• No results found

Exit from inflation with a first-order phase transition and a gravitational wave blast

N/A
N/A
Protected

Academic year: 2021

Share "Exit from inflation with a first-order phase transition and a gravitational wave blast"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Exit

from

inflation

with

a

first-order

phase

transition

and

a gravitational

wave

blast

Amjad Ashoorioon

Institutionenförfysikochastronomi,UppsalaUniversitet,Box803,SE-75108Uppsala,Sweden

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received27April2015

Receivedinrevisedform11June2015 Accepted11June2015

Availableonline15June2015 Editor:M.Trodden

Indouble-fieldinflation,whichexploitstwoscalarfields,oneofthefieldsrollsslowlyduringinflation whereastheotherfieldistrappedinameta-stablevacuum.Thenucleationratefromthefalsevacuum tothetrueonebecomessubstantialenoughthattriggersafirstorderphasetransitionandendsinflation. Werevisitthequestionoffirstorderphasetransitioninan“extended”modelofhybridinflation,realizing thedouble-fieldinflationaryscenario,andcorrectlyidentifytheparameterspacethatleadstoafirstorder phasetransitionattheendofinflation.We computethegravitationalwaveprofilewhichisgenerated duringthisfirstorderphasetransition.Assuminginstantreheating,thepeakfrequencyfallsinthe1GHz to10GHzfrequencybandandtheamplitudevariesintherange10−11 

GWh210−8,dependingon

thevalueofthecosmologicalconstantinthefalsevacuum.Foranarrowbandofvacuumenergies,the firstorderphasetransition canhappenafterthe endofinflationviatheviolationofslow-roll,witha peakfrequency thatvaries from1 THzto 100THz. Forsmallervalues ofcosmologicalconstant, even though inflation can endvia slow-roll violation, the universe gets trapped ina falsevacuum whose energydrivesasecondphaseofeternalinflation. Thisrangeofvacuumenergiesdonotleadtoviable inflationarymodels,unlessthevalueofthecosmologicalconstantiscompatiblewiththeobservedvalue,

M10−3eV.

©2015TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The mechanism that ends inflation is still an open question incosmology. In factit was the Achilles heelofthe old inflation model[1],astheuniversewouldneverrecoverfrominflation. Ac-celerated expansion of the inflationary false vacuumbackground pushesthewallsoftruevacuumbubblesexponentiallyapartsuch that theynever manageto coalesceandendinflation. New infla-tion [2], with the evolution of the inflaton, allowed for another mechanism of termination of inflation. Fast-roll evolution of the scalar field at the endof inflation can violate the slow-roll con-ditionandendinflation. Howeverthere still remainedtoaddress howtheuniversehasbeenreheatedfromthesupercooledphase. Forthat onehastwoassume thattheinflatoniscoupledtoother degrees of freedom and decay of the inflaton to these degrees offreedomhappenseitherperturbativelyornonperturbatively[3]. Forthistohappenoneoftenhastofine-tunethecouplingsorthe bare-massesofthesenewdegreesoffreedom.

E-mailaddress:amjad.ashoorioon@physics.uu.se.

End ofinflation through bubblenucleation hasthis advantage thatreheatingtheuniversehappensfromthecollisionoftrue vac-uum bubble wallsand their natural conversion to radiation. The ideasofnewandoldinflationwerecombinedin“double-field” in-flation[4,5]inwhichoneofthefieldsrollsduringinflation,asin slow-roll inflation,andthe secondfield isinitially trappedin the meta-stable vacuum(ascanbe seeninourexample,thisvacuum could betheonlyexisting minimuminthebeginningofinflation. Thetruevacuumcoulddevelop asinflationproceeds).Asthefirst field rolls, the nucleation rate from the meta-stable vacuum to the trueone becomes large enough that bubblesof truevacuum canindeedpercolateandendinflation. Thisisvery similartothe false-vacuumdominatedHybridinflation[6,7]wherethetachyonic instabilityofthewaterfallfieldisreplacedwithafirstorderphase transition.Aprototypeofsuchapotentialtakestheform

V

(φ, ψ )

=

V0

+

V1

(φ)

+

V2

(φ, ψ ),

(1.1)

where V0 is the vacuumenergy which is constant and

φ

is the

rollingfieldwhosepotentialV1

(φ)

alongwiththevacuumenergy

drivesinflation.

