• No results found

Cone calorimeter data and comparisons for the SBI RR products

N/A
N/A
Protected

Academic year: 2021

Share "Cone calorimeter data and comparisons for the SBI RR products"

Copied!
57
0
0

Loading.... (view fulltext now)

Full text

(1)

Cone Calorimeter Data

and Comparisons for the

SBIRR Products

Trätek

(2)

CONE CALORIMETER DATA AND COMPARISONS FOR THE SBI RR PRODUCTS Trätek, Rapport I 9812090 ISSN 1102- 1071 ISRN TRÄTEK - R — 98/090— SE Nyckelord building products heat release fire tests flashover mass loss reaction to fire room fires

single burning item smoke production

(3)

och studier. Publicerade rapporter betecknas med I eller P och numreras tillsammans med alla ut-gåvor från Trätek i löpande följd.

Citat tillätes om källan anges.

Reports issued by the Swedish Institute for Wood Technology Research comprise complete accounts for research results, or summaries, surveys and

studies. Published reports bear the designation I or P and are numbered in consecutive order together with all the other publications from the Institute. Extracts from the text may be reproduced provided the source is acknowledged.

ädlande industri), träfiberskivor, spånskivor och ply-wood. Ett avtal om forskning och utveckling mellan industrin och Nutek utgör grunden för verksamheten som utförs med egna, samverkande och externa re-surser. Trätek har forskningsenheter i Stockholm, Jönköping och Skellefteå.

The Swedish Institute for Wood Technology Re-search serves the five branches of the industry: sawmills, manufacturing (joinery, wooden hous-es, furniture and other woodworking plants), fibre board, particle board and plywood. A research and development agreement between the industry and the Swedish National Board for Industrial and Technical Development forms the basis for the Institute's activities. The Institute utilises its own resources as well as those of its collaborators and other outside bodies. Our research units are located in Stockholm, Jönköping and Skellefteå.

(4)

SVENSK SAMMANFATTNING (SWEDISH SUMMARY) 3 ABSTRACT 5 INTRODUCTION 5 EXPERIMENTAL 6 Cone Calorimeter 6 SBI RR products 6 CONE CALORIMETER DATA 8

COMPARISONS BETWEEN THE THREE TEST METHODS 13

Cone Calorimeter vs Room/Comer Test 13

Cone Calorimeter vs SBI 16 Room/Comer Test vs SBI 20 GROUPS OF PRODUCTS 21

CONCLUSIONS 22 REFERENCES 23

APPENDIX

(5)

EU - kommissionen harmoniserar sedan några år system för brandteknisk provning och klassificering av byggprodukter. Den största stötestenen har varit frågan hur man mäter byggprodukters brandegenskaper som ytmaterial (reaction to fire). En ny provningsmetod Single Burning Item (SBI) har därför utvecklats och antagits av EUs grupp av

myndighetspersoner (Fire Regulators' Group, FRG). Metoden identifierar de s k Euroklassema och används för samtliga byggnadsprodukter förutom golvytor.

SBI är en provningsmetod i halvstor skala. I syfte att evaluera metoden genomfördes ett stort forskningsprogram under 1997-98 varvid 30 olika byggnadsprodukter provades vid ca tjugo olika provningslaboratorier i en s k ringprovning (Round Robin, RR). Ett 10-tal träprodukter ingick. Produkterna provades också genom ftillskalig rumsbrandprovning (Room/Corner, ISO 9705), som kommer att bli ett referensscenario.

Dessa 30 produkter har nu provats i konkalorimetem (ISO 5660), som är en välkänd småskalig brandprovningsmetod som mäter väldefinierade brandegenskaper. De nya indexen FIGRA (värmeutveckling) och SMOGRA (rökutveckling) som definierats för SBI och används för bestämning av Euroklasser har definierats också för konkalorimetem. Fullständiga provningsresultat redovisas i denna rapport.

Resultaten från rumsbrandprovning, SBI och konkalorimetem har jämförts. Följande slutsatser kan dras:

Konkalorimetem visar god repeterbarhet för värme- och rökutveckling samt viktminskning vid brand.

Överensstämmelsen för FIGRA (värmeutveckling) enligt de tre provningsmetodema är god och sammanfattas i tabellen nedan. När en produkt (M04 Polyuretanskum täckt med aluminium folie) utesluts blir korrelationen mycket bättre. Se figur på nästa sida.

FIGRA korrelationer R^ Alla produkter Utan M04'> Konkalorimetem vs

Rumsbrandpro vni ng

0.76 0.91

Konkalorimetem vs SBI 0.85 0.94

Rumsbrandprovning vs SBI 0.92 0.93 (0.95'>)

'* M04 Polyuretranskum täckt med aluminium folie. Utan M07 Brandskyddad polykarbonat panel.

Överensstämmelsen för SMOGRA (rökutveckling) enligt de tre provningsmetodema är dålig.

Uppmätt tid till övertändning vid rumsbrandprovning och beräknad tid ur data från konkalorimetem stämmer relativt väl överens för flertalet produkter och är på säkra sidan.

(6)

y = 0.085X R2 = 0.76 w 45 |Withoutl/IQ4^ y=0.084x = 0.91 O 150 300 450 600 CONE - FIGRA (W/s) y = lOlx = 0,85 CD )r 3000 \/VitFiöutM04 y=10.1x R^ = 0.94 CO ' 150 300 450 CONE - FIGRA (W/s) 600 y= 110.6X R^ = 0,92 w 5000 G: 3000 ^ 2000 1000 t i 15 30 45 ROOM - FIGRA (kW/s) 60 Korrelationer för FIGRA (värmeutveckling) enligt de tre brandprovningsmetoderna, dvs rumsbrandprovning vs konkalorimetern, SBIvs konkalorimetern och SBIvs rumsbrandprovning.

(7)

The Single Burning Item, SBI, has recently been developed and adopted by the European Communities as the main test method for the identification of the so called Euroclasses which will be used for the reaction to fire performance of all building products excluding floorings. A major research programme, including SBI and the Room/Comer test, ISO 9705, was performed during 1997-98 in order to evaluate the SBI test for 30 building products. These products have now been tested in the Cone Calorimeter, which is a well-known international standard, ISO 5660, for fire testing giving basic scientific data. The test results are presented in this study. The Cone Calorimeter results show good

repeatability for all products.

The FIGRA and SMOGRA indices are defined and presented for the Cone Calorimeter and compared with similar indices from the Room/Comer test and from the SBI test. Good agreement was found for the FIGRA index with both Room/Corner and SBI. No agreement was found for SMOGRA.

The results are also compared with other results from the Room/Comer test, time to flashover, and from the SBI test, peak rate of heat release, time to ignition and smoke production.

INTRODUCTION

The European Commission intends to harmonise the fire testing and classification of building products as part of the Construction Products Directive, CPD. The evaluation of the reaction to fire properties has been an obstacle for a long time. The Single Burning Item, SBI, has recently been adopted as the major test method for the identification of the so-called Euroclasses which were proposed 1994 III. SBI is intended to be used for all building products except floorings. It is a new test procedure developed by a group of European laboratories lead by the national Fire Regulators' Group, FRG.

