• No results found

Measurement of the leptonic decay width of J/psi using initial state radiation

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the leptonic decay width of J/psi using initial state radiation"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

leptonic

decay

width

of

J

using

initial

state

radiation

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

6

,

X.C. Ai

a

,

O. Albayrak

e

,

M. Albrecht

d

,

D.J. Ambrose

av

,

A. Amoroso

az

,

bb

,

F.F. An

a

,

Q. An

aw

,

1

,

J.Z. Bai

a

,

R. Baldini Ferroli

t

,

Y. Ban

ag

,

D.W. Bennett

s

,

J.V. Bennett

e

,

M. Bertani

t

,

D. Bettoni

v

,

J.M. Bian

au

,

F. Bianchi

az

,

bb

,

E. Boger

y

,

4

,

I. Boyko

y

,

R.A. Briere

e

,

H. Cai

bd

,

X. Cai

a

,

1

,

O. Cakir

ap

,

2

,

A. Calcaterra

t

,

G.F. Cao

a

,

S.A. Cetin

aq

,

J.F. Chang

a

,

1

,

G. Chelkov

y

,

4

,

5

,

G. Chen

a

,

H.S. Chen

a

,

H.Y. Chen

b

,

J.C. Chen

a

,

M.L. Chen

a

,

1

,

S.J. Chen

ae

,

X. Chen

a

,

1

,

X.R. Chen

ab

,

Y.B. Chen

a

,

1

,

H.P. Cheng

q

,

X.K. Chu

ag

,

G. Cibinetto

v

,

H.L. Dai

a

,

1

,

J.P. Dai

aj

,

A. Dbeyssi

n

,

D. Dedovich

y

,

Z.Y. Deng

a

,

A. Denig

x

,

I. Denysenko

y

,

M. Destefanis

az

,

bb

,

F. De Mori

az

,

bb

,

Y. Ding

ac

,

C. Dong

af

,

J. Dong

a

,

1

,

L.Y. Dong

a

,

M.Y. Dong

a

,

1

,

S.X. Du

bf

,

P.F. Duan

a

,

E.E. Eren

aq

,

J.Z. Fan

ao

,

J. Fang

a

,

1

,

S.S. Fang

a

,

X. Fang

aw

,

1

,

Y. Fang

a

,

L. Fava

ba

,

bb

,

F. Feldbauer

x

,

G. Felici

t

,

C.Q. Feng

aw

,

1

,

E. Fioravanti

v

,

M. Fritsch

n

,

x

,

C.D. Fu

a

,

Q. Gao

a

,

X.Y. Gao

b

,

Y. Gao

ao

,

Z. Gao

aw

,

1

,

I. Garzia

v

,

C. Geng

aw

,

1

,

K. Goetzen

j

,

W.X. Gong

a

,

1

,

W. Gradl

x

,

M. Greco

az

,

bb

,

M.H. Gu

a

,

1

,

Y.T. Gu

l

,

Y.H. Guan

a

,

A.Q. Guo

a

,

L.B. Guo

ad

,

Y. Guo

a

,

Y.P. Guo

x

,

Z. Haddadi

aa

,

A. Hafner

x

,

S. Han

bd

,

Y.L. Han

a

,

X.Q. Hao

o

,

F.A. Harris

at

,

K.L. He

a

,

Z.Y. He

af

,

T. Held

d

,

Y.K. Heng

a

,

1

,

Z.L. Hou

a

,

C. Hu

ad

,

H.M. Hu

a

,

J.F. Hu

az

,

bb

,

T. Hu

a

,

1

,

Y. Hu

a

,

G.M. Huang

f

,

G.S. Huang

aw

,

1

,

H.P. Huang

bd

,

J.S. Huang

o

,

X.T. Huang

ai

,

Y. Huang

ae

,

T. Hussain

ay

,

Q. Ji

a

,

Q.P. Ji

af

,

X.B. Ji

a

,

X.L. Ji

a

,

1

,

L.L. Jiang

a

,

L.W. Jiang

bd

,

X.S. Jiang

a

,

1

,

X.Y. Jiang

af

,

J.B. Jiao

ai

,

Z. Jiao

q

,

D.P. Jin

a

,

1

,

S. Jin

a

,

T. Johansson

bc

,

A. Julin

au

,

N. Kalantar-Nayestanaki

aa

,

X.L. Kang

a

,

X.S. Kang

af

,

M. Kavatsyuk

aa

,

B.C. Ke

e

,

P. Kiese

x

,

R. Kliemt

n

,

B. Kloss

x

,

O.B. Kolcu

aq

,

9

,

B. Kopf

d

,

M. Kornicer

at

,

W. Kuehn

z

,

A. Kupsc

bc

,

J.S. Lange

z

,

M. Lara

s

,

P. Larin

n

,

C. Leng

bb

,

C. Li

bc

,

C.H. Li

a

,

Cheng Li

aw

,

1

,

D.M. Li

bf

,

F. Li

a

,

1

,

G. Li

a

,

H.B. Li

a

,

J.C. Li

a

,

Jin Li

ah

,

K. Li

ai

,

K. Li

m

,

Lei Li

c

,

P.R. Li

as

,

T. Li

ai

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ai

,

X.M. Li

l

,

X.N. Li

a

,

1

,

X.Q. Li

af

,

Z.B. Li

an

,

H. Liang

aw

,

1

,

Y.F. Liang

al

,

Y.T. Liang

z

,

G.R. Liao

k

,

D.X. Lin

n

,

B.J. Liu

a

,

C.X. Liu

a

,

F.H. Liu

ak

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.H. Liu

p

,

H.H. Liu