ψ

isthefieldwhichfacilitatesthefirstorderphase transitiontothetruevacuum.

http://dx.doi.org/10.1016/j.physletb.2015.06.022

0370-2693/©2015TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

firstorderphasetransition,thespectrumhasaninvertedV-shape whichisdeterminedby thepeakfrequencyandtheamplitude at thepeak frequency. The peak frequency alsodepends onthe re-heatingtemperatureafterthefirstorderphasetransition,butifall theenergyinthefalsevacuumphaseisconvertedtoradiation,the peakfrequencyfallssomewhereintheGHzrange,whichisinthe frequencyrange probed by Chongqing University [13] butbelow itscurrentsensitivitylimitby10−2–10−5.Nonetheless,itishoped

thatfutureimprovementsofthe detectorsimprovetheir sensitiv-ityandclosethegapbetweenthepredictedsignalandthecurrent sensitivitylimit.Theshapeoftheproducedgravitationalspectrum canbeusedtodistinguishthemechanismofterminationof infla-tionfromtheparametricresonance[3]whichleadstogravitational wavespectrumwithdifferentprofile[14,15].

We also investigate the gravitational profile from inflationary modelsthatexitfrominflationaryphasethroughviolationof slow-rollbutaftertheterminationofinflationthenucleationratefrom

meta-stable vacuum to the true vacuum becomes large enough

thatfirstorderphase transitionoccurs.Ifthereheatingis instan-taneousandefficient,thepeak frequencyfromsuchphase transi-tionsliesintheteratopeta-Hertz bandanditsamplitudeismuch smallerthanthemodelsthatexitfrominflationthroughfirstorder phase transition. At the moment there is no planned probe that aimstothedetectionofsuchhighfrequencygravitationalwaves.

Inthiswork,wechosetherollingpotentialtobethequadratic potential for simplicity. Also, the large-scale predictions of the modelwerevery closetom2

φ

2 predictionin then

S

r planein thelimit ofvanishingvacuumenergy.Thispartofthepredictions ofthemodelwasstill withinthe 2

σ

limitofPlanck2013results

[16].AftertherevelationofPlanck2015results[17],theprediction ofthemodelnowfallsoutsidethe2

σ

region inthens

r plane excluding the running ofscalar spectral indexfrom the parame-ters.Nonetheless,theregionclosetothepredictionpointofm2

φ

2 is still within the 3

σ

region. Allowing for the running of scalar spectralindex, thisregioncomes back tothe2

σ

C.L. region.Itis expectedthattakingtherollingpotentialtobealowenergyscale model,likethehilltop model[18] ortheStarobinsky model[19], thepredictedvaluesforr forthe modelsexiting inflation witha firstorderphasetransitionhavea largeroverlapwiththe2

σ

re-gionofPlanck2015data.

Theoutlineofthepaperisasfollows.Firstwewillexplainthe setupthat canrealizetheidea ofdouble-fieldinflation.We iden-tifytheparameterspaceforwhichinflationcanendthroughafirst orderphase transitionandthen calculatethe power spectrumof gravitationalwavesproducedduring such phase transitions.Then weidentifytheregionofparameterspacewherephasetransition happensafter the termination ofinflation through slow-roll vio-lation.We alsocomputethegravitationalsignatureofsuch phase transitions.Attheend,weshowthattheuniversegetstrappedin themeta-stablevacuumifthevacuumenergyislessthana

thresh-inflation. For large values of

φ

, the potential has one minimum in both

φ

and

ψ

direction. As inflation proceedsand

φ

rolls to-warditsvacuum,secondminimumalongthe

ψ

directiondevelops if

γ

2

>

4

αγ

at

φ

inflection2

=

M2

γ

2

4

α

λ

4

λ



λ

(2.2)

Thetwo minimaareseparatedby abarrierthat allowsforafirst order phase transition from the meta-stable vacuumto the true one ifthe nucleation rateis substantial andwhen it is energeti-callyfavorable.Mappingthepotentialto(1.1),V1

(φ)

isthevanilla

chaotic model m2

φ

2 and theexpression in the second lineplays the roleof V2

(φ,

ψ)

,whichcouples theinflatonto thefield that

creates the false vacuum in the

ψ

direction and facilitates the phasetransition.Inprinciple,V1

(φ)

determinesthepredictionsof

themodelatlargescales inthelimitingcasethatthe cosmologi-calconstantgoestozeroandcanbechosensuchthatthemodelis compatiblewiththeCMBobservablesatcosmologicalscales[16].

The probability of phase transition is givenby the nucleation ratedividedbythe4-dimensionalHubblevolume

p

=



H4 (2.3)

where



isthenucleationrate[20]



=

A

exp

(

SE

)

(2.4)

whereSE istheEuclideanfour-dimensionalactionforthesolution thatinterpolatesbetweenthetwominima.Forafirstorderphase transition witha quartic polynomial potential, the numerical re-sultswerefitby[21]tohavetheform

SE

=

4

π

2

3

λ

(

2

− δ)

−3

(

α

1

δ

+

α

2

δ

2

+

α

3

δ

3

) ,

(2.5)

where

α

1

=

13

.

832,

α

2

= −

10

.

819,

α

3

=

2

.

