S. De Castro,20a,20bS. De Cecco,80 N. De Groot,106 P. de Jong,107 H. De la Torre,82F. De Lorenzi,64D. De Pedis,132aA. De Salvo,132aU. De Sanctis,149

A. De Santo,149J. B. De Vivie De Regie,117W. J. Dearnaley,72R. Debbe,25 C. Debenedetti,137D. V. Dedovich,65 I. Deigaard,107 J. Del Peso,82T. Del Prete,124a,124bD. Delgove,117 F. Deliot,136C. M. Delitzsch,49 M. Deliyergiyev,75

A. Dell’Acqua,30L. Dell’Asta,22M. Dell’Orso,124a,124bM. Della Pietra,104a,kD. della Volpe,49M. Delmastro,5 P. A. Delsart,55C. Deluca,107D. A. DeMarco,158S. Demers,176M. Demichev,65A. Demilly,80S. P. Denisov,130 D. Derendarz,39J. E. Derkaoui,135dF. Derue,80P. Dervan,74K. Desch,21C. Deterre,42P. O. Deviveiros,30A. Dewhurst,131

S. Dhaliwal,23A. Di Ciaccio,133a,133bL. Di Ciaccio,5 A. Di Domenico,132a,132bC. Di Donato,104a,104bA. Di Girolamo,30 B. Di Girolamo,30A. Di Mattia,152B. Di Micco,134a,134bR. Di Nardo,47A. Di Simone,48R. Di Sipio,158D. Di Valentino,29 C. Diaconu,85 M. Diamond,158F. A. Dias,46M. A. Diaz,32a E. B. Diehl,89J. Dietrich,16S. Diglio,85A. Dimitrievska,13

J. Dingfelder,21P. Dita,26a S. Dita,26a F. Dittus,30 F. Djama,85T. Djobava,51b J. I. Djuvsland,58a M. A. B. do Vale,24c D. Dobos,30M. Dobre,26aC. Doglioni,81T. Dohmae,155J. Dolejsi,129Z. Dolezal,129B. A. Dolgoshein,98,aM. Donadelli,24d

(8)

S. Donati,124a,124bP. Dondero,121a,121bJ. Donini,34J. Dopke,131 A. Doria,104aM. T. Dova,71A. T. Doyle,53E. Drechsler,54 M. Dris,10E. Dubreuil,34E. Duchovni,172 G. Duckeck,100O. A. Ducu,26a,85D. Duda,107A. Dudarev,30L. Duflot,117

L. Duguid,77M. Dührssen,30M. Dunford,58aH. Duran Yildiz,4a M. Düren,52A. Durglishvili,51bD. Duschinger,44 M. Dyndal,38a C. Eckardt,42K. M. Ecker,101 R. C. Edgar,89W. Edson,2 N. C. Edwards,46W. Ehrenfeld,21T. Eifert,30

G. Eigen,14K. Einsweiler,15T. Ekelof,166M. El Kacimi,135cM. Ellert,166 S. Elles,5 F. Ellinghaus,175 A. A. Elliot,169 N. Ellis,30 J. Elmsheuser,100M. Elsing,30D. Emeliyanov,131Y. Enari,155 O. C. Endner,83 M. Endo,118J. Erdmann,43 A. Ereditato,17G. Ernis,175 J. Ernst,2 M. Ernst,25S. Errede,165 E. Ertel,83M. Escalier,117 H. Esch,43 C. Escobar,125 B. Esposito,47A. I. Etienvre,136E. Etzion,153H. Evans,61A. Ezhilov,123L. Fabbri,20a,20bG. Facini,31R. M. Fakhrutdinov,130 S. Falciano,132aR. J. Falla,78J. Faltova,129Y. Fang,33aM. Fanti,91a,91bA. Farbin,8A. Farilla,134aT. Farooque,12S. Farrell,15 S. M. Farrington,170P. Farthouat,30F. Fassi,135eP. Fassnacht,30D. Fassouliotis,9M. Faucci Giannelli,77A. Favareto,50a,50b L. Fayard,117P. Federic,144aO. L. Fedin,123,nW. Fedorko,168S. Feigl,30L. Feligioni,85C. Feng,33dE. J. Feng,6H. Feng,89 A. B. Fenyuk,130L. Feremenga,8P. Fernandez Martinez,167S. Fernandez Perez,30J. Ferrando,53A. Ferrari,166P. Ferrari,107 R. Ferrari,121aD. E. Ferreira de Lima,53A. Ferrer,167 D. Ferrere,49C. Ferretti,89A. Ferretto Parodi,50a,50bM. Fiascaris,31 F. Fiedler,83A. Filipčič,75M. Filipuzzi,42F. Filthaut,106 M. Fincke-Keeler,169K. D. Finelli,150M. C. N. Fiolhais,126a,126c L. Fiorini,167A. Firan,40A. Fischer,2C. Fischer,12J. Fischer,175W. C. Fisher,90E. A. Fitzgerald,23N. Flaschel,42I. Fleck,141

P. Fleischmann,89 S. Fleischmann,175 G. T. Fletcher,139G. Fletcher,76 R. R. M. Fletcher,122 T. Flick,175 A. Floderus,81 L. R. Flores Castillo,60aM. J. Flowerdew,101 A. Formica,136A. Forti,84D. Fournier,117H. Fox,72S. Fracchia,12 P. Francavilla,80 M. Franchini,20a,20b D. Francis,30L. Franconi,119M. Franklin,57M. Frate,163 M. Fraternali,121a,121b D. Freeborn,78S. T. French,28F. Friedrich,44D. Froidevaux,30J. A. Frost,120C. Fukunaga,156E. Fullana Torregrosa,83

B. G. Fulsom,143T. Fusayasu,102 J. Fuster,167C. Gabaldon,55O. Gabizon,175 A. Gabrielli,20a,20b A. Gabrielli,132a,132b G. P. Gach,38a S. Gadatsch,30S. Gadomski,49 G. Gagliardi,50a,50bP. Gagnon,61C. Galea,106 B. Galhardo,126a,126c

E. J. Gallas,120B. J. Gallop,131P. Gallus,128 G. Galster,36 K. K. Gan,111J. Gao,33b,85Y. Gao,46Y. S. Gao,143,f F. M. Garay Walls,46 F. Garberson,176 C. García,167J. E. García Navarro,167 M. Garcia-Sciveres,15R. W. Gardner,31 N. Garelli,143V. Garonne,119C. Gatti,47A. Gaudiello,50a,50bG. Gaudio,121aB. Gaur,141L. Gauthier,95P. Gauzzi,132a,132b I. L. Gavrilenko,96 C. Gay,168G. Gaycken,21E. N. Gazis,10P. Ge,33dZ. Gecse,168C. N. P. Gee,131Ch. Geich-Gimbel,21 M. P. Geisler,58aC. Gemme,50aM. H. Genest,55S. Gentile,132a,132bM. George,54S. George,77D. Gerbaudo,163A. Gershon,153 S. Ghasemi,141H. Ghazlane,135bB. Giacobbe,20a S. Giagu,132a,132bV. Giangiobbe,12P. Giannetti,124a,124bB. Gibbard,25

S. M. Gibson,77M. Gilchriese,15T. P. S. Gillam,28D. Gillberg,30G. Gilles,34D. M. Gingrich,3,e N. Giokaris,9 M. P. Giordani,164a,164c F. M. Giorgi,20a F. M. Giorgi,16P. F. Giraud,136 P. Giromini,47D. Giugni,91a C. Giuliani,48 M. Giulini,58bB. K. Gjelsten,119S. Gkaitatzis,154 I. Gkialas,154E. L. Gkougkousis,117 L. K. Gladilin,99C. Glasman,82