a

,

H.M. Liu

a

,

J. Liu

a

,

J.B. Liu

aw

,

1

,

J.P. Liu

bd

,

J.Y. Liu

a

,

K. Liu

ao

,

K.Y. Liu

ac

,

L.D. Liu

ag

,

P.L. Liu

a

,

1

,

Q. Liu

as

,

S.B. Liu

aw

,

1

,

X. Liu

ab

,

X.X. Liu

as

,

Y.B. Liu

af

,

Z.A. Liu

a

,

1

,

Zhiqiang Liu

a

,

Zhiqing Liu

x

,

,

H. Loehner

aa

,

X.C. Lou

a

,

1

,

8

,

H.J. Lu

q

,

J.G. Lu

a

,

1

,

R.Q. Lu

r

,

Y. Lu

a

,

Y.P. Lu

a

,

1

,

C.L. Luo

ad

,

M.X. Luo

be

,

T. Luo

at

,

X.L. Luo

a

,

1

,

M. Lv

a

,

X.R. Lyu

as

,

F.C. Ma

ac

,

H.L. Ma

a

,

L.L. Ma

ai

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

af

,

X.Y. Ma

a

,

1

,

F.E. Maas

n

,

M. Maggiora

az

,

bb

,

Y.J. Mao

ag

,

Z.P. Mao

a

,

S. Marcello

az

,

bb

,

J.G. Messchendorp

aa

,

J. Min

a

,

1

,

T.J. Min

a

,

R.E. Mitchell

s

,

X.H. Mo

a

,

1

,

Y.J. Mo

f

,

C. Morales Morales

n

,

K. Moriya

s

,

N.Yu. Muchnoi

i

,

6

,

H. Muramatsu

au

,

Y. Nefedov

y

,

F. Nerling

n

,

I.B. Nikolaev

i

,

6

,

Z. Ning

a

,

1

,

S. Nisar

h

,

S.L. Niu

a

,

1

,

X.Y. Niu

a

,

S.L. Olsen

ah

,

Q. Ouyang

a

,

1

,

S. Pacetti

u

,

P. Patteri

t

,

M. Pelizaeus

d

,

H.P. Peng

aw

,

1

,

K. Peters

j

,

J. Pettersson

bc

,

J.L. Ping

ad

,

R.G. Ping

a

,

R. Poling

au

,

V. Prasad

a

,

Y.N. Pu

r

,

M. Qi

ae

,

S. Qian

a

,

1

,

C.F. Qiao

as

,

L.Q. Qin

ai

,

N. Qin

bd

,

X.S. Qin

a

,

Y. Qin

ag

,

Z.H. Qin

a

,

1

,

J.F. Qiu

a

,

K.H. Rashid

ay

,

C.F. Redmer

x

,

H.L. Ren

r

,

M. Ripka

x

,

G. Rong

a

,

Ch. Rosner

n

,

X.D. Ruan

l

,

http://dx.doi.org/10.1016/j.physletb.2016.08.011

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

V. Santoro

v

,

A. Sarantsev

y

,

7

,

M. Savrié

w

,

K. Schoenning

bc

,

S. Schumann

x

,

W. Shan

ag

,

M. Shao

aw

,

1

,

C.P. Shen

b

,

P.X. Shen

af

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

W.M. Song

a

,

X.Y. Song

a

,

S. Sosio

az

,

bb

,

S. Spataro

az

,

bb

,

G.X. Sun

a

,

J.F. Sun

o

,

S.S. Sun

a

,

Y.J. Sun

aw

,

1

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

1

,

Z.T. Sun

s

,

C.J. Tang

al

,

X. Tang

a

,

I. Tapan

ar

,

E.H. Thorndike

av

,

M. Tiemens

aa

,

M. Ullrich

z

,

I. Uman

aq

,

G.S. Varner

at

,

B. Wang

af

,

B.L. Wang

as

,

D. Wang

ag

,

D.Y. Wang

ag

,

K. Wang

a

,

1

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ai

,

P. Wang

a

,

P.L. Wang

a

,

S.G. Wang

ag

,

W. Wang

a

,

1

,

X.F. Wang

ao

,

Y.D. Wang

n

,

Y.F. Wang

a

,

1

,

Y.Q. Wang

x

,

Z. Wang

a

,

1

,

Z.G. Wang

a

,

1

,

Z.H. Wang

aw

,

1

,

Z.Y. Wang

a

,

T. Weber

x

,

D.H. Wei

k

,

J.B. Wei

ag

,

P. Weidenkaff

x

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

bc

,

L.H. Wu

a

,

Z. Wu

a

,

1

,

L.G. Xia

ao

,

Y. Xia

r

,

D. Xiao

a

,

H. Xiao

ax

,

Z.J. Xiao

ad

,

Y.G. Xie

a

,

1

,

Q.L. Xiu

a

,

1

,

G.F. Xu

a

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

as

,

X.P. Xu

am

,

L. Yan

aw

,

1

,

W.B. Yan

aw

,

1

,

W.C. Yan

aw

,

1

,

Y.H. Yan

r

,

H.J. Yang

aj

,

H.X. Yang

a

,

L. Yang

bd

,

Y. Yang

f

,

Y.X. Yang

k

,

H. Ye

a

,

M. Ye

a

,

1

,

M.H. Ye

g

,

J.H. Yin

a

,

B.X. Yu

a

,

1

,

C.X. Yu

af

,

H.W. Yu

ag

,

J.S. Yu

ab

,

C.Z. Yuan

a

,

W.L. Yuan

ae

,

Y. Yuan

a

,

A. Yuncu

aq

,

3

,

A.A. Zafar

ay

,

A. Zallo

t

,

Y. Zeng

r