0765,and

δ

isa

func-tionof

φ

2,

δ

=

9

λ

α

γ

2

+

9

λλ



φ

2

γ

2M2

.

(2.6)

The allowed range has 0

< δ <

2. Prefactor

A

has dimension mass4.In[8],thisprefactoristakentobeequaltothe cosmologi-calconstantinthefalsevacuum, λM44.Howeveraspointedoutby

1 ForthestatusofhybridinflationwithquadraticrollingpotentialafterPlanck 2013datarelease,pleasesee[9].Inparticularthepaperdiscussesaninteresting scenarioinwhichthefirstpartoftherequirednumberofe-folds,neededtosolve theproblemsofBigBang,isprovidedfromthechaoticphaseandthesecondpart isresultedfromthevacuumdominatedphaseofhybridinflation.Themodelcan renderlowerscalarspectralindicesbutlargeramountoftensor-to-scalarratioin comparisonwiththepurelyquadraticpotential.

(3)

Fig. 1. The behavior of m (left) and nS(right) as a function of M in the region of parameter space that inflation ends with a first order phase transition.

Lindein[10],ifM2

ψ

>

2H2,thepre-exponentialfactor

A

iscloser to M4ψ.As wewill see,uponthischange,theparameter spacein whichexitfrominflation can happenthrough afirst orderphase transitionexpandssubstantially.2

Forillustrationwefocusonthefollowingsetofparameters

α

=

0

.

01

,

λ

=

1

,

&

λ



=

1

.

(2.7)

Allmassiveparameters are inunitof Planckmass,mP

=

G−1/2

=

1

.

2209

×

1019 GeV.Forthepotential (2.1)tohaveazerovacuum constantafterthephasetransition,thefollowingrelationbetween theparametersshouldhold

γ

2

=

α

3

+

9

α

λ

2

+ (

α

2

+

3

λ

2

)

3/2

3 (2.8)

Asin[8],wetaketherequirednumberofe-foldstosolvethe stan-dardBigBang cosmologyproblemstobe55.Inflationcanalsoend throughendofslow-rollwhichisparameterizedby

m 2 Pl 16

π



V 1 V1



2

=

m4

φ

2m2P

π

M4

+

2m2

φ

2

)

2

=

1 (2.9)

whichhasthebiggestsolution

φ

2

=

m2m2Pl

+

mmP



m2m2 Pl

8

π

λ

M4

4

π

λ

M4 8

π

m2

,

(2.10)

asthephysicallyviablesolution.

In order for inflation to end through phase transition rather thanslow-rollviolation,

φ

pt

> φ

.Thenumberofe-foldingscould

beobtainedasafunctionoftheinflatonfield.Asstatedabove,we taketherequirednumberofe-foldsequalto55:

N

, φ

pt

)

= −

8

π

m2P φpt



φV1 V1 d

φ

=

2

π

λ

M 4 m2m2 P ln

φ

φ

pt

+

2

π

m2P

2 ∗

− φ

2pt

)

(2.11)

From theabove one canobtain

φ

.The scalarspectral indexand thetensoroverscalarratiothencouldbeobtainedat

φ

∗ using

nS

1

= −

6

+

2

η

;

(2.12)

r

=

16

,

(2.13)

2 IfM2

ψ<2H

2,theprefactorisoforderH4[11].

where

isgivenaboveand

η

m2P 8

π

V V

=

m2m2P 2

π

M4

+

2m2

φ

2

)

.

(2.14)

3. Endofinflationwithafirstorderphasetransition

Inthissectionwefocusontheregionofparameterspacewhere beforetheviolationoftheslow-rollparameter,thenucleationrate becomes substantialenoughthat leadstopercolationoftrue vac-uumbubblesintheseaofinflatingfalsevacuum.Weassumethat the pre-exponential factor,

A

is of order M4

ψ, as in [10], which makesourcalculationsdistinctfromtheanalysisof[8].Aswewill see,thisassumptionwillexpandtheregionofparameterspacein whichendofinflationhappensthroughafirstorderphase transi-tion. Thispart ofparameter spaceispart ofthe regionin which thevacuumenergycontributiontothepotentialiscomparableto the energy densityof the inflaton field

φ

. Detailed computation showsthatonlyintheregionwhere

4

.

97

×

10−4



M



2

.

66

×

10−3

,

(3.1)

first order phase transition precedes the slow-roll violation. For

M



2

.

66

×

10−6, there is no solution to the density perturba-tionamplitudenormalizationandhencenoviablemodel.Onecan matchtheamplitudeofdensityperturbations withtheCOBE nor-malizationwhich fixes themassparameter ofthe scalarfield,m.

IntheleftplotofFig. 1,wehavegraphedhowthemassparameter variesasafunctionofM.Theobtainedrangeofm is

1

.

24

×

10−6



m



6

.

33

×

10−6

.