The SBI test is an intermediate scale test with the test samples mounted in a comer and subjected to an ignition source 111. A major research programme was performed during 1997 in order to evaluate the SBI test. 30 different products were selected and tested at about 20 laboratories in a so-called Round Robin, RR, exercise /3/. These products are therefore called the SBI RR products. Tests have also been performed in the Room/Comer test, ISO 9705 /4/, which is considered to be a reference scenario.

The SBI RR products were tested in the Cone Calorimeter, ISO 5660151, in order to evaluate the products according to a well-known test procedure and to explore possible simplified procedures. The results are presented in this study. The results are also compared with the results from the Room/Comer test and from the SBI test.

The heat flux levels used in the test methods analysed in this study were in the Cone Calorimeter 50 kW/m^ in the SBI test about 40 kW/m^ and in the Room/Corner test about 40 - 45 kW/m^ the first 10 minutes and more than 70 kW/m^ for the next 10 minutes.

(8)

Cone Calorimeter

The Cone Calorimeter, the experimental set up the rate of heat release, equipment comprises a combustion products (g shaped heater produces were performed at heat with a retainer frame.

ISO 5660 /5/, is presented schematically in Figure 1, which shows used at Trätek. The Cone Calorimeter is mainly used for assessing the time to ignition and the rate of smoke production. The

weighing system, a cone heater and a system for collecting the as sampling, temperature and pressure measurements). The

cone-a constcone-ant, uniform hecone-at flux on the scone-ample surfcone-ace. Triple tests flux 50 kW/m^ The tests were carried out at horizontal orientation

thermocouples exhaust duct 110 mm id

Cl^> to fan

orifice

plate andiy2ers to qas

(02,C0.C02) smoke measurements cone heater spark plug specimen holder thermal shield balance

Figure 1. Schematic set-up of the Cone Calorimeter.

SBI R R products

(9)

Code Product name Thick-ness mm Density 1) kg/m' Thickness Density per layer for multilayer products '^^^

mm kg/m^

Effective density ^'^ kg/m'

MOl Paper-faced gypsum plasterboard 13 716

-

-

716

M02 PR PVC 3 1441 -

-

1441

M03 PR XPS 40 30

-

-

30

M04 PUR foam with aluminium foil 40 57 0.02 + 40

-

57

M05 Pine, varnished 9 450

-

-

450

M06 PR chip board 12 785

-

- 785

M07 PR PC panel, 3-layered 16 172

-

-

172

M08 Painted gypsum plasterboard 13 727 0.04 + 13

-

111

M09 Paper wall covering on gypsum

plasterboard 13

719 0.4 + 13

-

719

MIO PVC wall carpet on gypsum

plasterboard 13

791 1 + 12 1580 + 726 811

M i l Plastic-faced steel sheet on mineral

wool

50 334 0.8 + 49 6300 +140 620

M12 Spruce, unvarnished 9 439

-

-

439

M13 Gypsum board on polystyrene 50 ^> 197 13 + 37 724+ 16 724

M14 Phenolic foam 40 58

-

-

58

M15 Intumescent coat on particle board 13 723 0.4+13

-

723

M16 Melamine faced MDP 12 768 0.1 + 12

-

768

M17 PVC water pipe 0 32

-

-

-

-M18 PVC covered electric cable 0 12

-

-

-

-M19 Unfaced rock wool 50 151

-

- 151

M20 Melamine faced particle board 12 695 0.1 + 12

-

695

M21 Steel clad EPS sandwich panel 50 107 0.5 + 49 - 107

M22 Ordinary particle board 12 713

-

- 713

M23 Ordinary plywood 12 718

-

- 718

M24 Paper wall covering on particle board

13 694 0.4+13

-

694

M25 MDP 12 846

-

- 846

M26 Low density fibre board 12 294

-

-

294

M27 Gypsum board PUR foam panel 50 236 12 + 38 846 + 33 846

M28 Acoustic mineral fibre tiles 17 252 -

-

252

M29 Textile wall paper on CaSi 10 959 0.7 + 9 650+ 1000 959

M30 Paper-faced glass wool 50 ^> 28 0.3 + 100

-

28

" Measured for Cone Calorimeter test samples (thickness max 50 mm). Reduced thickness for Cone Calorimeter tests.

From fire exposed side.

(10)

The 30 SBI RR products listed in Table 1 have been tested in the Cone Calorimeter at 50 kW/ml

The most important parameters, listed in the key below, are given in Table 2 and 3:

I^HR3oo THR EHC I^SP S300 TSP SEA FIGRA SMOGRA

- time to ignition (sustained flaming)

- average rate of heat release over the period starting at tjg^ and ending 300 s later

- peak rate of heat release (first peak)

- total heat release (from ignition to end of test = buming period) - effective heat of combustion (average during buming period)

- average rate of smoke production over the period from start of test to 300 s after ignition

- peak rate of smoke production (first peak) - total smoke production (from start to end of test) - specific extinction area (average during buming period)

- fire growth rate - smoke growth rate

(s)

(kwW)

(kW/m') (MJ/m') (kW/m') (mVs) (mVs) (m^) (m^/kg) (kW/s)

Where FIGRA = peak rate of heat release divided by the time at which this occurs SMOGRA = peak smoke production rate divided by the time at which this occurs

The two indices, FIGRA and SMOGRA, have been introduced in the European

classification of the reaction to fire of building products based on testing according to the SBI and Room/Comer test /6, 12/. In this work they are also introduced for the Cone Calorimeter.

All rate of heat release graphs are given in Figure 2 in the same scale for easy comparisons of the different SBI RR products.

The individual data graphs for each product are shown in Diagrams MOl to M30 in the Appendix. Each diagram consists of graphs for rate of heat release (RHR), mass loss rate and rate of smoke production (RSP), all given for triple tests. The results show good repeatability for all products.

The mass loss data will be further evaluated by using a new parameter MALGRA in a separate paper /13/.

(11)

