• No results found

Observation of an Excited B-c(+/-) Meson State with the ATLAS Detector

N/A
N/A
Protected

Academic year: 2021

Share "Observation of an Excited B-c(+/-) Meson State with the ATLAS Detector"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

Observation of an Excited B

c

Meson State with the ATLAS Detector

G. Aad et al.* (ATLAS Collaboration)

(Received 3 July 2014; published 21 November 2014)

A search for excited states of the Bc meson is performed using4.9 fb−1of 7 TeV and19.2 fb−1of 8 TeV

pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay Bc → J=ψπ. The state appears

in the mðBcπþπ−Þ − mðBcÞ − 2mðπÞ mass difference distribution with a significance of 5.2 standard

deviations. The mass of the observed state is6842  4  5 MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S-wave state of the Bc meson, Bcð2SÞ.

DOI:10.1103/PhysRevLett.113.212004 PACS numbers: 14.40.Nd

The Bc meson was first observed by the CDF experi-ment in the semileptonic decay mode[1], and its hadronic decay mode was observed later by both the CDF[2]and the D0[3]experiments. The Bc meson has also been observed by the LHCb experiment in various decay modes [4]. Excited states of the Bc meson have not previously been observed. The spectrum and properties of the Bc family are predicted by nonrelativistic potential models, perturbative QCD, and lattice calculations [5]. Measurements of the ground and excited states through fully reconstructed channels will provide tests of the predictions of these models and ultimately the opportunity to extract informa-tion on the strong interacinforma-tion potential.

The second S-wave state, Bcð2SÞ, is predicted to have a mass in the range 6835–6917 MeV[5]. The next S-wave state, Bcð3SÞ, is predicted to have a mass above the threshold for decay into a BD meson pair. Both the 1S and2S states have pseudoscalar (0−) and vector (1−) spin states that are predicted to differ in mass by about 20– 50 MeV. Transitions between the spin states occur through soft photon radiation that escapes identification in ATLAS; the spin states cannot be separated by this analysis.

This Letter presents the observation of a new state whose mass is consistent with predictions for the Bcð2SÞ, the second S-wave state of the Bc meson. The Bcð2SÞ state is reconstructed in the decay to the Bc meson and two oppositely charged pions, with the Bc reconstructed through its decay to J=ψπ, J=ψ → μþμ−.

The ATLAS Collaboration at the Large Hadron Collider (LHC) uses a general-purpose particle detector [6] con-sisting of several subsystems including the inner detector (ID), the electromagnetic and hadronic calorimeters, and

the muon spectrometer (MS). Muon reconstruction at ATLAS makes use of both the ID and the MS.

Muons pass through the calorimeters and reach the MS if their momentum is above approximately 3 GeV. The inner detector features a three-component tracking system, con-sisting of two silicon-based detectors, the pixel detector and the microstrip semiconductor tracker (SCT), and the transition radiation tracker (TRT). ID tracks are recon-structed if their transverse momentum pT [7]is greater than 400 MeV and the magnitude of their pseudorapidityjηj is less than 2.5. Muon candidates are formed from a stand-alone MS track that is matched to an ID track[8]. In this analysis the MS is only used to identify muons, while their momentum is measured using the ID information only.

The trigger system[9]comprises three levels: the hard-ware-based Level-1 trigger and the High-Level Triggers (HLT), consisting of the Level-2 trigger and the Event Filter (EF). The Level-1 trigger uses resistive plate chambers (RPC) and thin gap chambers (TGC) to trigger muons in the pseudorapidity ranges ofjηj < 1.05 and 1.05 < jηj < 2.5, respectively. One or more regions of interest identified by the Level-1 muon trigger seed the HLT muon online reconstruction algorithms, where the responses from both the ID and the MS are combined. For this analysis the HLT selection for the J=ψ requires two muons, respectively, μ1 andμ2, originating at a common vertex, with the invariant mass of the muon pair lying between 2.5 and 4.3 GeV. The individual muon pT thresholds are pTðμ1Þ > 6 GeV and pTðμ2Þ > 4 GeV.

This study uses pp collision data collected in the years 2011 (pffiffiffis¼ 7 TeV) and 2012 (pffiffiffis¼ 8 TeV) by the ATLAS experiment. The data sets used correspond to an integrated luminosity of 4.9 and 19.2 fb−1, respectively. The luminosity estimate has an uncertainty of 1.8% in 2011 [10]and 2.8% in 2012.

To improve the resolution, peaks are sought in the distribution of the variable Q¼mðBcππÞ−mðBcÞ − 2mðπÞ, where mðB

cÞ is the offline reconstructed invariant * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

mass of the Bc candidate, mðBcππÞ is the invariant mass of the Bc candidate combined with two charged pion candidates, and mðπÞ is the charged pion mass [11]. The Bc candidates are reconstructed through the decay Bc → J=ψðμþμ−Þπ. Since hadronic decays of excited B-meson states have no observable displacement from the pp interaction point, these candidates are then combined with two charged pion candidates, both originating at the corresponding pp interaction point. The mass difference (Q) distribution is formed and analyzed in the range 0–700 MeV.

The Bc selection criteria for the events are optimized separately for 7 and 8 TeV data using the corresponding Monte Carlo (MC) samples, produced in the ATLAS simulation framework [12,13]. Differences between the 7 and 8 TeV selection criteria are due to the higherpffiffiffisand the number of simultaneous pp interactions per bunch cross-ing, hereafter called pileup. The increase in the Bc production cross section between the 7 and 8 TeV MC samples is approximately 3%.

ThePYTHIA6 and 8 MC generators[14,15], tuned for the

LHC conditions [16], are used along with a dedicated

PYTHIA extension for Bc meson production, based on

calculations from Ref. [17]. The following MC samples are used to optimize the event selection criteria (charge conjugates implied): Bþc decay modes J=ψπþ, J=ψKþ, J=ψρþ(ρþ → π0πþ), J=ψμþν, J=ψπ0πþ, J=ψπþπ−πþ, as well as J=ψX produced inclusively or from b ¯b. The MC simulated events are treated in exactly the same way as the collision data, and the same analysis selections are always applied. The exclusive (Bþc) channels are generated with

PYTHIA 6, and inclusive (J=ψX) channels are generated

withPYTHIA 8.

This analysis involves several steps. First the J=ψ candidates are formed as described below. Then a pion track candidate from the same vertex is added to form a Bc meson candidate. Finally, the Bcð2SÞ candidates are formed by adding two pion candidates originating at the primary vertex (PV); the selection of the primary vertex is defined below.

The J=ψ candidates are reconstructed from pairs of oppositely charged muons. These pairs are fitted to a common vertex with the procedure described in Ref.[18]. The following requirements are applied to each J=ψ candidate:

(i) The pT of the higher-pT muon candidate must be above 6 GeV, and the pT of the lower-pT muon candidate must be above 4 GeV; these are approximately the pT values for which the trigger is fully efficient. (ii) The J=ψ vertex fit chi-square per degree of freedomχ2=NDOF < 15 (this selection keeps more than 99.9% of the candidates, and is included only to remove spurious dimuon combi-nations). (iii) The invariant mass resolution of the J=ψ depends on the direction of the muons, with more forward candidates showing poorer resolutions. The sample is split

into three categories and selection requirements are opti-mized for each of them: (i) both muons havejηj < 1.05, (ii) one muon has jηj < 1.05 and the other one has 1.05 < jηj < 2.5, (iii) both muons have 1.05 < jηj < 2.5. The invariant mass mðμþμ−Þ is calculated from the track parameters adjusted by the common-vertex fit to be in a three standard deviation (3σ) mass window around the world average mass mðJ=ψÞ [11], where the J=ψ recon-structed widthσ varies in the range 40–90 MeV depending on muon reconstruction precision in different regions of pseudorapidity and on the data-taking period.

Selection requirements for the Bc were chosen by maximizing S=pffiffiffiffiffiffiffiffiffiffiffiffiS þ B, using MC events. Here, S is the number of signal events and B refers to the number of background MC events scaled according to the production cross section. The production cross sections are taken from the MC generators’ predictions. The optimization has been carried out separately for the two different data sets.

The pion candidate from the Bc is required to have pT > 4 GeV. Hit requirements in the pixel detector and SCT are imposed on all tracks to ensure a reliable impact parameter reconstruction.

Bc candidates are reconstructed by fitting two muon tracks from the J=ψ candidate together with a pion candidate track to a common vertex. The invariant mass of the two muons is constrained to the world average of mðJ=ψÞ. The yields per unit of integrated luminosity, and the central values of the dimuon invariant mass distribu-tions, are verified to be consistent within each data set.

A significant part of the combinatorial background consists of real J=ψ candidates combined with candidate pions that are not associated with a Bc → J=ψπ decay. This background is reduced by imposing a lower cut on d0=σðd0Þ; d0here represents the projection of the pion track impact parameter relative to the primary vertex onto the transverse plane, andσðd0Þ is the track-by-track uncertainty on d0. Pion candidates are required to have d0=σðd0Þ > 5 for 7 TeV data and > 4.5 for 8 TeV data. In 7 TeV data the PV is defined as the collision vertex with the highest summed scalar p2T of its constituent tracks. In 8 TeV data— the data collected with higher pileup—the PV is identified as the vertex closest in three dimensions to the reconstructed decay vertex of the Bc candidate. All reconstructed Bc candidates are also required to satisfy the following selection criteria:

(i) The J=ψπ vertex fit χ2=NDOF < 2 for 7 TeV and < 1.5 for 8 TeV data. (ii) The pT of the Bc candidate must be above 15 GeV for 7 TeV and above 18 GeV for 8 TeV data.

Figure 1shows the invariant mass distributions for the Bc candidates for 7 TeV data and 8 TeV data in the mass range 5620–6820 MeV. Both distributions are fitted sep-arately using an extended unbinned maximum likelihood fit, with a Gaussian function modeling the signal and an exponential modeling the background shape. The various

(3)

exclusive Bc decay modes mentioned above are shown to have negligible contribution to the background shape. The results of the fits are summarized in TableI. The fitted mass values are consistent with the world average for the Bc mass[11]. The signal yield per fb−1of the Bc is lower in 8 TeV data due to the harder pTrequirements. The stability of the Bc yield was checked through its normalization to B → J=ψK decays that were reconstructed with similar requirements.

The reconstruction of the excited state candidates uses the Bc ground state candidates within 3σ of the fitted mass value of the corresponding data set. These candidates are combined as described below with two pion candidate tracks associated with the corresponding primary vertex. The pT threshold of the pion candidates is 400 MeV. No additional selection requirement is applied to the Bcð2SÞ pion candidates. The three tracks from the secondary vertex and the two tracks from the primary vertex are refitted simultaneously with the following constraints given by the

decay topology: the refitted triplet of the Bc tracks and the pair of PV pion tracks must intersect in two separate Bc and Bcð2SÞ vertices. The invariant mass of the refitted muon tracks is constrained to the J=ψ world average mass, and the combined momentum of the refitted Bc tracks must point to the Bcð2SÞ vertex. When multiple Bcð2SÞ candidates are found in the same event, the one with the bestχ2value returned by the fitter is kept as an excited state candidate. Wrong-charge combinations (Bcπþπþ and Bcπ−π−) are kept separately for comparison with the combinatorial background shape in the right-charge com-binations (oppositely charged pion pairs).

Figure 2 shows the mass difference distribution mðBcππÞ − mðBcÞ − 2mðπÞ for the right-charge combi-nations Bcπþπ−as well as the wrong-charge combinations. A structure is observed in the mass difference distribu-tion. In order to characterize it, an unbinned maximum likelihood fit to the right-charge combinations is per-formed. The fit includes a third-order polynomial to model the background and a Gaussian function for the structure. The background shape resulting from the fit is verified to be consistent with the wrong-charge combinations (which are not used to constrain the model in the right-charge fit) by fitting the same shape to them, with the normalization as the only free parameter. Alternative models for the signal and the background parametrizations are studied as sources of systematic uncertainty. A Breit-Wigner contribution was tested in convolution with the Gaussian function and was found to be negligible, implying that the natural width of the structure is small relative to the detector resolution. The resulting fit parameters (with statistical uncertainties only), as well as the distributions of the wrong-charge (Bcπþπþ, Bcπ−π−) combinations are shown in Fig. 2. The wrong-charge combinations, are normalized to the same yield as the right-charge background.

