• No results found

Maximum Output Amplitude of Linear Systems for certain Input Constraints

N/A
N/A
Protected

Academic year: 2021

Share "Maximum Output Amplitude of Linear Systems for certain Input Constraints"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

for certain Input Constraints

WolfgangReinelt

DepartmentofElectricalEngineering

Linkoping University,S-58183Linkoping,Sweden

WWW:

http://www.control.isy.liu.se/~wolle/

Email:

wolle@isy.liu.se

June 1999

REG

LERTEKNIK

AUTO

MATIC CONTR

OL

LINKÖPING

Reportno.: LiTH-ISY-R-2165

Technical reports from the Automatic Control group in Linkoping are available by

anony-mous ftp at the address

ftp.control.isy.liu.se

. This report is contained inthe portable

(2)

for certain Input Constraints

WolfgangReinelt

June 1999

Abstract

Wedeterminethemaximumoutputamplitudeofasystem,whenitsinputful lscertain

constraints. Inparticular,theamplitudeandtherateofchange(i.e.the rstderivative)

havetobebounded. Weshowpropertiesoftheworstcaseinputandpresentanalgorithm

thatallowstoconstructthisinputandcalculatesthemaximumamplitudeoftheoutput.

Thisproblemhasapplicationswithinthenon-conservativedesignofcontrollersforplants

withboundedinputs. Nevertheless,itisinterestingasasystemtheoretictaskitselfand

thereforestatedseperately.

Keywords: LinearSystemTheory,Maximum OutputAmplitude,HardConstraints.

1 Introduction and Motivation

Linearsystemswithboundedinputsproduceboundedoutputs,stabilityprovided. Giventhe

maximumamplitudeoftheinputandcalculatingthemaximumamplitudeoftheoutputisthe

problemofdeterminingthe

1

-normofthesystem.Amorechallengingtaskistocalculatethe

maximumoutputamplitudeforasystemwithinputsthatful lcertainadditionalconstraints.

Formotivationwelookatprocessengineeringforexample,andinparticularatthe

liquid-levelina tank,interpretedas atimesignal. Notonly the liquid-level inatankis bounded

(bythetank'sheight),additionallytheliquidcannotchangeitslevelarbitrarilyfast. Sothis

signalisboundedinamplitude,aswellasits rstderivativedue tothetime. Regardingthe

liquid-levelasareferencesignalforacontrolsystemwithcontrolsignallet'ssaytheopening

angleofsomevalve(feedingthetank)itisquitereasonabletodesignacontrollerthattakes

careforthepossiblereferencesignalsfortheliquidlevelaswellasfortheamplitudebound

forthecontrolsignal. Theboundforthecontrolsignalis,looslyspeaking,therangebetween

fullyopenandfullyclosed.

Interpretingthisinsystem-theoreticterms,thetransferfunctionfromreferencesignalto

controlsignalisasystemwithaninputthatful lscertainconstraints(bounds foramplitude

and rst derivative) and a bounded output signal. Task of the controller design is now to

designthecontrollersothatthemaximumamplitudeofthecontrolsignalisnothigherthan

"fullyopen" inorder toprevent wind-up and stability problems. Therefore itis obviously

helpfultocalculatethemaximumoutputamplitudeforagivensystemwithprescribedinput

constraints onamplitudeand rstderivative.

At a rst glance it might be suÆcient to neglecet the constraint on the reference

(3)

resultingcontroller willbetooconservative. Duringrun-time,theamplitudeofthecontrol

signalwillbemuchsmallerthantheallowedone;thise ectwillobviouslyreducethecontrol

systems'sspeedandperformance.

However, the solution of the technicalproblem has many applications in the design of

controllers thatguaranteeboundedcontrolsignals[1]. In particular,optimalcontrol

prob-lems can be solved [4, 5], as well as robust control problems [6, 7]. The term optimal

refers to the fact, that the constraint

|

r(t)

_

| ≤

_

R

allows a minimization of the error signal

|e(t)| = |r(t) − y(t)|

. An extension for the discrete time case is possible [3, 2, 8]. These

controlapplicationswillbepresentedseperately.

Thisworkisorganizedasfollows: section2de nestheproblem,whichwillthenbesolved

in section 3. Section 4 sketches shortly the numerical realisation. The ideasare extended

to the multivariable case in section 5, suitedfor multivariable control systems. Section 6

illustrates the theory with anexample. Conclusions aredrawnin section 7, related works

as well as thedirectionof future research are also given. Problem statementand solution

aredue to[1,4], anumericalimplementationwasoutlinedin[5]and theextensiontothe

multivariablecasewasgivenin[6, 7].