Cone Calorimeter test data at 50 kW/m^

Code Product name ign

S f^HRjoo kW/m' kW/m-THR MJ/m-EHC MJ/kg FIGRA (Cone) W/s

MOl Paper-faced gypsum plasterboard 39 18 112 5.4 4.8 27.6

M02 FR PVC 57 80 297 24.8 7.3 33.3

M03 F R X P S 37 112 440 31.8 27.2 77

M04 PUR foam with aluminium foil 75 63 115 16.2 18.3 7.92

M05 Pine, varnished 13 125 228 49.5 13.4 101

M06 FR chip board 673 69 107 15.3 8.2 1.32

M07 FR PC panel, 3-layered 83 180 657 44.6 20.3 43.4

M08 Painted gypsum plasterboard 45 18 154 5.7 4.5 28.2

M09 Paper wall covering on gypsum plasterboard

29 25 210 7.7 5.8 59.1

MIO PVC wall carpet on gypsum

plasterboard 14 57

179 21.6 8.6 92

M i l Plastic-faced steel sheet on mineral

wool

26 7 96 1.1 8.7 31.9

M12 Spruce, unvarnished 21 123 202 45.5 13.3 73

M13 Gypsum board on polystyrene 39 17 130 4.5 4.6 27.6

M14 Phenolic foam 23 33 45 2.2 11.9 16.5

M15 Intumescent coat on particle board 411 60 156 97.6 13.8 1.23

M16 Melamine faced MDF 45 142 272 107 13.3 46.8

M17 PVC water pipe 75 58 148 36.1 6.0 13.6

M18 PVC covered electric cable 23 150 189 125 18.5 29.1

M19 Unfaced rock wool NI

-

-

-

-

2.31

M20 Melamine faced particle board 53 133 271 95.4 12.7 41.6

M21 Steel clad EPS sandwich panel 60'>

-

-

-

-

3.78

M22 Ordinary particle board 36 144 247 107 13.7 40.6

M23 Ordinary plywood 29 138 200 88.3 12.0 42.3

M24 Paper wall covering on particle

board 32

134 240 107 13.4 69.6

M25 MDF 39 171 257 121 12.7 40.3

M26 Low density fibre board 10 116 172 43.2 12.8 102

M27 Gypsum board PUR foam panel 57 23 122 7.1 5.8 19.7

M28 Acoustic mineral fibre tiles 10"

-

-

-

-

46.7

M29 Textile wall paper on CaSi 31 28 267 5.7 6.7 61.2

M30 Paper-faced glass wool 3.3 10 329 2.4 25.4 580

" Transitory flaming NI No ignition

(12)

M 0 1 - P a p e r - f a c e d g y p s u m p l a s t e r b o a r d M07 - F R P C p a n e l , 3 - l a y e r e d M13- O y p s u m p l a s t e t l j o a r d o n p o l y s t y r e n e 700 6 0 0 5 0 0 4 0 0 300 2 0 0 100

1

0 400 BOO Time [si BOD 1000 1200 7 0 0 6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 700 6 0 0 500 4 0 0 3 0 0 2 0 0 100 700 6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 100 4 0 0 BOO 8 0 0 1 0 0 0 1 2 0 0 Time Is] • l 1 1 1 \ ll. 1 \\ 4 0 0 6 0 0 BOO Time (s) 1000 1200 M 0 4 - P U R f o a m w i t h a l u m i n i u m ( o i l 4 0 0 6 0 0 800 1000 1200 Time Is) MOS - P i n e , v a r n i s h e d 6 0 0 BOO 1000 1200 M06 - F R c h i p b o a r d 4 0 0 6 0 0 8 0 0 Time Is] 700 eoc 500

\

0 2 0 0 4 0 0 BOO 8 0 0 1 0 0 0 1200 Timefsl MOB - P a i n t e d g y p s u m p l a s t e r b o a n J ;co 6C0 5C0 400 300 200 100 0 2 0 0 4 0 0 6 0 0 800 1000 1200 Time ls| M09 - P a p e r w a l l c o v e r i n g o n g y p s u m p l a s t e r b o a r d 6130 500 4 0 0 3 0 0 2 0 0

1

1 0 0 0 0 2 0 0 4 0 0 8 0 0 8 0 0 1 0 0 0 12C Time (s) M10 - P V C w a l l c a r p e t o n g y p s u m p l a s t e r t x > a r d 700 60O 500 IOC 300 200 0 200 4 0 0 6 0 0 8 0 0 1000 1200 Time is) M11 - P l a s t i c - f a c e d steel s h e e t o n m i n e r a l w o o l 6 0 0 inn 400 300 200 100 0 400 300 200 100 0 400 300 200 100 0 400 300 200 100 0 1 400 300 200 100 0 0 2 0 0 4 0 0 6 0 0 800 1000 1200 Time Is) M l 2 • S p r u c e , u n v a r n i s h e d 6 0 0 sno 4 0 0 3 0 0 4 0 0 3 0 0 2 0 0 100 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1200 Time [s] 6 0 0 500 400 300 2 0 0 too 400 300 2 0 0 too 400 300 2 0 0 too 400 300 2 0 0 too i 400 300 2 0 0 too

L .

2 0 0 4 0 0 6 0 0 800 1000 1200 Time (si M 1 4 - P h e n o l i c f o a n i 7 0 0 6 0 0 500 ^ 400 ^ 300 200 100 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200 Time | s | M I S - I n t u m e s c e n t c o o t o n p a n i c l e b o a r d 700 500 500 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1800 Time (si M16 - M e l a m i n e f a c e d M D F 6 0 0 500 400 300 200

1

100 0 ^ 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1200 Time | s l M 1 7 - P V C w a t e r p i p e 6 0 0 500 6 0 0 500 4 0 0 3 0 0 4 0 0 3 0 0 2 0 0 1 0 0 0 2 0 0 1 0 0 0 2 0 0 1 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 Time (s) M l 8 - P V C c o v e r e d e l e c t r i c c a b l e 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 Time (s|

(13)

M I S - U n f a c e d r o c k w o o l M 2 3 - O r d i n a r y p l y w o o d M 2 7 - G y p s u m b o a r d PUR f o a m p a n a l 700 6 0 0 500 400 300 200 1 0 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200 r i m e (s| M20 - M e l a m i n e f a c e d p a r t i c l e b o a r d 700 600 500

1

400 a: 300 X (C 200 103 0 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200 Time Isl M 2 1 - S t e e l c l a d EPS s a n d w i c h p a n e l 700 6 0 0 500 1 400 300 2C0 100 0 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200 Time | s | M 2 2 - O r d i n a r y p a r t i c l e b o a r d 4 0 0 6 0 0 8 0 0 Time |sl 2 0 0 4 0 0 6 0 0 8 0 0 1000 120O Time Is] M24 - P a p e r w a l l c o v e r i n g o n p a r t i c l e b o a r d 2 0 0 4 0 0 6 0 0 8 0 0 1000 1200 Time Is) 0 2 0 0 4 0 0 600 8 0 0 1000 1200 M2S - L o w d e n s i t y f i b r e b o a r d 600 500 400 300 2 0 0 100 0 100 0 700 6 0 0 _ 5 0 0

I

4 0 0 ~ 300 X a: 200 100 0 700 600 500 E 400 1 300 X i r 200 100 o k 700 600 soo 400 300 200 100 700 600 500 400 300 200 100 2 0 0 4 0 0 6 0 0 800 1000 1200 Time (si M 2 8 - A c o u s t i c m i n e r a l f i b r e t i l e s 2 0 0 4 0 0 6 0 0 800 1000 1200 Time [s| M 2 9 - T e x t i l e w a l l p a p e r o n C a S i 2 0 0 4 0 0 6 0 0 800 1000 1200 M 3 0 • P a p e r - f a c e d g l a s s w o o l 0 200 4 0 0 eOO 8 0 0 1000 1200 Time |s) 4 0 0 6 0 0 8 0 0 1000 1200 Time [s]

Figure 2. RHR graphs at 50 kW/m^ in the Cone Calorimeter for the SBI RR products, all graphs given in the same scale for easy comparisons. Triple tests.

(14)

Table 3. Smoke production results from Cone Calorimeter tests. Mean values from triple tests at 50 kW/m^ and horizontal orientation with retainer frame.