The relative Bcð2SÞ=Bc yield ratio is verified to be statistically consistent between the 7 and 8 TeV data.

The fit finds the peak at a mass difference (Q) value of 288.2  5.1 MeV in the 7 TeV data and 288.4  4.8 MeV in the 8 TeV data. The fit yields22  6 signal events in the 7 TeV data and 35  13 events in the 8 TeV data. The Gaussian width of the structure is found to be 18.2  3.8 MeV in the 7 TeV data and 17.6  4.0 MeV in the 8 TeV data. All uncertainties mentioned in this paragraph do not include systematic uncertainties.

There are two dominant sources of systematic uncer-tainty on the position of the peak. One comes from the

[MeV] π ψ J/ m 5800 6000 6200 6400 6600 6800 Events / 40 MeV 0 10 20 30 40 50 60 70 ATLAS -1 Ldt = 4.9 fb

= 7 TeV s 8 MeV ± = 6282 c B m 23 ± = 100 c B N 12 MeV ± = 49 σ [MeV] π ψ J/ m 5800 6000 6200 6400 6600 6800 Events / 40 MeV 0 20 40 60 80 100 120 140 160 ATLAS -1 Ldt = 19.2 fb

= 8 TeV s 6 MeV ± = 6277 c B m 25 ± = 227 c B N 8 MeV ± = 50 σ

FIG. 1 (color online). Invariant mass distributions of the reconstructed Bc → J=ψπ candidates in 7 TeV data (top)

and in 8 TeV data (bottom). The data are represented by the points with error bars (statistical only). The solid line is the projection of the results of the unbinned maximum likelihood fit to all candidates in the mass range 5620–6820 MeV. The dashed line is the projection of the background component of the same fit.

TABLE I. The results of the unbinned maximum likelihood fits of the invariant mass distribution of the Bc candidates.

System-atic uncertainties are not included.

Data Signal events Peak mean [MeV] Peak width [MeV]

7 TeV 100  23 6282  8 49  12

(4)

uncertainty on the mass of the Bc ground state candidate and is largely canceled in the mass difference distribution. The other involves systematic uncertainties in the fit of the mass difference distribution itself. The uncertainty on the mass of the Bcð2SÞ candidate is dominated by the fitting procedure and estimated below to be about 3.6 MeV. The contribution from the uncertainty on the pion momentum scale to the Bc mass is 1.2 MeV. The residual uncertainty from the Bc candidate mass in the mass difference distribution, δmB

cð2SÞ¼ δmBc ×ðmBcÞ=mBcð2SÞ, where

theδmB

c is the world average uncertainty on the B



c mass

[11], is about 1.7 MeV. The systematic uncertainty on the mass difference introduced by the fitting procedure is estimated by (i) varying the background model. An exponential threshold function (fðQÞ∽Qae−bQ, where a and b are free parameters) and second- and fourth-order polynomials were considered as alternatives, resulting in a 3.4 MeV systematic uncertainty; (ii) varying the fit mass

range from 0–700 to 0–1500 MeV, results in a 1.2 MeV contribution to the systematic uncertainty; (iii) using differ-ent models for the signal. A single Breit-Wigner function, a Breit-Wigner function convolved with a Gaussian function, and a double Gaussian function were considered. This results in a negligible systematic uncertainty, compared to the above two.

In each case the largest difference between any of the variations mentioned and the default fit model is used as the systematic uncertainty. The values are calculated as the weighted mean of the 7 and 8 TeV mass values.

An additional systematic uncertainty of 2 MeV is obtained from the study of the mass bias in the selection of the candidate with the bestχ2 of the vertex fit.

The various sources of systematic uncertainty are treated as uncorrelated. The total averaged systematic uncertainty propagated to the mass value of the new structure is approximately 4.1 MeV.

The significance of the new structure is evaluated with pseudoexperiments. A large number of background-only mass difference distributions are generated. Parameters of the generation are taken from the fit with their uncertainties to account for systematic effects. The background shape is scaled to the observed number of events. The mean mass value of the signal contribution is left free to vary within the theoretically motivated range (6835–6917 MeV) to evalu-ate the “look-elsewhere effect” [19]. The significance is calculated as the fraction of the pseudoexperiments in which the difference of the logarithms of fit likelihoods Δ ln L with and without signal is larger than in the data. In terms of standard deviations the significance of the obser-vation is3.7σ in the 7 TeV data and 4.5σ in the 8 TeV data. For the combined 7 and 8 TeV data set the total significance of the observation is found to be 5.2σ. The local signifi-cance of the observation, obtained by fixing the mean value of the signal component, is5.4σ.

In conclusion, the distribution of the mass difference Q ¼ mðBcπþπ−Þ − mðBcÞ − 2mðπÞ for events with the Bc meson reconstructed in its decay to J=ψπ has been investigated in pp collisions at the LHC using the ATLAS detector. The analysis is based on an integrated luminosity of 4.9 ð19.2Þ fb−1 of pp collisions at a center-of-mass energy of 7 (8) TeV. A new state is observed at Q ¼ 288.3  3.5  4.1 MeV (calculated as the error weighted mean of the 7 and 8 TeV mass values) corresponding to a mass of 6842  4  5 MeV, where the first error is statistical and the second is systematic. The significance of the observation is5.2σ with the look elsewhere effect taken into account, and the local significance is 5.4σ. Within the uncertainties, the mass of the resonance corre-sponding to the observed structure is consistent with the predicted mass of the Bcð2SÞ state.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently.

) [MeV] π )-2m( c )-m(B π π c m(B 0 100 200 300 400 500 600 700 Events / 20 MeV 0 2 4 6 8 10 12 14 16 18 20 -1 Ldt = 4.9 fb

s = 7 TeV Data Wrong-charge combinations ATLAS ATLAS ππ = 288 ± 5 MeV c B Q 4 MeV ± = 18 π π c B σ 6 ± = 22 π π c B N ) [MeV] π )-2m( c )-m(B π π c m(B 0 100 200 300 400 500 600 700 Events / 20 MeV 0 5 10 15 20 25 30 35 40 -1 Ldt = 19.2 fb

s = 8 TeV ATLAS ATLAS Data Wrong-charge combinations 5 MeV ± = 288 c B Q 4 MeV ± = 18 c B σ 13 ± = 35 π π π π π π c B N

FIG. 2 (color online). The Q ¼ mðBcππÞ − mðBcÞ − 2mðπÞ

distribution for the right-charge combinations (points with error bars) and for the same (wrong) pion charge combinations (shaded histogram) in 7 TeV data (top) and in 8 TeV data (bottom). The wrong-charge combinations are normalized to the same yield as the right-charge background. The solid line is the projection of the results of the unbinned maximum likelihood fit to all candidates in the range 0–700 MeV. The dashed line is the projection of the background component of the same fit.

(5)

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF,

European Union; IN2P3-CNRS, CEA-DSM/IRFU,

France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.

[1] F. Abe et al. (CDF Collaboration),Phys. Rev. Lett. 81, 2432 (1998).

[2] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 082002 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 182002 (2008).

[3] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 012001 (2008).

[4] LHCb Collaboration,Phys. Rev. Lett. 108, 251802 (2012); LHCb Collaboration,Phys. Rev. D 87, 071103 (2013);87, 112012 (2013);J. High Energy Phys. 09 (2013) 075; J. High Energy Phys. 11 (2013) 094; Phys. Rev. Lett. 111, 181801 (2013).

[5] S. Narison,Phys. Lett. B 210, 238 (1988); W. Kwong and J. L. Rosner,Phys. Rev. D 44, 212 (1991); Y.-Q. Chen and Y.-P. Kuang,Phys. Rev. D 46, 1165 (1992); P. Jain and H. J. Munczek,Phys. Rev. D 48, 5403 (1993); L. P. Fulcher, Z. Chen, and K. C. Yeong, Phys. Rev. D 47, 4122 (1993); E. J. Eichten and C. Quigg,Phys. Rev. D 49, 5845 (1994); S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and

A. V. Tkabladze,Phys. Rev. D 51, 3613 (1995); L. Motyka and K. Zalewski,Eur. Phys. J. C 4, 107 (1998); M. Baldicchi and G. M. Prosperi, Phys. Rev. D 62, 114024 (2000); N. Brambilla, A. Pineda, J. Soto, and A. Vairo,Phys. Rev. D 63, 014023 (2000); A. Pineda and A. Vairo,Phys. Rev. D 63, 054007 (2001); D. Ebert, R. N. Faustov, and V. O. Galkin,Phys. Rev. D 67, 014027 (2003); S. Godfrey,Phys. Rev. D 70, 054017 (2004); A. A. Penin, A. Pineda, V. A. Smirnov, and M. Steinhauser,Phys. Lett. B 593, 124 (2004); S. Ikhdair and R. Sever, Int. J. Mod. Phys. A 20, 4035 (2005); I. Allison, C. Davies, A. Gray, A. Kronfeld, P. Mackenzie, and J. Simone (HPQCD, Fermilab Lattice, and UKQCD Collaborations), Phys. Rev. Lett. 94, 172001 (2005); D. Ebert, R. N. Faustov, and V. O. Galkin, Eur. Phys. J. C 71, 1825 (2011); R. J. Dowdall, C. T. H. Davies, T. C. Hammant, and R. R. Horgan,Phys. Rev. D 86, 094510 (2012).

[6] ATLAS Collaboration,JINST 3, S08003 (2008).

[7] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam line. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Polar coordinatesðr; ϕÞ are used in the transverseðx; yÞ plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.

[8] ATLAS Collaboration,arXiv:1404.4562 [Eur. Phys. J. C (to be published)].

[9] ATLAS Collaboration,Eur. Phys. J. C 72, 1849 (2012). [10] ATLAS Collaboration,Eur. Phys. J. C 73, 2518 (2013). [11] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86,

010001 (2012).

[12] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [13] S. Agostinelli et al.,Nucl. Instrum. Methods Phys. Res.,

Sect. A 506, 250 (2003).

[14] T. Sjöstrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[15] T. Sjöstrand, S. Mrenna, and P. Z. Skands,Comput. Phys. Commun. 178, 852 (2008).

[16] ATLAS Collaboration, ATLAS Report No. ATL-PHYS-PUB-2011-009, 2011, http://cds.cern.ch/record/1363300; ATLAS CollaborationATLAS Report No. ATL-PHYS-PUB-2011-014, 2011, https://cds.cern.ch/record/1400677; ATLAS Collaboration, ATLAS Note ATL-PHYS-PUB-2012-003, 2012,https://cds.cern.ch/record/1474107. [17] A. V. Berezhnoy, V. V. Kiselev, and A. K. Likhoded, Z.

Phys. A 356, 79 (1996); A. V. Berezhnoy, A. K. Likhoded, and O. P. Yushchenko, Phys. At. Nucl. 59, 709 (1996); A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Phys. At. Nucl. 60, 1729 (1997); A. V. Berezhnoy,Phys. At. Nucl. 68, 1866 (2005).

[18] ATLAS Collaboration, ATLAS Report No. ATL-PHYS-2003-031, 2003,http://inspirehep.net/record/1195847. [19] E. Gross and O. Vitells,Eur. Phys. J. C 70, 525 (2010).