2 Problem Statement

We examinea linear and time invariantstable system, which is represented by its transfer

function

G(s)

resp.itsimpulseresponse

g(t)

. Wepostponetheextensiontothemultivariable

case tosection 5and concentrate on the SISO case. The input is denoted by

r

, the output

by

x

. The followingconstraints hold forthe continuousand piecewise 1 di erentiable input signal

r

:

|r(t)| ≤ R

(1)

|

r(t)

_

| ≤

_

R

(2) for

t > 0

,where

R,

_

R > 0

aregivenconstantvaluesand

r(t) = 0,

t

≤ 0.

(3)

Wecallthosereferencesignals,whichful leqns.(1-3)

(R,

_

R)

-admissible,orshort

r

∈ A(R,

_

R)

. Wearelookingforthemaximumamplitude

X

m

(t)

oftheoutput

x

(uptoacertaintime)with

(R,

R)

_

-admissibleinputs,i.e.

X

m

(t) :=

sup

r

∈A(R,

R)

_ sup

0<τ

≤t

|x(τ)| =

sup

r

∈A(R,

R)

_ sup

0<τ

≤t

|g(τ) ? r(τ)|.

(4)

where"

?

"is the convolution:

g(t) ? r(t) =

R

t

0

g(τ)r(t − τ)dτ

. Quiteclear fromlinear system

theoryis,thatforsystemswiththeonlyinputconstraint(1),themaximumoutputamplitude

isgivenbymax

t

≥0

|x(t)| = R

R

0

|g(τ)|dτ

,producedbythebang-banginput:

r(t − τ) = R

·

sign

(g(τ)).

(5)

Thustheproblemistrivialunlesstheadditionalconstraint(2)isimposed.

1

(4)

We now turn to the construction of the maximum output amplitude as stated in eqn.(4)

according to [4]. Basic idea is rst to show some properties of the input signal

r

, which

produces the output with the maximum output amplitude. In the following, we call this

inputsignaltheworstcaseinput. Thisstrategyismotivatedbytheexistenceofaworstcase

inputinthesimplecaseineqn.(5). Westartwiththecalculationoftheoutputbyconvolution

foracertaintimestamp

t

:

x(t) =

Z

t

0

g(τ)r(t − τ)dτ =:

Z

t

0

g(τ)r

t

(τ)dτ

(6)

andabbreviatethe"timeinverted"inputsignalby

r

t

(τ) := r(t − τ)

withthefollowing conse-quencesfortheconstraints(1-3):

|r

t

(τ)

| ≤ R, τ < t

(7)

|

r

_

t

(τ)

| ≤

_

R,

τ < t

(8)

r

t

(τ)

=

0,

τ

≥ t

(9)

3.1LemmaThefunction

X

m

(t)

ismonotoneincreasing(i.e.notdecreasing)intime

t

.

There-fore, the maximum amplitude as de ned in eqn.(4) appears for sure for

t

→ ∞

, so

X

m

=

lim

t→∞

X

m

(t)

isthemaximumoutputamplitude.

Proof. Let

t

0

> 0

and

r

t

0

∈ A(R,

_

R)

theinput 2

thatproducesthemaximumamplitude

X

m

(t

0

)

.

For

t

1

> t

0

de ne

r

t

1

(τ) = r

t

0

(τ), 0

≤ τ ≤ t

0

resp.

r

t

1

(τ) = 0, t

0

< τ

≤ t

1

. Clearly

r

t

1

∈ A(R,

_

R)

andfromeqn.(6) followssup

0<τ

≤t1

|x(τ)| =

sup

0<τ

≤t0

|x(τ)|

andthus

X

m

(t

1

)

≥ X

m

(t

0

)

.

2

3.2De nitionSupposethereexists aninput

r

∞,o

=: r

o

withmaximumoutputamplitude

X

m

. Then

−r

o

producedobviouslythemaximumoutputamplitude

X

m

,too. Foroneofthem,say

r

o

,holds

X

m

=

Z

0

g(τ)r

o

(τ)dτ

≥ 0,

(10)

i.e., ineqn.(4) the absolute valueis super uous. In thefollowing, we constructthisworst

caseinput 3

thatproduces thismaximumoutputamplitudeaccordingtoeqn.(10).