(3.2)

Withintherange(3.1),nS andr varyinthefollowingranges

0

.

91



nS



0

.

97

,

(3.3)

0

.

15



r



0

.

55

,

(3.4)

asintherightgraphinFig. 1andleftplotofFig. 2.Wehavealso plotted the predictions of this region of parameter space in the

nS

r plane.As can be seen fromthe plots, withincreasing M, initially nS decreases andr increases.However there are turning points: around M



2

.

2

×

10−3,n

S starts to increase andaround

M



2

.

4

×

10−3,r startstodecrease.Thelociofpredictionsofthe modelare designatedinthenS

r planeintherightplotofFig. 2. ForsmallvaluesofM,thepredictionsofthemodelsforlargescale fluctuationsare veryclosetothechaoticquadraticpotential.

Withthechoiceofparametersasin(2.7),thetrueminimumin the

ψ

directionappearsverylate,i.e. towardstheendofinflation.

(4)

Fig. 2. The behavior of r vs. M (left) and vs. nS(right) in the region of parameter space that inflation ends with a first order phase transition.

Thereis nominimumfor

ψ

that abubble oftruevacuumforms andleads toopeninflationaryscenario,asin[12].

If the energy stored in the inflaton potential is completely transformed to the radiation,i.e. reheating is instantaneous, one cancalculatethereheatingtemperatureattheendofinflation

T

=



90H2f 8

π

3g



(3.5)

where g is the total number of relativistic degreesof freedom attemperatureT which we take tobe g



106. Wehave plot-tedT vs. M intheleftplotofFig. 3.Ifreheatingisnotefficient,

T is smaller than what is given in (3.5). This temperature de-termines the peak frequencyof the gravitationalwave spectrum generatedthroughthefirstorderphasetransition. Ifoneassumes instantreheating,thereheatingtemperaturevariesalmostlinearly intherangeof 1015GeV and1016GeV vs.M intherange(3.1).

3.1.Gravitationalwavespectrumfrommodelswithfirstorderphase transitionattheendofinflation

Sinceinflationsupercoolstheuniverse,onecanexploitthe for-malism of gravitational wave generation from first order phase transition at zero temperature. The numerical computations for bubblecollisionsfroma firstorderphasetransitionwere initially done by [24] for two bubbles andgeneralized for more bubbles in[25].The spectrumhasthe shapeofasymmetric ofinvertedV aroundapeakfrequency, fm,whichdecayslike f2.8 and f−1

re-spectivelyatsmallerandlargerfrequencies.Thepeakfrequency fm today,afterthepost-inflationaryredshiftingistakenintoaccount, isgivenby[24] fm

=

3

×

10−10



g 100

1/6



T 1 GeV

 

β

Hf



,

(3.6)

andtheamplitudeatthispeakfrequencyisgivenby



GWh2

(

fm

)

=

10−6



g 100

1/3



Hf

β



2

,

(3.7) where

β

is

β

=

dSE dt

=

dSE d

φ

d

φ

dt

.

(3.8)

β

−1 isameasureofhowfastthefirstorderphasetransitiontakes tocomplete. Forour computations tobe reliable,we expect this

time tobemuchsmallerthantheexpansion rateoftheuniverse,

i.e.

β/

Hf



1,where Hf is theHubbleparameter atthetime of phase transitionwhich coincides withthe endof inflation. dt is thevelocityofthescalarfield,

φ

,whichcanbefoundduring infla-tionthroughthefollowingrelation[26]

˙φ

2

=

2

(φ)

V1

(φ)

3

(φ)

(3.9)

where

isthefirstslow-rollparameter.Wehaveplottedlog



β Hf

vs. M intherange(3.1)ofM thatleadstoexitfrominflationwith a firstorder phasetransition. As can beseen fromthe rightplot ofFig. 3,forsmallervaluesofM intherange,phasetransitionis quite fastincomparisonwiththeexpansion rateofthe universe,

β/

Hf

few

×

100.As M increases, phasetransitiontakeslonger to complete in comparisonwith the expansion time of the uni-verse.ForthemaximumvalueofM intherange,M

=

2

.

66

×

10−3,

β/

Hf

=

6

.

11, which is nonetheless fast enough to validate our computations.Theintensityofthegravitationalwavesatthepeak frequencyis onlydependent on thisparameter,

β/

Hf.The faster the phase transition, the smaller the amplitude of the produced gravitationalwaves.Wehaveplottedlog

(

GWh2

)

vs. M which in-creasesintherange(3.1)from1

.

07

×

10−11to2

.

63

×

10−8,seethe

rightplotinFig. 4.Howeverthepeakfrequency,besides

β/

Hf de-pendsonthereheatingtemperaturetoo.Assumingthatthe reheat-ingisinstantaneousandthetotalenergydensityofpotentialatthe endofinflation transformstoradiation,wehaveplottedthepeak frequency asa function of M inthe range (3.1),see left plot of

Fig. 4.ForthesmallestvalueofM intherange,M



5

×

10−4,peak frequency, fm is around 1

.

