• No results found

Observation of psi(3686) -> eta ' e(+)e(-)

N/A
N/A
Protected

Academic year: 2021

Share "Observation of psi(3686) -> eta ' e(+)e(-)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Observation

of

ψ (3686)

η



e

+

e

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

i

,

4

,

S. Ahmed

n

,

M. Albrecht

d

,

M. Alekseev

bh

,

bj

,

A. Amoroso

bh

,

bj

,

F.F. An

a

,

Q. An

be

,

ar

,

J.Z. Bai

a

,

Y. Bai

aq

,

O. Bakina

ab

,

R. Baldini Ferroli

v

,

Y. Ban

aj

,

K. Begzsuren

z

,

D.W. Bennett

u

,

J.V. Bennett

e

,

N. Berger

aa

,

M. Bertani

v

,

D. Bettoni

x

,

F. Bianchi

bh

,

bj

,

E. Boger

ab

,

2

,

I. Boyko

ab

,

R.A. Briere

e

,

H. Cai

bl

,

X. Cai

a

,

ar

,

O. Cakir

au

,

A. Calcaterra

v

,

G.F. Cao

a

,

ay

,

S.A. Cetin

av

,

J. Chai

bj

,

J.F. Chang

a

,

ar

,

G. Chelkov

ab

,

2

,

3

,

G. Chen

a

,

H.S. Chen

a

,

ay

,

J.C. Chen

a

,

M.L. Chen

a

,

ar

,

P.L. Chen

bf

,

S.J. Chen

ah

,

X.R. Chen

ae

,

Y.B. Chen

a

,

ar

,

W. Cheng

bj

,

X.K. Chu

aj

,

G. Cibinetto

x

,

F. Cossio

bj

,

H.L. Dai

a

,

ar

,

J.P. Dai

am

,

8

,

A. Dbeyssi

n

,

D. Dedovich

ab

,

Z.Y. Deng

a

,

A. Denig

aa

,

I. Denysenko

ab

,

M. Destefanis

bh

,

bj

,

F. De Mori

bh

,

bj

,

Y. Ding

af

,

C. Dong

ai

,

J. Dong

a

,

ar

,

L.Y. Dong

a

,

ay

,

M.Y. Dong

a

,

ar

,

ay

,

Z.L. Dou

ah

,

S.X. Du

bo

,

P.F. Duan

a

,

J. Fang

a

,

ar

,

S.S. Fang

a

,

ay

,

Y. Fang

a

,

R. Farinelli

x

,

y

,

L. Fava

bi

,

bj

,

S. Fegan

aa

,

F. Feldbauer

d

,

G. Felici

v

,

C.Q. Feng

be

,

ar

,

E. Fioravanti

x

,

M. Fritsch

d

,

C.D. Fu

a

,

Q. Gao

a

,

X.L. Gao

be

,

ar

,

Y. Gao

at

,

Y.G. Gao

f

,

Z. Gao

be

,

ar

,

B. Garillon

aa

,

I. Garzia

x

,

A. Gilman

bb

,

K. Goetzen

j

,

L. Gong

ai

,

W.X. Gong

a

,

ar

,

W. Gradl

aa

,

M. Greco

bh

,

bj

,

M.H. Gu

a

,

ar

,

Y.T. Gu

l

,

A.Q. Guo

a

,

R.P. Guo

a

,

ay

,

Y.P. Guo

aa

,

A. Guskov

ab

,

Z. Haddadi

ad

,

S. Han

bl

,

X.Q. Hao

o

,

F.A. Harris

az

,

K.L. He

a

,

ay

,

X.Q. He

bd

,

F.H. Heinsius

d

,

T. Held

d

,

Y.K. Heng

a

,

ar

,

ay

,

T. Holtmann

d

,

Z.L. Hou

a

,

H.M. Hu

a

,

ay

,

J.F. Hu

am

,

8

,

T. Hu

a

,

ar

,

ay

,

Y. Hu

a

,

G.S. Huang

be

,

ar

,

J.S. Huang

o

,

X.T. Huang

al

,

X.Z. Huang

ah

,

Z.L. Huang

af

,

T. Hussain

bg

,

W. Ikegami Andersson

bk

,

M. Irshad

be

,

ar

,

Q. Ji

a

,

Q.P. Ji

o

,

X.B. Ji

a

,

ay

,

X.L. Ji

a

,

ar

,

X.S. Jiang

a

,

ar

,

ay

,