3.3Algorithm (Construction ofanauxiliaryinput)Let

r

∈ A(R,

_

R)

beanarbitraryadmissible input. Weconstructan auxiliaryinput

r

H

for

r

uniquelyby the steps givenbelow ( gure 1 illustratestheconstruction). Thesetofallpossibleauxiliaryinputs (i.e.allsignalswiththe

sameproperties)isdenotedby

A

H

(R,

_

R)

.

1. Let

t

i

, i = 1, . . . , N

thezerosof

g

. De ne

r

H

(t

i

) = r(t

i

)

.

2. If

g(t) > 0

in

(t

i

, t

i+1

)

, let

r

_

H

(t) = +

_

R

in the neighbourhood of

t

i

and

r

_

H

(t) = −

_

R

in

the neighbourhood of

t

i+1

. In the case that this de nition leads to the non-unique situationthat the two'slopes' intersect insome

t

∈ (t

i

, t

i+1

)

, let

r

_

H

(t) = +

_

R

in

[t

i

, t

]

resp.

r

_

H

(t) = −

_

R

in

[t

, t

i+1

]

. De ne nally

r

H

=

min

{r

H

, +R

}

. 2

uniquenessisnotnecessaryforthisargumentation.

3

(5)

0

0

0

g(t)

_

r

H

(t)

+R

−R

+

R

_

R

_

r

H

(t)

r(t)

t

t

t

t =

t =

t =

t

1

t

2

t

3

Figure1: Construction ofauxiliaryinput

r

H

forgiveninput

r

.

3. If

g(t) < 0

in

(t

i

, t

i+1

)

, do as in step 2. but with changed signs for

r

_

H

and resulting

obviousmodi cations.

4. Finally,choose

|

r

_

H

(t)

| =

_

R

forlarge times

t

inordertoensurelim

t

→∞

r

H

(t) = 0

, arising fromconstraint(9).

3.4Corollary thefollowingpropertiesoftheauxiliaryinputareclearbyconstruction:

1.

A

H

(R,

_

R)

⊂ A(R,

R)

_

, i.e.anauxiliaryinputisalsoadmissible.

2. Twodi erentinputs

r

1

, r

2

∈ A(R,

_

R)

with

r

1

(t

i

) = r

2

(t

i

)

havethesameauxiliaryinput.

3.

r

H

(t)

≥ r(t)

for

g(t)

≥ 0

and

r

H

(t)

≤ r(t)

for

g(t)

≤ 0

.

4. Fixanadmissibleinput

r

andsupposeanarbitraryadmissiblesignal

r

6= r

H

with prop-erty3.,then

R

0

g(τ)r

H

(τ)dτ >

R

0

g(τ)r

(τ)dτ

.

5. Themaximumwidthofthepulsesof

r

_

H

inAlgorithm3.3is givenby

T = 2

R

_

R

.

3.5TheoremThe worstcaseinputisauxiliaryinput:

r

o

∈ A

H

(R,

_

(6)

Proof. Forall

r

∈ A(R,

_

R)

thefollowingholds byconstructionof

r

H

,seeCorollary3.4(3.):

Z

0

g(τ)r(τ)dτ

Z

0

g(τ)r

H

(τ)dτ

(11)

and"

=

"holdsonlyfor

r

≡ r

H

(exceptthecase

g

≡ 0

). Assume

r

o

∈ A(R,

_

R)\A

H

(R,

R)

_

,thenthe

constructionofanauxiliaryinput

r

oH

is possible(because

r

o

is admissibleinput). Applying eqn.(11)to

r = r

o

:

X

m

=

Z

0

g(τ)r

o

(τ)dτ <

Z

0

g(τ)r

oH

(τ)dτ

(12)

which contradicts the de nition of

X

m

as the maximum output amplitude. Consequently

r

o

∈ A

H

(R,

R)

_

.

2

Until now, we did not construct a unique worst case input thatleads to the maximum

outputamplitude,butweshowedsomenecessarypropertieswhicharelistedinthefollowing

3.6LemmaThefollowingnecessarypropertiesoftheworstcaseinput

r

o

hold:

1. The(derivativeofthe)worstcaseinputhasapulse-shape:

r

_

o

(t)

∈ {±

_

R, 0}

,where_

r

o

(t) =

0

implies

|r

o

(t)

| = R

.