(6)

G. Aad,84B. Abbott,112 J. Abdallah,152 S. Abdel Khalek,116O. Abdinov,11R. Aben,106 B. Abi,113M. Abolins,89 O. S. AbouZeid,159H. Abramowicz,154 H. Abreu,153 R. Abreu,30 Y. Abulaiti,147a,147bB. S. Acharya,165a,165b,b

L. Adamczyk,38a D. L. Adams,25J. Adelman,177S. Adomeit,99T. Adye,130T. Agatonovic-Jovin,13a

J. A. Aguilar-Saavedra,125a,125f M. Agustoni,17S. P. Ahlen,22F. Ahmadov,64,c G. Aielli,134a,134bH. Akerstedt,147a,147b T. P. A. Åkesson,80 G. Akimoto,156A. V. Akimov,95 G. L. Alberghi,20a,20bJ. Albert,170 S. Albrand,55

M. J. Alconada Verzini,70M. Aleksa,30I. N. Aleksandrov,64C. Alexa,26aG. Alexander,154G. Alexandre,49T. Alexopoulos,10 M. Alhroob,165a,165cG. Alimonti,90aL. Alio,84J. Alison,31B. M. M. Allbrooke,18L. J. Allison,71P. P. Allport,73J. Almond,83 A. Aloisio,103a,103bA. Alonso,36F. Alonso,70C. Alpigiani,75A. Altheimer,35B. Alvarez Gonzalez,89M. G. Alviggi,103a,103b K. Amako,65Y. Amaral Coutinho,24a C. Amelung,23D. Amidei,88S. P. Amor Dos Santos,125a,125cA. Amorim,125a,125b S. Amoroso,48N. Amram,154G. Amundsen,23C. Anastopoulos,140L. S. Ancu,49N. Andari,30T. Andeen,35C. F. Anders,58b

G. Anders,30K. J. Anderson,31A. Andreazza,90a,90bV. Andrei,58a X. S. Anduaga,70S. Angelidakis,9 I. Angelozzi,106 P. Anger,44A. Angerami,35F. Anghinolfi,30A. V. Anisenkov,108N. Anjos,125aA. Annovi,47A. Antonaki,9M. Antonelli,47

A. Antonov,97J. Antos,145b F. Anulli,133aM. Aoki,65L. Aperio Bella,18R. Apolle,119,dG. Arabidze,89I. Aracena,144 Y. Arai,65J. P. Araque,125aA. T. H. Arce,45J-F. Arguin,94S. Argyropoulos,42M. Arik,19aA. J. Armbruster,30O. Arnaez,30 V. Arnal,81H. Arnold,48M. Arratia,28O. Arslan,21A. Artamonov,96G. Artoni,23S. Asai,156N. Asbah,42A. Ashkenazi,154

B. Åsman,147a,147bL. Asquith,6 K. Assamagan,25R. Astalos,145aM. Atkinson,166 N. B. Atlay,142B. Auerbach,6 K. Augsten,127M. Aurousseau,146b G. Avolio,30G. Azuelos,94,eY. Azuma,156M. A. Baak,30A. Baas,58aC. Bacci,135a,135b

H. Bachacou,137K. Bachas,155M. Backes,30M. Backhaus,30J. Backus Mayes,144 E. Badescu,26a P. Bagiacchi,133a,133b P. Bagnaia,133a,133bY. Bai,33aT. Bain,35J. T. Baines,130O. K. Baker,177P. Balek,128F. Balli,137E. Banas,39Sw. Banerjee,174

A. A. E. Bannoura,176V. Bansal,170 H. S. Bansil,18L. Barak,173 S. P. Baranov,95 E. L. Barberio,87D. Barberis,50a,50b M. Barbero,84T. Barillari,100M. Barisonzi,176T. Barklow,144N. Barlow,28B. M. Barnett,130R. M. Barnett,15Z. Barnovska,5 A. Baroncelli,135aG. Barone,49A. J. Barr,119F. Barreiro,81J. Barreiro Guimarães da Costa,57R. Bartoldus,144A. E. Barton,71 P. Bartos,145aV. Bartsch,150 A. Bassalat,116 A. Basye,166 R. L. Bates,53L. Batkova,145aJ. R. Batley,28M. Battaglia,138 M. Battistin,30F. Bauer,137H. S. Bawa,144,fT. Beau,79P. H. Beauchemin,162R. Beccherle,123a,123bP. Bechtle,21H. P. Beck,17

K. Becker,176 S. Becker,99M. Beckingham,171C. Becot,116 A. J. Beddall,19c A. Beddall,19c S. Bedikian,177 V. A. Bednyakov,64C. P. Bee,149L. J. Beemster,106T. A. Beermann,176M. Begel,25K. Behr,119C. Belanger-Champagne,86 P. J. Bell,49W. H. Bell,49G. Bella,154 L. Bellagamba,20a A. Bellerive,29M. Bellomo,85K. Belotskiy,97 O. Beltramello,30

O. Benary,154 D. Benchekroun,136aK. Bendtz,147a,147bN. Benekos,166 Y. Benhammou,154 E. Benhar Noccioli,49 J. A. Benitez Garcia,160b D. P. Benjamin,45J. R. Bensinger,23K. Benslama,131 S. Bentvelsen,106D. Berge,106 E. Bergeaas Kuutmann,16N. Berger,5F. Berghaus,170 J. Beringer,15C. Bernard,22P. Bernat,77C. Bernius,78 F. U. Bernlochner,170T. Berry,76P. Berta,128 C. Bertella,84G. Bertoli,147a,147bF. Bertolucci,123a,123bD. Bertsche,112 M. I. Besana,90a G. J. Besjes,105O. Bessidskaia,147a,147bM. Bessner,42N. Besson,137C. Betancourt,48 S. Bethke,100 W. Bhimji,46R. M. Bianchi,124 L. Bianchini,23 M. Bianco,30O. Biebel,99S. P. Bieniek,77K. Bierwagen,54J. Biesiada,15

M. Biglietti,135aJ. Bilbao De Mendizabal,49H. Bilokon,47M. Bindi,54S. Binet,116 A. Bingul,19c C. Bini,133a,133b C. W. Black,151J. E. Black,144K. M. Black,22D. Blackburn,139R. E. Blair,6J.-B. Blanchard,137T. Blazek,145aI. Bloch,42

C. Blocker,23W. Blum,82,a U. Blumenschein,54G. J. Bobbink,106V. S. Bobrovnikov,108S. S. Bocchetta,80A. Bocci,45 C. Bock,99C. R. Boddy,119 M. Boehler,48T. T. Boek,176 J. A. Bogaerts,30A. G. Bogdanchikov,108 A. Bogouch,91,a

C. Bohm,147aJ. Bohm,126V. Boisvert,76T. Bold,38a V. Boldea,26aA. S. Boldyrev,98M. Bomben,79M. Bona,75 M. Boonekamp,137A. Borisov,129G. Borissov,71M. Borri,83S. Borroni,42J. Bortfeldt,99V. Bortolotto,135a,135bK. Bos,106

D. Boscherini,20a M. Bosman,12H. Boterenbrood,106J. Boudreau,124 J. Bouffard,2 E. V. Bouhova-Thacker,71 D. Boumediene,34C. Bourdarios,116N. Bousson,113S. Boutouil,136d A. Boveia,31J. Boyd,30I. R. Boyko,64J. Bracinik,18

A. Brandt,8 G. Brandt,15O. Brandt,58a U. Bratzler,157 B. Brau,85J. E. Brau,115 H. M. Braun,176,a S. F. Brazzale,165a,165c B. Brelier,159K. Brendlinger,121A. J. Brennan,87R. Brenner,167S. Bressler,173K. Bristow,146cT. M. Bristow,46D. Britton,53

F. M. Brochu,28I. Brock,21R. Brock,89C. Bromberg,89J. Bronner,100G. Brooijmans,35T. Brooks,76W. K. Brooks,32b J. Brosamer,15E. Brost,115 J. Brown,55P. A. Bruckman de Renstrom,39D. Bruncko,145b R. Bruneliere,48S. Brunet,60

A. Bruni,20a G. Bruni,20a M. Bruschi,20a L. Bryngemark,80T. Buanes,14Q. Buat,143 F. Bucci,49P. Buchholz,142 R. M. Buckingham,119 A. G. Buckley,53S. I. Buda,26a I. A. Budagov,64F. Buehrer,48L. Bugge,118M. K. Bugge,118 O. Bulekov,97A. C. Bundock,73H. Burckhart,30S. Burdin,73B. Burghgrave,107S. Burke,130I. Burmeister,43E. Busato,34

(7)

J. M. Butterworth,77P. Butti,106W. Buttinger,28 A. Buzatu,53 M. Byszewski,10S. Cabrera Urbán,168D. Caforio,20a,20b O. Cakir,4aP. Calafiura,15A. Calandri,137 G. Calderini,79P. Calfayan,99R. Calkins,107L. P. Caloba,24a D. Calvet,34 S. Calvet,34R. Camacho Toro,49S. Camarda,42D. Cameron,118L. M. Caminada,15R. Caminal Armadans,12S. Campana,30 M. Campanelli,77A. Campoverde,149V. Canale,103a,103bA. Canepa,160aM. Cano Bret,75J. Cantero,81R. Cantrill,76T. Cao,40 M. D. M. Capeans Garrido,30I. Caprini,26a M. Caprini,26a M. Capua,37a,37bR. Caputo,82R. Cardarelli,134aT. Carli,30 G. Carlino,103aL. Carminati,90a,90bS. Caron,105E. Carquin,32aG. D. Carrillo-Montoya,146cJ. R. Carter,28J. Carvalho,125a,125c

D. Casadei,77M. P. Casado,12 M. Casolino,12 E. Castaneda-Miranda,146b A. Castelli,106V. Castillo Gimenez,168 N. F. Castro,125aP. Catastini,57A. Catinaccio,30 J. R. Catmore,118 A. Cattai,30G. Cattani,134a,134bS. Caughron,89 V. Cavaliere,166D. Cavalli,90a M. Cavalli-Sforza,12 V. Cavasinni,123a,123bF. Ceradini,135a,135bB. Cerio,45K. Cerny,128

A. S. Cerqueira,24b A. Cerri,150L. Cerrito,75F. Cerutti,15M. Cerv,30A. Cervelli,17S. A. Cetin,19bA. Chafaq,136a D. Chakraborty,107 I. Chalupkova,128P. Chang,166 B. Chapleau,86J. D. Chapman,28D. Charfeddine,116D. G. Charlton,18

C. C. Chau,159C. A. Chavez Barajas,150 S. Cheatham,86A. Chegwidden,89S. Chekanov,6 S. V. Chekulaev,160a G. A. Chelkov,64,gM. A. Chelstowska,88C. Chen,63H. Chen,25K. Chen,149L. Chen,33d,hS. Chen,33cX. Chen,146cY. Chen,35

H. C. Cheng,88Y. Cheng,31A. Cheplakov,64R. Cherkaoui El Moursli,136eV. Chernyatin,25,a E. Cheu,7 L. Chevalier,137 V. Chiarella,47G. Chiefari,103a,103b J. T. Childers,6 A. Chilingarov,71G. Chiodini,72a A. S. Chisholm,18 R. T. Chislett,77 A. Chitan,26a M. V. Chizhov,64 S. Chouridou,9B. K. B. Chow,99D. Chromek-Burckhart,30M. L. Chu,152J. Chudoba,126

J. J. Chwastowski,39L. Chytka,114 G. Ciapetti,133a,133bA. K. Ciftci,4aR. Ciftci,4a D. Cinca,53V. Cindro,74A. Ciocio,15 P. Cirkovic,13b Z. H. Citron,173 M. Citterio,90aM. Ciubancan,26a A. Clark,49 P. J. Clark,46R. N. Clarke,15 W. Cleland,124

J. C. Clemens,84C. Clement,147a,147bY. Coadou,84M. Cobal,165a,165cA. Coccaro,139J. Cochran,63 L. Coffey,23 J. G. Cogan,144J. Coggeshall,166B. Cole,35S. Cole,107 A. P. Colijn,106J. Collot,55 T. Colombo,58cG. Colon,85 G. Compostella,100 P. Conde Muiño,125a,125bE. Coniavitis,48M. C. Conidi,12S. H. Connell,146bI. A. Connelly,76 S. M. Consonni,90a,90b V. Consorti,48S. Constantinescu,26a C. Conta,120a,120b G. Conti,57F. Conventi,103a,iM. Cooke,15

B. D. Cooper,77 A. M. Cooper-Sarkar,119N. J. Cooper-Smith,76K. Copic,15 T. Cornelissen,176M. Corradi,20a F. Corriveau,86,jA. Corso-Radu,164 A. Cortes-Gonzalez,12G. Cortiana,100 G. Costa,90a M. J. Costa,168D. Costanzo,140