X.Y. Jiang

ai

,

J.B. Jiao

al

,

Z. Jiao

q

,

D.P. Jin

a

,

ar

,

ay

,

S. Jin

a

,

ay

,

Y. Jin

ba

,

T. Johansson

bk

,

A. Julin

bb

,

N. Kalantar-Nayestanaki

ad

,

X.S. Kang

ai

,

M. Kavatsyuk

ad

,

B.C. Ke

a

,

T. Khan

be

,

ar

,

A. Khoukaz

bc

,

P. Kiese

aa

,

R. Kiuchi

a

,

R. Kliemt

j

,

L. Koch

ac

,

O.B. Kolcu

av

,

6

,

B. Kopf

d

,

M. Kornicer

az

,

M. Kuemmel

d

,

M. Kuessner

d

,

A. Kupsc

bk

,

M. Kurth

a

,

W. Kühn

ac

,

J.S. Lange

ac

,

M. Lara

u

,

P. Larin

n

,

L. Lavezzi

bj

,

H. Leithoff

aa

,

C. Li

bk

,

Cheng Li

be

,

ar

,

D.M. Li

bo

,

F. Li

a

,

ar

,

F.Y. Li

aj

,

,

G. Li

a

,

H.B. Li

a

,

ay

,

H.J. Li

a

,

ay

,

J.C. Li

a

,

J.W. Li

ap

,

Jin Li

ak

,

K.J. Li

as

,

Kang Li

m

,

Ke Li

a

,

Lei Li

c

,

P.L. Li

be

,

ar

,

P.R. Li

ay

,

g

,

Q.Y. Li

al

,

W.D. Li

a

,

ay

,

W.G. Li

a

,

X.L. Li

al

,

X.N. Li

a

,

ar

,

X.Q. Li

ai

,

Z.B. Li

as

,

H. Liang

be

,

ar

,

Y.F. Liang

ao

,

Y.T. Liang

ac

,

G.R. Liao

k

,

L.Z. Liao

a

,

ay

,

J. Libby

t

,

C.X. Lin

as

,

D.X. Lin

n

,

B. Liu

am

,

8

,

B.J. Liu

a

,

C.X. Liu

a

,

D. Liu

be

,

ar

,

D.Y. Liu

am

,

8

,

F.H. Liu

an

,

Fang Liu

a

,

Feng Liu

f

,

H.B. Liu

l

,

H.L. Liu

aq

,

H.M. Liu

a

,

ay

,

Huanhuan Liu

a

,

Huihui Liu

p

,

J.B. Liu

be

,

ar

,

J.Y. Liu

a

,

ay

,

K. Liu

at

,

K.Y. Liu

af

,

Ke Liu

f

,

L.D. Liu

aj

,

Q. Liu

ay

,

S.B. Liu

be

,

ar

,

X. Liu

ae

,

Y.B. Liu

ai

,

Z.A. Liu

a

,

ar

,

ay

,

Zhiqing Liu

aa

,

Y.F. Long

aj

,

X.C. Lou

a

,

ar

,

ay

,

H.J. Lu

q

,

J.G. Lu

a

,

ar

,

Y. Lu

a

,

Y.P. Lu

a

,

ar

,

C.L. Luo

ag

,

M.X. Luo

bn

,

X.L. Luo

a

,

ar

,

S. Lusso

bj

,

X.R. Lyu

ay

,

F.C. Ma

af

,

H.L. Ma

a

,

L.L. Ma

al

,

M.M. Ma

a

,

ay

,

Q.M. Ma

a

,

T. Ma

a

,

X.N. Ma

ai

,

X.Y. Ma

a

,

ar

,

Y.M. Ma

al

,

F.E. Maas

n

,

M. Maggiora

bh

,

bj

,

Q.A. Malik

bg

,

A. Mangoni

w

,

Y.J. Mao

aj

,

Z.P. Mao

a

,

S. Marcello

bh

,

bj

,

Z.X. Meng

ba

,

J.G. Messchendorp

ad

,

G. Mezzadri

y

,

J. Min

a

,

ar

,

R.E. Mitchell

u

,

X.H. Mo

a

,

ar

,

ay

,

Y.J. Mo

f

,

C. Morales Morales

n

,

N.Yu. Muchnoi

i

,

4

,

H. Muramatsu

bb

,

A. Mustafa

d

,

Y. Nefedov

ab

,

F. Nerling

j

,

I.B. Nikolaev

i

,

4

,

Z. Ning

a

,

ar

,

S. Nisar

h

,

S.L. Niu

a

,

ar

,

X.Y. Niu

a

,

ay

,

S.L. Olsen

ak

,

10

,

Q. Ouyang

a

,

ar

,

ay

,

S. Pacetti

w

,

https://doi.org/10.1016/j.physletb.2018.05.038