J. Glatzer,30P. C. F. Glaysher,46A. Glazov,42M. Goblirsch-Kolb,101J. R. Goddard,76J. Godlewski,39S. Goldfarb,89 T. Golling,49D. Golubkov,130A. Gomes,126a,126b,126dR. Gonçalo,126aJ. Goncalves Pinto Firmino Da Costa,136L. Gonella,21 S. González de la Hoz,167G. Gonzalez Parra,12S. Gonzalez-Sevilla,49L. Goossens,30P. A. Gorbounov,97H. A. Gordon,25 I. Gorelov,105B. Gorini,30E. Gorini,73a,73b A. Gorišek,75E. Gornicki,39A. T. Goshaw,45 C. Gössling,43M. I. Gostkin,65 D. Goujdami,135cA. G. Goussiou,138N. Govender,145bE. Gozani,152H. M. X. Grabas,137L. Graber,54I. Grabowska-Bold,38a P. O. J. Gradin,166 P. Grafström,20a,20bK-J. Grahn,42J. Gramling,49E. Gramstad,119 S. Grancagnolo,16V. Gratchev,123

H. M. Gray,30E. Graziani,134aZ. D. Greenwood,79,o K. Gregersen,78I. M. Gregor,42P. Grenier,143 J. Griffiths,8 A. A. Grillo,137K. Grimm,72S. Grinstein,12,p Ph. Gris,34 J.-F. Grivaz,117 J. P. Grohs,44A. Grohsjean,42E. Gross,172 J. Grosse-Knetter,54G. C. Grossi,79 Z. J. Grout,149L. Guan,89J. Guenther,128 F. Guescini,49D. Guest,176 O. Gueta,153

E. Guido,50a,50b T. Guillemin,117 S. Guindon,2 U. Gul,53C. Gumpert,44J. Guo,33eY. Guo,33b S. Gupta,120 G. Gustavino,132a,132bP. Gutierrez,113N. G. Gutierrez Ortiz,78C. Gutschow,44C. Guyot,136C. Gwenlan,120C. B. Gwilliam,74

A. Haas,110C. Haber,15 H. K. Hadavand,8 N. Haddad,135eP. Haefner,21S. Hageböck,21Z. Hajduk,39H. Hakobyan,177 M. Haleem,42 J. Haley,114 D. Hall,120G. Halladjian,90G. D. Hallewell,85K. Hamacher,175P. Hamal,115 K. Hamano,169 A. Hamilton,145aG. N. Hamity,139P. G. Hamnett,42L. Han,33b K. Hanagaki,66,qK. Hanawa,155 M. Hance,15P. Hanke,58a R. Hanna,136J. B. Hansen,36J. D. Hansen,36M. C. Hansen,21P. H. Hansen,36K. Hara,160A. S. Hard,173T. Harenberg,175 F. Hariri,117S. Harkusha,92R. D. Harrington,46P. F. Harrison,170F. Hartjes,107M. Hasegawa,67Y. Hasegawa,140A. Hasib,113 S. Hassani,136S. Haug,17R. Hauser,90L. Hauswald,44M. Havranek,127C. M. Hawkes,18R. J. Hawkings,30A. D. Hawkins,81 T. Hayashi,160D. Hayden,90 C. P. Hays,120 J. M. Hays,76 H. S. Hayward,74S. J. Haywood,131 S. J. Head,18T. Heck,83

(9)

S. Hellman,146a,146bD. Hellmich,21C. Helsens,12J. Henderson,120R. C. W. Henderson,72Y. Heng,173 C. Hengler,42 A. Henrichs,176A. M. Henriques Correia,30S. Henrot-Versille,117G. H. Herbert,16 Y. Hernández Jiménez,167 R. Herrberg-Schubert,16G. Herten,48R. Hertenberger,100L. Hervas,30G. G. Hesketh,78N. P. Hessey,107 J. W. Hetherly,40

R. Hickling,76E. Higón-Rodriguez,167 E. Hill,169J. C. Hill,28K. H. Hiller,42S. J. Hillier,18I. Hinchliffe,15E. Hines,122 R. R. Hinman,15M. Hirose,157 D. Hirschbuehl,175 J. Hobbs,148N. Hod,107 M. C. Hodgkinson,139P. Hodgson,139 A. Hoecker,30M. R. Hoeferkamp,105F. Hoenig,100M. Hohlfeld,83D. Hohn,21T. R. Holmes,15M. Homann,43T. M. Hong,125 L. Hooft van Huysduynen,110W. H. Hopkins,116Y. Horii,103A. J. Horton,142J-Y. Hostachy,55S. Hou,151A. Hoummada,135a J. Howard,120J. Howarth,42M. Hrabovsky,115I. Hristova,16J. Hrivnac,117 T. Hryn’ova,5A. Hrynevich,93C. Hsu,145c

P. J. Hsu,151,rS.-C. Hsu,138D. Hu,35Q. Hu,33b X. Hu,89Y. Huang,42Z. Hubacek,128F. Hubaut,85F. Huegging,21 T. B. Huffman,120E. W. Hughes,35G. Hughes,72M. Huhtinen,30T. A. Hülsing,83N. Huseynov,65,cJ. Huston,90J. Huth,57

G. Iacobucci,49G. Iakovidis,25I. Ibragimov,141L. Iconomidou-Fayard,117 E. Ideal,176Z. Idrissi,135eP. Iengo,30 O. Igonkina,107T. Iizawa,171Y. Ikegami,66K. Ikematsu,141M. Ikeno,66Y. Ilchenko,31,sD. Iliadis,154N. Ilic,143T. Ince,101 G. Introzzi,121a,121bP. Ioannou,9M. Iodice,134aK. Iordanidou,35V. Ippolito,57A. Irles Quiles,167C. Isaksson,166M. Ishino,68 M. Ishitsuka,157R. Ishmukhametov,111C. Issever,120S. Istin,19a J. M. Iturbe Ponce,84R. Iuppa,133a,133bJ. Ivarsson,81 W. Iwanski,39H. Iwasaki,66J. M. Izen,41V. Izzo,104aS. Jabbar,3B. Jackson,122M. Jackson,74P. Jackson,1M. R. Jaekel,30 V. Jain,2K. Jakobs,48S. Jakobsen,30T. Jakoubek,127J. Jakubek,128D. O. Jamin,114D. K. Jana,79E. Jansen,78R. Jansky,62 J. Janssen,21M. Janus,54G. Jarlskog,81N. Javadov,65,cT. Javůrek,48L. Jeanty,15J. Jejelava,51a,tG.-Y. Jeng,150D. Jennens,88 P. Jenni,48,uJ. Jentzsch,43C. Jeske,170S. Jézéquel,5H. Ji,173J. Jia,148Y. Jiang,33bS. Jiggins,78J. Jimenez Pena,167S. Jin,33a

A. Jinaru,26a O. Jinnouchi,157 M. D. Joergensen,36P. Johansson,139K. A. Johns,7 K. Jon-And,146a,146bG. Jones,170 R. W. L. Jones,72T. J. Jones,74J. Jongmanns,58a P. M. Jorge,126a,126bK. D. Joshi,84J. Jovicevic,159aX. Ju,173C. A. Jung,43