Cone Calorimeter test data at 50 k W W

Code Product name RSPn,ax

10-^ I^SPs3oo 10-^ TSP SEA SMOGRA (Cone) S mVs mVs m' 2 m^/kg cmW

MOl Paper-faced gypsum plasterboard 39 11.0 1.5 0.52 36 3.15

M02 FR PVC 57 199 69 23.9 738 28

M03 FR XPS 37 189 44 14.1 1333 39

M04 PUR foam with aluminium foil 75 30.5 14.3 4.6 586 2.28

M05 Pine, varnished 13 24.3 6.1 2.73 83 12

M06 FR chip board 673 16.5 8.2 7.6 93 2.25

M07 FR PC panel, 3-layered 83 203 42 15.6 789 16

M08 Painted gypsum plasterboard 45 10.9 1.4 0.48 33 2.34

M09 Paper wall covering on gypsum

plasterboard 29

6.1 1.6 0.54 21 2.05

MIO PVC wall carpet on gypsum

plasterboard 14 125 13.5 4.5 201 54

M i l Plastic>faced steel sheet on mineral

wool 26 54.8 4.2 0.82 521 23

M12 Spruce, unvarnished 21 11.4 4.4 1.9 60 4.03

M13 Gypsum board on polystyrene 39 9.9 1.0 0.32 21 2.72

M M Phenolic foam 23 2.4 1.0 0.11 22 4.72

M15 Intumescent coat on particle board 411 18.3 2.8 4.9 57 8.59

M16 Melamine faced MDF 45 18.1 3.4 3.2 42 4.33

M17 PVC water pipe 75 148 66 50 870 14

M18 PVC covered electric cable 23 102 52 38.2 645 16

M19 Unfaced rock wool NI - - - - 2.71

M20 Melamine faced particle board 53 15.2 5.1 4.0 58 3.16

M21 Steel clad EPS sandwich panel 60'> - - - - 2.47

M22 Ordinary particle board 36 17.9 5.7 4.5 65 2.4

M23 Ordinary plywood 29 10.9 4.3 4.1 62 2.76

M24 Paper wall covering on particle

board 32 11.0 4.3 3.5 52 4.13

M25 MDF 39 17.0 5.7 4.6 54 2.22

M26 Low density fibre board 10 13.6 5.8 1.8 58 7.75

M27 Gypsum board PUR foam panel 57 12.9 1.4 0.58 27 2.51

M28 Acoustic mineral fibre tiles 10" - - - - 6.13

M29 Textile wall paper on CaSi 31 10.6 1.5 0.36 37 2.88

M30 Paper-faced glass wool 3.3 21.5 1.0 0.18 155 43

1)

Nl Note

Transitory flaming No ignition

(15)

COMPARISONS B E T W E E N T H E T H R E E T E S T METHODS Cone Calorimeter vs Room/Corner Test

Time to flashover

The SBI RR products have been tested in the Room/Comer test, ISO 9705, which is considered to be a reference scenario in the Euroclass system. The measured times to flashover 161 are given in Table 4. The predicted time to flashover from Cone Calorimeter data has been calculated according to the Trätek model 111 and the results are included in Table 4. The time to flashover was not calculated for M l 7 PVC water pipe and M l 8 PVC covered electric cable because it was not possible to calculate the densities correctly. These two products were mounted only in a width of 700 mm on the walls adjoining the comer of the bumer in the Room/Comer test 161. The full scale data for these two products are thus not comparable. A correlation for the remaining 28 products is given in Figure 3.

TIME TO FLASHOVER (min)

CL LU

z

en

o

o

i

o

o

cr:

Q LU

a:

Z) CO

<

LU

O 4 8 12 16 20

PREDICTED - CONE CALORIMETER

Figure 3. Measured 161 and predicted 111 time to flashover in the Room/Comer test for the SBI RR products (except for M l 7 PVC water pipe and M l 8 PVC covered electric cable). Cone Calorimeter data predicts the times to flashover in the Room/Corner test fairly well even when the simple Trätek model 111 is used. Only a few products are outliers, mainly on the safe side, i.e. the predicted time to flashover is shorter than the measured time. The products on the safe side are mainly M07 FR PC panel and M l 4 Phenolic foam, which both are hard to test in almost any fire test.

Only one product is on the unsafe side, M21 Steel clad EPS sandwich panel, which is hard to test in the Cone Calorimeter. The Trätek model can thus be used to predict Room/Comer tests for most products.

(16)

Table 4. Room/Corner results for the SBI RR products 16, II. Room/Comer test

Code Product name Predicted Measured FIGRA SMOGRA

time to time to (Room) (Room)

flashover flashover

minis min:s kW/s

MOl Paper-faced gypsum plasterboard >20:00 >20:00 0.15 0.6

M02 FR PVC 18:38 >20:00 0.17 2.2

M03 FR XPS 0:58 1:36 9.4 250

M04 PUR foam with aluminium foil 1:02 0:41 22 307

M05 Pine, varnished '* 1:43 1:46 8.5 123

M06 FR chip board 14:01 >20:00 0.35 16

M07 FR PC panel, 3-layered 1:06 >20:00 0.55 2.4

M08 Painted gypsum plasterboard >20:00 >20:00 0.11 0.4

M09 Paper wall covering on gypsum plasterboard 17:36 >20:00 0.62 1.9

MIO PVC wall carpet on gypsum plasterboard 6:41 11:15 1.04 17

M i l Plastic-faced steel sheet on mineral wool >20:00 >20:00 0.14 7.0

M12 Spruce, unvarnished 1:48 2:50 5.3 27

M13 Gypsum board on polystyrene >20:00 >20:00 0.13 0.6

M14 Phenolic foam 1:06 10:40 1.09 11

M15 Intumescent coat on particle board 11:44 11:40 1.00 36

M16 Melamine faced MDF 3:06 2:30 6.0 51

M17 PVC water pipe ^* - >20:00 0.09 7.8

M18 PVC covered electric cable - >20:00 0.45 9.2

M19 Unfaced rock wool >20:00 >20:00 0.06 0.7

M20 Melamine faced particle board 3:04 2:45 5.5 53

M21 Steel clad EPS sandwich panel >20:00 16:10 0.72 7.0

M22 Ordinary particle board 2:43 2:35 5.8 81

M23 Ordinary plywood 2:46 2:40 5.6 51

M24 Paper wall covering on particle board 2:45 2:45 5.5 31

M25 MDF 2:53 3:10 4.7 48

M26 Low density fibre board 1:20 0:58 16 244

M27 Gypsum board PUR foam panel >20:00 >20:00 0.13 3.1

M28 Acoustic mineral fibre tiles >20:00 >20:00 0.05 0.7

M29 Textile wall paper on CaSi >20:00 >20:00 0.57 0.5

M30 Paper-faced glass wool 1:01 0:18 50 228

Different products in the Room/Comer test and SBI RR /8/.

The product was mounted only in a width of 700 mm on the walls adjoining the comer of the burner 161.