0370-2693/©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Y. Pan

be

,

ar

,

M. Papenbrock

bk

,

P. Patteri

v

,

M. Pelizaeus

d

,

J. Pellegrino

bh

,

bj

,

H.P. Peng

be

,

ar

,

Z.Y. Peng

l

,

K. Peters

j

,

7

,

J. Pettersson

bk

,

J.L. Ping

ag

,

R.G. Ping

a

,

ay

,

A. Pitka

d

,

R. Poling

bb

,

V. Prasad

be

,

ar

,

H.R. Qi

b

,

M. Qi

ah

,

T. .Y. Qi

b

,

S. Qian

a

,

ar

,

C.F. Qiao

ay

,

N. Qin

bl

,

X.S. Qin

d

,

Z.H. Qin

a

,

ar

,

J.F. Qiu

a

,

K.H. Rashid

bg

,

9

,

C.F. Redmer

aa

,

M. Richter

d

,

M. Ripka

aa

,

A. Rivetti

bj

,

M. Rolo

bj

,

G. Rong

a

,

ay

,

Ch. Rosner

n

,

A. Sarantsev

ab

,

5

,

M. Savrié

y

,

C. Schnier

d

,

K. Schoenning

bk

,

W. Shan

r

,

X.Y. Shan

be

,

ar

,

M. Shao

be

,

ar

,

C.P. Shen

b

,

P.X. Shen

ai

,

X.Y. Shen

a

,

ay

,

H.Y. Sheng

a

,

X. Shi

a

,

ar

,

J.J. Song

al

,

W.M. Song

al

,

X.Y. Song

a

,

S. Sosio

bh

,

bj

,

C. Sowa

d

,

S. Spataro

bh

,

bj

,

G.X. Sun

a

,

J.F. Sun

o

,

L. Sun

bl

,

S.S. Sun

a

,

ay

,

X.H. Sun

a

,

Y.J. Sun

be

,

ar

,

Y.K. Sun

be

,

ar

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

ar

,

Z.T. Sun

u

,

Y.T. Tan

be

,

ar

,

C.J. Tang

ao

,

G.Y. Tang

a

,

X. Tang

a

,

I. Tapan

aw

,

M. Tiemens

ad

,

B. Tsednee

z

,

I. Uman

ax

,

G.S. Varner

az

,

B. Wang

a

,

B.L. Wang

ay

,

D. Wang

aj

,

D.Y. Wang

aj

,

Dan Wang

ay

,

K. Wang

a

,

ar

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

al

,

Meng Wang

a

,

ay

,

P. Wang

a

,

P.L. Wang

a

,

W.P. Wang

be

,

ar

,

X.F. Wang

at

,

Y. Wang

be

,

ar

,

Y.F. Wang

a

,

ar

,

ay

,

Y.Q. Wang

aa

,

Z. Wang

a

,

ar

,

Z.G. Wang

a

,

ar

,

Z.Y. Wang

a

,

Zongyuan Wang

a

,

ay

,

T. Weber

d

,

D.H. Wei

k

,

P. Weidenkaff

aa

,

S.P. Wen

a

,

U. Wiedner

d

,

M. Wolke

bk

,

L.H. Wu

a

,

L.J. Wu

a

,

ay

,

Z. Wu

a

,

ar

,

L. Xia

be

,

ar

,

Y. Xia

s

,

D. Xiao

a

,

Y.J. Xiao

a

,

ay

,

Z.J. Xiao

ag

,

Y.G. Xie

a

,

ar

,

Y.H. Xie

f

,

X.A. Xiong

a

,

ay

,

Q.L. Xiu

a

,

ar

,

G.F. Xu

a

,

J.J. Xu

a

,

ay

,

L. Xu

a

,

Q.J. Xu

m

,

Q.N. Xu

ay

,

X.P. Xu

ap

,

F. Yan

bf

,

L. Yan

bh

,

bj

,

W.B. Yan

be

,

ar

,

W.C. Yan

b

,

Y.H. Yan

s

,

H.J. Yang

am

,

8

,

H.X. Yang

a

,

L. Yang

bl

,

Y.H. Yang

ah

,

Y.X. Yang

k

,

Yifan Yang

a

,

ay

,

Z.Q. Yang

s

,

M. Ye

a

,

ar

,

M.H. Ye

g

,

J.H. Yin

a

,

Z.Y. You

as

,

B.X. Yu

a

,

ar

,

ay

,

C.X. Yu

ai

,

J.S. Yu

ae

,

J.S. Yu

s

,

C.Z. Yuan

a

,

ay

,

Y. Yuan

a

,