P. Jussel,62A. Juste Rozas,12,pM. Kaci,167 A. Kaczmarska,39M. Kado,117 H. Kagan,111 M. Kagan,143S. J. Kahn,85 E. Kajomovitz,45C. W. Kalderon,120S. Kama,40 A. Kamenshchikov,130N. Kanaya,155 S. Kaneti,28V. A. Kantserov,98 J. Kanzaki,66B. Kaplan,110L. S. Kaplan,173A. Kapliy,31D. Kar,145cK. Karakostas,10A. Karamaoun,3N. Karastathis,10,107

M. J. Kareem,54E. Karentzos,10M. Karnevskiy,83S. N. Karpov,65Z. M. Karpova,65 K. Karthik,110V. Kartvelishvili,72 A. N. Karyukhin,130 L. Kashif,173 R. D. Kass,111A. Kastanas,14Y. Kataoka,155 C. Kato,155A. Katre,49J. Katzy,42 K. Kawagoe,70T. Kawamoto,155G. Kawamura,54S. Kazama,155V. F. Kazanin,109,dR. Keeler,169R. Kehoe,40J. S. Keller,42

J. J. Kempster,77H. Keoshkerian,84O. Kepka,127B. P. Kerševan,75S. Kersten,175R. A. Keyes,87F. Khalil-zada,11 H. Khandanyan,146a,146bA. Khanov,114A. G. Kharlamov,109,dT. J. Khoo,28V. Khovanskiy,97E. Khramov,65J. Khubua,51b,v S. Kido,67H. Y. Kim,8 S. H. Kim,160Y. K. Kim,31N. Kimura,154O. M. Kind,16B. T. King,74 M. King,167S. B. King,168 J. Kirk,131A. E. Kiryunin,101T. Kishimoto,67D. Kisielewska,38aF. Kiss,48K. Kiuchi,160O. Kivernyk,136E. Kladiva,144b

M. H. Klein,35M. Klein,74U. Klein,74 K. Kleinknecht,83 P. Klimek,146a,146bA. Klimentov,25R. Klingenberg,43 J. A. Klinger,139 T. Klioutchnikova,30E.-E. Kluge,58a P. Kluit,107S. Kluth,101J. Knapik,39E. Kneringer,62 E. B. F. G. Knoops,85A. Knue,53A. Kobayashi,155D. Kobayashi,157 T. Kobayashi,155M. Kobel,44M. Kocian,143 P. Kodys,129T. Koffas,29E. Koffeman,107L. A. Kogan,120 S. Kohlmann,175 Z. Kohout,128 T. Kohriki,66 T. Koi,143 H. Kolanoski,16I. Koletsou,5A. A. Komar,96,aY. Komori,155T. Kondo,66N. Kondrashova,42K. Köneke,48A. C. König,106 T. Kono,66R. Konoplich,110,wN. Konstantinidis,78R. Kopeliansky,152S. Koperny,38aL. Köpke,83A. K. Kopp,48K. Korcyl,39 K. Kordas,154 A. Korn,78A. A. Korol,109,dI. Korolkov,12E. V. Korolkova,139 O. Kortner,101S. Kortner,101T. Kosek,129 V. V. Kostyukhin,21 V. M. Kotov,65A. Kotwal,45A. Kourkoumeli-Charalampidi,154 C. Kourkoumelis,9 V. Kouskoura,25

A. Koutsman,159a R. Kowalewski,169 T. Z. Kowalski,38a W. Kozanecki,136A. S. Kozhin,130 V. A. Kramarenko,99 G. Kramberger,75D. Krasnopevtsev,98M. W. Krasny,80A. Krasznahorkay,30J. K. Kraus,21A. Kravchenko,25S. Kreiss,110

M. Kretz,58cJ. Kretzschmar,74K. Kreutzfeldt,52P. Krieger,158 K. Krizka,31K. Kroeninger,43H. Kroha,101J. Kroll,122 J. Kroseberg,21 J. Krstic,13U. Kruchonak,65H. Krüger,21 N. Krumnack,64A. Kruse,173M. C. Kruse,45 M. Kruskal,22 T. Kubota,88H. Kucuk,78S. Kuday,4bS. Kuehn,48A. Kugel,58cF. Kuger,174A. Kuhl,137T. Kuhl,42V. Kukhtin,65 Y. Kulchitsky,92S. Kuleshov,32bM. Kuna,132a,132bT. Kunigo,68A. Kupco,127H. Kurashige,67Y. A. Kurochkin,92V. Kus,127

E. S. Kuwertz,169M. Kuze,157 J. Kvita,115T. Kwan,169D. Kyriazopoulos,139A. La Rosa,137J. L. La Rosa Navarro,24d L. La Rotonda,37a,37bC. Lacasta,167F. Lacava,132a,132bJ. Lacey,29H. Lacker,16D. Lacour,80V. R. Lacuesta,167E. Ladygin,65 R. Lafaye,5B. Laforge,80T. Lagouri,176S. Lai,54L. Lambourne,78S. Lammers,61C. L. Lampen,7W. Lampl,7E. Lançon,136 U. Landgraf,48M. P. J. Landon,76V. S. Lang,58aJ. C. Lange,12A. J. Lankford,163F. Lanni,25K. Lantzsch,21A. Lanza,121a S. Laplace,80C. Lapoire,30J. F. Laporte,136T. Lari,91aF. Lasagni Manghi,20a,20bM. Lassnig,30P. Laurelli,47W. Lavrijsen,15

(10)

A. T. Law,137P. Laycock,74T. Lazovich,57O. Le Dortz,80E. Le Guirriec,85E. Le Menedeu,12M. LeBlanc,169T. LeCompte,6 F. Ledroit-Guillon,55 C. A. Lee,145b S. C. Lee,151L. Lee,1 G. Lefebvre,80M. Lefebvre,169F. Legger,100C. Leggett,15 A. Lehan,74G. Lehmann Miotto,30X. Lei,7W. A. Leight,29A. Leisos,154,xA. G. Leister,176M. A. L. Leite,24dR. Leitner,129 D. Lellouch,172B. Lemmer,54K. J. C. Leney,78T. Lenz,21B. Lenzi,30R. Leone,7 S. Leone,124a,124bC. Leonidopoulos,46 S. Leontsinis,10C. Leroy,95C. G. Lester,28M. Levchenko,123 J. Levêque,5 D. Levin,89L. J. Levinson,172M. Levy,18 A. Lewis,120A. M. Leyko,21M. Leyton,41 B. Li,33b,y H. Li,148H. L. Li,31 L. Li,45L. Li,33e S. Li,45X. Li,84Y. Li,33c,z

Z. Liang,137 H. Liao,34B. Liberti,133aA. Liblong,158 P. Lichard,30 K. Lie,165J. Liebal,21 W. Liebig,14C. Limbach,21 A. Limosani,150S. C. Lin,151,aaT. H. Lin,83F. Linde,107B. E. Lindquist,148J. T. Linnemann,90E. Lipeles,122A. Lipniacka,14 M. Lisovyi,58bT. M. Liss,165D. Lissauer,25A. Lister,168A. M. Litke,137B. Liu,151,bbD. Liu,151H. Liu,89J. Liu,85J. B. Liu,33b K. Liu,85L. Liu,165M. Liu,45M. Liu,33b Y. Liu,33b M. Livan,121a,121bA. Lleres,55J. Llorente Merino,82 S. L. Lloyd,76 F. Lo Sterzo,151E. Lobodzinska,42P. Loch,7W. S. Lockman,137F. K. Loebinger,84A. E. Loevschall-Jensen,36A. Loginov,176