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

1

,

C. Zhang

ae

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

an

,

H.Y. Zhang

a

,

1

,

J.J. Zhang

a

,

J.L. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

1

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

K. Zhang

a

,

L. Zhang

a

,

S.H. Zhang

a

,

X.Y. Zhang

ai

,

Y. Zhang

a

,

Y.N. Zhang

as

,

Y.H. Zhang

a

,

1

,

Y.T. Zhang

aw

,

1

,

Yu Zhang

as

,

Z.H. Zhang

f

,

Z.P. Zhang

aw

,

Z.Y. Zhang

bd

,

G. Zhao

a

,

J.W. Zhao

a

,

1

,

J.Y. Zhao

a

,

J.Z. Zhao

a

,

1

,

Lei Zhao

aw

,

1

,

Ling Zhao

a

,

M.G. Zhao

af

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

bf

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

1

,

Z.G. Zhao

aw

,

1

,

A. Zhemchugov

y

,

4

,

B. Zheng

ax

,

J.P. Zheng

a

,

1

,

W.J. Zheng

ai

,

Y.H. Zheng

as

,

B. Zhong

ad

,

L. Zhou

a

,

1

,

Li Zhou

af

,

X. Zhou

bd

,

X.K. Zhou

aw

,

1

,

X.R. Zhou

aw

,

1

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

1

,

S. Zhu

a

,

X.L. Zhu

ao

,

Y.C. Zhu

aw

,

1

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

1

,

L. Zotti

az

,

bb

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangXiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanUniversity,Changsha410082,People’sRepublicofChina sIndianaUniversity,Bloomington,IN 47405,USA

tINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy uINFNandUniversityofPerugia,I-06100,Perugia,Italy vINFNSezionediFerrara,I-44122,Ferrara,Italy wUniversityofFerrara,I-44122,Ferrara,Italy

xJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany yJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

zJustusLiebigUniversityGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany aaKVI-CART,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands

abLanzhouUniversity,Lanzhou730000,People’sRepublicofChina acLiaoningUniversity,Shenyang110036,People’sRepublicofChina adNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina aeNanjingUniversity,Nanjing210093,People’sRepublicofChina afNankaiUniversity,Tianjin300071,People’sRepublicofChina agPekingUniversity,Beijing100871,People’sRepublicofChina ahSeoulNationalUniversity,Seoul,151-747, RepublicofKorea aiShandongUniversity,Jinan250100,People’sRepublicofChina

ajShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina akShanxiUniversity,Taiyuan030006,People’sRepublicofChina

alSichuanUniversity,Chengdu610064,People’sRepublicofChina amSoochowUniversity,Suzhou215006,People’sRepublicofChina anSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina aoTsinghuaUniversity,Beijing100084,People’sRepublicofChina apIstanbulAydinUniversity,34295Sefakoy,Istanbul,Turkey aqDogusUniversity,34722Istanbul,Turkey

(3)

arUludagUniversity,16059Bursa,Turkey

asUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina atUniversityofHawaii,Honolulu,HI 96822,USA

auUniversityofMinnesota,Minneapolis,MN 55455,USA avUniversityofRochester,Rochester,NY 14627,USA

awUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina axUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

ayUniversityofthePunjab,Lahore-54590,Pakistan azUniversityofTurin,I-10125,Turin,Italy

baUniversityofEasternPiedmont,I-15121,Alessandria,Italy bbINFN,I-10125,Turin,Italy

bcUppsalaUniversity,Box516,SE-75120Uppsala,Sweden bdWuhanUniversity,Wuhan430072,People’sRepublicofChina beZhejiangUniversity,Hangzhou310027,People’sRepublicofChina bfZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received8April2016