2. Thewidthofthesinglepulsesisconstrainedby

T = 2

R

_

R

. 3. Twoadjacentpulseshavedi erentsigns.

4. lim

t

→∞

r

o

(t) = 0

and

|

lim

t

→∞

r

_

o

(t)

| =

_

R

.

The previous Lemmastates mostly properties of

r

_

o

. Partial integration of eqn.(10)

to-getherwithLemma3.6(4.) givesanexpressionforthemaximumoutputamplitudeinthese

terms,where

s

isthestepresponseofthesystem(i.e.

s = g

_ ):

X

m

= −

Z

0

s(τ)

_

r

o

(τ)dτ

(13)

Despitetheminusineqn.(13),

X

m

≥ 0

holdsbyDe nition3.2. Itappearsonlyduetothe partialintegration.

Lookingontoeqn.(13)andknowingtheshapeoftheworstcaseinputasstatedinLemma3.6,

thesolutionisquiteclear: inordertomaketheintegralmaximal,putsomepulses(of

maxi-mumwidth,seeCorollary3.4(4.)) inthenearofextremaofthestepreponse: positiveones

inthenearoftheminimaandnegativeonesinthenearofthemaxima. Inthefollowing,we

willprove this. Inorder nottooverloadthediscussion withtechnicaldetails,wemakethe

(7)

1. Lettheimpulseresponse

g

haveonlya nitenumber

N

ofzeros,i.e.thestepresponse

onlya nitenumberofextrema.

2. Letthe rstextremumof

s

tobea(local)maximum.

Undertheseassumptions,themaximumamplitude

X

m

is givenby:

X

m

=

R

_

N

X

i=1

(−1)

i+1+k

Z

t

i

00

t

i

0

s(t)dt + R(−1)

N+k

lim

t

→∞

s(t).

(14)

The lastpart of the sum exists becausethe system is stable. The pairs

(t

0

i

, t

i

00

)

refer to the unknownpositionsofthepulses. Additionally,thesignofthepulsesisstillunknown,

there-fore we added

k

∈ {0, 1}

in eqn.(14). Obviously the problem is solved, when weknow the exactlocationofthepulsesandtheirsign. Wemakeonemore

3.8TemporaryAssumptionLettheextremaofthestepresponsehaveadistance

> 2T

,which

ensuresthatallpulseshavemaximumwidth

T

,i.e.

t

00

i

= t

i

0

+ T

.

3.9TheoremNecessaryconditionforamaximum

s(t

0

i

) = s(t

i

0

+ T )

,suÆcientconditionis

k = 0

ineqn.(14).

Proof. Necessaryforamaximumis

∂X

m

∂t

i

0

= 0

forall

i

,whichleadsimmediateleyto

s(t

0

i

) = s(t

i

0

+

T )

. SuÆcientis thattheHessianis negativede nite,whichleadsdirectlyto

_

R(−1)

i+k

(g(t

0

i

+

T ) − g(t

i

0

)) < 0

thus

k = 0

, becauseofassuminga rstlocalmaximumof

s

inAssumption3.7.

2

ApplyingTheorem3.9toeqn.(14),wegetthemaximumoutputamplitudeby

X

m

=

R

_

N

X

i=1

(−1)

i+1

Z

t

i

0

+T

t

i

0

s(t)dt + R(−1)

N

lim

t

→∞

s(t).

(15)

whereweplacethepulses

(t

0

i

, t

i

0

+ T )

,sothat

s(t

0

i

) = s(t

i

0

+ T )

holdswithanegativesignunder

themaximaof

s

andwithapositivesignundertheminimaof

s

.

3.10Remarkontemporaryassumptions3.7and3.8:

1. Thestabilityofthesystemensures

g(t)

→ 0

forlarge

t

,i.e.

s(t) =

const. Inthecase,that

g

has a in nite numberof zeros the maximum output amplitude is givenby eqn.(15) withanarbitraryprecisionwhen usingarbitrarymanyzeros(i.e.

N

→ ∞

)Foranexact

proof,wereferto[4 ,AppendixA2.1].

2. Supposea rstlocalminimumfor

s

. Inthiscase,thesuÆcientconditionwouldleadto

k = 1

, i.e.toachangeofsignsforallpulses. We cansimplytreatthesedi erentcases

bytaking theabsolutevalueofthesumineqn.(15).