T. Lohse,16K. Lohwasser,42M. Lokajicek,127B. A. Long,22J. D. Long,89R. E. Long,72K. A. Looper,111L. Lopes,126a D. Lopez Mateos,57B. Lopez Paredes,139I. Lopez Paz,12J. Lorenz,100N. Lorenzo Martinez,61M. Losada,162P. Loscutoff,15

P. J. Lösel,100 X. Lou,33aA. Lounis,117 J. Love,6 P. A. Love,72 N. Lu,89H. J. Lubatti,138 C. Luci,132a,132bA. Lucotte,55 F. Luehring,61W. Lukas,62L. Luminari,132aO. Lundberg,146a,146bB. Lund-Jensen,147D. Lynn,25R. Lysak,127E. Lytken,81 H. Ma,25L. L. Ma,33dG. Maccarrone,47A. Macchiolo,101C. M. Macdonald,139 B. Maček,75J. Machado Miguens,122,126b D. Macina,30D. Madaffari,85R. Madar,34H. J. Maddocks,72W. F. Mader,44A. Madsen,166 J. Maeda,67 S. Maeland,14

T. Maeno,25A. Maevskiy,99E. Magradze,54K. Mahboubi,48J. Mahlstedt,107C. Maiani,136 C. Maidantchik,24a A. A. Maier,101T. Maier,100A. Maio,126a,126b,126dS. Majewski,116Y. Makida,66N. Makovec,117B. Malaescu,80Pa. Malecki,39

V. P. Maleev,123F. Malek,55U. Mallik,63 D. Malon,6 C. Malone,143 S. Maltezos,10V. M. Malyshev,109S. Malyukov,30 J. Mamuzic,42G. Mancini,47 B. Mandelli,30 L. Mandelli,91aI. Mandić,75R. Mandrysch,63J. Maneira,126a,126b A. Manfredini,101L. Manhaes de Andrade Filho,24b J. Manjarres Ramos,159b A. Mann,100 A. Manousakis-Katsikakis,9

B. Mansoulie,136R. Mantifel,87 M. Mantoani,54L. Mapelli,30L. March,145cG. Marchiori,80 M. Marcisovsky,127 C. P. Marino,169 M. Marjanovic,13 D. E. Marley,89F. Marroquim,24a S. P. Marsden,84Z. Marshall,15L. F. Marti,17 S. Marti-Garcia,167B. Martin,90T. A. Martin,170V. J. Martin,46B. Martin dit Latour,14M. Martinez,12,pS. Martin-Haugh,131

V. S. Martoiu,26aA. C. Martyniuk,78M. Marx,138 F. Marzano,132aA. Marzin,30L. Masetti,83T. Mashimo,155 R. Mashinistov,96J. Masik,84 A. L. Maslennikov,109,d I. Massa,20a,20bL. Massa,20a,20bN. Massol,5 P. Mastrandrea,148 A. Mastroberardino,37a,37bT. Masubuchi,155P. Mättig,175J. Mattmann,83J. Maurer,26aS. J. Maxfield,74D. A. Maximov,109,d

R. Mazini,151 S. M. Mazza,91a,91b L. Mazzaferro,133a,133bG. Mc Goldrick,158 S. P. Mc Kee,89A. McCarn,89 R. L. McCarthy,148T. G. McCarthy,29N. A. McCubbin,131K. W. McFarlane,56,a J. A. Mcfayden,78G. Mchedlidze,54

S. J. McMahon,131 R. A. McPherson,169,lM. Medinnis,42S. Meehan,145aS. Mehlhase,100 A. Mehta,74 K. Meier,58a C. Meineck,100B. Meirose,41B. R. Mellado Garcia,145cF. Meloni,17A. Mengarelli,20a,20bS. Menke,101E. Meoni,161 K. M. Mercurio,57S. Mergelmeyer,21P. Mermod,49 L. Merola,104a,104bC. Meroni,91a F. S. Merritt,31A. Messina,132a,132b

J. Metcalfe,25A. S. Mete,163C. Meyer,83C. Meyer,122J-P. Meyer,136J. Meyer,107H. Meyer Zu Theenhausen,58a R. P. Middleton,131 S. Miglioranzi,164a,164cL. Mijović,21 G. Mikenberg,172 M. Mikestikova,127M. Mikuž,75M. Milesi,88

A. Milic,30D. W. Miller,31C. Mills,46A. Milov,172D. A. Milstead,146a,146bA. A. Minaenko,130 Y. Minami,155 I. A. Minashvili,65A. I. Mincer,110 B. Mindur,38a M. Mineev,65 Y. Ming,173 L. M. Mir,12T. Mitani,171 J. Mitrevski,100 V. A. Mitsou,167A. Miucci,49P. S. Miyagawa,139 J. U. Mjörnmark,81T. Moa,146a,146bK. Mochizuki,85S. Mohapatra,35

W. Mohr,48S. Molander,146a,146bR. Moles-Valls,21K. Mönig,42C. Monini,55J. Monk,36E. Monnier,85 J. Montejo Berlingen,12F. Monticelli,71S. Monzani,132a,132bR. W. Moore,3 N. Morange,117 D. Moreno,162 M. Moreno Llácer,54P. Morettini,50aD. Mori,142M. Morii,57M. Morinaga,155V. Morisbak,119S. Moritz,83A. K. Morley,150 G. Mornacchi,30J. D. Morris,76S. S. Mortensen,36A. Morton,53L. Morvaj,103M. Mosidze,51bJ. Moss,111K. Motohashi,157

R. Mount,143 E. Mountricha,25 S. V. Mouraviev,96,aE. J. W. Moyse,86 S. Muanza,85R. D. Mudd,18F. Mueller,101 J. Mueller,125R. S. P. Mueller,100T. Mueller,28D. Muenstermann,49P. Mullen,53G. A. Mullier,17J. A. Murillo Quijada,18 W. J. Murray,170,131H. Musheghyan,54E. Musto,152A. G. Myagkov,130,ccM. Myska,128B. P. Nachman,143O. Nackenhorst,54 J. Nadal,54K. Nagai,120R. Nagai,157Y. Nagai,85K. Nagano,66A. Nagarkar,111Y. Nagasaka,59K. Nagata,160M. Nagel,101

E. Nagy,85A. M. Nairz,30Y. Nakahama,30K. Nakamura,66 T. Nakamura,155 I. Nakano,112H. Namasivayam,41 R. F. Naranjo Garcia,42R. Narayan,31D. I. Narrias Villar,58a T. Naumann,42G. Navarro,162 R. Nayyar,7 H. A. Neal,89 P. Yu. Nechaeva,96T. J. Neep,84P. D. Nef,143A. Negri,121a,121bM. Negrini,20aS. Nektarijevic,106C. Nellist,117A. Nelson,163

(11)

S. Nemecek,127P. Nemethy,110A. A. Nepomuceno,24aM. Nessi,30,ddM. S. Neubauer,165M. Neumann,175R. M. Neves,110 P. Nevski,25P. R. Newman,18D. H. Nguyen,6 R. B. Nickerson,120R. Nicolaidou,136 B. Nicquevert,30 J. Nielsen,137 N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,130,cc I. Nikolic-Audit,80K. Nikolopoulos,18J. K. Nilsen,119 P. Nilsson,25