Receivedinrevisedform14July2016 Accepted5August2016

Availableonline9August2016 Editor:V.Metag

Keywords: J/ψresonance Electronicwidth Initialstateradiation BESIII

Usingadatasetof2.93 fb−1takenatacenter-of-massenergyof√s=3.773 GeV withtheBESIIIdetector atthe BEPCIIcollider,wemeasure theprocess e+e−→ J/ψ

γ

μ

+

μ

γ

and determine theproduct ofthe branchingfractionand theelectronicwidth Bμμ· ee= (333.4±2.5stat±4.4sys) eV. Usingthe

earlier-published BESIIIresult for

B

μμ= (5.973±0.007stat±0.037sys)%,wederivethe J/ψ electronic

width



ee= (5.58±0.05stat±0.08sys)keV.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Theelectronicwidthofthe J

resonance



ee

≡ 

ee

(

J

/ψ)

has

beenmeasuredby BaBar[1]andCLEO-c [2],employing the tech-niqueofInitialStateRadiation(ISR),inwhichoneofthebeam par-ticlesradiatesaphoton.Consequently,theinvariantmassrange be-lowthecenter-of-massenergyofthe

e

+e−colliderbecomes avail-able.Usingadifferentmethod,the kedr experimentalsomeasured itselectronicwidthwithimprovedprecision[3].Inthispaper,we study the process e+e

μ

+

μ

γ

using the ISR method with

μ

+

μ

− invariant mass m2μ between 2.8 and 3.4 GeV/c2, which

coversthecharmoniumresonance J

.Thecrosssection

σ

J/ψγ

σ

(

e+e

J

γ

μ

+

μ

γ

)

isproportional to



ee

·

B

μμ, where

B

μμ

B(

J

μ

+

μ

)

isthe branching fractionofthe muonic

decay of the J

resonance. With the precise measurement of

B

μμ from BESIII [4], wehavetheopportunity toobtain



ee with

highprecision. Thedifferential crosssection of

σ

J/ψγ can be ex-pressedintermsofthecenter-of-massenergysquared

s as

d

σ

J/ψ

(s,

m2μ

)

dm2μ

=

2m2μ

s W

(s,m

2μ

)B W

(m

2μ

),

(1)

where

W

(

s

,

m2μ

)

istheradiatorfunction,describingthe

probabil-ity that one of the beam particles emits an ISR photon [5], and

*

Correspondingauthor.

E-mailaddress:liuz@uni-mainz.de(Z. Liu).

1 Also at State Key Laboratory of Particle Detection and Electronics, Beijing

100049,Hefei230026,People’sRepublicofChina.

2 AlsoatAnkaraUniversity,06100Tandogan,Ankara,Turkey. 3 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

4 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 5 Alsoatthe FunctionalElectronicsLaboratory,Tomsk StateUniversity,Tomsk,

634050,Russia.

6 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 7 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 8 AlsoattheUniversity ofTexasatDallas,Richardson,TX 75083,USA. 9 CurrentlyatIstanbulArelUniversity,34295Istanbul,Turkey.

B W

(

m2μ

)

is the Breit–Wigner function. W

(

s

,

m2μ

)

is calculated

by the phokhara event generator, withan estimatedaccuracy of 0.5%[6].TheBreit–Wignerfunctionis

B W

(m

2μ

)

=

12

π

B

μμ

· 

ee



tot

(m

22μ

M2J

)

2

+

M2 J/ψ



tot2

,

(2)

[7]inwhich



totand

M

J/ψarethe J

fullwidthandmass.Both values are taken from the world averages [7]. The cross section

σ

J/ψγ over aspecified

m

2μ range canbeexpressedusing:

σ

J/ψγ

(s)

=

NJ/ψ



·

L

= 

ee

·

B

μμ

·

I(s), (3)

where

N

J/ψ isthenumberofsignaleventswithinthemassrange afterbackgroundsubtraction,



istheselectionefficiencyobtained fromaMonteCarlo(MC)simulation,

L

istheintegrated luminos-ityofthedataset,andI

(

s

)

istheintegral

I(s)

m



max

mmin

2m2μ

s W

(s,m

2μ

)b(m

2μ

)dm

2μ

,

(4)

in which b

(

m2μ

)

B W

(

m2μ

)/ 

ee

·

B

μμ. A mass range between mmin

=

2

.

8 GeV

/

c2 and mmax

=

3

.

4 GeV

/

c2 is chosen in which NJ/ψ isdetermined.