3. The"well-distinctness"oftheextrema,assumedinAssumption3.8ensuresthatpulses

withwidth

T

posed aroundtheextremaof

s

willnotintersecteachother. Technically,

this assumption simpli es the proof of Theorem 3.9. In general, we can prove that

R

t

i

00

t

i

0

g(t)dt = 0

is necessary and suÆcient for a maximum. The proof is of technical

(8)

T

,isviewedasonemaximumresp.minimum. Fortheentirediscussionofallcases,we referagainto[4, AppendixA2.2].

3.11 Remark For _

R

→ ∞

(i.e. no restriction on the input's speed), the worst case input convergestothebang-banginput,asgivenineqn.(5).

4 Numerical Algorithm

Theorem 3.9 and Remark 3.10 give us necessary and suÆcient conditions to construct the

worstcaseinput. Themaximumoutputamplitude canbecalculatedwithhelp oftheworst

caseinputandeqn.(15). Werestrictourselvesonanotveryformal descriptionofthe

algo-rithmthatconstructsthe worstcaseinputnumerically. Numericaldetailsand thehandling

ofspecialcasesareoutlinedin[5].

1. Determineextremaofthestepresponse.

2. Putinitialpulseswithcorrectandalternatingsignsundereachextremumof

s

.

3. Makethemwider,ensuring

s(t

0

i

) = s(t

i

00

)

,aslongastheydonotintersect.

4. Inthecaseofintersections,handle"not welldistinct"pulsesseparately.

5. Calculatethemaximumoutputamplitudefromeqn.(15).

The problem canalso be viewed as a nonlinear optimisation problem in the pulse

po-sitions: determine

t

0

i

, t

i

00

, so that rhs of eqn.(15) becomesmaximal. Indeed, a solution by nonlinearoptimisationispossible,havingagoodinitialvaluegivenbystep(2.) ofthe

pro-cedureabove;thissolution isoutlinedin[6].

5 Multivariable Case

Weextendthepreviousresulttothecaseofmultivariablesystems,i.e.

r

and

x

arenow

vec-tor signals[6 ]. What wehaveinmind withthisextensionis thetreatmentof multivariable

control systems with constraint control signals, i.e.weregard

x = u

and

r

is the (external)

referencesignalof thecontrol system. Therefore, itis usefultorestrict theinput

r

compo-nentwise:

|r(t)|  R, t > 0

(16)

|

r(t)

_

| 

_

R, t > 0

(17)

r(t)

=

0, t

≤ 0.

(18)

inanalogy toeqns.(1-3). Read



asacomponentwise

and evaluate

| · |

therefore compo-nentwisely. Consequently, wecall the set of allsignals

r

ful lling these constraints (

R,

_

R

)-admissible, with

R,

_

R

arenow beingvectors with positive entries. Furthermore, we de ne themaximumoutputamplitudecomponentwiseby

(9)

wherethe

X

i,m

arede nedasinLemma3.1.

Letus rstlookontoasystemwithone output

x

and

k

inputs

r = (r

1

, . . . , r

k

)

T

∈ A(R,

R)

_ .

Then

x(s)

isgivenby

x(s) = G

1

(s)

· r

1

(s) +

· · · + G

k

(s)

· r

k

(s)

(20)

Weabbreviate

x

~

i

(s) = G

i

(s)

· r

i

(s)

. Now wearelookingforthemaximumoutputamplitude

X

m

. Usingeqn.(20),themaximumoutputamplitudeisgivenby

X

m

=

k

X

i=1

~

X

i,m

.

(21)

Itfollowsdirectly,that

X

m

isachievedforacertainvector

r = (r

1

, . . . , r

k

)

T

∈ A(R,

R)

_ .

Inthemultivariablecasewith

n

outputs,wesimplyapplythe rststep: accordingtothe

de nition,thecomponents

X

i,m

of

X

m

canbecalculatedasinequation(21).

6 Illustrative Example

Weexaminethesystemrepresentedbythetransferfunction

G(s) =

s

2

+ 0.4

s

2

+ 1.4s + 1.0

,

with input constraints

R = 1.0

resp. _

R = 0.8

. According to Lemma 3.6 (2.), the maximum

pulsewidthis

T = 2.5

. Numericalsolution byconstructionoftheworstcaseinputyields

X

m

= 0.76.