63

×

1010Hz whereas for the largest valueof M, fm



1

.

75

×

109 Hz.Such agravitationalwave profile liesin thefrequencyband ofChongqing High Frequency Gravita-tional (HFGW) probe but belowits currentsensitivity limit by a factorof10−2–10−5 [13].Itis expectedthatthe improvementof thedetectorinfutureclosethegapbetweentheexpectedsignals andthecurrentsensitivitylimit.

If the reheating coming from bubble wall collision is not in-stantaneous anda phase ofnon-radiation domination intervenes the end of first order phase transition and the radiation domi-nation, T willbe lowered.Ifthisefficiencyfactor isassumedto be

χ

, where

χ



1, the amplitude at the peak frequency will be lowered by a factorof

χ

4 [30]. For exampleif

χ



0

.

01–0

.

1,

thefrequencyrangewillbeshifted withinthesensitivityband of Birmingham HFGW probe [27]. If the reheatingtemperature isa factorof

χ



10−7–10−10smaller,thepeakfrequencywillshiftto

(5)

Fig. 3. The behavior of T∗andHβ

f

vs. M in the region of parameter space that inflation end with a first order phase transition.

Fig. 4. The peak frequency of the gravitational wave spectrum and its amplitude as a function of M for models that exit inflation with a first order phase transition.

thesensitivitybandofDECIGO[28] andBBO[29].Howeverinall thesecases,theamplitude ofthesignalwillbeloweredsuchthat thesignalcouldnotbeobservedbyanyoftheseprobes.

With the choice of V1

(φ)

as the quadratic potential, most of the parameter space of inflationary models that exit from infla-tion with a first order phase transition is ruled out. There is a smallregionofparameterspacewhichhaspredictionsvery close to m2

φ

2. This region inparticular is ofinterest forthe CMB po-larization probes likethe BICEP2[22] orthefuture oneslikethe CMBPol[23].Sincethesemodelsexitinflation throughfirst order phase transition which is accompanied by bubble collision, they canleave anextra signatureofgravity wavesathigherfrequency scales. We expect that the predictions of the model for r could

beloweredifonewouldreplace V1 withanothermodel,likethe

hilltopmodel,[18],ormodelswithsmallerenergyscalesthat nat-urallypredictalowervalueforr.

4. Firstorderphasetransitionaftertheendofslow-rollinflation Itispossiblethateventhough inflationendsthroughviolation oftheslow-rollinflation, thefirstorderphase transitionhappens after the end of inflation, when

φ

becomes closer to the meta-stablevacuum,

φ

=

0.Infactif

3

×

10−6



M



4

.

88

×

10−4 (4.1)

phase transitionhappensafterthe endofslow-roll inflation. The lowerboundoftheaboveintervalisintriguinglyveryclosetothe

scalar fieldmassin therollingdirection. Tobeable todetermine thisrangeofM,wesolvedtheequationsofmotionandcomputed theevolutionofthescalarfieldafterinflationnumerically.3As

be-fore,wehavetopickuponlythe

φ

solutiontothenucleationrate equation that 0

< δ <

2.We haveplottedthevariation ofm asa function of M in the range (4.2), see the left plot in Fig. 5. As-suming that thereheatingis instantaneous, wehave alsoplotted the reheating temperaturein thisrange of M, see the rightplot inFig. 5.Inbothcases,parametersm and T arealmost constant for smaller values of M inthe range,but they gradually rise as

M increases. As expected, contrary to the behavior of r, nS de-creaseswiththeriseofM, pleaseseeFigs. 5 and 6.Wehavealso plotted the behavior of nS vs. r as M increases, see Fig. 6. The behavior of log



Hβ

f

vs. M, where Hf is the Hubble parameter when phasetransitioncompletescan beseen intheright plotin

Fig. 7.Ascanbeseenfromtheplot,withtheincreaseofM,phase transition becomes slower.Nonetheless, in general, phase transi-tions happen much faster after inflation incomparison with the inflationary models that endviafirst orderphase transition. This

3 Intherange

4.88×10−4M4.97×10−4, (4.2)

theconstraintsonthenumberofe-folds,Ne=55,withendofinflationgivenbythe

slow-rollviolationdidnotyieldarealsolutionform.Onecansatisfytheconstraint equationswithlessnumberofe-foldsthough.

(6)

Fig. 5. m (left) and nS(right) vs. M for the models for which first order phase transition happens after the end of inflation.

Fig. 6. r vs. M (left) and nS(right) for the models for which first order phase transition happens after the end of inflation.