The above equationsdonot take into accountinterference ef-fects of the resonant

μ

+

μ

− production via J

and the non-resonant e+e

μ

+

μ

γ

QED production. At lowest order in the finestructure constant

α

, thesecanbe includedby replacing

B W

(

m2μ

)

by[8] B W

(m

2μ

)

=

4

π α

2 3m22μ





1

− ζ(

m2μ

)



2

1



,

(5) with

(4)

ζ (m

2μ

)

=

3

α

·



B

μμ

· 

ee



totMJ/ψ M2 J/ψ

m22μ

iMJ/ψ



tot (6)

and

b

(

m2μ

)

byitsequivalent

b



(

m2μ

)

B W

(

m2μ

)/ 

ee

·

B

μμ. The

interferenceisnon-symmetrical aroundthe peak; destructive be-low and constructive above. The radiator function gives a larger weighttolowerphotonenergies,correspondingtohigherdi-muon invariant masses. This changes the m2μ shape around the peak

asymmetrically. Replacing b

(

m2μ

)

by b

(

m2μ

)

informula (4) and

usingtheworldaverage [7]for



ee

·

B

μμ enhances I

(

s

)

by about

2.2%.Thefunction

b



(

m2μ

)

dependson



ee

·

B

μμ. Hence,an

itera-tiveprocedureisusedforitsextraction.

Weuse

e

+e− collision datacollected atthe Beijing Spectrom-eter III (BESIII) experiment. The BESIII detector [9] is located at the double-ring e+e− Beijing Electron Positron Collider (BEPCII). ThecylindricalBESIIIdetectorcovers93%ofthefullsolidangle.It consistsof thefollowing detectorsystems: (1) A MultilayerDrift Chamber(MDC) filled witha Helium-based gas, composed of43 layers,providingaspatial resolutionof135 μmandamomentum resolutionof0.5%forchargedtracksat1 GeV/c inamagneticfield of1T.(2) A Time-of-Flightsystem(TOF),composedof176plastic scintillatorcountersinthebarrelpart,and96countersinthe end-caps.Thetimeresolutioninthebarrelis80ps and110psinthe endcaps.Formomenta upto1 GeV/c a 2

σ

K/

π

separationis ob-tained.(3)A CsI(Tl) Electro-Magnetic Calorimeter(EMC), withan energyresolutionof 2.5%in thebarrel and5% inthe endcapsat anenergyof1 GeV.(4)AMuonChamber(MUC)consistingofnine barrelandeightendcapresistiveplatechamberlayerswitha2 cm positionresolution.

We analyze 2.93 fb−1 [10] of data taken at

s

=

3

.

773 GeV intwo separate runs in2010 and 2011. A Geant4-based [11,12]

MonteCarlo(MC)simulationisusedtodetermineefficienciesand studybackgrounds.TosimulatetheISRprocess

e

+e

μ

+

μ

γ

, we usethe phokhara event generator[6,13].It includesISR and final state radiation(FSR)correctionsup to next-to-leadingorder (NLO).Hadronic ISRproduction isalsosimulatedwith phokhara. Bhabhascatteringissimulatedusingthe babayaga 3.5event gen-erator [14]. Continuum MC is produced with the kkmc genera-tor[15].

Werequirethe presenceofatleast twochargedtracks inthe MDCwithnetchargezero.Thepointsofclosestapproachfromthe interactionpoint(IP)forthesetwotracksarerequiredtobewithin acylinderof1 cmradiusinthetransversedirectionand

±

10 cm oflength along the beamaxis. Incase of three-track events, we choose the track pair with net charge zero which is closest to the IP.The polarangle

θ

ofthe tracksisrequired tobe foundin thefiducialvolumeoftheMDC,0

.

4rad

< θ <

π

0

.

4rad,where

θ

isthepolarangleofthetrackwithrespecttothebeamaxis.We requirethetransversemomentum

p

t tobegreaterthan300 MeV/c

foreachtrack.Toenhancestatisticsandtosuppressnon-ISR back-ground, we investigate untagged ISR events, where the ISR pho-ton isemitted undera smallangle

θ

γ , almostcollinear withthe beam,andthereforedoesnotendupinthefiducialvolumeofthe EMC. This is a new approach with respect to BaBar and CLEO-c (bothusedtaggedISRphotons),whichhasbeenprovedtobevalid andeffectivebyusingthe phokhara eventgenerator[16].A one-constraint (1C) kinematic fit is performed under the hypothesis

e+e

μ

+

μ

γ

, using as input the two selected charged track candidatesaswellasthefour-momentumoftheinitial

e

+e− sys-tem.Theconstraintisamissingmasslessparticle.Thefitimposes overall energy and momentum balance. The

χ

2

1C value returned

bythe fitisrequiredto besmaller than10.In addition,the pre-dictedmissingphotonanglewithrespecttothebeamaxis,

θ

γ , has tobesmallerthan 0

.

3 radiansorgreaterthan

π

0

.

3 radiansin thelabframe.Radiative Bhabhascattering

e

+e

γ

(

γ

)

hasacross

Table 1

Totalnumberofnon-muonbackgroundeventsbetween 2.8≤m2μ≤3.4 GeV/c2 obtained with MC samples, whicharenormalizedtotheluminosityofthedataset.