A. Yuncu

av

,

1

,

A.A. Zafar

bg

,

Y. Zeng

s

,

Z. Zeng

be

,

ar

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

ar

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

as

,

H.Y. Zhang

a

,

ar

,

J. Zhang

a

,

ay

,

J.L. Zhang

bm

,

J.Q. Zhang

d

,

J.W. Zhang

a

,

ar

,

ay

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

ay

,

K. Zhang

a

,

ay

,

L. Zhang

at

,

T.J. Zhang

am

,

8

,

X.Y. Zhang

al

,

Y. Zhang

be

,

ar

,

Y.H. Zhang

a

,

ar

,

Y.T. Zhang

be

,

ar

,

Yang Zhang

a

,

Yao Zhang

a

,

Yu Zhang

ay

,

Z.H. Zhang

f

,

Z.P. Zhang

be

,

Z.Y. Zhang

bl

,

G. Zhao

a

,

J.W. Zhao

a

,

ar

,

J.Y. Zhao

a

,

ay

,

J.Z. Zhao

a

,

ar

,

Lei Zhao

be

,

ar

,

Ling Zhao

a

,

M.G. Zhao

ai

,

Q. Zhao

a

,

S.J. Zhao

bo

,

T.C. Zhao

a

,

Y.B. Zhao

a

,

ar

,

Z.G. Zhao

be

,

ar

,

A. Zhemchugov

ab

,

2

,

B. Zheng

bf

,

J.P. Zheng

a

,

ar

,

Y.H. Zheng

ay

,

B. Zhong

ag

,

L. Zhou

a

,

ar

,

Q. Zhou

a

,

ay

,

X. Zhou

bl

,

X.K. Zhou

be

,

ar

,

X.R. Zhou

be

,

ar

,

X.Y. Zhou

a

,

Xiaoyu Zhou

s

,

Xu Zhou

s

,

A.N. Zhu

a

,

ay

,

J. Zhu

ai

,

J. Zhu

as

,

K. Zhu

a

,

K.J. Zhu

a

,

ar

,

ay

,

S. Zhu

a

,

S.H. Zhu

bd

,

X.L. Zhu

at

,

Y.C. Zhu

be

,

ar

,

Y.S. Zhu

a

,

ay

,

Z.A. Zhu

a

,

ay

,

J. Zhuang

a

,

ar

,

B.S. Zou

a

,

J.H. Zou

a

aInstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBeijingInstituteofPetrochemicalTechnology,Beijing102617,People’sRepublicofChina dBochumRuhr-University,D-44780Bochum,Germany

eCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

fCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

gChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina

hCOMSATSInstituteofInformationTechnology,Lahore,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan iG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

jGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany kGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

lGuangxiUniversity,Nanning530004,People’sRepublicofChina

mHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina nHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany oHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

pHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina qHuangshanCollege,Huangshan245000,People’sRepublicofChina

rHunanNormalUniversity,Changsha410081,People’sRepublicofChina sHunanUniversity,Changsha410082,People’sRepublicofChina tIndianInstituteofTechnologyMadras,Chennai600036,India uIndianaUniversity,Bloomington,IN 47405,USA

vINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy wINFNandUniversityofPerugia,I-06100,Perugia,Italy xINFNSezionediFerrara,I-44122,Ferrara,Italy yUniversityofFerrara,I-44122,Ferrara,Italy

zInstituteofPhysicsandTechnology,PeaceAve.54B,Ulaanbaatar13330,Mongolia

aaJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany ab

JointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

acJustus-Liebig-UniversitaetGiessen,II.PhysikalischesInstitut,Heinrich-Buff-Ring16,D-35392Giessen,Germany adKVI-CART,UniversityofGroningen,NL-9747AAGroningen,theNetherlands

aeLanzhouUniversity,Lanzhou730000,People’sRepublicofChina afLiaoningUniversity,Shenyang110036,People’sRepublicofChina agNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina

(3)

ahNanjingUniversity,Nanjing210093,People’sRepublicofChina aiNankaiUniversity,Tianjin300071,People’sRepublicofChina ajPekingUniversity,Beijing100871,People’sRepublicofChina akSeoulNationalUniversity,Seoul,151-747RepublicofKorea alShandongUniversity,Jinan250100,People’sRepublicofChina

amShanghaiJiaoTongUniversity,Shanghai200240,People’sRepublicofChina anShanxiUniversity,Taiyuan030006,People’sRepublicofChina

aoSichuanUniversity,Chengdu610064,People’sRepublicofChina apSoochowUniversity,Suzhou215006,People’sRepublicofChina aqSoutheastUniversity,Nanjing211100,People’sRepublicofChina

arStateKeyLaboratoryofParticleDetectionandElectronics,Beijing100049,Hefei230026,People’sRepublicofChina asSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina

atTsinghuaUniversity,Beijing100084,People’sRepublicofChina auAnkaraUniversity,06100Tandogan,Ankara,Turkey avIstanbulBilgiUniversity,34060Eyup,Istanbul,Turkey awUludagUniversity,16059Bursa,Turkey

axNearEastUniversity,Nicosia,NorthCyprus,Mersin10,Turkey

ayUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina azUniversityofHawaii,Honolulu,HI 96822,USA

ba

UniversityofJinan,Jinan250022,People’sRepublicofChina

bbUniversityofMinnesota,Minneapolis,MN 55455,USA

bcUniversityofMuenster,Wilhelm-Klemm-Str.9,48149Muenster,Germany

bdUniversityofScienceandTechnologyLiaoning,Anshan114051,People’sRepublicofChina beUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina bfUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

bgUniversityofthePunjab,Lahore-54590,Pakistan bhUniversityofTurin,I-10125,Turin,Italy

biUniversityofEasternPiedmont,I-15121,Alessandria,Italy bjINFN,I-10125,Turin,Italy

bkUppsalaUniversity,Box516,SE-75120Uppsala,Sweden blWuhanUniversity,Wuhan430072,People’sRepublicofChina bmXinyangNormalUniversity,Xinyang464000,People’sRepublicofChina bnZhejiangUniversity,Hangzhou310027,People’sRepublicofChina boZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received28March2018