Fig. 7. T∗(left) and logβHf

(right) vs. M for the models for which first order phase transition happens after the end of inflation.

ispartlyduetothefactthat theHubbleparameterafterinflation ends,issmaller than itscorresponding value at theendof infla-tion.As M enhances inthe interval, (4.2),

β/

Hf decreases from 4

.

21

×

106 to 90321

.

6.We havecheckedthat inthisrangeof M,

theeffectivemassof

ψ

field,M2

ψ

>

2H2andthusphasetransition happensviaColeman-deLucciainstantontransitions[20].

Using Eqs. (3.6) and (3.7), we have calculated the peak fre-quency of the gravitational wave spectrum and its intensity,



GWh2,as a function of M, please see the plotsin Fig. 8.As M

increases, fm variesfrom1

.

8

×

1014 to 4

.

95

×

1012Hz,which is well outside thefrequency band ofany currentlyplanned probe. Of course this frequency range is obtained assuming that the reheating is instantaneous and efficient. If the reheating tem-perature is smaller than its instantaneous value by a factor of

χ



10−3–10−4,thepeak frequencyrangeismovedto the sensi-tivitybandofChongqinghighfrequencygravitationalwave probe.

(7)

Fig. 8. Thepeakfrequency(left)andtheamplitudeatthepeakfrequency(right)vs.M forthemodelsofinflationinwhichfirstorderphasetransitionhappensafterinflation.

However,theintensitywillthengetssuppressedfurtherbyafactor of10−12–10−16whichmakesthesignaltoosmalltobedetected. 5. Trappinginthemeta-stablevacuumandeternalinflation

Forsmallervaluesof M, M

<

3

×

10−6,the nucleationrateas

givenby Coleman–DeLuccia transitionrate,is toosmalltoallow forthefirstorderphasetransitiontocompleteasthescalarfield,

φ

,passesthroughtheminimumofthepotential, V1.Graduallyas

theeffective massofthe

ψ

field decreases whilethe

φ

field ap-proachesthemetastablevacuum,thereisachancethatM2

ψ

2H2. In particular thiscan happen for smaller values of

α

and M. In thissituation,Hawking–Mossphasetransition[31] appearswhere aninhomogeneousbubbles whoseradiusisgreaterthande-Sitter spaceradius, H−1,willformintheflatspace-time.Thetunneling probabilityperunit fourvolumeisoforder[31]



=

H4exp

(

B

),

(5.1) where B

=

1 8

1 V

(

0

,

0

)

1 V

(

0

, ψ

max

)

(5.2)

is the difference between the combined gravitational and scalar fieldactionofthe

ψ

= ψmax

,whichisanotherhomogeneous solu-tionapartfrom

ψ

=

0. V

(

0

,



max

)

isthelocalmaximumof V on

afour-sphere ofradius, Hmax1 ,where Hmax2

=

8

π

V

(

0

,

ψ

max

)/

3.As

ψ

= ψmax

isunstable,thescalarfieldrunsdownhillfrom

ψ

max,to

theglobalminimum

ψ

min,afterwards. Forthepotential (2.1),one

cancalculatetheexponentB andshowthat

B



α

3

3

λ

2M4 (5.3)

for

α

1.Thereforefor

M



α

3/4

31/4

λ

1/2 (5.4)

theHawking–Mossphasetransitionratefromthemeta-stable vac-uumto thetruevacuumisverysmall.Inourexamplewherewe took,

λ

=

1 and

α

=

0

.

01,for M



6

.

08

×

10−5 such phase tran-sition takes a lot of time to complete and basically leads to a self-reproductionregimelikeoldinflation[1].AftertheHawking– Moss transition completes, the

φ

field will be homogeneous on scalaroforder H01,with H0

=



V(0,0)

3m2 P

.Nonetheless,itwillbe stochasticallydistributedwiththedispersion[11]

φ

rms2

≡ φ

2

=

3H 4 0

8

π

2m4

,

(5.5)

whichinourexampleisabout



10−5andthustoosmalltodrive

anotherphaseofinflation.

In [8], the authors claim that they have been able to find a branch that corresponds tothe vacuum-dominatedregime of hy-bridInflation[7]intheExtendedHybridinflation, potential(2.1). Howeverinhybridinflation,thisregimeisobtainedassumingthat thetachyonicinstabilityinthewaterfallfieldendsinflation.Inthis case, howeverthewaterfield masssquared,

α

M2

+ λψ

2 isalways

positive andnever becomes tachyonic. For such energy scales in the vacuum dominated regime, the slow-roll can never get vio-lated as the first slow-roll parameter decreases asinflation pro-gresses.We alsoshowedthat Hawking–Moss phasetransitionfor such smallvacuum energiesis not substantialenough to end in-flation. Therefore, itis notpossible to realizethevacuumenergy dominated regime of hybrid inflation in such extended models. The scalar field gets trapped in the metastable vacuum with no gracefulexitandthereforethisregionofparameterspacedoesnot yieldaviableinflationarymodel.Ontheotherhand,fromthe phe-nomenological perspective,ifM isoforder



10−30,thisvacuum energycanbe responsibleforthecurrentaccelerationofthe uni-verse.