Y. Ninomiya,155A. Nisati,132aR. Nisius,101T. Nobe,155M. Nomachi,118I. Nomidis,29T. Nooney,76S. Norberg,113 M. Nordberg,30O. Novgorodova,44 S. Nowak,101M. Nozaki,66 L. Nozka,115 K. Ntekas,10G. Nunes Hanninger,88 T. Nunnemann,100 E. Nurse,78F. Nuti,88B. J. O’Brien,46F. O’grady,7D. C. O’Neil,142V. O’Shea,53F. G. Oakham,29,e H. Oberlack,101T. Obermann,21J. Ocariz,80A. Ochi,67I. Ochoa,78J. P. Ochoa-Ricoux,32aS. Oda,70S. Odaka,66H. Ogren,61 A. Oh,84S. H. Oh,45C. C. Ohm,15H. Ohman,166H. Oide,30W. Okamura,118H. Okawa,160Y. Okumura,31T. Okuyama,66

A. Olariu,26a S. A. Olivares Pino,46D. Oliveira Damazio,25E. Oliver Garcia,167 A. Olszewski,39J. Olszowska,39 A. Onofre,126a,126e P. U. E. Onyisi,31,sC. J. Oram,159aM. J. Oreglia,31 Y. Oren,153 D. Orestano,134a,134bN. Orlando,154 C. Oropeza Barrera,53R. S. Orr,158 B. Osculati,50a,50b R. Ospanov,84G. Otero y Garzon,27H. Otono,70M. Ouchrif,135d

F. Ould-Saada,119A. Ouraou,136K. P. Oussoren,107 Q. Ouyang,33a A. Ovcharova,15M. Owen,53R. E. Owen,18 V. E. Ozcan,19a N. Ozturk,8 K. Pachal,142A. Pacheco Pages,12C. Padilla Aranda,12M. Pagáčová,48S. Pagan Griso,15 E. Paganis,139F. Paige,25P. Pais,86K. Pajchel,119G. Palacino,159bS. Palestini,30M. Palka,38bD. Pallin,34A. Palma,126a,126b Y. B. Pan,173E. Panagiotopoulou,10C. E. Pandini,80J. G. Panduro Vazquez,77P. Pani,146a,146bS. Panitkin,25D. Pantea,26a L. Paolozzi,49Th. D. Papadopoulou,10 K. Papageorgiou,154A. Paramonov,6 D. Paredes Hernandez,154 M. A. Parker,28 K. A. Parker,139 F. Parodi,50a,50bJ. A. Parsons,35U. Parzefall,48E. Pasqualucci,132aS. Passaggio,50aF. Pastore,134a,134b,a Fr. Pastore,77G. Pásztor,29S. Pataraia,175N. D. Patel,150J. R. Pater,84T. Pauly,30J. Pearce,169B. Pearson,113L. E. Pedersen,36

M. Pedersen,119S. Pedraza Lopez,167R. Pedro,126a,126bS. V. Peleganchuk,109,dD. Pelikan,166 O. Penc,127C. Peng,33a H. Peng,33bB. Penning,31J. Penwell,61D. V. Perepelitsa,25E. Perez Codina,159aM. T. Pérez García-Estañ,167L. Perini,91a,91b

H. Pernegger,30S. Perrella,104a,104bR. Peschke,42V. D. Peshekhonov,65 K. Peters,30R. F. Y. Peters,84B. A. Petersen,30 T. C. Petersen,36E. Petit,42A. Petridis,1C. Petridou,154P. Petroff,117E. Petrolo,132aF. Petrucci,134a,134bN. E. Pettersson,157

R. Pezoa,32b P. W. Phillips,131 G. Piacquadio,143E. Pianori,170A. Picazio,49E. Piccaro,76M. Piccinini,20a,20b M. A. Pickering,120 R. Piegaia,27D. T. Pignotti,111 J. E. Pilcher,31A. D. Pilkington,84 J. Pina,126a,126b,126d M. Pinamonti,164a,164c,eeJ. L. Pinfold,3 A. Pingel,36 S. Pires,80H. Pirumov,42M. Pitt,172C. Pizio,91a,91bL. Plazak,144a M.-A. Pleier,25V. Pleskot,129E. Plotnikova,65P. Plucinski,146a,146bD. Pluth,64R. Poettgen,146a,146bL. Poggioli,117D. Pohl,21

G. Polesello,121a A. Poley,42A. Policicchio,37a,37b R. Polifka,158 A. Polini,20a C. S. Pollard,53V. Polychronakos,25 K. Pommès,30L. Pontecorvo,132aB. G. Pope,90G. A. Popeneciu,26bD. S. Popovic,13A. Poppleton,30S. Pospisil,128 K. Potamianos,15I. N. Potrap,65C. J. Potter,149C. T. Potter,116G. Poulard,30J. Poveda,30V. Pozdnyakov,65P. Pralavorio,85 A. Pranko,15S. Prasad,30S. Prell,64D. Price,84L. E. Price,6 M. Primavera,73aS. Prince,87M. Proissl,46K. Prokofiev,60c F. Prokoshin,32bE. Protopapadaki,136S. Protopopescu,25J. Proudfoot,6 M. Przybycien,38a E. Ptacek,116D. Puddu,134a,134b

E. Pueschel,86D. Puldon,148 M. Purohit,25,ffP. Puzo,117 J. Qian,89G. Qin,53Y. Qin,84A. Quadt,54D. R. Quarrie,15 W. B. Quayle,164a,164bM. Queitsch-Maitland,84D. Quilty,53S. Raddum,119 V. Radeka,25 V. Radescu,42 S. K. Radhakrishnan,148 P. Radloff,116P. Rados,88 F. Ragusa,91a,91bG. Rahal,178 S. Rajagopalan,25 M. Rammensee,30

C. Rangel-Smith,166F. Rauscher,100S. Rave,83T. Ravenscroft,53M. Raymond,30A. L. Read,119N. P. Readioff,74 D. M. Rebuzzi,121a,121bA. Redelbach,174G. Redlinger,25R. Reece,137K. Reeves,41L. Rehnisch,16J. Reichert,122H. Reisin,27 M. Relich,163C. Rembser,30H. Ren,33aA. Renaud,117M. Rescigno,132aS. Resconi,91aO. L. Rezanova,109,dP. Reznicek,129 R. Rezvani,95R. Richter,101S. Richter,78E. Richter-Was,38bO. Ricken,21M. Ridel,80P. Rieck,16C. J. Riegel,175J. Rieger,54

M. Rijssenbeek,148A. Rimoldi,121a,121bL. Rinaldi,20aB. Ristić,49E. Ritsch,30I. Riu,12 F. Rizatdinova,114 E. Rizvi,76 S. H. Robertson,87,lA. Robichaud-Veronneau,87D. Robinson,28J. E. M. Robinson,42A. Robson,53C. Roda,124a,124b S. Roe,30O. Røhne,119S. Rolli,161 A. Romaniouk,98M. Romano,20a,20b S. M. Romano Saez,34 E. Romero Adam,167

N. Rompotis,138M. Ronzani,48 L. Roos,80E. Ros,167 S. Rosati,132a K. Rosbach,48P. Rose,137P. L. Rosendahl,14 O. Rosenthal,141V. Rossetti,146a,146bE. Rossi,104a,104bL. P. Rossi,50aJ. H. N. Rosten,28R. Rosten,138M. Rotaru,26aI. Roth,172