Final state Background events

e+e(γ) negl. π+πγ 8.4±2.9 π+ππ0γ 3.3±1.8 π+ππ0π0γ 0.3±0.6 π+ππ+πγ negl. K+Kγ 1.7±1.3 K0K0γ negl. p pγ negl. Continuum 1.7±1.3 ψ(3770)D+D− negl. ψ(3770)D0D0 negl. ψ(3770)non D D 11.2±3.4 J/ψ→nonμμ 11.8±3.5

sectionthatisuptothreeordersofmagnitudelargerthanthe sig-nalcrosssection.Therefore,electrontracksneedtobesuppressed. Anelectron particleidentification(PID)algorithm isusedforthis purpose,employinginformationfromtheMDC,TOFandEMC[17]. The probabilitiesforthetrackbeingamuon P

(

μ

)

oran electron

P

(

e

)

arecalculated,and P

(

μ

)

>

P

(

e

)

isrequiredforbothcharged tracks,which leadsto an electronsuppression ofmorethan96%. Tofurthersuppresshadronicbackground,an ArtificialNeural Net-work (ANN)builtonthe TMVApackage[18] isused.The ANN is describedindetailinRef.[10].Bothchargedtracksarerequiredto haveaclassifieroutputvalue

y

ANN ofthismethodsmallerthan0.3

to be treatedasmuons, leading toa signal lossof lessthan30% andabackgroundrejectionofmorethan99%.

Backgroundbeyondtheradiative processes

μ

+

μ

γ

is studied withMC simulations. Table 1 liststhe numberofevents remain-ing afterallpreviously described requirementsinthe massrange between2.8and3.4 GeV/c2.About 4

.

8

×

105 eventsare foundin

thedatawithinthisrange.Thebackgroundfractionisfoundtobe smallerthan0.04%foreachofthe150

m

2μ massbins.Wesubtract

itfromthedatabinbybin.

The selection efficiency



is determined based on signal MC events. It is obtained as the ratio of the measured number of events afterall selection requirements Nmeasuredtrue to all generated ones

N

true

generated only.ThetrueMC sampleof J

decayswiththe

full

θ

γ range, whichdoesnotcontainthedetectorreconstruction, is used here by applying efficiency correctionsto each track for muon tracking reconstruction, electron-PID, and ANN efficiency. Thesecorrectionshavebeenderived inRef.[10].We find



tobe (32.04

±

0.09)%,where the erroris dueto thesize of thesignal MCsample.

Thenumberof J

events NJ/ψ isdeterminedfromabinned maximumlikelihoodfittodata.Thefitfunction f

(

x

)

usedis

f

(x)

=

NJ/ψ



M(x)

G(x)



+

Ntotal

NJ/ψ

p(x), (7)

where M

(

x

)

describes theshape ofthe MC-simulated J

peak. We extract the shapefrom a MC simulationof the J

produc-tion using a certain



ee

·

B

μμ value as an input, together with

QED

μ

+

μ

γ

production (including interference effects) as sim-ulated with the phokhara event generator. Then, the histogram

M

(

x

)

isobtainedby subtractinga pureQED

μ

+

μ

γ

MCsample. It is shown in Fig. 1, using the world average [7] for



ee

·

B

μμ

asinput.Totake intoaccount differencesinmass resolutions be-tweendataandMCsimulation,M

(

x

)

isconvolved(denotedbythe operator

) with a Gaussian distribution G

(

x

)

withmean x and

¯

width

σ

,whoseparameters aredetermined bythefit todata.To describethenon-resonantQEDproductioninthefit,apolynomial offourthorderisused,

(5)

Fig. 1. MChistogramfromthe phokhara generatorafterfulldetector simulation usedforthefit.Thevalueofee· BμμusedforgenerationistheonefromRef.[7].

Fig. 2. Fittothedatausingthefinalvalueofee· Bμμ fromTable 3intheMC histogramforthefit.

p(x)

=

4

i=0

aixi

.

(8)

Ntotal is the constant number of data events between 2.8 and

3.4 GeV/c2.Freeparameters inthefitare N

J/ψ,x, σ

¯

,andthe co-efficients ai (i

=

1

, . . . ,

4). Hence, NJ/ψ can be obtained directly by the fit. The fit resultis shown in Fig. 2; we find x

¯

= (

2

.

6

±

0

.

1

)

MeV

/

c2,

σ

= (

10

.

5

±

0

.

2

)

MeV

/

c2,and

χ

2

/

ndf

=

149

.

8

/

143.

Equation

(3)

isusedtodetermine



ee

·

B

μμ in aniterative

pro-cess. In each iteration, we simulatethe histogram M

(

x

)

and cal-culate I

(

s

)

(including interferencecorrections), usinga



ee

·

B

μμ

inputvalue,andextractthe



ee

·

B

μμ output withEq.(3).This

re-sult is used as input for the next iteration. We choose the PDG value [7] asthe starting value. The results of each iteration are summarizedin Table 3. Afterthree iterations the resultbecomes stablewithinfourdecimalplaces,whichcorrespondstothe exper-imentaluncertainty.Asthefinalvaluewefind



ee

·

B

μμ

= (

333

.

4

±

2

.

5stat

±

4

.

4sys

)

eV

,

wherethefirsterroristhestatisticaluncertaintyfromthefit pro-cedure,andtheseconderroristhesystematicuncertainty.