D. Côté,8 G. Cottin,28 G. Cowan,76B. E. Cox,83K. Cranmer,109G. Cree,29S. Crépé-Renaudin,55F. Crescioli,79 W. A. Cribbs,147a,147bM. Crispin Ortuzar,119 M. Cristinziani,21 V. Croft,105 G. Crosetti,37a,37b C.-M. Cuciuc,26a T. Cuhadar Donszelmann,140J. Cummings,177M. Curatolo,47C. Cuthbert,151H. Czirr,142P. Czodrowski,3Z. Czyczula,177 S. D’Auria,53M. D’Onofrio,73M. J. Da Cunha Sargedas De Sousa,125a,125bC. Da Via,83W. Dabrowski,38aA. Dafinca,119

T. Dai,88O. Dale,14F. Dallaire,94C. Dallapiccola,85M. Dam,36A. C. Daniells,18M. Dano Hoffmann,137V. Dao,105 G. Darbo,50aS. Darmora,8 J. A. Dassoulas,42A. Dattagupta,60W. Davey,21C. David,170T. Davidek,128E. Davies,119,d

M. Davies,154 O. Davignon,79A. R. Davison,77 P. Davison,77Y. Davygora,58a E. Dawe,143I. Dawson,140 R. K. Daya-Ishmukhametova,85K. De,8 R. de Asmundis,103a S. De Castro,20a,20bS. De Cecco,79N. De Groot,105 P. de Jong,106H. De la Torre,81F. De Lorenzi,63L. De Nooij,106D. De Pedis,133aA. De Salvo,133aU. De Sanctis,165a,165b

A. De Santo,150 J. B. De Vivie De Regie,116 W. J. Dearnaley,71 R. Debbe,25C. Debenedetti,138 B. Dechenaux,55 D. V. Dedovich,64I. Deigaard,106 J. Del Peso,81T. Del Prete,123a,123bF. Deliot,137 C. M. Delitzsch,49M. Deliyergiyev,74 A. Dell’Acqua,30L. Dell’Asta,22M. Dell’Orso,123a,123b

M. Della Pietra,103a,iD. della Volpe,49M. Delmastro,5P. A. Delsart,55 C. Deluca,106S. Demers,177M. Demichev,64A. Demilly,79S. P. Denisov,129D. Derendarz,39J. E. Derkaoui,136dF. Derue,79

P. Dervan,73K. Desch,21 C. Deterre,42P. O. Deviveiros,106 A. Dewhurst,130S. Dhaliwal,106 A. Di Ciaccio,134a,134b L. Di Ciaccio,5 A. Di Domenico,133a,133bC. Di Donato,103a,103bA. Di Girolamo,30B. Di Girolamo,30A. Di Mattia,153 B. Di Micco,135a,135bR. Di Nardo,47A. Di Simone,48R. Di Sipio,20a,20b D. Di Valentino,29 F. A. Dias,46M. A. Diaz,32a E. B. Diehl,88J. Dietrich,42T. A. Dietzsch,58aS. Diglio,84A. Dimitrievska,13aJ. Dingfelder,21C. Dionisi,133a,133bP. Dita,26a

S. Dita,26a F. Dittus,30F. Djama,84T. Djobava,51bM. A. B. do Vale,24c A. Do Valle Wemans,125a,125gT. K. O. Doan,5 D. Dobos,30C. Doglioni,49T. Doherty,53T. Dohmae,156J. Dolejsi,128Z. Dolezal,128B. A. Dolgoshein,97,aM. Donadelli,24d

S. Donati,123a,123bP. Dondero,120a,120bJ. Donini,34J. Dopke,130A. Doria,103aM. T. Dova,70A. T. Doyle,53M. Dris,10 J. Dubbert,88S. Dube,15E. Dubreuil,34E. Duchovni,173 G. Duckeck,99O. A. Ducu,26a D. Duda,176 A. Dudarev,30 F. Dudziak,63L. Duflot,116L. Duguid,76M. Dührssen,30M. Dunford,58aH. Duran Yildiz,4aM. Düren,52A. Durglishvili,51b

M. Dwuznik,38a M. Dyndal,38a J. Ebke,99W. Edson,2 N. C. Edwards,46W. Ehrenfeld,21 T. Eifert,144 G. Eigen,14 K. Einsweiler,15T. Ekelof,167 M. El Kacimi,136cM. Ellert,167 S. Elles,5 F. Ellinghaus,82N. Ellis,30 J. Elmsheuser,99 M. Elsing,30D. Emeliyanov,130Y. Enari,156O. C. Endner,82M. Endo,117R. Engelmann,149J. Erdmann,177A. Ereditato,17

(8)

D. Eriksson,147aG. Ernis,176 J. Ernst,2 M. Ernst,25J. Ernwein,137 D. Errede,166S. Errede,166 E. Ertel,82M. Escalier,116 H. Esch,43C. Escobar,124 B. Esposito,47 A. I. Etienvre,137 E. Etzion,154 H. Evans,60A. Ezhilov,122L. Fabbri,20a,20b G. Facini,31R. M. Fakhrutdinov,129S. Falciano,133aR. J. Falla,77J. Faltova,128 Y. Fang,33aM. Fanti,90a,90b A. Farbin,8 A. Farilla,135aT. Farooque,12S. Farrell,164S. M. Farrington,171P. Farthouat,30F. Fassi,136eP. Fassnacht,30D. Fassouliotis,9

A. Favareto,50a,50bL. Fayard,116 P. Federic,145aO. L. Fedin,122,k W. Fedorko,169M. Fehling-Kaschek,48S. Feigl,30 L. Feligioni,84C. Feng,33d E. J. Feng,6 H. Feng,88A. B. Fenyuk,129S. Fernandez Perez,30S. Ferrag,53J. Ferrando,53

A. Ferrari,167 P. Ferrari,106R. Ferrari,120aD. E. Ferreira de Lima,53A. Ferrer,168D. Ferrere,49 C. Ferretti,88 A. Ferretto Parodi,50a,50b M. Fiascaris,31F. Fiedler,82A. Filipčič,74M. Filipuzzi,42F. Filthaut,105M. Fincke-Keeler,170

K. D. Finelli,151M. C. N. Fiolhais,125a,125c L. Fiorini,168A. Firan,40A. Fischer,2 J. Fischer,176 W. C. Fisher,89 E. A. Fitzgerald,23M. Flechl,48I. Fleck,142P. Fleischmann,88S. Fleischmann,176G. T. Fletcher,140G. Fletcher,75T. Flick,176 A. Floderus,80L. R. Flores Castillo,174,lA. C. Florez Bustos,160bM. J. Flowerdew,100A. Formica,137A. Forti,83D. Fortin,160a D. Fournier,116H. Fox,71S. Fracchia,12P. Francavilla,79M. Franchini,20a,20bS. Franchino,30D. Francis,30M. Franklin,57 S. Franz,61M. Fraternali,120a,120bS. T. French,28C. Friedrich,42F. Friedrich,44D. Froidevaux,30J. A. Frost,28C. Fukunaga,157 E. Fullana Torregrosa,82B. G. Fulsom,144J. Fuster,168C. Gabaldon,55O. Gabizon,173A. Gabrielli,20a,20bA. Gabrielli,133a,133b S. Gadatsch,106S. Gadomski,49G. Gagliardi,50a,50bP. Gagnon,60C. Galea,105B. Galhardo,125a,125cE. J. Gallas,119V. Gallo,17 B. J. Gallop,130P. Gallus,127G. Galster,36K. K. Gan,110R. P. Gandrajula,62J. Gao,33b,hY. S. Gao,144,fF. M. Garay Walls,46 F. Garberson,177C. García,168J. E. García Navarro,168M. Garcia-Sciveres,15R. W. Gardner,31N. Garelli,144V. Garonne,30

C. Gatti,47G. Gaudio,120aB. Gaur,142L. Gauthier,94P. Gauzzi,133a,133bI. L. Gavrilenko,95C. Gay,169 G. Gaycken,21 E. N. Gazis,10P. Ge,33dZ. Gecse,169 C. N. P. Gee,130D. A. A. Geerts,106 Ch. Geich-Gimbel,21K. Gellerstedt,147a,147b C. Gemme,50aA. Gemmell,53M. H. Genest,55S. Gentile,133a,133bM. George,54S. George,76D. Gerbaudo,164A. Gershon,154

H. Ghazlane,136b N. Ghodbane,34B. Giacobbe,20a S. Giagu,133a,133bV. Giangiobbe,12 P. Giannetti,123a,123bF. Gianotti,30 B. Gibbard,25S. M. Gibson,76M. Gilchriese,15T. P. S. Gillam,28D. Gillberg,30G. Gilles,34D. M. Gingrich,3,eN. Giokaris,9

M. P. Giordani,165a,165c R. Giordano,103a,103bF. M. Giorgi,20a F. M. Giorgi,16P. F. Giraud,137D. Giugni,90a C. Giuliani,48 M. Giulini,58bB. K. Gjelsten,118S. Gkaitatzis,155 I. Gkialas,155,mL. K. Gladilin,98C. Glasman,81J. Glatzer,30 P. C. F. Glaysher,46A. Glazov,42 G. L. Glonti,64M. Goblirsch-Kolb,100 J. R. Goddard,75 J. Godfrey,143J. Godlewski,30 C. Goeringer,82S. Goldfarb,88T. Golling,177D. Golubkov,129A. Gomes,125a,125b,125dL. S. Gomez Fajardo,42R. Gonçalo,125a J. Goncalves Pinto Firmino Da Costa,137L. Gonella,21S. González de la Hoz,168G. Gonzalez Parra,12S. Gonzalez-Sevilla,49 L. Goossens,30P. A. Gorbounov,96H. A. Gordon,25I. Gorelov,104B. Gorini,30E. Gorini,72a,72bA. Gorišek,74E. Gornicki,39 A. T. Goshaw,6 C. Gössling,43M. I. Gostkin,64M. Gouighri,136aD. Goujdami,136cM. P. Goulette,49A. G. Goussiou,139

C. Goy,5 S. Gozpinar,23 H. M. X. Grabas,137L. Graber,54 I. Grabowska-Bold,38a P. Grafström,20a,20b K-J. Grahn,42 J. Gramling,49E. Gramstad,118S. Grancagnolo,16V. Grassi,149V. Gratchev,122 H. M. Gray,30E. Graziani,135a O. G. Grebenyuk,122Z. D. Greenwood,78,nK. Gregersen,77I. M. Gregor,42P. Grenier,144 J. Griffiths,8 A. A. Grillo,138 K. Grimm,71 S. Grinstein,12,o Ph. Gris,34Y. V. Grishkevich,98J.-F. Grivaz,116J. P. Grohs,44A. Grohsjean,42E. Gross,173

J. Grosse-Knetter,54G. C. Grossi,134a,134bJ. Groth-Jensen,173 Z. J. Grout,150L. Guan,33b F. Guescini,49D. Guest,177 O. Gueta,154C. Guicheney,34E. Guido,50a,50bT. Guillemin,116S. Guindon,2U. Gul,53C. Gumpert,44J. Gunther,127J. Guo,35

S. Gupta,119 P. Gutierrez,112 N. G. Gutierrez Ortiz,53C. Gutschow,77N. Guttman,154 C. Guyot,137 C. Gwenlan,119 C. B. Gwilliam,73A. Haas,109C. Haber,15H. K. Hadavand,8 N. Haddad,136eP. Haefner,21S. Hageböck,21 Z. Hajduk,39 H. Hakobyan,178 M. Haleem,42D. Hall,119G. Halladjian,89 K. Hamacher,176P. Hamal,114K. Hamano,170M. Hamer,54 A. Hamilton,146aS. Hamilton,162P. G. Hamnett,42L. Han,33bK. Hanagaki,117 K. Hanawa,156M. Hance,15P. Hanke,58a R. Hanna,137J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36K. Hara,161 A. S. Hard,174 T. Harenberg,176F. Hariri,116

S. Harkusha,91D. Harper,88R. D. Harrington,46O. M. Harris,139P. F. Harrison,171 F. Hartjes,106 S. Hasegawa,102 Y. Hasegawa,141 A. Hasib,112S. Hassani,137S. Haug,17M. Hauschild,30R. Hauser,89M. Havranek,126 C. M. Hawkes,18