Receivedinrevisedform7May2018 Accepted12May2018

Availableonline17May2018 Editor:L.Rolandi Keywords: e+e−Annihilation Dalitzdecay Charmonium BESIII

Using adata sampleof448.1×106 ψ(3686) events collectedwith theBESIII detector atthe BEPCII collider, wereport thefirst observationof theelectromagnetic Dalitzdecayψ(3686)

η

e+e−,with significances of7.0

σ

and 6.3

σ

whenreconstructingthe

η

 meson viaits decaymodes

η

→

γ π

+

π

and

η

→

π

+

π

η

(

η

γ γ

),respectively.Theweightedaveragebranchingfractionisdeterminedtobe

B(ψ(3686)

η

e+e)= (1.90±0.25±0.11)×10−6,wherethefirstuncertaintyisstatisticaland the secondsystematic.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The electromagnetic (EM) Dalitz decays V

P



+



−, where

V is a vector meson (V

=

ρ

,

ω

,

φ,

ψ

), P a pseudoscalar meson

*

Correspondingauthor.

E-mailaddress:lify@pku.edu.cn(F.Y. Li).

1 AlsoatBogaziciUniversity,34342Istanbul,Turkey.

2 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 3 Alsoatthe FunctionalElectronicsLaboratory,Tomsk StateUniversity,Tomsk, 634050,Russia.

4 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 5 AlsoattheNRC“KurchatovInstitute”,PNPI,188300,Gatchina,Russia. 6 AlsoatIstanbulArelUniversity,34295Istanbul,Turkey.

7 AlsoatGoetheUniversityFrankfurt,60323FrankfurtamMain,Germany. 8 AlsoatKeyLaboratoryforParticlePhysics,AstrophysicsandCosmology, Min-istryofEducation;Shanghai KeyLaboratoryfor ParticlePhysicsand Cosmology; Institute ofNuclearand Particle Physics,Shanghai 200240, People’sRepublic of China.

9 GovernmentCollegeWomenUniversity,Sialkot51310, Punjab,Pakistan. 10 Currentlyat:CenterforUndergroundPhysics,InstituteforBasicScience, Dae-jeon34126,RepublicofKorea.

( P

=

π

0

,

η

,

η

) and



a lepton (



=

e

,

μ

), is of great interest for

our understanding ofboth the intrinsicstructure of hadronsand thefundamentalmechanismsoftheinteractionsbetweenphotons andhadrons [1]. TheseDalitz decaysproceed via a two-body ra-diativeprocessofV decayinginto P andanoff-shellphoton,from which the lepton pair in the final state originates. The universal decay widthof theseDalitz decays can be normalizedto that of the corresponding radiative process V

P

γ

andcan be param-eterized asa productof thequantum electrodynamicsprediction forapoint-likeparticleandthetransitionformfactor(TFF) F

(

q2

)

atthe V –P transitionvertex [1],whereq2

=

M2

+c

2 isthe

four-momentum transfersquared.Knowledge oftheq2-dependentTFF thus provides information about the EM structure arising at the

V –P vertex.

EM Dalitz decays have been widely observed for light unfla-vored mesons, such as

ω

π

0e+e[2,3],

ω

π

0

μ

+

μ

[4],

φ

π

0e+e[5] and

φ

η

e+e[6,7].The investigationofthese

decaysmotivatedtheauthorsofRef. [8] tostudythecharmonium decays J

P



+



− and to calculate the branching fractions based on a monopoleTFF F

(

q2

)

=

1

/(

1

q2

/

2

)

usinga vector

(4)

meson dominance model. Here

is an effective pole mass ac-countingforthe overall effects fromall possibleresonance poles andscatteringtermsinthe time-like kinematicregion.The char-moniumEMDalitzdecays J

P e+e−havebeenpreviously ob-servedbytheBESIIIexperimentusingadatasampleof2

.