J. Rothberg,138D. Rousseau,117C. R. Royon,136 A. Rozanov,85Y. Rozen,152X. Ruan,145cF. Rubbo,143I. Rubinskiy,42 V. I. Rud,99C. Rudolph,44M. S. Rudolph,158F. Rühr,48A. Ruiz-Martinez,30 Z. Rurikova,48N. A. Rusakovich,65 A. Ruschke,100 H. L. Russell,138J. P. Rutherfoord,7 N. Ruthmann,48Y. F. Ryabov,123M. Rybar,165 G. Rybkin,117 N. C. Ryder,120A. F. Saavedra,150 G. Sabato,107S. Sacerdoti,27A. Saddique,3 H. F-W. Sadrozinski,137 R. Sadykov,65 F. Safai Tehrani,132aM. Sahinsoy,58a M. Saimpert,136T. Saito,155H. Sakamoto,155 Y. Sakurai,171G. Salamanna,134a,134b A. Salamon,133aJ. E. Salazar Loyola,32bM. Saleem,113D. Salek,107P. H. Sales De Bruin,138D. Salihagic,101A. Salnikov,143

(12)

J. Salt,167 D. Salvatore,37a,37bF. Salvatore,149 A. Salvucci,60a A. Salzburger,30D. Sammel,48D. Sampsonidis,154 A. Sanchez,104a,104b J. Sánchez,167V. Sanchez Martinez,167 H. Sandaker,119 R. L. Sandbach,76H. G. Sander,83 M. P. Sanders,100 M. Sandhoff,175C. Sandoval,162R. Sandstroem,101D. P. C. Sankey,131M. Sannino,50a,50bA. Sansoni,47 C. Santoni,34R. Santonico,133a,133bH. Santos,126aI. Santoyo Castillo,149K. Sapp,125A. Sapronov,65J. G. Saraiva,126a,126d B. Sarrazin,21O. Sasaki,66Y. Sasaki,155K. Sato,160G. Sauvage,5,a E. Sauvan,5G. Savage,77P. Savard,158,e C. Sawyer,131

L. Sawyer,79,oJ. Saxon,31C. Sbarra,20a A. Sbrizzi,20a,20bT. Scanlon,78D. A. Scannicchio,163 M. Scarcella,150 V. Scarfone,37a,37bJ. Schaarschmidt,172 P. Schacht,101D. Schaefer,30 R. Schaefer,42J. Schaeffer,83S. Schaepe,21 S. Schaetzel,58bU. Schäfer,83A. C. Schaffer,117D. Schaile,100R. D. Schamberger,148V. Scharf,58a V. A. Schegelsky,123

D. Scheirich,129 M. Schernau,163C. Schiavi,50a,50bC. Schillo,48M. Schioppa,37a,37b S. Schlenker,30K. Schmieden,30 C. Schmitt,83S. Schmitt,58b S. Schmitt,42B. Schneider,159aY. J. Schnellbach,74U. Schnoor,44L. Schoeffel,136 A. Schoening,58bB. D. Schoenrock,90E. Schopf,21A. L. S. Schorlemmer,54M. Schott,83D. Schouten,159aJ. Schovancova,8

S. Schramm,49M. Schreyer,174C. Schroeder,83N. Schuh,83M. J. Schultens,21H.-C. Schultz-Coulon,58a H. Schulz,16 M. Schumacher,48 B. A. Schumm,137 Ph. Schune,136C. Schwanenberger,84A. Schwartzman,143T. A. Schwarz,89 Ph. Schwegler,101H. Schweiger,84Ph. Schwemling,136R. Schwienhorst,90J. Schwindling,136T. Schwindt,21F. G. Sciacca,17

E. Scifo,117 G. Sciolla,23 F. Scuri,124a,124bF. Scutti,21J. Searcy,89G. Sedov,42E. Sedykh,123P. Seema,21S. C. Seidel,105 A. Seiden,137 F. Seifert,128J. M. Seixas,24a G. Sekhniaidze,104aK. Sekhon,89S. J. Sekula,40 D. M. Seliverstov,123,a

N. Semprini-Cesari,20a,20b C. Serfon,30L. Serin,117L. Serkin,164a,164bT. Serre,85M. Sessa,134a,134bR. Seuster,159a H. Severini,113T. Sfiligoj,75F. Sforza,30A. Sfyrla,30E. Shabalina,54M. Shamim,116L. Y. Shan,33aR. Shang,165J. T. Shank,22

M. Shapiro,15P. B. Shatalov,97K. Shaw,164a,164bS. M. Shaw,84A. Shcherbakova,146a,146bC. Y. Shehu,149 P. Sherwood,78 L. Shi,151,gg S. Shimizu,67C. O. Shimmin,163M. Shimojima,102M. Shiyakova,65A. Shmeleva,96 D. Shoaleh Saadi,95 M. J. Shochet,31S. Shojaii,91a,91bS. Shrestha,111E. Shulga,98M. A. Shupe,7S. Shushkevich,42P. Sicho,127P. E. Sidebo,147

O. Sidiropoulou,174 D. Sidorov,114A. Sidoti,20a,20bF. Siegert,44Dj. Sijacki,13J. Silva,126a,126dY. Silver,153 S. B. Silverstein,146aV. Simak,128O. Simard,5Lj. Simic,13S. Simion,117E. Simioni,83B. Simmons,78D. Simon,34 P. Sinervo,158 N. B. Sinev,116 M. Sioli,20a,20b G. Siragusa,174A. N. Sisakyan,65,a S. Yu. Sivoklokov,99J. Sjölin,146a,146b T. B. Sjursen,14M. B. Skinner,72H. P. Skottowe,57P. Skubic,113M. Slater,18T. Slavicek,128M. Slawinska,107K. Sliwa,161

V. Smakhtin,172B. H. Smart,46L. Smestad,14S. Yu. Smirnov,98Y. Smirnov,98L. N. Smirnova,99,hh O. Smirnova,81 M. N. K. Smith,35R. W. Smith,35M. Smizanska,72K. Smolek,128A. A. Snesarev,96G. Snidero,76S. Snyder,25R. Sobie,169,l

F. Socher,44 A. Soffer,153 D. A. Soh,151,gg G. Sokhrannyi,75C. A. Solans,30M. Solar,128J. Solc,128 E. Yu. Soldatov,98 U. Soldevila,167 A. A. Solodkov,130A. Soloshenko,65O. V. Solovyanov,130V. Solovyev,123 P. Sommer,48 H. Y. Song,33b

N. Soni,1 A. Sood,15A. Sopczak,128B. Sopko,128 V. Sopko,128V. Sorin,12D. Sosa,58bM. Sosebee,8 C. L. Sotiropoulou,124a,124bR. Soualah,164a,164c A. M. Soukharev,109,dD. South,42B. C. Sowden,77S. Spagnolo,73a,73b M. Spalla,124a,124bM. Spangenberg,170F. Spanò,77W. R. Spearman,57D. Sperlich,16F. Spettel,101R. Spighi,20aG. Spigo,30 L. A. Spiller,88M. Spousta,129T. Spreitzer,158R. D. St. Denis,53,aS. Staerz,44J. Stahlman,122R. Stamen,58aS. Stamm,16 E. Stanecka,39 C. Stanescu,134aM. Stanescu-Bellu,42 M. M. Stanitzki,42S. Stapnes,119E. A. Starchenko,130 J. Stark,55

P. Staroba,127 P. Starovoitov,58a R. Staszewski,39P. Stavina,144a,a P. Steinberg,25B. Stelzer,142 H. J. Stelzer,30 O. Stelzer-Chilton,159aH. Stenzel,52G. A. Stewart,53J. A. Stillings,21M. C. Stockton,87M. Stoebe,87G. Stoicea,26a P. Stolte,54S. Stonjek,101 A. R. Stradling,8 A. Straessner,44 M. E. Stramaglia,17J. Strandberg,147 S. Strandberg,146a,146b