R. J. Hawkings,30 A. D. Hawkins,80T. Hayashi,161D. Hayden,89C. P. Hays,119H. S. Hayward,73S. J. Haywood,130 S. J. Head,18T. Heck,82V. Hedberg,80L. Heelan,8S. Heim,121T. Heim,176 B. Heinemann,15L. Heinrich,109 J. Hejbal,126

L. Helary,22C. Heller,99M. Heller,30S. Hellman,147a,147bD. Hellmich,21C. Helsens,30J. Henderson,119 R. C. W. Henderson,71Y. Heng,174C. Hengler,42A. Henrichs,177A. M. Henriques Correia,30S. Henrot-Versille,116

C. Hensel,54G. H. Herbert,16Y. Hernández Jiménez,168R. Herrberg-Schubert,16 G. Herten,48R. Hertenberger,99 L. Hervas,30G. G. Hesketh,77N. P. Hessey,106R. Hickling,75E. Higón-Rodriguez,168E. Hill,170J. C. Hill,28K. H. Hiller,42

(9)

M. C. Hodgkinson,140P. Hodgson,140A. Hoecker,30M. R. Hoeferkamp,104J. Hoffman,40D. Hoffmann,84J. I. Hofmann,58a M. Hohlfeld,82T. R. Holmes,15T. M. Hong,121L. Hooft van Huysduynen,109J-Y. Hostachy,55S. Hou,152A. Hoummada,136a J. Howard,119J. Howarth,42M. Hrabovsky,114I. Hristova,16J. Hrivnac,116T. Hryn’ova,5C. Hsu,146cP. J. Hsu,82S.-C. Hsu,139 D. Hu,35X. Hu,25Y. Huang,42Z. Hubacek,30F. Hubaut,84F. Huegging,21T. B. Huffman,119E. W. Hughes,35G. Hughes,71 M. Huhtinen,30T. A. Hülsing,82M. Hurwitz,15N. Huseynov,64,c J. Huston,89J. Huth,57G. Iacobucci,49G. Iakovidis,10

I. Ibragimov,142L. Iconomidou-Fayard,116E. Ideal,177P. Iengo,103aO. Igonkina,106T. Iizawa,172Y. Ikegami,65 K. Ikematsu,142M. Ikeno,65Y. Ilchenko,31,p D. Iliadis,155N. Ilic,159Y. Inamaru,66T. Ince,100P. Ioannou,9M. Iodice,135a

K. Iordanidou,9V. Ippolito,57 A. Irles Quiles,168C. Isaksson,167M. Ishino,67 M. Ishitsuka,158R. Ishmukhametov,110 C. Issever,119S. Istin,19a J. M. Iturbe Ponce,83R. Iuppa,134a,134bJ. Ivarsson,80W. Iwanski,39H. Iwasaki,65J. M. Izen,41 V. Izzo,103aB. Jackson,121M. Jackson,73P. Jackson,1M. R. Jaekel,30V. Jain,2K. Jakobs,48S. Jakobsen,30T. Jakoubek,126 J. Jakubek,127D. O. Jamin,152D. K. Jana,78E. Jansen,77H. Jansen,30J. Janssen,21M. Janus,171G. Jarlskog,80N. Javadov,64,c T. Javůrek,48L. Jeanty,15J. Jejelava,51a,qG.-Y. Jeng,151D. Jennens,87P. Jenni,48,rJ. Jentzsch,43C. Jeske,171 S. Jézéquel,5 H. Ji,174W. Ji,82J. Jia,149Y. Jiang,33bM. Jimenez Belenguer,42S. Jin,33aA. Jinaru,26aO. Jinnouchi,158M. D. Joergensen,36 K. E. Johansson,147a,147bP. Johansson,140 K. A. Johns,7 K. Jon-And,147a,147bG. Jones,171R. W. L. Jones,71T. J. Jones,73

J. Jongmanns,58a P. M. Jorge,125a,125bK. D. Joshi,83J. Jovicevic,148X. Ju,174 C. A. Jung,43 R. M. Jungst,30P. Jussel,61 A. Juste Rozas,12,oM. Kaci,168A. Kaczmarska,39 M. Kado,116H. Kagan,110M. Kagan,144 E. Kajomovitz,45 C. W. Kalderon,119 S. Kama,40A. Kamenshchikov,129N. Kanaya,156M. Kaneda,30S. Kaneti,28V. A. Kantserov,97 J. Kanzaki,65B. Kaplan,109A. Kapliy,31D. Kar,53K. Karakostas,10N. Karastathis,10M. Karnevskiy,82S. N. Karpov,64

Z. M. Karpova,64K. Karthik,109 V. Kartvelishvili,71A. N. Karyukhin,129 L. Kashif,174 G. Kasieczka,58b R. D. Kass,110 A. Kastanas,14Y. Kataoka,156A. Katre,49J. Katzy,42V. Kaushik,7 K. Kawagoe,69T. Kawamoto,156 G. Kawamura,54 S. Kazama,156V. F. Kazanin,108 M. Y. Kazarinov,64R. Keeler,170R. Kehoe,40 M. Keil,54J. S. Keller,42J. J. Kempster,76

H. Keoshkerian,5 O. Kepka,126 B. P. Kerševan,74 S. Kersten,176K. Kessoku,156 J. Keung,159F. Khalil-zada,11 H. Khandanyan,147a,147bA. Khanov,113A. Khodinov,97 A. Khomich,58a T. J. Khoo,28G. Khoriauli,21A. Khoroshilov,176

V. Khovanskiy,96E. Khramov,64J. Khubua,51bH. Y. Kim,8 H. Kim,147a,147bS. H. Kim,161 N. Kimura,172O. Kind,16 B. T. King,73M. King,168R. S. B. King,119S. B. King,169J. Kirk,130A. E. Kiryunin,100T. Kishimoto,66D. Kisielewska,38a

F. Kiss,48 T. Kittelmann,124 K. Kiuchi,161E. Kladiva,145bM. Klein,73U. Klein,73K. Kleinknecht,82P. Klimek,147a,147b A. Klimentov,25R. Klingenberg,43J. A. Klinger,83T. Klioutchnikova,30P. F. Klok,105E.-E. Kluge,58aP. Kluit,106S. Kluth,100 E. Kneringer,61E. B. F. G. Knoops,84A. Knue,53D. Kobayashi,158T. Kobayashi,156M. Kobel,44M. Kocian,144P. Kodys,128 P. Koevesarki,21T. Koffas,29 E. Koffeman,106L. A. Kogan,119S. Kohlmann,176Z. Kohout,127 T. Kohriki,65T. Koi,144 H. Kolanoski,16I. Koletsou,5J. Koll,89A. A. Komar,95,a Y. Komori,156T. Kondo,65N. Kondrashova,42K. Köneke,48 A. C. König,105S. König,82T. Kono,65,sR. Konoplich,109,tN. Konstantinidis,77R. Kopeliansky,153S. Koperny,38a L. Köpke,82A. K. Kopp,48K. Korcyl,39K. Kordas,155 A. Korn,77A. A. Korol,108,u I. Korolkov,12E. V. Korolkova,140

V. A. Korotkov,129 O. Kortner,100S. Kortner,100V. V. Kostyukhin,21V. M. Kotov,64A. Kotwal,45C. Kourkoumelis,9 V. Kouskoura,155 A. Koutsman,160aR. Kowalewski,170T. Z. Kowalski,38a W. Kozanecki,137 A. S. Kozhin,129V. Kral,127

V. A. Kramarenko,98G. Kramberger,74D. Krasnopevtsev,97M. W. Krasny,79A. Krasznahorkay,30J. K. Kraus,21 A. Kravchenko,25S. Kreiss,109M. Kretz,58cJ. Kretzschmar,73K. Kreutzfeldt,52P. Krieger,159K. Kroeninger,54H. Kroha,100 J. Kroll,121J. Kroseberg,21J. Krstic,13a U. Kruchonak,64 H. Krüger,21T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64 A. Kruse,174M. C. Kruse,45 M. Kruskal,22T. Kubota,87S. Kuday,4aS. Kuehn,48A. Kugel,58c A. Kuhl,138 T. Kuhl,42

V. Kukhtin,64 Y. Kulchitsky,91 S. Kuleshov,32b M. Kuna,133a,133bJ. Kunkle,121 A. Kupco,126H. Kurashige,66 Y. A. Kurochkin,91R. Kurumida,66V. Kus,126E. S. Kuwertz,148M. Kuze,158J. Kvita,114A. La Rosa,49L. La Rotonda,37a,37b

C. Lacasta,168 F. Lacava,133a,133bJ. Lacey,29H. Lacker,16D. Lacour,79V. R. Lacuesta,168 E. Ladygin,64R. Lafaye,5 B. Laforge,79T. Lagouri,177S. Lai,48H. Laier,58aL. Lambourne,77S. Lammers,60C. L. Lampen,7W. Lampl,7E. Lançon,137 U. Landgraf,48M. P. J. Landon,75V. S. Lang,58aA. J. Lankford,164F. Lanni,25K. Lantzsch,30S. Laplace,79C. Lapoire,21 J. F. Laporte,137T. Lari,90aM. Lassnig,30P. Laurelli,47W. Lavrijsen,15A. T. Law,138P. Laycock,73B. T. Le,55O. Le Dortz,79 E. Le Guirriec,84E. Le Menedeu,12T. LeCompte,6F. Ledroit-Guillon,55C. A. Lee,152H. Lee,106J. S. H. Lee,117S. C. Lee,152 L. Lee,177G. Lefebvre,79M. Lefebvre,170F. Legger,99C. Leggett,15A. Lehan,73M. Lehmacher,21G. Lehmann Miotto,30 X. Lei,7 W. A. Leight,29A. Leisos,155A. G. Leister,177M. A. L. Leite,24d R. Leitner,128D. Lellouch,173 B. Lemmer,54 K. J. C. Leney,77T. Lenz,106G. Lenzen,176B. Lenzi,30R. Leone,7S. Leone,123a,123bK. Leonhardt,44C. Leonidopoulos,46 S. Leontsinis,10C. Leroy,94C. G. Lester,28C. M. Lester,121M. Levchenko,122J. Levêque,5 D. Levin,88L. J. Levinson,173

(10)

M. Levy,18A. Lewis,119G. H. Lewis,109A. M. Leyko,21M. Leyton,41B. Li,33b,vB. Li,84H. Li,149H. L. Li,31L. Li,45L. Li,33e S. Li,45Y. Li,33c,w Z. Liang,138H. Liao,34 B. Liberti,134aP. Lichard,30 K. Lie,166J. Liebal,21 W. Liebig,14C. Limbach,21 A. Limosani,87S. C. Lin,152,xT. H. Lin,82F. Linde,106B. E. Lindquist,149J. T. Linnemann,89E. Lipeles,121A. Lipniacka,14 M. Lisovyi,42T. M. Liss,166D. Lissauer,25A. Lister,169A. M. Litke,138B. Liu,152D. Liu,152J. B. Liu,33bK. Liu,33b,yL. Liu,88 M. Liu,45M. Liu,33bY. Liu,33bM. Livan,120a,120bS. S. A. Livermore,119 A. Lleres,55J. Llorente Merino,81 S. L. Lloyd,75

F. Lo Sterzo,152 E. Lobodzinska,42P. Loch,7 W. S. Lockman,138 T. Loddenkoetter,21F. K. Loebinger,83

A. E. Loevschall-Jensen,36A. Loginov,177 C. W. Loh,169 T. Lohse,16K. Lohwasser,42M. Lokajicek,126V. P. Lombardo,5 B. A. Long,22J. D. Long,88R. E. Long,71L. Lopes,125aD. Lopez Mateos,57B. Lopez Paredes,140I. Lopez Paz,12J. Lorenz,99 N. Lorenzo Martinez,60M. Losada,163P. Loscutoff,15X. Lou,41A. Lounis,116J. Love,6P. A. Love,71A. J. Lowe,144,fF. Lu,33a