6. Conclusion

Terminatinginflationwithafirstorderphasetransitionhasthe benefit ofreheatingthe universe fromthe supercoolingphase of inflation through the collisions of bubbles of true vacuum with-out invoking and fine-tuning of the couplings of the inflaton to the otherfields.Onecan achieve thisscenario, modifyingtheold inflation scenario, with time-dependent nucleation rate which is small in the beginning and becomes substantial at the end of inflation. One specific realization ofthis scenariois extended in-flation[32],inwhichthegravity sectorofthe theoryismodified to Jordan–Brans–Dicketheory.Anotherwayofachievingthis sce-nario, is having two scalar fields, where one of the fields rolls and the other one is trapped in a meta-stable vacuum [4,5]. As the rolling field evolves, the nucleation rateat the false vacuum becomes large enough that the condition for percolationof true vacuumbubblesholdsandinflationends.Were-examinedamodel ofextendedhybridinflationwhichprovidesuswithsuch asetup. We noticedthat thepre-exponential factorinthe nucleationrate plays a crucial role incorrectlydetermining the parameterspace that allows for a first order phase transition in the model. For models that exit inflation with a first orderphase transition, we computedthepeak frequencyandtheamplitudeatthepeak fre-quency, which are respectively in the ranges fm



109–1010Hz and



GWh2



10−11–10−8.Thesignatureisinthefrequencyrange

(8)

thesignal ofsuch a phase transitionisweak andout ofthe fre-quencybandoffutureprobes.

Thelarge-scalepredictionsofthemodelareverydependenton thepotentialoftherollingfield.Herewiththechoiceofquadratic potential for the rolling field, the predictions of the model ap-proach thepredictionsofm2

φ

2inthen

S

r plane,whichwasstill withinthe2

σ

limitofPlanck2013results[16].Asthismodel pro-ducesgravitationalwavesat theCMBscales, the analyzedmodel producesthe observablegravitationalwavesatbothsmallandhigh frequencyrangeofthespectrum:thesmallfrequencygravitational waveshave quantum originbut the high frequency gravitational waveshaveclassicalorigin. Aftertheexposure ofPlanck2015 re-sults[17],major prediction of themodel is now outsidethe 2

σ

regioninthens

r planeexcludingtherunningofscalarspectral indexfromtheparameters.Theregionclosetothepredictionpoint ofm2

φ

2isstillwithinthe3

σ

regionthough.Ifoneallowsforthe runningofscalarspectralindex,thisregioncomesbacktothe2

σ

confidenceregion.Oneshouldalsonotethatthepredictionsofthe modelatlargescalesare verysensitivetotheinitialcondition for fluctuations.Asitwas shownin[35],choosingexcitedinitial con-ditionfor cosmologicalperturbations generally tends to suppress thetensor-to-scalarratio.

Itisexpectedthatifonetakestherollingfieldpotentialtobea lowerenergyscalemodel,likethe hilltop[18] ortheStarobinsky

[19]model,thepredictedvaluesforr forthemodelsexiting infla-tionwithafirstorderphasetransitionhavea largeroverlapwith the2

σ

confidenceregionofPlanck2015results.Thisissomething thatIwillpostponetoafuturepublication.

Asthepeakfrequencyofthegravitationalspectrum,produced fromthe first orderphase transition, depends verymuch on the Hubble parameter at the time of phase transition, it is also in-terestingtoinvestigateinflationarymodelsthatexitinflation with smaller Hubble parameter and, hence, peak frequency that falls within the sensitivity bands of BBO, DECIGO or even Advanced LIGO.

Acknowledgements

I am indebted to Andrei Linde for helpful discussions. I also thank A. Abolhasani, R. Allahverdi, M. Cortes, K. Freese and A. Lopezforcommentsanddiscussions.

ph.CO].

[10]A.D.Linde,Nucl.Phys.B216(1983)421; A.D.Linde,Nucl.Phys.B223(1983)544(Erratum).

[11]A.D.Linde,Contemp.ConceptsPhys.5(1990)1,arXiv:hep-th/0503203. [12]A.D. Linde, A. Mezhlumian, Phys. Rev. D 52 (1995) 6789,

arXiv:astro-ph/9506017.

[13]F.Y.Li,M.X.Tang,D.P.Shi,Phys.Rev.D67(2003)104008,arXiv:gr-qc/0306092; M.l. Tong,Y. Zhang,F.Y.Li,Phys. Rev.D78(2008)024041, arXiv:0807.0885 [gr-qc].