(17)

FIGRA and SMOGRA

Cone Calorimeter and Room/Comer FIGRA are compared in Figure 4. FIGRA (Room) values are given in Table 4.The agreement is quite good. One product M04 PUR foam with aluminium foil is outlier and also difficult to test. I f this product is excluded the correlation is improved from 0.76 to 0.91. y = 0.085X R 2 = 0.76 O 30 Without M04 y=0.084x R 2 = 0.91 0 150 300 450 600 CONE - FIGRA (W/s)

Figure 4. FIGRA f r o m the Cone Calorimeter and from the Room/Comer /6/.

Cone Calorimeter and Room/Comer SMOGRA are compared in Figure 5. SMOGRA (Room) values are also given in Table 4. The agreement is poor.

o

o

C/D O

o

a: y = 3.01X R 2 = -0.029 M11 Mo: D C — Q • 15 30 45 CONE - SMOGRA (cm^/s^)

(18)

Cone Calorimeter vs SBI

The SBI RR products have been tested in the SBI test /3/. Results from these tests have been analysed by the FRG /8-11/. Time to ignition (defined as 6 k W rise o f heat output), peak rate o f heat release, total heat release, total smoke production, FIGRA and S M O G R A are given i n Table 5.

Table 5. Summary o f results f r o m SBI RR tests /3, 8-11/.

Code Product name Time to RHR THR^oos TSPöoOs F I G R A SMOGRA

ignition max (SBI) (SBI)

mVs'

s kW MJ m^ W/s

(SBI) mVs'

MOl Paper-faced gypsum plasterboard 118 5.6 0.9 0 22 0

M02 FR PVC 70 23.9 6.1 1010 90 129

M03 FR XPS 12 211 40.1 1560 1431 239

M04 PUR foam with aluminium foil 21 169 28.1 510 1861 223

M05 Pine, varnished 22 60.7 16.9 80 695 4.4

M06 FR chip board 342 9.0 2.3 90 23 13

M07 FR PC panel, 3-layered " 51 168.0 13.3 376 1038 240

MOB Painted gypsum plasterboard 102 5.7 0.9 10 0 0

M09 Paper wall covering on gypsum

plasterboard 36 13.5 1.5 10 206 0

M I O PVC wall carpet on gypsum

plasterboard 24 29.3 6.5 140 386 110

M i l Plastic-faced steel sheet on mineral

wool 45

7.4 1.2 120 91 72

M12 Spruce, unvarnished 26 64.9 15.5 50 442 2.9

M13 Gypsum board on polystyrene 161 5.00 0.8 20 0 2.1

M14 Phenolic foam 53 9.9 3.2 20 121 0.8

M15 Intumescent coat on particle board 340 10.5 1.9 40 43 13

M16 Melamine faced MDF 42 78.2 23.7 30 580 1.8

M17 PVC water pipe 28 35. 13.7 2000 93 223

M I S PVC covered electric cable 19 120.0 58.5 900 450 105

M19 Unfaced rock wool - 3.8 0.8 10 0 0

M20 Melamine faced particle board 45 65.2 19.9 60 372 3.2

M21 Steel clad EPS sandwich panel '* 80 20.4 1.4 90 24 4

M22 Ordinary particle board 50 78.2 26.4 40 406 2.6

M23 Ordinary plywood 40 69.1 21.4 30 405 2

M24 Paper wall covering on particle

board 39 81.1 26.5 40 486 2.1

M25 MDF 54 125.9 32.6 40 441 2.6

M26 Low density fibre board 16 132.8 39.2 110 1024 11

M27 Gypsum board PUR foam panel 411 5.7 0.8 10 0 0

M28 Acoustic mineral fibre tiles 41 5.2 0.7 10 66 0

M29 Textile wall paper on CaSi 38 11.8 1.8 10 173 0.4

M30 Paper-faced glass wool 9.4 95.0 6.5 10 6093 3.2

(19)

Ignition and heat release data

Heat release results from the SBI RR /3, 8/ have been compared with the equivalent data from the Cone Calorimeter (tj^^, RHR,^^^, and THR300).

The time to ignition from the Cone Calorimeter and from the SBI have poor agreement, see Figure 6. This can be a consequence o f the different heat flux levels, 50 kW/m^ for Cone Calorimeter and about 40 kW/m^ for SBI test, and o f the different ignition sources in the Cone Calorimeter (radiative mode) and SBI (large flame) causing different fire behaviour of the products.

500

y = 0.66X R 2 = 0.35

0 200 400 600 800 CONE - TIME TO IGNITION (s)

Figure 6. Time to ignition from the Cone Calorimeter and from the SBI test /3, 8/. Comparisons o f heat release parameters (RHR,„^ and T H R (during 300 s from the Cone Calorimeter and 600 s from the SBI)) from the Cone Calorimeter and SBI gives poor agreement, see Figure 7. It is not improved by introducing the time to ignition (diagrams to the right).

In most o f the above correlation cases the same few products are outliers, M03, M04 and M l 8 , which are synthetic polymers and M26 a low density fibre board.

(20)

250 200 01 I Q : m y = 0.29x R 2 = 0.37 [MÖT] 200 400 600 CONE - RHR a, (kW/m^) 20 800 M03 y = 0.14X = 0.06 M30 0 20 40 60 80 100 C O N E - R H R ^ J U (kW/m^s) a: I I -CO y = 0.63X R' = 0.53 10 20 30 40 50 60 CONE - THR300 (MJ/m^) 1 2 X m 1 M03 jM18 C y = 0.67X R^ = 0.32 M26 M26 n 0 1 2 3 4 CONE - THRgoo/tiqn (MJ/m's) Figure 7.

Different heat release parameters from the Cone Calorimeter and from the SBI test /3, 8/. To the left: RHR^^ and THR (during 300 s for the Cone Calorimeter and 600 s for the SBI).

(21)

FIGRA and SMOGRA

Cone Calorimeter and SBI FIGRA are compared in Figure 8. The agreement is quite good. One product M04 PUR foam with aluminium foil is outlier and also difficult to test. I f this product is excluded the correlation is improved from 0.85 to 0.94.

7000 6000 In 5000 ^ 4000 3000 CD g 2000 1000 0 M30 y= 10.1X R 2 = 0.85 y= 10.1X R 2 = 0.85 \\t/\A— MU4 Without M04 y=10.1x R^ = 0.94 3 —• IS Without M04 y=10.1x R^ = 0.94 iSS^ 1 1 0 150 300 450 600 CONE - FIGRA (W/s)

Figure 8. FIGRA f r o m the Cone Calorimeter and from the SBI test /8, 9/.

Smoke release HQ, 11/ comparisons are given in Figure 9 and 10. The agreement for TSP is fair but for SMOGRA poor.

E. o o <o Q . W CD y = 37.0X R' = 0.75 250 10 20 30 40 50 CONE - TSPsE (m^) y = 3.43X R^ = 0.19 i 100 CONE - SMOGRA {cmVs^)

Figure 9. Total smoke production from the Cone Calorimeter and from the SBI test/10/.

Figure 10. SMOGRA from the Cone Calorimeter and from the SBI test /lO, 11/.

(22)

Room/Corner Test vs SBI

FIGRA and SMOGRA

The SBI RR products have been tested in the Room/Corner test 161 and i n the SBI /8-11/. FIGRA and SMOGRA from these two test methods are compared in Figure 11 and 12, in order to show a complete picture o f comparisons between all test methods in this report. The agreement for FIGRA is quite good but it is poor for SMOGRA.