All systematic uncertainties are summarized in Table 2. They aresummedupinquadraturetobe1.3%.Theyarederived as fol-lows:

Table 2

Summaryofthesystematicuncertainties.

Source Uncertainty

(%) Background subtraction negl. Muon tracking efficiency 0.5

Muon ANN efficiency 0.5

Muon e-PID efficiency 0.5

1C kinematic fit 0.5

Angular acceptance 0.1

Luminosity 0.5

Radiator function 0.5

Parametrizing the interference 0.2 Variation of fit range 0.3

Sum 1.3

Table 3

Resultsoftheiterationsteps.Asthestartingvalue,thePDG2014oneisused.The errorsarethestatisticalones.

Step ee· Bμμ

inputvalue

ee· Bμμ output value[eV]

1 PDG value[7] 333.9±2.5

2 result of step 1 333.3±2.5

3 result of step 2 333.4±2.5

4 result of step 3 333.4±2.5

(1)IntegralI

(

s

)

:ThedifferenceinI

(

s

)

,whenenhancingor de-creasingthevalue of



ee

·

B

μμ within fivestandard deviationsof

the error,claimedby Ref.[7],issmallerthan0.2%.Thisdeviation isconsideredasthesystematicuncertaintyofaccommodatingthe interferenceeffectsin

I

(

s

)

.

(2)Backgroundsubtraction:Aconservativeuncertaintyof100% isassumedfortheMCsamples.Hence,thesystematicuncertainty dueto backgroundsubtractionis smallerthan 0.04%per binand canthereforebeneglected.

(3) Efficiency



:The data-MC efficiencycorrectionshavebeen studiedinRef.[10].Thecorrespondingsystematicuncertaintiesare listed in

Table 2

. Theyarefound tobe smallerthan 0.5%in each case.

(4)Toestimatetheuncertaintyintroducedbytherequirements on

θ

γ and χ2

1C, the resolutiondifferences betweendata andMC

simulation inthesevariablesare obtained. Incaseof

θ

γ , we find the resolution difference tobe

(

66

±

3

)

×

10−5 radians,by com-paringanISRphotontaggedclean

μ

+

μ

γ

samplebothfromdata and MC simulation. In case of

χ

2

1C, we determine the efficiency

of theapplied requirement

χ

2

1C

<

10 in dataandMC simulation.

Wevarythisrequirementindatasuchthattheefficienciesindata and MC simulation are the same. The difference to the actually usedrequirementistakenasresolutiondifference,whichwefind tobe

(

1

.

1

±

0

.

1

)

unitsin

χ

2

1C.Toachieveabetterdescriptionof



,

both variablesaresmearedinthesignalMC samplewitha Gaus-sian withameanvalue ofzeroandawidthcorresponding tothe resolution difference.Toestimate thecontribution tothe system-aticuncertainty,thesevariablesarealsovariedwitha

±

1 standard deviation,andthedifferencein



istakenasthesystematic uncer-tainty,whichisfoundto belessthan0.5%for

χ

2

1C andnegligible

for

θ

γ .

(5)Thechosenmassrangebetween2.8and3.4 GeV/c2isvaried within0.1 GeV/c2,usingthefinalvalueof



ee

·

B

μμ after the

iter-ation procedure.The differencein



ee

·

B

μμ is smaller than0.3%,

andisusedasasystematicuncertainty.

(6)TheluminosityhasbeenmeasuredinRefs. [19,10]withan uncertaintyof0.5%.

(7)Theradiatorfunctionisextractedfromthe phokhara event generator[13]andhasanuncertaintyof0.5%.

(6)

Table 4

ResultsoftheBaBar[1],CLEO-c[2]andKEDR[3]measurementscomparedtothiswork.

Measurement ee· Bμμ[eV] UsedBμμvalue [%] ee[keV]

BaBar 330.1±7.7stat±7.3sys 5.88±0.10[20] 5.61±0.20

CLEO-c 338.4±5.8stat±7.1sys 5.953±0.056stat±0.042sys[21] 5.68±0.11stat±0.13sys

KEDR 331.8±5.2stat±6.3sys 5.94±0.06[22] 5.59±0.12

This work 333.4±2.5stat±4.4sys 5.973±0.007stat±0.037sys[4] 5.58±0.05stat±0.08sys

(8)The angularacceptanceofthechargedtracksisstudied by varyingthis requirementby morethan threestandard deviations ofthe angular resolution, andstudying the corresponding differ-enceinthefinalresult.Anuncertaintyoflessthan0.1%isfound.

With

B

μμ

= (

5

.

973

±

0

.

007stat

±

0

.

038sys

)

% from an

indepen-dentBESIIImeasurement[4],ourmeasurementyields



ee

= (

5

.

58

±

0

.

05stat

±

0

.

08sys

)

keV

.

Ourmeasurementof



ee

·

B

μμ is consistentwiththeresultsfrom

BaBar[1],CLEO-c[2]andKEDR[3].Themeasuredvaluefor



ee is

moreprecise,assummarizedin

Table 4

.

Insummary,we have usedthe ISR process e+e

J

γ

μ

+

μ

γ

tomeasure



ee

·

B

μμ

= (

333

.