(22)

Fig. 2 shows the construction of the worst case input with pulses of

r

o

located at

[0, 1.20]

,

[1.20, 2.39]

,

[5.24, 7.74]

and at of width

T/2

at in nity (in reversed time) with signs "- +

-+" following max-min-max sequence of the step response. For simulation of this worst

case input we need to reverse this reversed time, therefore we choose the "in nite" time

to

t

= 120

. With this transformation, we receive the depicted worst case output with

a maximum amplitude of

x(t

m

) = 0.73

for

t

m

= 108.80

as a good approximation for the

maximumamplitudeascalculatedineqn.(22).

7 Conclusions and Related Works

Weshowedconditionsoftheworstcaseinputwithboundedamplitudeandspeed,that

pro-duces thatmaximumoutputamplitudeforagiven(stable)multivariablesystem. A

numeri-calalgorithmwassketchedtoconstructthisworstcaseinputandtocalculatethemaximum

outputamplitude. Thisis,aswebelieve,animportantstepwithinthenon-conservative

con-trollerdesignforsystemswithhardboundsonthecontrolsignal. Minimisationoftheerror

signalinacontrolsystemispossiblewiththeseassumptionsonthereferencesignal.

More-over itenables us to check the maximumamplitude anarbitrary signal within the control

(10)

0

1

2

3

4

5

6

7

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

s(t)

(a)Step response

s

with calculated posi-tionofthepulsesfortheworstcaseinput.

0

20

40

60

80

100

120

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

r_o(t)

(b)Worstcaseinput.

0

20

40

60

80

100

120

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

y(t)

(c)Worstcaseoutput.

(11)

[1] N. Dourdoumas. Prinzipien zum Entwurf linearer Regelkreise mit Beschrankungen {

eineEinfuhrung. Automatisierungstechnik,35(8):301{309,Aug.1987.

[2] P.Muller. EntwurfoptimalerAbtastregelkreisebeibeschrankten Systemgrossen.

Mas-ter'sthesis,DeptofEE,UniversityofPaderborn,33095Paderborn, Germany,1994.

[3] X. Peng. Rechnerunterstutzte Synthese von Abtastregelkreisen mit Beschrankungen.

PhDthesis,DeptofEE,UniversityofPaderborn, 33095Paderborn,Germany,1992.

[4] R. W. Reichel. Synthese von Regelsystemen mit Beschrankungen bei stochastischen

Eingangsgrossen. PhD thesis, Dept of EE, University of Paderborn, 33095 Paderborn,

Germany,1984.

[5] W.Reinelt.EntwurfoptimalerReglerbeiamplitudenbeschrankten Systemgrossen.

Mas-ter'sthesis,DeptofMath,Univ ofPaderborn,33095Paderborn,Germany,Dec.1993.

[6] W. Reinelt. RobustControl ofSystems subjecttoHardConstraints. PhD thesis, Dept

ofEE,UnivofPaderborn, 33095Paderborn,Germany,Apr.1998.

[7] W.Reinelt.

H

loopshapingforsystemswithhardbounds. InProc.oftheIntSympon QuantitativeFeedbackTheoryandRobustFrequencyDomainMethods,Durban,South

Africa,pages89{103,Aug.1999.

[8] I. Zacharias. Robuste Regelung von Abtastsystemen unter Berucksichtigung von

Stell-grossenbeschr ankungen. Master'sthesis,DeptofMath,UniversityofPaderborn,33095

References

Related documents

Although our work is based on input-output featured transition systems, we envisage that the ideas pursued in this paper can be adapted to other behavioural test models and to

The thesis is organized as follows: In Chapter 2 the control configuration problem is presented, and common methods to find an input-output pairing are discussed with special focus

The surface band structure of the Si 共001兲:Tl 2⫻1 surface was measured using ARPES at the same temperatures as was used in the LEED study.. Apart from the increased thermal

Vad gäller relation med andra företag gäller även detta de större aktörerna, främst avseende de omfattande uppköp av mindre aktörer som dessa företag ägnat sig åt under

The kind of integrated services that combines a fixed route service and a demand responsive service has not been studied in the same way, especially not for local area

Som diskuterats tidigare så kan en orsak till att dessa regelverk inte skilde sig åt mer vara att samma nämnd varit inblandad i framtagandet av båda, intressant vore därför

Linköping Studies in Science and Technology Dissertation No.. FACULTY OF SCIENCE

Two functions are written to generate diagrams, one for which the input was the number of external legs and the output all the tree-level diagrams with that number of external