0 y = 110.6X = 0.92 5« 5000 4000 g 2000 1000 a 60 15 30 45 ROOM - FIGRA (kW/s)

Figure 11. FIGRA from the Room/Comer 161 and from the SBI /8, 91.

250 Ö M07 y = 0,452x = -0.022 100 P 50 0 100 200 300 400 ROOM - SMOGRA ( m V )

(23)

GROUPS O F PRODUCTS

The 30 SBI RR products include different types o f products. These products may be divided in different groups: 11 wood products, 8 inorganic products, 6 synthetic polymers and 5 sandwich panels. The correlation for FIGRA for each group is given in Table 6. The wood products get almost the same correlation as all products together, the inorganic products get even better correlation, while the synthetic products and the sandwich panels get worse correlation, except for the Room/Corner vs SBI case.

The best FIGRA correlations are obtained in all cases i f sandwich panels are excluded. This is especially evident in the correlations with the Cone Calorimeter and explained by the fact that sandwich panels are hard to test in the Cone Calorimeter.

Table 6. FIGRA correlations for different types of products.

FIGRA correlations R'

A l l 30 Wood Inorganic Synthetic Sandwich Wood + Wood +

products products products products panels Inorganic Inorganic +

Synthetic

(11) (8 prod.) (6) (5) (19) (25)

Cone vs R/C 0.76 0.72 0.95 0.56 -0.24 0.92 0.91

Cone vs SBI 0.85 0.81 0.97 0.77 -0.24 0.96 0.94

(24)

CONCLUSIONS Cone Calorimeter data

Tests o f the 30 SBI RR products according to Cone Calorimeter, ISO 5660, were

successfully performed. Several o f these building products are quite complicated consisting of several materials, but all products could be tested with repeatable results. Cone

Calorimeter FIGRA and SMOGRA were defined and presented.

The mass loss curves have similar shape as the heat release curves. The mass loss may thus be used as a simple tool e.g. in factory control. Some analysis is presented separately and a new parameter M A L G R A is defined /13/.

Time to flashover from the Cone Calorimeter and Room/Corner

Cone Calorimeter data predict the time to flashover in the Room/Comer test fairly well even i f the simple Trätek model 111 is used. Only a few products are outliers, mainly on the safe side, i.e. the predicted time to flashover is shorter than the measured time. Only one product is on the unsafe side. The Trätek model can thus be used to predict Room/Comer tests for most products.

Comparisons of FIGRA

The correlations for FIGRA between the three different test methods (Cone Calorimeter, SBI and Room/Comer) analysed in this report are summarised in Table 7. The correlations for all three cases including all products are reasonably good and o f the same order. I f one product, M04 PUR foam with aluminium foil, is excluded the correlations in all three cases are improved. The same improvement is achieved i f one group o f products, mainly

sandwich panels, is excluded. Table 7. FIGRA correlations.

FIGRA correlations R^ A l l products Without M04'^

Cone vs R/C 0.76 0.91

Cone vs SBI 0.85 0.94

R/C vs SBI 0.92 0.93 (0.95'>)

M04 P U R foam with aluminium foil.

^' Without M07 F R P C panel, 3-layered instead.

Comparisons of SMOGRA

(25)

R E F E R E N C E S

1 Official Journal o f the European Communities, No L 241/25-29, 16.9.94 (1994). 2 CEN, Reaction to fire tests on building products. A l l building products excluding

flooring-Exposed to the thermal attack by a single burning item (SBI test), Document CEN/TC 127/N 1209, June 1997 (1997).

3 CEC, Development o f the Single Burning Item test-Results o f the SBI round robin tests, Regulators' group document RG 115, Oct 1997 (1997).

4 ISO 9705, Fire tests - Full scale room fire test for surface products. International Organization for Standardization (1993).

5 ISO 5660, Fire tests - Reaction to fire - Rate o f heat release from building products. International Organization for Standardization (1993).

6 B . Sundström, P. van Hees and P. Thuresson, Results and analysis from fire tests o f building products in ISO 9705, the Room/Comer test - The SBI research programme, SP-Report 1998:11 (1998).

7 B . A . - L . Östman and L . D. Tsantaridis, Correlation between Cone Calorimeter data and time to flashover in the room fire test. Fire and Materials 18, 4, 205-209 (1994). 8 CEC, Background information relating to the Euroclasses proposal and analysis o f

options. Regulators' group document RG 152, (1998). 9 B. Sundström, Personal Communication, August 1998.

10 CEC, Further data relating to the Euroclasses decision. Regulators' group document RG158, Sept 1998 (1998).

11 CEC, Summary o f principles leading to the SBI classification system. Regulators' group document RG 138 (1998).

12 CEC, Implementing Council Directive 89/106/EEC as regards the classification o f the reaction to fire performance o f construction products. Construct 98/319 Rev.3 (Final), 12 April 1999(1999).

13 L . Tsantaridis and B . Östman, Mass loss, heat and smoke release for the SBI RR products. Poster paper, Interflam'99 (1999).

Acknowledgements

The authors wish to thank Ms Birgitte Messerschmidt, Danish Institute o f Fire Technology, for providing the SBI RR products and M r Vlado Moliek, Trätek, for carrying out the Cone Calorimeter tests.

(26)

APPENDIX

Diagrams MOl to M30 for all 30 SBI R R products.

Each diagram consists o f graphs for rate o f heat release (RHR), mass loss rate and

- rate o f smoke production (RSP), all given for triple tests.

(27)

M01 - P a p e r - f a c e d g y p s u m p l a s t e r b o a r d 2 0 0 „ 150 CN E I ^ 100 X 50 — . 200 4 0 0 600 T i m e [s] 800 1000 1200 20 _ 15 oT E (/) o

1

1

i

1 I n - - . . 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0 . 0 2 0 0 . 0 1 5 CVJ £ 0.010 0.005 0 . 0 0 0

j

0 200 4 0 0 6 0 0 800 1 000 1 200 T i m e [s]

(28)

IVI02 - F R P V C 4 0 0 (N 300 E X a: 2 0 0 100 < , n I 1*1* l\ il "V-. 2 0 0 4 0 0 6 0 0 T i m e [s] 800 1 0 0 0 1 2 0 0 4 0 „ 30 OJ E (/) O ) 20 10

fl

i i v : \ P 2 0 0 4 0 0 6 0 0 T i m e (s) 8 0 0 1 000 1 2 0 0 0.40 0.30 (/} c\i 0.20 Q . CO Cd 0.10 0.00

I

\ .t. »v" \ o 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(29)

M03 - F R X P S 6 0 0 5 0 0 ^ 4 0 0 o: 3 0 0 en 2 0 0 100 O

A

V

•'1

il

i1 1 r ' v 11 \\ \ \ *. 2 0 0 4 0 0 6 0 0 T i m e [s] 800 1 0 0 0 1 2 0 0 20 ^ 15 OJ E (/) O ) ro 10