4

±

2

.

5stat

±

4

.

4sys

)

eV with

atotalrelativeuncertaintyof1.5%.CombinedwiththeBESIII mea-surementof Bμμ, we obtain



ee

= (

5

.

58

±

0

.

05stat

±

0

.

08sys

)

keV

witharelativeprecisionof1.7%.

The BESIII Collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Sci-enceFoundation ofChina (NSFC) underContractsNos.11125525, 11235011,11322544,11335008, 11425524; theChinese Academy ofSciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collabora-tive InnovationCenter for ParticlesandInteractions(CICPI);Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. 11179007, U1232201, U1332201; CAS under Con-tracts Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics andCosmology;GermanResearchFoundationDFGunderContract No.CollaborativeResearchCenterCRC-1044;InstitutoNazionaledi Fisica Nucleare, Italy; Ministry of Development of Turkey under ContractNo.DPT2006K-120470; RussianFoundation forBasic Re-searchunderContractNo.14-07-91152;U.S.DepartmentofEnergy

under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823,DESC0010118;U.S.NationalScience Founda-tion; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Pro-gram of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.

References

[1]B.Aubert,etal.,BABARCollaboration,Phys.Rev.D69(2004)011103R. [2]G.S.Adams,etal.,CLEOCollaboration,Phys.Rev.D73(2006)051103R. [3]V.V.Anashin,etal.,Phys.Lett.B685(2010)134–140.

[4]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D88(2013)032007. [5]V.Druzhinin,S.Eidelman,S.Serednyakov,E.Solodov,Rev.Mod.Phys.83(2011)

1545.

[6]G.Rodrigo,H.Czy ˙z,J.H.Kuhn,M.Szopa,Eur.Phys.J.C24(2002)71. [7]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001. [8]See,forexample,F.A.Berends,G.J.Komen,Nucl.Phys.B115(1976)114. [9]M. Ablikim,et al., BESIII Collaboration, Nucl. Instrum. Methods Phys. Res.,

Sect. A614(2010)345.

[10]M.Ablikim,etal.,BESIIICollaboration,Phys.Lett.B753(2016)629. [11]J.Allison,etal.,GEANT4Collaboration,IEEETrans.Nucl.Sci.53(2006)270. [12]S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. MethodsA 506

(2003)250.

[13]H.Czy ˙z,J.H.Kuhn,A.Wapienik,Phys.Rev.D77(2008)114005.

[14]G.Balossini,C.M.C.Calame,G.Montagna,O.Nicrosini,F.Piccinini,Nucl.Phys. B 758(2006)227.

[15]S.Jadach,B.F.L.Ward,Z.Was,Comput.Phys.Commun.130(2000)260. [16]H.Czy ˙z,J.H.Kühn,Eur.Phys.J.C18(2001)497–509;

G.Rodrigo,H.Czyz,J.H.Kuhn,M.Szopa,Eur.Phys.J.C24(2002)71–82; Henryk Czy ˙z,Agnieszka Grzeli ´nska,JohannH.Kühn,Phys. Rev.D81(2010) 094014.

[17]D.M.Asner,etal.,Int.J.Mod.Phys.A24 (S1)(2009).

[18]A.Hoecker,P.Speckmayer,J.Stelzer,J.Therhaag,E.VonToerne,H.Voss,PoS ACAT040(2007).

[19]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C37(2013)123001. [20]K.Hagiwara,etal.,ParticleDataGroup,Phys.Rev.D66(2002)010001. [21]Z.Li,etal.,CLEOCollaboration,Phys.Rev.D71(2005)111103R. [22]C.Amsler,etal.,ParticleDataGroup,Phys.Lett.B667(2008).

Figure

Fig. 1. MC histogram from the phokhara generator after full detector simulation used for the fit

References

Related documents

historieundervisning. Klassisk historieundervisning var gällande ända fram till hälften av 1900-talet. Man kan säga att klassisk historieundervisning var

Consequently, the aim of this study is to identify whether the country context (Sweden, U.S. and England), where public space ETs and ICTs are used by older adults, or having

For example, the online resource from which the teacher excerpted texts used early in the course (Clio, 2020) contains separate sections for contrasting sources representing

Liksom i den inledande kommunikationen kring bilder från sagan om Askungen går det att se hur logiska samband bidrar till att signalera hur texten rör sig mot fullbordan genom

Precis som i ett tidigare samtal om algebra och multiplikation framstår lärarens, och i detta fall även elevernas, erfarenheter från att bo i andra länder som en resurs

Även i arbetet med att lagra kunskap har vi dock kunnat visa inslag av kommunikativt handlande, genom hur läraren och eleverna i öppen dialog sökte en gemensam

Restricted to cir- cularly symmetric Gaussian distributed processes, we have obtained (i) a formula for LSPs for the optimal spectral es- timation kernel in the ambiguity

The overall aim was to study periodontitis prevalence and severity in two Swedish adult populations, and to describe the changes over time. Further aims were to examine the effect