[14]J.F.Dufaux,A.Bergman,G.N.Felder,L.Kofman,J.P.Uzan,Phys.Rev.D76(2007) 123517,arXiv:0707.0875[astro-ph].

[15]A.Ashoorioon,B.Fung,R.B.Mann,M.Oltean,M.M.Sheikh-Jabbari,J.Cosmol. Astropart.Phys.1403(2014)020,arXiv:1312.2284[hep-th].

[16]P.A.R. Ade, et al., Planck Collaboration, Astron. Astrophys. 571(2014) A22, arXiv:1303.5082[astro-ph.CO].

[17]P.A.R.Ade,etal.,PlanckCollaboration,arXiv:1502.01589[astro-ph.CO]. [18]A.Ashoorioon,M.M. Sheikh-Jabbari,J.Cosmol.Astropart.Phys.1106 (2011)

014,arXiv:1101.0048[hep-th];

A. Ashoorioon, M.M. Sheikh-Jabbari, Phys. Lett. B 739 (2014) 391, arXiv:1405.1685[hep-th];

A.Ashoorioon,H.Firouzjahi,M.M.Sheikh-Jabbari,J.Cosmol.Astropart.Phys. 0906(2009)018,arXiv:0903.1481[hep-th].

[19]A.A.Starobinsky,Phys.Lett.B91(1980)99.

[20]C.G.CallanJr.,S.R.Coleman,Phys.Rev.D16(1977)1762; C.G.CallanJr.,S.R.Coleman,Phys.Rev.D16(1977)1762; S.R.Coleman,F.DeLuccia,Phys.Rev.D21(1980)3305. [21]F.C.Adams,Phys.Rev.D48(1993)2800,arXiv:hep-ph/9302321.

[22]P.A.R.Ade, et al., BICEP2Collaboration,Phys. Rev.Lett. 112(2014)241101, arXiv:1403.3985[astro-ph.CO].

[23]D. Baumann,etal., CMBPolStudyTeamCollaboration,AIPConf.Proc. 1141 (2009)10,arXiv:0811.3919[astro-ph].

[24]A.Kosowsky,M.S.Turner,Phys.Rev.D47(1993)4372,arXiv:astro-ph/9211004. [25]S.J. Huber, T. Konstandin, J. Cosmol. Astropart. Phys. 0805 (2008) 017,

arXiv:0709.2091[hep-ph].

[26]A.Ashoorioon,R.B.Mann,Nucl.Phys.B716(2005)261,arXiv:gr-qc/0411056. [27]A.M.Cruise,R.M.J.Ingley,Class.QuantumGravity23(2006)6185.

[28]S.Kawamura,M.Ando,N.Seto,S.Sato,T.Nakamura,K.Tsubono,N.Kanda,T. Tanaka,etal.,Class.QuantumGravity28(2011)094011.

[29]J.Crowder,N.J.Cornish,Phys.Rev.D72(2005)083005,arXiv:gr-qc/0506015. [30]A.Lopez,K.Freese,arXiv:1305.5855[astro-ph.HE].

[31]S.W.Hawking,I.G.Moss,Phys.Lett.B110(1982)35. [32]D.La,P.J.Steinhardt,Phys.Rev.Lett.62(1989)376;

D.La,P.J.Steinhardt,Phys.Rev.Lett.62(1989)1066(Erratum).

[33]R.Easther,E.A.Lim,J.Cosmol.Astropart.Phys.0604(2006)010, arXiv:astro-ph/0601617.

[34]R.Easther,J.T.GiblinJr.,E.A.Lim,Phys.Rev.Lett.99(2007)221301, arXiv:astro-ph/0612294.

[35]A. Ashoorioon,K. Dimopoulos, M.M. Sheikh-Jabbari,G.Shiu,J. Cosmol. As-tropart.Phys.1402(2014)025,arXiv:1306.4914[hep-th].

References

Related documents

It was shown in [11] that the phenomenon of phase thansition was monotone in the model parameter, thus proving the existence of a critical value above which there are multiple

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Generally, a transition from primary raw materials to recycled materials, along with a change to renewable energy, are the most important actions to reduce greenhouse gas emissions

Both Brazil and Sweden have made bilateral cooperation in areas of technology and innovation a top priority. It has been formalized in a series of agreements and made explicit

Det har inte varit möjligt att skapa en tydlig överblick över hur FoI-verksamheten på Energimyndigheten bidrar till målet, det vill säga hur målen påverkar resursprioriteringar

In a forth- coming report from the Swedish Agency for Growth Policy Analysis that investigates both solar energy development in India, and energy efficiency, 15 it is argued

Thirdly, two companies were present: Vattenfall (at the time the company used the name ‘Nuon’) and Alliander. Vattenfall is the owner of the heat network that was already in place

The effective potential at zero temperature is known to three loops in Landau gauge [28], so the work required would involve translating the various integral functions and