1

1

•u

1

•.Il

•.'1

.11

1

2 0 0 4 0 0 6 0 0 T i m e [s] 8 0 0 1 000 1 2 0 0 0.20 0.15 (/) 0.10 Q . w 0.05 0.00

i

2 0 0 4 0 0 6 0 0 T i m e [s] 8 0 0 1 0 0 0 1 2 0 0

(30)

CM E I a: 2 0 0 150 1 00 50 M04 - P U R f o a m with a l u m i n i u m foil / \ 1 V f 1 l /

r*

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 20 c7 15 E 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 0.04 0.03 c\i å . 0.02 Q . (/) (T 0.01 0.00 \ 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(31)

4 0 0 3 0 0 E ? 200 o: a: 100 MOS - P i n e , v a r n i s h e d • . O 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] S 10 O 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0.04 0.02 O 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(32)

2 0 0 1 50 E

S

100 Q : Q : 50 M06 - F R c h i p b o a r d •*• • I f \ - ^--^ 2 0 0 4 0 0 600 800 T i m e [s] 1 0 0 0 1 2 0 0 20 _ 15 CM E (O 18 10 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0.04 0.03 (/) cg £ 0.02 Q . 0 1 0.01 0.00 u T 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(33)

M07 - F R P C p a n e l , 3 - l a y e r e d ( N E X a: 8 0 0 6 0 0 4 0 0 2 0 0 * i C l 40 „ 30 CM E (/) O) ^ 20 10 O 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s]

h

11 1 V l M A A A i \A A A A 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] 0.4 0.3 w csi £ 0.2 Q . 0.1 0.0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(34)

M08 - P a i n t e d g y p s u m p l a s t e r b o a r d 2 0 0 1 50 § 100 a: I a: 50 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 20 c7 15 E (/) 9 • WW wl* •**'»• ... — ' • • • r . -2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 0 . 0 2 0 0.01 5 to £ 0 . 0 1 0 Q . w a: 0 . 0 0 5 0 . 0 0 0

1

1

0 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s]

(35)

M09 - P a p e r w a l l c o v e r i n g on g y p s u m p l a s t e r b o a r d CM E Cd X a: 4 0 0 300 2 0 0 1 00 0 1 20 1 5 CN E o 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] il • -.y i l I I • • v — . . . 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [si 0 . 0 2 0 0 . 0 1 6 (/) cvi £ 0 . 0 1 0 C/3 a: 0 . 0 0 5 0 . 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 T i m e [s] 1 2 0 0

(36)

M10 - P V C w a l l c a r p e t o n g y p s u m p l a s t e r b o a r d CM £ or I 4 0 0 3 0 0 2 0 0 1 00 •% 2 0 0 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 20 15 OJ <o 10 V) o _ I (0

(0

2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] 0.20 0.15 csi

E

0.10 C/D Q: 0.05 0.00

j

1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(37)

M11 - P l a s t i c - f a c e d s t e e l s h e e t on m i n e r a l w o o l 2 0 0 150

I

100 X a: 50 J 1 1 20 15 E (/) o _i V) (A 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0.20 0.15 cvi 0.10 Q . W a: 0.05 0.00

r

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [ s ]

(38)

CNJ E I - V X 4 0 0 3 0 0 2 0 0 1 00 M12 - S p r u c e , u n v a r n i s h e d O 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] o 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0 . 0 2 0 0.01 5 OJ 0 . 0 1 0 Q . (/) a: 0 . 0 0 5 0 . 0 0 0 ',\ / b l T ' ' \ ' •V' 1 ' '[' \ \ ' 1 ' v t / " * • i '

Al

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(39)

M 1 3 - G y p s u m p l a s t e r b o a r d on p o l y s t y r e n e CM E 01 X Cd 2 0 0 1 50 100 0 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] 20 „ 15 CM E (/> oj to ' ^ O _j CO w

...

2 0 0 4 0 0 6 0 0 T i m e [s] 800 1 0 0 0 1 2 0 0 0 . 0 2 0 0.01 5 (/> CM 0 . 0 1 0 Q . (O Q: 0 . 0 0 5 0 . 0 0 0

1

L

o 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(40)

CM E I Cd 2 0 0 1 50 1 00 50 20 E in M14 - P h e n o l i c f o a m 0 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s]

ill.

..fii

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0 . 0 2 0 0.01 5 0 . 0 1 0 Ol CO 0 . 0 0 5 0 . 0 0 0 • * 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(41)

M15 - I n t u m e s c e n t c o a t on p a r t i c l e b o a r d 01 X a: 2 0 0 150 1 00 50 • • " •• V • T ; / \ • 1'. V '. 1 \ y _ i / I \ \ .'J I j d - . . V 3 0 0 6 0 0 9 0 0 1 2 0 0 T i m e [s] 1 5 0 0 1 8 0 0 20 E (A \ \ v. ;. 17^,' At^' * In w 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 0 T i m e [s] 0.04 0.03 V) CN £ 0.02 a. (/) a: 0.01 0.00

1

\ - \ 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 0 T i m e [s]

(42)

M16 - M e l a m i n e f a c e d M D F E a: X q: 4 0 0 3 0 0 2 0 0 100 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 40 „ 30 CM E (/) w 2 0 (fl 1 O s •• : 1 »flwv

'i

" * »flwv A' St,. o 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] 0 . 0 2 0 0 . 0 1 5 0 . 0 1 0 0.005 0 . 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(43)

M17 - P V C w a t e r p i p e CM E Od X a: 2 0 0 1 50 1 00 50 1 1^ I I

(.1

.

••. ••• * *"-•. ll It • • •

::

^ !_ i : 1 : 1

Ji

%1 J

• • •

%1 J

2 0 0 4 0 0 6 0 0 T i m e [s] 8 0 0 1 0 0 0 1 2 0 0 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s 0.20 II . - • • , V ' . I 0.00 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0

(44)

M1 8 - P V C c o v e r e d e l e c t r i c c a b l e E a: I a: 4 0 0 300 2 0 0 1 00 f ,-•'*«"•*»*•*•• 1 1 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 20 „ 15 CM at o ^ 10 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s 0.20 0.15 -J2 CM L 0 . 1 0 Q. CO Od 0.05 0.00 k^.-w... 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(45)

M19 - Un f a c e d r o c k w o o l a: X a: 2 0 0 1 50 100 50 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 20 „ 15 E (A o —I w w OJ 2 5

mm

U : 2 0 0 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 0 . 0 2 0 0.01 5 eg ^ 0 . 0 1 0 Q . W a: 0 . 0 0 5 0 . 0 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 000 1 2 0 0 T i m e [s]

(46)

Dd X a: 4 0 0 300 2 0 0 100 M20 - M e l a m i n e f a c e d particle b o a r d

-1 s l l * •«

-•« • \ \ " \ \ ^

- I-i: u • \ v _ 200 4 0 0 600 800 1 0 0 0 1 2 0 0 T i m e [s] CM (A w o _j (0 (/) m 40 30 20 10 2 0 0 4 0 0 6 0 0 8 0 0 Time [s] 1 0 0 0 1 2 0 0 0 . 0 2 5 0 . 0 2 0 w 0 . 0 1 5 CM E, w 0 . 0 1 0 or 0 . 0 0 5 0 . 0 0 0 1 .< K '• : :• J ' • r « 1 I- '. f\\ 1 v». . I' •• ini / / ' ' I J \ \

j

i \

h

/ ' 1 • J ; /

1

\

2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0

(47)