A. Strandlie,119 E. Strauss,143M. Strauss,113 P. Strizenec,144b R. Ströhmer,174D. M. Strom,116R. Stroynowski,40 A. Strubig,106S. A. Stucci,17B. Stugu,14N. A. Styles,42D. Su,143J. Su,125R. Subramaniam,79A. Succurro,12Y. Sugaya,118 C. Suhr,108M. Suk,128V. V. Sulin,96S. Sultansoy,4cT. Sumida,68S. Sun,57X. Sun,33a J. E. Sundermann,48K. Suruliz,149 G. Susinno,37a,37b M. R. Sutton,149 S. Suzuki,66 M. Svatos,127 M. Swiatlowski,143 I. Sykora,144aT. Sykora,129D. Ta,90 C. Taccini,134a,134bK. Tackmann,42J. Taenzer,158A. Taffard,163R. Tafirout,159aN. Taiblum,153H. Takai,25R. Takashima,69

H. Takeda,67T. Takeshita,140 Y. Takubo,66M. Talby,85A. A. Talyshev,109,dJ. Y. C. Tam,174K. G. Tan,88J. Tanaka,155 R. Tanaka,117S. Tanaka,66B. B. Tannenwald,111N. Tannoury,21S. Tapprogge,83S. Tarem,152F. Tarrade,29G. F. Tartarelli,91a

P. Tas,129M. Tasevsky,127T. Tashiro,68 E. Tassi,37a,37bA. Tavares Delgado,126a,126bY. Tayalati,135d F. E. Taylor,94 G. N. Taylor,88W. Taylor,159bF. A. Teischinger,30 M. Teixeira Dias Castanheira,76P. Teixeira-Dias,77K. K. Temming,48 D. Temple,142H. Ten Kate,30P. K. Teng,151J. J. Teoh,118 F. Tepel,175S. Terada,66K. Terashi,155J. Terron,82S. Terzo,101

M. Testa,47R. J. Teuscher,158,lT. Theveneaux-Pelzer,34J. P. Thomas,18J. Thomas-Wilsker,77E. N. Thompson,35 P. D. Thompson,18R. J. Thompson,84A. S. Thompson,53L. A. Thomsen,176E. Thomson,122M. Thomson,28R. P. Thun,89,a

(13)

M. J. Tibbetts,15 R. E. Ticse Torres,85V. O. Tikhomirov,96,iiYu. A. Tikhonov,109,dS. Timoshenko,98E. Tiouchichine,85 P. Tipton,176 S. Tisserant,85K. Todome,157 T. Todorov,5 S. Todorova-Nova,129 J. Tojo,70 S. Tokár,144aK. Tokushuku,66 K. Tollefson,90E. Tolley,57L. Tomlinson,84M. Tomoto,103L. Tompkins,143,jj K. Toms,105 E. Torrence,116 H. Torres,142 E. Torró Pastor,138J. Toth,85,kkF. Touchard,85D. R. Tovey,139T. Trefzger,174L. Tremblet,30A. Tricoli,30I. M. Trigger,159a

S. Trincaz-Duvoid,80M. F. Tripiana,12W. Trischuk,158 B. Trocmé,55C. Troncon,91aM. Trottier-McDonald,15 M. Trovatelli,169 P. True,90L. Truong,164a,164cM. Trzebinski,39A. Trzupek,39 C. Tsarouchas,30J. C-L. Tseng,120 P. V. Tsiareshka,92D. Tsionou,154G. Tsipolitis,10N. Tsirintanis,9S. Tsiskaridze,12V. Tsiskaridze,48E. G. Tskhadadze,51a

I. I. Tsukerman,97V. Tsulaia,15S. Tsuno,66D. Tsybychev,148A. Tudorache,26a V. Tudorache,26aA. N. Tuna,122 S. A. Tupputi,20a,20bS. Turchikhin,99,hh D. Turecek,128 R. Turra,91a,91b A. J. Turvey,40 P. M. Tuts,35A. Tykhonov,49 M. Tylmad,146a,146bM. Tyndel,131I. Ueda,155 R. Ueno,29M. Ughetto,146a,146bM. Ugland,14F. Ukegawa,160 G. Unal,30 A. Undrus,25G. Unel,163F. C. Ungaro,48Y. Unno,66C. Unverdorben,100J. Urban,144bP. Urquijo,88P. Urrejola,83G. Usai,8 A. Usanova,62L. Vacavant,85V. Vacek,128B. Vachon,87C. Valderanis,83N. Valencic,107S. Valentinetti,20a,20bA. Valero,167 L. Valery,12S. Valkar,129 E. Valladolid Gallego,167 S. Vallecorsa,49J. A. Valls Ferrer,167W. Van Den Wollenberg,107 P. C. Van Der Deijl,107R. van der Geer,107H. van der Graaf,107N. van Eldik,152P. van Gemmeren,6J. Van Nieuwkoop,142 I. van Vulpen,107M. C. van Woerden,30M. Vanadia,132a,132bW. Vandelli,30R. Vanguri,122A. Vaniachine,6 F. Vannucci,80 G. Vardanyan,177R. Vari,132aE. W. Varnes,7T. Varol,40D. Varouchas,80A. Vartapetian,8 K. E. Varvell,150F. Vazeille,34 T. Vazquez Schroeder,87J. Veatch,7 L. M. Veloce,158F. Veloso,126a,126cT. Velz,21S. Veneziano,132aA. Ventura,73a,73b

D. Ventura,86M. Venturi,169 N. Venturi,158 A. Venturini,23V. Vercesi,121aM. Verducci,132a,132b W. Verkerke,107 J. C. Vermeulen,107 A. Vest,44M. C. Vetterli,142,eO. Viazlo,81I. Vichou,165 T. Vickey,139O. E. Vickey Boeriu,139 G. H. A. Viehhauser,120S. Viel,15R. Vigne,62M. Villa,20a,20b M. Villaplana Perez,91a,91bE. Vilucchi,47M. G. Vincter,29 V. B. Vinogradov,65I. Vivarelli,149F. Vives Vaque,3S. Vlachos,10D. Vladoiu,100M. Vlasak,128M. Vogel,32aP. Vokac,128 G. Volpi,124a,124bM. Volpi,88H. von der Schmitt,101H. von Radziewski,48E. von Toerne,21V. Vorobel,129 K. Vorobev,98

M. Vos,167R. Voss,30J. H. Vossebeld,74N. Vranjes,13M. Vranjes Milosavljevic,13 V. Vrba,127 M. Vreeswijk,107 R. Vuillermet,30I. Vukotic,31Z. Vykydal,128P. Wagner,21W. Wagner,175H. Wahlberg,71S. Wahrmund,44J. Wakabayashi,103

J. Walder,72 R. Walker,100 W. Walkowiak,141 C. Wang,151F. Wang,173 H. Wang,15 H. Wang,40 J. Wang,42J. Wang,33a K. Wang,87R. Wang,6S. M. Wang,151T. Wang,21T. Wang,35X. Wang,176C. Wanotayaroj,116A. Warburton,87C. P. Ward,28