H. J. Lubatti,139 C. Luci,133a,133bA. Lucotte,55 F. Luehring,60W. Lukas,61L. Luminari,133a O. Lundberg,147a,147b B. Lund-Jensen,148 M. Lungwitz,82D. Lynn,25R. Lysak,126E. Lytken,80H. Ma,25 L. L. Ma,33dG. Maccarrone,47 A. Macchiolo,100J. Machado Miguens,125a,125bD. Macina,30D. Madaffari,84R. Madar,48H. J. Maddocks,71W. F. Mader,44

A. Madsen,167M. Maeno,8 T. Maeno,25E. Magradze,54 K. Mahboubi,48 J. Mahlstedt,106 S. Mahmoud,73C. Maiani,137 C. Maidantchik,24a A. A. Maier,100 A. Maio,125a,125b,125d S. Majewski,115 Y. Makida,65N. Makovec,116P. Mal,137,z

B. Malaescu,79Pa. Malecki,39V. P. Maleev,122 F. Malek,55U. Mallik,62 D. Malon,6 C. Malone,144 S. Maltezos,10 V. M. Malyshev,108 S. Malyukov,30J. Mamuzic,13b B. Mandelli,30L. Mandelli,90a I. Mandić,74R. Mandrysch,62

J. Maneira,125a,125bA. Manfredini,100L. Manhaes de Andrade Filho,24b J. A. Manjarres Ramos,160b A. Mann,99 P. M. Manning,138A. Manousakis-Katsikakis,9B. Mansoulie,137R. Mantifel,86L. Mapelli,30L. March,168J. F. Marchand,29 G. Marchiori,79M. Marcisovsky,126C. P. Marino,170M. Marjanovic,13aC. N. Marques,125aF. Marroquim,24aS. P. Marsden,83

Z. Marshall,15 L. F. Marti,17 S. Marti-Garcia,168 B. Martin,30B. Martin,89T. A. Martin,171V. J. Martin,46 B. Martin dit Latour,14H. Martinez,137M. Martinez,12,oS. Martin-Haugh,130A. C. Martyniuk,77M. Marx,139F. Marzano,133a A. Marzin,30L. Masetti,82T. Mashimo,156R. Mashinistov,95J. Masik,83A. L. Maslennikov,108I. Massa,20a,20bN. Massol,5 P. Mastrandrea,149A. Mastroberardino,37a,37bT. Masubuchi,156P. Mättig,176J. Mattmann,82J. Maurer,26aS. J. Maxfield,73

D. A. Maximov,108,u R. Mazini,152 L. Mazzaferro,134a,134bG. Mc Goldrick,159 S. P. Mc Kee,88A. McCarn,88 R. L. McCarthy,149T. G. McCarthy,29N. A. McCubbin,130K. W. McFarlane,56,a J. A. Mcfayden,77G. Mchedlidze,54

S. J. McMahon,130 R. A. McPherson,170,jA. Meade,85J. Mechnich,106M. Medinnis,42S. Meehan,31S. Mehlhase,99 A. Mehta,73K. Meier,58aC. Meineck,99B. Meirose,80C. Melachrinos,31 B. R. Mellado Garcia,146cF. Meloni,17 A. Mengarelli,20a,20bS. Menke,100 E. Meoni,162 K. M. Mercurio,57S. Mergelmeyer,21N. Meric,137 P. Mermod,49 L. Merola,103a,103bC. Meroni,90a F. S. Merritt,31H. Merritt,110 A. Messina,30,aaJ. Metcalfe,25A. S. Mete,164 C. Meyer,82 C. Meyer,31J-P. Meyer,137J. Meyer,30R. P. Middleton,130S. Migas,73L. Mijović,21G. Mikenberg,173M. Mikestikova,126 M. Mikuž,74A. Milic,30D. W. Miller,31C. Mills,46A. Milov,173D. A. Milstead,147a,147bD. Milstein,173A. A. Minaenko,129 I. A. Minashvili,64A. I. Mincer,109B. Mindur,38a M. Mineev,64Y. Ming,174 L. M. Mir,12 G. Mirabelli,133aT. Mitani,172

J. Mitrevski,99V. A. Mitsou,168 S. Mitsui,65A. Miucci,49 P. S. Miyagawa,140 J. U. Mjörnmark,80 T. Moa,147a,147b K. Mochizuki,84S. Mohapatra,35W. Mohr,48S. Molander,147a,147bR. Moles-Valls,168K. Mönig,42C. Monini,55J. Monk,36

E. Monnier,84J. Montejo Berlingen,12F. Monticelli,70S. Monzani,133a,133bR. W. Moore,3 A. Moraes,53N. Morange,62 D. Moreno,82M. Moreno Llácer,54P. Morettini,50a M. Morgenstern,44M. Morii,57 S. Moritz,82A. K. Morley,148 G. Mornacchi,30J. D. Morris,75L. Morvaj,102H. G. Moser,100M. Mosidze,51bJ. Moss,110K. Motohashi,158R. Mount,144

E. Mountricha,25 S. V. Mouraviev,95,aE. J. W. Moyse,85 S. Muanza,84R. D. Mudd,18F. Mueller,58a J. Mueller,124 K. Mueller,21T. Mueller,28T. Mueller,82D. Muenstermann,49Y. Munwes,154J. A. Murillo Quijada,18W. J. Murray,171,130 H. Musheghyan,54E. Musto,153A. G. Myagkov,129,bbM. Myska,127O. Nackenhorst,54J. Nadal,54K. Nagai,61R. Nagai,158 Y. Nagai,84K. Nagano,65 A. Nagarkar,110 Y. Nagasaka,59M. Nagel,100A. M. Nairz,30Y. Nakahama,30K. Nakamura,65

T. Nakamura,156I. Nakano,111 H. Namasivayam,41G. Nanava,21R. Narayan,58b T. Nattermann,21T. Naumann,42 G. Navarro,163R. Nayyar,7 H. A. Neal,88P. Yu. Nechaeva,95 T. J. Neep,83P. D. Nef,144 A. Negri,120a,120bG. Negri,30 M. Negrini,20aS. Nektarijevic,49A. Nelson,164T. K. Nelson,144S. Nemecek,126P. Nemethy,109A. A. Nepomuceno,24a

M. Nessi,30,ccM. S. Neubauer,166 M. Neumann,176R. M. Neves,109P. Nevski,25 P. R. Newman,18D. H. Nguyen,6 R. B. Nickerson,119R. Nicolaidou,137B. Nicquevert,30J. Nielsen,138N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,129,bb I. Nikolic-Audit,79K. Nikolics,49K. Nikolopoulos,18P. Nilsson,8Y. Ninomiya,156A. Nisati,133aR. Nisius,100T. Nobe,158 L. Nodulman,6M. Nomachi,117I. Nomidis,155S. Norberg,112M. Nordberg,30O. Novgorodova,44S. Nowak,100M. Nozaki,65 L. Nozka,114 K. Ntekas,10G. Nunes Hanninger,87T. Nunnemann,99 E. Nurse,77F. Nuti,87B. J. O’Brien,46F. O’grady,7

(11)

D. C. O’Neil,143V. O’Shea,53 F. G. Oakham,29,e H. Oberlack,100T. Obermann,21J. Ocariz,79A. Ochi,66M. I. Ochoa,77 S. Oda,69S. Odaka,65H. Ogren,60A. Oh,83S. H. Oh,45C. C. Ohm,30 H. Ohman,167 T. Ohshima,102W. Okamura,117 H. Okawa,25Y. Okumura,31T. Okuyama,156A. Olariu,26aA. G. Olchevski,64S. A. Olivares Pino,46D. Oliveira Damazio,25 E. Oliver Garcia,168A. Olszewski,39J. Olszowska,39A. Onofre,125a,125eP. U. E. Onyisi,31,pC. J. Oram,160aM. J. Oreglia,31 Y. Oren,154 D. Orestano,135a,135b N. Orlando,72a,72b C. Oropeza Barrera,53R. S. Orr,159B. Osculati,50a,50bR. Ospanov,121 G. Otero y Garzon,27H. Otono,69M. Ouchrif,136d E. A. Ouellette,170 F. Ould-Saada,118A. Ouraou,137 K. P. Oussoren,106

Q. Ouyang,33aA. Ovcharova,15M. Owen,83V. E. Ozcan,19a N. Ozturk,8 K. Pachal,119A. Pacheco Pages,12 C. Padilla Aranda,12M. Pagáčová,48S. Pagan Griso,15E. Paganis,140 C. Pahl,100 F. Paige,25P. Pais,85K. Pajchel,118 G. Palacino,160bS. Palestini,30M. Palka,38bD. Pallin,34A. Palma,125a,125bJ. D. Palmer,18Y. B. Pan,174E. Panagiotopoulou,10

J. G. Panduro Vazquez,76P. Pani,106N. Panikashvili,88S. Panitkin,25D. Pantea,26a L. Paolozzi,134a,134b

Th. D. Papadopoulou,10K. Papageorgiou,155,m A. Paramonov,6 D. Paredes Hernandez,34M. A. Parker,28F. Parodi,50a,50b J. A. Parsons,35U. Parzefall,48E. Pasqualucci,133a S. Passaggio,50a A. Passeri,135aF. Pastore,135a,135b,a Fr. Pastore,76 G. Pásztor,29S. Pataraia,176N. D. Patel,151J. R. Pater,83 S. Patricelli,103a,103bT. Pauly,30J. Pearce,170 M. Pedersen,118

S. Pedraza Lopez,168 R. Pedro,125a,125bS. V. Peleganchuk,108 D. Pelikan,167H. Peng,33b B. Penning,31J. Penwell,60 D. V. Perepelitsa,25 E. Perez Codina,160a M. T. Pérez García-Estañ,168 V. Perez Reale,35L. Perini,90a,90bH. Pernegger,30 R. Perrino,72aR. Peschke,42V. D. Peshekhonov,64K. Peters,30R. F. Y. Peters,83B. A. Petersen,30T. C. Petersen,36E. Petit,42

A. Petridis,147a,147bC. Petridou,155 E. Petrolo,133aF. Petrucci,135a,135bN. E. Pettersson,158 R. Pezoa,32bP. W. Phillips,130 G. Piacquadio,144E. Pianori,171A. Picazio,49E. Piccaro,75M. Piccinini,20a,20bR. Piegaia,27D. T. Pignotti,110J. E. Pilcher,31

A. D. Pilkington,77J. Pina,125a,125b,125d M. Pinamonti,165a,165c,dd A. Pinder,119J. L. Pinfold,3 A. Pingel,36B. Pinto,125a S. Pires,79 M. Pitt,173 C. Pizio,90a,90bL. Plazak,145aM.-A. Pleier,25 V. Pleskot,128 E. Plotnikova,64P. Plucinski,147a,147b S. Poddar,58a F. Podlyski,34R. Poettgen,82L. Poggioli,116D. Pohl,21 M. Pohl,49G. Polesello,120aA. Policicchio,37a,37b

R. Polifka,159A. Polini,20a C. S. Pollard,45 V. Polychronakos,25K. Pommès,30L. Pontecorvo,133aB. G. Pope,89 G. A. Popeneciu,26bD. S. Popovic,13aA. Poppleton,30X. Portell Bueso,12S. Pospisil,127 K. Potamianos,15I. N. Potrap,64

C. J. Potter,150C. T. Potter,115G. Poulard,30 J. Poveda,60V. Pozdnyakov,64P. Pralavorio,84A. Pranko,15S. Prasad,30 R. Pravahan,8 S. Prell,63D. Price,83 J. Price,73L. E. Price,6 D. Prieur,124M. Primavera,72a M. Proissl,46K. Prokofiev,47 F. Prokoshin,32bE. Protopapadaki,137S. Protopopescu,25J. Proudfoot,6 M. Przybycien,38a H. Przysiezniak,5E. Ptacek,115 D. Puddu,135a,135bE. Pueschel,85D. Puldon,149 M. Purohit,25,eeP. Puzo,116J. Qian,88G. Qin,53Y. Qin,83 A. Quadt,54 D. R. Quarrie,15W. B. Quayle,165a,165bM. Queitsch-Maitland,83D. Quilty,53A. Qureshi,160b V. Radeka,25V. Radescu,42