M21 - S t e e l c l a d E P S s a n d w i c h p a n e l CsJ E a: X 2 0 0 150 100 50 200 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 20 c7 15 E

-ii-A- .- -.-.fl-

-•••.•A---2 0 0 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 0.020 0.01 5 (0 £ 0 . 0 1 0 Q . W 0.005 0.000 % Ml J11 ' • 0 200 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s]

(48)

4 0 0 3 0 0 CM E i 2 0 0 Cd I Cd 100 4 0 CM 30 E O) 10 M22 - O r d i n a r y p a r t i c l e b o a r d V • ^ 0 200 400 600 800 1000 1200 T i m e [ s j

f

måmwi

- i l — o 200 400 600 800 1000 1200 T i m e [s] 0 . 0 2 5 0 . 0 2 0 « 0 . 0 1 5 CM §5 0.010 C3d 0 . 0 0 5 0 . 0 0 0

i i

5"

•i U'. V'.

E

I I .

i

11

r

v • V'

jr.

I l

v *

If v 1 v

S

O 200 400 600 800 1000 1200 T i m e [s]

(49)

en Cd 8 0 0 6 0 0 4 0 0 2 0 0 M23 - O r d i n a r y p l y w o o d 1 A it

1

v . . 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 6 0 50 CN4 E 4 0 ( 0 10 0 • • _

Å

I

i-J \ 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 0 . 0 6 0 . 0 5 0.04 £ 0 . 0 3 0 . 0 2 0 . 0 1 0 . 0 0 2 0 0 4 0 0 6 0 0 T i m e [s] a — 1 0 0 0 1 2 0 0

(50)

E 4 0 0 3 0 0 2 0 0 1 00 M24 - P a p e r w a l l c o v e r i n g on p a r t i c l e b o a r d • » • / ' A / \'.\ 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] CNJ E (A </) O) O _ l (A CO CO 40 30 20 1 0 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 0.04 0.03 CO £ 0.02 0. CO 0.01 0.00 / ' /I ' 4 •' / ' • 2 0 0 4 0 0 6 0 0 T i m e [s^ 8 0 0 1 0 0 0 1 2 0 0

(51)

M25 - M D F 500 4 0 0 E 3 0 0 CC 2 0 0 I 100 o .> / \\\ .r /

!

2 0 0 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 4 0 „ 30 CM E V) <o 2 0 o _j (O (/) ro 1 O 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 0.04 0.03 £ 0.02 Q . (/) 0.01 0 . 0 0 A

if

'ål t' / / V • \ \ \ 2 0 0 4 0 0 6 0 0 T i m e [s] 8 0 0 1 0 0 0 1 2 0 0

(52)

M26 - L o w d e n s i t y fibre b o a r d E a: I 4 0 0 3 0 0 2 0 0 100 • • * t * '> • A * "• / A * '• ^' \ * *. / V f j r — V 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 20 „ 15 E v> ' " (A U) CO 2 5 1 \\ r. r. V'

1

2 0 0 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 0.04 0.03 eg I , 0.02 Q . C/5 Q : 0.01 0.00 A1 1

1

/ i \ 1 • 1 V n I ' l l ' A; '•' \ '• J ' - ' ^ 2 0 0 4 0 0 6 0 0 T i m e [s] 800 1 000 1 2 0 0

(53)

M27 - G y p s u m b o a r d P U R f o a m p a n e l 2 0 0 150 E % 100 50 2 0 0 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 20 „ 15 CN E w .O) w 10

1

if

mm

/ 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s] 0 . 0 2 0 0.01 5 I f ) CN ^ 0 . 0 1 0 0. w 0 . 0 0 5 0 . 0 0 0 , • , ' * • 'H « • K • > 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(54)

M28 - A c o u s t i c m i n e r a l fibre tiles a: X 2 0 0 1 50 100 50

j

200 4 0 0 6 0 0 8 0 0 T i m e [s] 1 0 0 0 1 2 0 0 20 ^ 15 CNJ E (/) 10 O _ J Ui Ui m

mm

2 0 0 4 0 0 6 0 0 800 T i m e [s] 1 0 0 0 1 2 0 0 0 . 0 2 0 0.01 5 •J2 ^ 0 . 0 1 0 Q. 0 . 0 0 5 0 . 0 0 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(55)

M29 - T e x t i l e w a l l p a p e r o n C a S i E I 4 0 0 3 0 0 2 0 0 100 J J 20 _ 15 CM E w 1 0 o _i w (A CO 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

\ t

2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] 0 . 0 2 0 0.01 5 £ 0 . 0 1 0 0 . 0 0 5 0 . 0 0 0 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s]

(56)

M30 - P a p e r - f a c e d g l a s s w o o l a: X a: 4 0 0 300 2 0 0 100 20 1 5 E w CO o CO CO m 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

bom.

UL.l

0 2 0 0 4 0 0 6 0 0 800 1 0 0 0 1 2 0 0 T i m e [s] 0.04 0.03 CVJ — 0.02 a. w a: 0.01 0.00 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 T i m e [s]

(57)

Stiftelsen Nils och Dorthi Troédssons forskningsfond

Trätek

ET FÖR TRÄTEKNISK FORS

Box 5609, 114 86 STOCKHOLM Besöksadrcs.s: Drottning Kristinas väg 67 Telefon: 08-762 18 00 Telefax: 08-762 18 01 Asenvägen 9, 553 31 JÖNKÖPING Telefon: 036-30 65 50 Telefax: 036-30 65 60 Skeria 2. 931 77 SKELLEFTEÅ Besöksadress: Laboralorgränd 2 Telefon: 0910-58 52 00 Telefax: 0910-58 52 65 Hemsida: www.iralek.se • E-post: tratek@tratek.se

References

Related documents

The objective with this study was to investigate how supportive documents can be incorporated into undergraduate courses to promote students written communication skills.

Light absorption in folded solar cells was modelled, and combinations of different active layer thicknesses, folding angles and materials were studied.. A beneficial light

Utvecklingen för abborre och mört i Simpevarp och Kvädöfjärden sedan starten 1983 presenteras i figur 6.. Fångsterna minskade markant från föregående år i samtliga serier

Avhandlingens resultat kan sammanfattas i tre övergripande slutsatser: 1) Digitaliseringen av den offentliga förvaltningen är kontextberoende och sker i ett samspel mellan

I vår studie har vi funnit att det förutom ekonomiska resurser krävs föräldraengagemang från familjen för att barn och ungdomar ska kunna delta i

Teamledaren på Elektronik AB förklarade även att företaget försöker ta hänsyn till den mänskliga aspekten genom att växla mellan stationerna så att alla får

Då i stort sett alla remisser i den sydöstra hälso- och sjukvårdsregionen under tidsperioden årsskiftet 2011-2012 till mars 2014 besvarades inom 8 veckor är det utifrån

Vad ges det då för bild av statens och nationens historia och ursprung – på Nationalmuseum i Danmark respektive Historiska museet i Sveri- ge.. Mycket kort ska jag visa på