D. R. Wardrope,78A. Washbrook,46C. Wasicki,42P. M. Watkins,18A. T. Watson,18I. J. Watson,150M. F. Watson,18 G. Watts,138S. Watts,84B. M. Waugh,78S. Webb,84M. S. Weber,17S. W. Weber,174J. S. Webster,31A. R. Weidberg,120 B. Weinert,61J. Weingarten,54C. Weiser,48H. Weits,107P. S. Wells,30T. Wenaus,25T. Wengler,30S. Wenig,30N. Wermes,21 M. Werner,48P. Werner,30M. Wessels,58aJ. Wetter,161K. Whalen,116A. M. Wharton,72A. White,8M. J. White,1R. White,32b S. White,124a,124bD. Whiteson,163F. J. Wickens,131W. Wiedenmann,173M. Wielers,131P. Wienemann,21C. Wiglesworth,36 L. A. M. Wiik-Fuchs,21A. Wildauer,101 H. G. Wilkens,30H. H. Williams,122S. Williams,107 C. Willis,90S. Willocq,86

A. Wilson,89J. A. Wilson,18I. Wingerter-Seez,5 F. Winklmeier,116B. T. Winter,21 M. Wittgen,143 J. Wittkowski,100 S. J. Wollstadt,83M. W. Wolter,39H. Wolters,126a,126cB. K. Wosiek,39J. Wotschack,30M. J. Woudstra,84K. W. Wozniak,39

M. Wu,55M. Wu,31 S. L. Wu,173X. Wu,49Y. Wu,89T. R. Wyatt,84B. M. Wynne,46S. Xella,36D. Xu,33a L. Xu,25 B. Yabsley,150S. Yacoob,145a R. Yakabe,67M. Yamada,66D. Yamaguchi,157Y. Yamaguchi,118 A. Yamamoto,66 S. Yamamoto,155T. Yamanaka,155 K. Yamauchi,103Y. Yamazaki,67Z. Yan,22H. Yang,33eH. Yang,173 Y. Yang,151 W-M. Yao,15Y. Yasu,66 E. Yatsenko,5 K. H. Yau Wong,21J. Ye,40S. Ye,25I. Yeletskikh,65A. L. Yen,57E. Yildirim,42 K. Yorita,171R. Yoshida,6 K. Yoshihara,122 C. Young,143C. J. S. Young,30S. Youssef,22D. R. Yu,15J. Yu,8J. M. Yu,89

J. Yu,114L. Yuan,67S. P. Y. Yuen,21A. Yurkewicz,108 I. Yusuff,28,ll B. Zabinski,39R. Zaidan,63 A. M. Zaitsev,130,cc J. Zalieckas,14 A. Zaman,148S. Zambito,57L. Zanello,132a,132bD. Zanzi,88C. Zeitnitz,175 M. Zeman,128 A. Zemla,38a

Q. Zeng,143K. Zengel,23O. Zenin,130 T.Ženiš,144aD. Zerwas,117 D. Zhang,89F. Zhang,173H. Zhang,33cJ. Zhang,6 L. Zhang,48R. Zhang,33bX. Zhang,33dZ. Zhang,117X. Zhao,40Y. Zhao,33d,117Z. Zhao,33bA. Zhemchugov,65J. Zhong,120

B. Zhou,89 C. Zhou,45 L. Zhou,35L. Zhou,40N. Zhou,33fC. G. Zhu,33dH. Zhu,33a J. Zhu,89Y. Zhu,33b X. Zhuang,33a K. Zhukov,96A. Zibell,174D. Zieminska,61N. I. Zimine,65C. Zimmermann,83S. Zimmermann,48Z. Zinonos,54M. Zinser,83 M. Ziolkowski,141L.Živković,13G. Zobernig,173A. Zoccoli,20a,20bM. zur Nedden,16G. Zurzolo,104a,104band L. Zwalinski30

(14)

1Department of Physics, University of Adelaide, Adelaide, Australia 2

Physics Department, SUNY Albany, Albany New York, USA 3Department of Physics, University of Alberta, Edmonton Alberta, Canada

4a

Department of Physics, Ankara University, Ankara, Turkey 4bIstanbul Aydin University, Istanbul, Turkey 4c

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France 6

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA 7Department of Physics, University of Arizona, Tucson, Arizona, USA 8

Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA 9Physics Department, University of Athens, Athens, Greece

10

Physics Department, National Technical University of Athens, Zografou, Greece 11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 12

Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain 13Institute of Physics, University of Belgrade, Belgrade, Serbia

14

Department for Physics and Technology, University of Bergen, Bergen, Norway

15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA 16

Department of Physics, Humboldt University, Berlin, Germany

17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 18

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 19aDepartment of Physics, Bogazici University, Istanbul, Turkey

19b

Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey 19cDepartment of Physics, Dogus University, Istanbul, Turkey

20a

INFN Sezione di Bologna, Bologna, Italy

20bDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy 21

Physikalisches Institut, University of Bonn, Bonn, Germany 22Department of Physics, Boston University, Boston, Massachusetts, USA 23

Department of Physics, Brandeis University, Waltham, Massachusetts, USA 24aUniversidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil 24b

Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil 24cFederal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil

24d

Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 25Physics Department, Brookhaven National Laboratory, Upton, New York, USA

26a

National Institute of Physics and Nuclear Engineering, Bucharest, Romania 26bNational Institute for Research and Development of Isotopic and Molecular Technologies,

Physics Department, Cluj Napoca, Romania 26cUniversity Politehnica Bucharest, Bucharest, Romania

26d

West University in Timisoara, Timisoara, Romania

27Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina 28

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 29Department of Physics, Carleton University, Ottawa, Ontario, Canada

30

CERN, Geneva, Switzerland

31Enrico Fermi Institute, University of Chicago, Chicago, Illionois, USA 32a

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile 32bDepartamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

33a

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 33bDepartment of Modern Physics, University of Science and Technology of China, Anhui, China

33c

Department of Physics, Nanjing University, Jiangsu, China 33dSchool of Physics, Shandong University, Shandong, China 33e

Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China

33f

Physics Department, Tsinghua University, Beijing 100084, China 34Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

35Nevis Laboratory, Columbia University, Irvington, New York, USA 36

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 37aINFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy

37b

Dipartimento di Fisica, Università della Calabria, Rende, Italy

38aAGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland 38b

Figure

Figure 1 shows the measured J=ψϕ and J=ψK 0 invariant-mass spectra with fits overlaid
FIG. 2 (color online). (Left panel) Measurements of f s =f d versus B meson p T for CDF [7], LHCb [8], and ATLAS, where the ATLAS data points are plotted at the average p T of the events in each bin

References

Related documents

Studien visar även att 74 procent av kommunerna menar att investeringar i anläggningar som syftar till elitidrott i hög eller till en viss grad är en kommunal

När frågorna skulle skrivas var det viktigt att de skulle utformas så att den elev som intervjuades skulle kunna relatera direkt till frågan och inte känna att den var

Detta gäller såväl matematiken som utvecklingen av andraspråket (Rönnberg &amp; Rönnberg 2001). Dessa skäl gör det lättare att förstå varför elever får en

Vårt byte av frågeställning spelade en avgörande roll för utgången av denna kunskapsöversikt. Insikten om nödvändigheten att byta frågeställning var nedslående då

To be more precise the proposed model contains three dierent steps: (i) the quorum sensing external concen- tration is described by a partial dierential equation in the biomass

Vi fortsätter komplettera tidigare studier via tre olika enkäter för att veta vilka värderingar som finns hos elever och lärare kring ämnesintegrerad undervisning

Genom att pedagogerna dokumenterar vad barnen gör, säger och ger uttryck för på olika sätt lär sig inte bara pedagogerna något om sig själv utan de lär sig framförallt om