S. K. Radhakrishnan,149 P. Radloff,115P. Rados,87 F. Ragusa,90a,90bG. Rahal,179 S. Rajagopalan,25 M. Rammensee,30 A. S. Randle-Conde,40C. Rangel-Smith,167K. Rao,164F. Rauscher,99T. C. Rave,48T. Ravenscroft,53M. Raymond,30 A. L. Read,118N. P. Readioff,73D. M. Rebuzzi,120a,120bA. Redelbach,175 G. Redlinger,25R. Reece,138 K. Reeves,41

L. Rehnisch,16H. Reisin,27M. Relich,164 C. Rembser,30H. Ren,33aZ. L. Ren,152A. Renaud,116M. Rescigno,133a S. Resconi,90a O. L. Rezanova,108,uP. Reznicek,128R. Rezvani,94R. Richter,100 M. Ridel,79P. Rieck,16J. Rieger,54 M. Rijssenbeek,149A. Rimoldi,120a,120bL. Rinaldi,20aE. Ritsch,61I. Riu,12F. Rizatdinova,113E. Rizvi,75S. H. Robertson,86,j A. Robichaud-Veronneau,86D. Robinson,28J. E. M. Robinson,83A. Robson,53C. Roda,123a,123bL. Rodrigues,30S. Roe,30 O. Røhne,118S. Rolli,162A. Romaniouk,97M. Romano,20a,20bE. Romero Adam,168N. Rompotis,139L. Roos,79E. Ros,168

S. Rosati,133aK. Rosbach,49M. Rose,76P. L. Rosendahl,14O. Rosenthal,142V. Rossetti,147a,147bE. Rossi,103a,103b L. P. Rossi,50a R. Rosten,139M. Rotaru,26a I. Roth,173J. Rothberg,139D. Rousseau,116C. R. Royon,137 A. Rozanov,84

Y. Rozen,153 X. Ruan,146c F. Rubbo,12 I. Rubinskiy,42V. I. Rud,98C. Rudolph,44 M. S. Rudolph,159F. Rühr,48 A. Ruiz-Martinez,30Z. Rurikova,48N. A. Rusakovich,64A. Ruschke,99J. P. Rutherfoord,7N. Ruthmann,48Y. F. Ryabov,122

M. Rybar,128G. Rybkin,116 N. C. Ryder,119 A. F. Saavedra,151S. Sacerdoti,27A. Saddique,3 I. Sadeh,154 H. F-W. Sadrozinski,138 R. Sadykov,64F. Safai Tehrani,133aH. Sakamoto,156Y. Sakurai,172 G. Salamanna,135a,135b

A. Salamon,134aM. Saleem,112 D. Salek,106P. H. Sales De Bruin,139D. Salihagic,100A. Salnikov,144 J. Salt,168 B. M. Salvachua Ferrando,6D. Salvatore,37a,37b F. Salvatore,150A. Salvucci,105A. Salzburger,30D. Sampsonidis,155

A. Sanchez,103a,103bJ. Sánchez,168V. Sanchez Martinez,168 H. Sandaker,14R. L. Sandbach,75H. G. Sander,82 M. P. Sanders,99M. Sandhoff,176 T. Sandoval,28C. Sandoval,163R. Sandstroem,100D. P. C. Sankey,130 A. Sansoni,47 C. Santoni,34R. Santonico,134a,134bH. Santos,125aI. Santoyo Castillo,150K. Sapp,124A. Sapronov,64J. G. Saraiva,125a,125d

B. Sarrazin,21 G. Sartisohn,176O. Sasaki,65Y. Sasaki,156 G. Sauvage,5,a E. Sauvan,5P. Savard,159,e D. O. Savu,30 C. Sawyer,119L. Sawyer,78,nD. H. Saxon,53 J. Saxon,121 C. Sbarra,20a A. Sbrizzi,3 T. Scanlon,77D. A. Scannicchio,164

(12)

M. Scarcella,151V. Scarfone,37a,37b J. Schaarschmidt,173 P. Schacht,100D. Schaefer,121 R. Schaefer,42S. Schaepe,21 S. Schaetzel,58bU. Schäfer,82 A. C. Schaffer,116 D. Schaile,99R. D. Schamberger,149V. Scharf,58aV. A. Schegelsky,122

D. Scheirich,128M. Schernau,164M. I. Scherzer,35C. Schiavi,50a,50bJ. Schieck,99C. Schillo,48M. Schioppa,37a,37b S. Schlenker,30E. Schmidt,48K. Schmieden,30C. Schmitt,82 S. Schmitt,58bB. Schneider,17Y. J. Schnellbach,73 U. Schnoor,44L. Schoeffel,137A. Schoening,58bB. D. Schoenrock,89A. L. S. Schorlemmer,54M. Schott,82D. Schouten,160a J. Schovancova,25S. Schramm,159M. Schreyer,175C. Schroeder,82N. Schuh,82M. J. Schultens,21H.-C. Schultz-Coulon,58a

H. Schulz,16M. Schumacher,48B. A. Schumm,138Ph. Schune,137 C. Schwanenberger,83A. Schwartzman,144 Ph. Schwegler,100Ph. Schwemling,137R. Schwienhorst,89J. Schwindling,137T. Schwindt,21M. Schwoerer,5F. G. Sciacca,17 E. Scifo,116G. Sciolla,23W. G. Scott,130F. Scuri,123a,123bF. Scutti,21J. Searcy,88G. Sedov,42E. Sedykh,122S. C. Seidel,104 A. Seiden,138F. Seifert,127 J. M. Seixas,24a G. Sekhniaidze,103a S. J. Sekula,40K. E. Selbach,46D. M. Seliverstov,122,a G. Sellers,73N. Semprini-Cesari,20a,20b C. Serfon,30L. Serin,116L. Serkin,54T. Serre,84R. Seuster,160aH. Severini,112 T. Sfiligoj,74F. Sforza,100A. Sfyrla,30E. Shabalina,54M. Shamim,115L. Y. Shan,33aR. Shang,166J. T. Shank,22M. Shapiro,15

P. B. Shatalov,96K. Shaw,165a,165bC. Y. Shehu,150P. Sherwood,77L. Shi,152,ff S. Shimizu,66C. O. Shimmin,164 M. Shimojima,101M. Shiyakova,64A. Shmeleva,95M. J. Shochet,31D. Short,119S. Shrestha,63E. Shulga,97M. A. Shupe,7 S. Shushkevich,42P. Sicho,126O. Sidiropoulou,155D. Sidorov,113A. Sidoti,133aF. Siegert,44Dj. Sijacki,13aJ. Silva,125a,125d Y. Silver,154D. Silverstein,144 S. B. Silverstein,147a V. Simak,127O. Simard,5 Lj. Simic,13a S. Simion,116E. Simioni,82 B. Simmons,77R. Simoniello,90a,90bM. Simonyan,36P. Sinervo,159N. B. Sinev,115V. Sipica,142G. Siragusa,175A. Sircar,78 A. N. Sisakyan,64,aS. Yu. Sivoklokov,98J. Sjölin,147a,147bT. B. Sjursen,14H. P. Skottowe,57K. Yu. Skovpen,108P. Skubic,112 M. Slater,18T. Slavicek,127 K. Sliwa,162V. Smakhtin,173B. H. Smart,46L. Smestad,14S. Yu. Smirnov,97Y. Smirnov,97

L. N. Smirnova,98,gg O. Smirnova,80K. M. Smith,53M. Smizanska,71K. Smolek,127 A. A. Snesarev,95G. Snidero,75 S. Snyder,25R. Sobie,170,jF. Socher,44A. Soffer,154D. A. Soh,152,ffC. A. Solans,30M. Solar,127J. Solc,127E. Yu. Soldatov,97 U. Soldevila,168E. Solfaroli Camillocci,133a,133bA. A. Solodkov,129A. Soloshenko,64O. V. Solovyanov,129V. Solovyev,122 P. Sommer,48H. Y. Song,33b N. Soni,1 A. Sood,15A. Sopczak,127 B. Sopko,127V. Sopko,127 V. Sorin,12M. Sosebee,8

R. Soualah,165a,165c P. Soueid,94A. M. Soukharev,108D. South,42S. Spagnolo,72a,72bF. Spanò,76W. R. Spearman,57 F. Spettel,100R. Spighi,20aG. Spigo,30L. A. Spiller,87M. Spousta,128T. Spreitzer,159 B. Spurlock,8 R. D. St. Denis,53,a

S. Staerz,44J. Stahlman,121 R. Stamen,58a E. Stanecka,39R. W. Stanek,6 C. Stanescu,135aM. Stanescu-Bellu,42 M. M. Stanitzki,42S. Stapnes,118E. A. Starchenko,129 J. Stark,55P. Staroba,126 P. Starovoitov,42R. Staszewski,39 P. Stavina,145a,aP. Steinberg,25B. Stelzer,143H. J. Stelzer,30O. Stelzer-Chilton,160aH. Stenzel,52S. Stern,100G. A. Stewart,53 J. A. Stillings,21M. C. Stockton,86M. Stoebe,86G. Stoicea,26aP. Stolte,54S. Stonjek,100A. R. Stradling,8A. Straessner,44 M. E. Stramaglia,17J. Strandberg,148 S. Strandberg,147a,147bA. Strandlie,118E. Strauss,144M. Strauss,112 P. Strizenec,145b

R. Ströhmer,175 D. M. Strom,115 R. Stroynowski,40S. A. Stucci,17B. Stugu,14N. A. Styles,42D. Su,144J. Su,124 HS. Subramania,3R. Subramaniam,78A. Succurro,12Y. Sugaya,117 C. Suhr,107M. Suk,127V. V. Sulin,95 S. Sultansoy,4c T. Sumida,67X. Sun,33aJ. E. Sundermann,48K. Suruliz,140G. Susinno,37a,37bM. R. Sutton,150Y. Suzuki,65M. Svatos,126 S. Swedish,169M. Swiatlowski,144 I. Sykora,145aT. Sykora,128 D. Ta,89C. Taccini,135a,135bK. Tackmann,42J. Taenzer,159 A. Taffard,164R. Tafirout,160a N. Taiblum,154Y. Takahashi,102H. Takai,25R. Takashima,68 H. Takeda,66T. Takeshita,141

Y. Takubo,65M. Talby,84A. A. Talyshev,108,u J. Y. C. Tam,175K. G. Tan,87J. Tanaka,156 R. Tanaka,116 S. Tanaka,132 S. Tanaka,65A. J. Tanasijczuk,143B. B. Tannenwald,110 N. Tannoury,21S. Tapprogge,82S. Tarem,153 F. Tarrade,29 G. F. Tartarelli,90a P. Tas,128M. Tasevsky,126T. Tashiro,67E. Tassi,37a,37bA. Tavares Delgado,125a,125bY. Tayalati,136d F. E. Taylor,93G. N. Taylor,87W. Taylor,160bF. A. Teischinger,30 M. Teixeira Dias Castanheira,75P. Teixeira-Dias,76 K. K. Temming,48H. Ten Kate,30P. K. Teng,152J. J. Teoh,117S. Terada,65K. Terashi,156J. Terron,81S. Terzo,100M. Testa,47

R. J. Teuscher,159,jJ. Therhaag,21 T. Theveneaux-Pelzer,34 J. P. Thomas,18J. Thomas-Wilsker,76E. N. Thompson,35 P. D. Thompson,18P. D. Thompson,159 A. S. Thompson,53L. A. Thomsen,36E. Thomson,121M. Thomson,28 W. M. Thong,87R. P. Thun,88,a F. Tian,35M. J. Tibbetts,15V. O. Tikhomirov,95,hh Yu. A. Tikhonov,108,u S. Timoshenko,97 E. Tiouchichine,84P. Tipton,177 S. Tisserant,84T. Todorov,5S. Todorova-Nova,128B. Toggerson,7 J. Tojo,69S. Tokár,145a K. Tokushuku,65K. Tollefson,89L. Tomlinson,83M. Tomoto,102L. Tompkins,31K. Toms,104N. D. Topilin,64E. Torrence,115 H. Torres,143 E. Torró Pastor,168J. Toth,84,ii F. Touchard,84D. R. Tovey,140H. L. Tran,116T. Trefzger,175 L. Tremblet,30

A. Tricoli,30I. M. Trigger,160aS. Trincaz-Duvoid,79M. F. Tripiana,12N. Triplett,25W. Trischuk,159B. Trocmé,55 C. Troncon,90aM. Trottier-McDonald,143M. Trovatelli,135a,135bP. True,89M. Trzebinski,39A. Trzupek,39C. Tsarouchas,30

(13)

E. G. Tskhadadze,51a I. I. Tsukerman,96V. Tsulaia,15S. Tsuno,65D. Tsybychev,149 A. Tudorache,26a V. Tudorache,26a A. N. Tuna,121 S. A. Tupputi,20a,20bS. Turchikhin,98,gg D. Turecek,127 I. Turk Cakir,4dR. Turra,90a,90bP. M. Tuts,35 A. Tykhonov,49M. Tylmad,147a,147bM. Tyndel,130 K. Uchida,21 I. Ueda,156R. Ueno,29M. Ughetto,84M. Ugland,14 M. Uhlenbrock,21F. Ukegawa,161G. Unal,30A. Undrus,25G. Unel,164 F. C. Ungaro,48Y. Unno,65C. Unverdorben,99

D. Urbaniec,35P. Urquijo,87G. Usai,8A. Usanova,61L. Vacavant,84V. Vacek,127B. Vachon,86N. Valencic,106 S. Valentinetti,20a,20bA. Valero,168L. Valery,34S. Valkar,128E. Valladolid Gallego,168S. Vallecorsa,49J. A. Valls Ferrer,168

W. Van Den Wollenberg,106P. C. Van Der Deijl,106R. van der Geer,106H. van der Graaf,106 R. Van Der Leeuw,106 D. van der Ster,30N. van Eldik,30 P. van Gemmeren,6 J. Van Nieuwkoop,143I. van Vulpen,106M. C. van Woerden,30 M. Vanadia,133a,133bW. Vandelli,30R. Vanguri,121A. Vaniachine,6P. Vankov,42F. Vannucci,79G. Vardanyan,178R. Vari,133a

E. W. Varnes,7 T. Varol,85D. Varouchas,79A. Vartapetian,8 K. E. Varvell,151 F. Vazeille,34T. Vazquez Schroeder,54 J. Veatch,7F. Veloso,125a,125cS. Veneziano,133aA. Ventura,72a,72bD. Ventura,85M. Venturi,170N. Venturi,159A. Venturini,23

V. Vercesi,120aM. Verducci,133a,133bW. Verkerke,106 J. C. Vermeulen,106A. Vest,44M. C. Vetterli,143,e O. Viazlo,80 I. Vichou,166T. Vickey,146c,jj O. E. Vickey Boeriu,146cG. H. A. Viehhauser,119S. Viel,169R. Vigne,30M. Villa,20a,20b M. Villaplana Perez,90a,90bE. Vilucchi,47 M. G. Vincter,29V. B. Vinogradov,64J. Virzi,15I. Vivarelli,150F. Vives Vaque,3

S. Vlachos,10D. Vladoiu,99M. Vlasak,127A. Vogel,21M. Vogel,32a P. Vokac,127G. Volpi,123a,123b M. Volpi,87 H. von der Schmitt,100H. von Radziewski,48E. von Toerne,21V. Vorobel,128K. Vorobev,97M. Vos,168 R. Voss,30 J. H. Vossebeld,73N. Vranjes,137M. Vranjes Milosavljevic,106V. Vrba,126M. Vreeswijk,106T. Vu Anh,48R. Vuillermet,30 I. Vukotic,31Z. Vykydal,127P. Wagner,21W. Wagner,176H. Wahlberg,70S. Wahrmund,44J. Wakabayashi,102J. Walder,71 R. Walker,99 W. Walkowiak,142R. Wall,177 P. Waller,73 B. Walsh,177 C. Wang,152,kk C. Wang,45F. Wang,174H. Wang,15 H. Wang,40J. Wang,42J. Wang,33aK. Wang,86R. Wang,104 S. M. Wang,152T. Wang,21 X. Wang,177 C. Wanotayaroj,115

A. Warburton,86C. P. Ward,28 D. R. Wardrope,77M. Warsinsky,48A. Washbrook,46C. Wasicki,42P. M. Watkins,18 A. T. Watson,18I. J. Watson,151M. F. Watson,18G. Watts,139S. Watts,83B. M. Waugh,77S. Webb,83 M. S. Weber,17 S. W. Weber,175J. S. Webster,31A. R. Weidberg,119P. Weigell,100B. Weinert,60J. Weingarten,54C. Weiser,48H. Weits,106 P. S. Wells,30T. Wenaus,25D. Wendland,16Z. Weng,152,ffT. Wengler,30S. Wenig,30N. Wermes,21M. Werner,48P. Werner,30

M. Wessels,58aJ. Wetter,162 K. Whalen,29A. White,8 M. J. White,1 R. White,32bS. White,123a,123bD. Whiteson,164 D. Wicke,176 F. J. Wickens,130W. Wiedenmann,174M. Wielers,130 P. Wienemann,21C. Wiglesworth,36

L. A. M. Wiik-Fuchs,21P. A. Wijeratne,77A. Wildauer,100M. A. Wildt,42,llH. G. Wilkens,30J. Z. Will,99H. H. Williams,121 S. Williams,28C. Willis,89S. Willocq,85A. Wilson,88J. A. Wilson,18I. Wingerter-Seez,5F. Winklmeier,115B. T. Winter,21

M. Wittgen,144T. Wittig,43J. Wittkowski,99S. J. Wollstadt,82M. W. Wolter,39H. Wolters,125a,125c B. K. Wosiek,39 J. Wotschack,30M. J. Woudstra,83K. W. Wozniak,39 M. Wright,53M. Wu,55S. L. Wu,174X. Wu,49Y. Wu,88E. Wulf,35 T. R. Wyatt,83B. M. Wynne,46S. Xella,36M. Xiao,137D. Xu,33aL. Xu,33b,mmB. Yabsley,151S. Yacoob,146b,nnM. Yamada,65 H. Yamaguchi,156Y. Yamaguchi,117A. Yamamoto,65K. Yamamoto,63S. Yamamoto,156T. Yamamura,156T. Yamanaka,156 K. Yamauchi,102 Y. Yamazaki,66Z. Yan,22H. Yang,33eH. Yang,174 U. K. Yang,83Y. Yang,110S. Yanush,92 L. Yao,33a W-M. Yao,15 Y. Yasu,65E. Yatsenko,42K. H. Yau Wong,21J. Ye,40S. Ye,25A. L. Yen,57E. Yildirim,42 M. Yilmaz,4b R. Yoosoofmiya,124K. Yorita,172 R. Yoshida,6 K. Yoshihara,156C. Young,144C. J. S. Young,30S. Youssef,22D. R. Yu,15

J. Yu,8 J. M. Yu,88J. Yu,113L. Yuan,66A. Yurkewicz,107 I. Yusuff,28,oo B. Zabinski,39 R. Zaidan,62A. M. Zaitsev,129,bb A. Zaman,149 S. Zambito,23L. Zanello,133a,133bD. Zanzi,100 C. Zeitnitz,176M. Zeman,127A. Zemla,38a K. Zengel,23 O. Zenin,129T.Ženiš,145aD. Zerwas,116G. Zevi della Porta,57D. Zhang,88F. Zhang,174H. Zhang,89J. Zhang,6L. Zhang,152

X. Zhang,33d Z. Zhang,116Z. Zhao,33b A. Zhemchugov,64J. Zhong,119 B. Zhou,88L. Zhou,35N. Zhou,164 C. G. Zhu,33d H. Zhu,33aJ. Zhu,88Y. Zhu,33bX. Zhuang,33aK. Zhukov,95A. Zibell,175D. Zieminska,60N. I. Zimine,64C. Zimmermann,82 R. Zimmermann,21S. Zimmermann,21S. Zimmermann,48Z. Zinonos,54M. Ziolkowski,142G. Zobernig,174A. Zoccoli,20a,20b

M. zur Nedden,16G. Zurzolo,103a,103bV. Zutshi107 and L. Zwalinski30 (ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia 2

Physics Department, SUNY Albany, Albany, New York, USA

3Department of Physics, University of Alberta, Edmonton, Alberta, Canada 4a

Department of Physics, Ankara University, Ankara, Turkey

(14)

4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey 4d

Turkish Atomic Energy Authority, Ankara, Turkey

5LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France 6

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA

7Department of Physics, University of Arizona, Tucson, Arizona, USA 8

Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA

9Physics Department, University of Athens, Athens, Greece 10

Physics Department, National Technical University of Athens, Zografou, Greece

11Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 12

Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain

13aInstitute of Physics, University of Belgrade, Belgrade, Serbia 13b

Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

14Department for Physics and Technology, University of Bergen, Bergen, Norway 15

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA

16Department of Physics, Humboldt University, Berlin, Germany 17

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 19a

Department of Physics, Bogazici University, Istanbul, Turkey

19bDepartment of Physics, Dogus University, Istanbul, Turkey 19c

Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey

20aINFN Sezione di Bologna, Italy 20b

Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

21Physikalisches Institut, University of Bonn, Bonn, Germany 22

Department of Physics, Boston University, Boston, Massachusetts, USA

23Department of Physics, Brandeis University, Waltham, Massachusetts, USA 24a

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

24bFederal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil 24c

Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil

24dInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 25

Physics Department, Brookhaven National Laboratory, Upton, New York, USA

26aNational Institute of Physics and Nuclear Engineering, Bucharest, Romania 26b

Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania

26c

University Politehnica Bucharest, Bucharest, Romania

26dWest University in Timisoara, Timisoara, Romania 27

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

28Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 29

Department of Physics, Carleton University, Ottawa, Ontario, Canada

30CERN, Geneva, Switzerland 31

Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA

32aDepartamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile 32b

Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

33aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing, China 33b

Department of Modern Physics, University of Science and Technology of China, Anhui, China

33cDepartment of Physics, Nanjing University, Jiangsu, China 33d

School of Physics, Shandong University, Shandong, China

33ePhysics Department, Shanghai Jiao Tong University, Shanghai, China 34

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

35

Nevis Laboratory, Columbia University, Irvington, New York, USA

36Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 37a

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy

37bDipartimento di Fisica, Università della Calabria, Rende, Italy 38a

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland

38bMarian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 39

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

40Physics Department, Southern Methodist University, Dallas, Texas, USA 41

Physics Department, University of Texas at Dallas, Richardson, Texas, USA

42DESY, Hamburg and Zeuthen, Germany 43

Figure

Figure 2 shows the mass difference distribution mðB  c ππÞ − mðB c Þ − 2mðπÞ for the right-charge  combi-nations B  c π þ π − as well as the wrong-charge combinations.
FIG. 2 (color online). The Q ¼ mðB  c ππÞ − mðB  c Þ − 2mðπ  Þ distribution for the right-charge combinations (points with error bars) and for the same (wrong) pion charge combinations (shaded histogram) in 7 TeV data (top) and in 8 TeV data (bottom)

References

Related documents

and Julian Togelius [1] ​, player experience is an important issue in most game development processes and in order to create games that keeps the players curiosity

I denna av FM UndsäkC utgivna text beskriver man att Tolkskolans verksamhet har förändrats, från den tidigare huvudverksamheten förhörstjänst av krigsfångar till

Det som är intressant är att i Laanemets (2002) avhandling fick klienterna själva beskriva ifall de trodde att de skämdes mer än manliga klienter, medan Palms studie

Sedan två år arbetar Per vid Örebro universitet och arbetar med frågor kring cirkulär ekonomi och platsens betydelse för en hållbar samhällsekonomi.. Sabina Du Rietz

The more recent Gaia Data Release 2 (GDR2) contains radial velocities for 7 million stars (Gaia Collaboration et al. 2018), this enables a more di- rect method where positions

Siècle Paris, Berkeley: University of California Press 1998... Sedgwick, Eve Kosofsky, Epistemology of the Closet, Berkeley: University of California Press 1990. Sellers, Susan,

semiconductor quality, (i.e. with high crystal quality and good optical properties) GaN epilayers and nanorods by the sputter deposition method is yet to be

If the calculated IR spectra are compared with the experimental ones for formic acid at ZnO, one sees that in the calculated IR spectra for formic acid in monodentate adsorption