25

×

108

J

events [9]. The results agree well with the theoretical pre-dictions [8] for the P

=

η

,

η

 cases. However, similar EM Dalitz decays have never been studied in

ψ(

3686

)

decays. The inves-tigation of such processes will be important to understand the interactionofcharmoniumvectorstateswithphotons,andhelpful forfurther studiesonthe

ψ

V P process,includingtherelated

ρπ

puzzle [10]. Inthis Letter, we report the first observationof thecharmoniumEMDalitzdecay

ψ(

3686

)

η

e+e−usingadata sampleof448

.

1

×

106

ψ(

3686

)

events(107

.

0

×

106 [11] in 2009 and 341

.

1

×

106 [12] in 2012) collected with the BESIII

detec-tor [13].Here,theintermediate

η

mesonisreconstructedviatwo decaymodes,

η



γ π

+

π

−and

η



π

+

π

η

with

η

γ γ

. 2. TheBESIIIexperimentandMonteCarlosimulation

The BESIII detector [13] is a magnetic spectrometer operating atBEPCII, a double ring e+e− colliderrunning at center-of-mass (c.m.) energies between2.0and 4.6GeVwith a peak luminosity of 1

×

1033 cm−2s−1 at a c.m. energy of 3.773 GeV. The cylin-drical core of the BESIII detector comprises a helium-gas-based

main drift chamber (MDC) to measure the momentum and the

ionizationenergyloss(dE

/

dx)ofchargedparticles,aplastic scin-tillatortime-of-flight(TOF) systemforparticleidentification(PID) information,a CsI(Tl) electromagnetic calorimeter(EMC) to mea-surephotonandelectronenergiesandamultilayerresistiveplate chambermuoncountersystem(MUC)toidentifymuons.TheMDC, TOFandEMC are enclosed ina superconductingsolenoidal mag-netproviding a 1.0 T magnetic field. The geometrical acceptance is93% of 4

π

for chargedparticles and photons. The momentum resolutionis0.5%forchargedparticleswithtransversemomentum of1 GeV/c,andtheenergyresolutionforphotonsis2.5% (5%)at 1 GeVinthebarrel(endcap)EMC.

MonteCarlo(MC) simulations are used to optimizethe event selectioncriteria, to investigatepotential backgrounds andto de-terminethedetectionefficiency.The geant4-based [14] simulation includes the description of geometry and material of the BESIII detector, the detector response, digitization models and tracking ofthe detectorrunningconditionsanditsperformance. An inclu-sive MC sample containing 506

×

106 generic

ψ(

3686

)

decaysis used to study the potential backgrounds. The production of the

ψ(

3686

)

resonanceis simulatedby the MC generator kkmc [15], inwhichthebeamenergyspreadandinitial state radiation(ISR) effectsarealsoincluded.Theknowndecaymodesof

ψ(

3686

)

are generatedby evtgen [16] withbranchingfractionstakenfromthe ParticleDataGroup(PDG) [17],whiletheremainingunknown de-caymodesaregeneratedaccordingtothe lundcharm [18] model. When generatingthe process

ψ(

3686

)

η

e+e−,the TFF is pa-rameterized asa monopole form factor with

=

3

.

773 GeV/c2.

Forthedecay of

η



γ π

+

π

−, thegenerator takesinto account the

ρ

-

ω

interference andbox anomaly [19]. The decaysof

η



π

+

π

η

and

η

γ γ

are generated with a phase space model. The analysis is performedin the framework of the BESIII offline softwaresystemwhich takescare ofthe detectorcalibrationand eventreconstruction.

3. Dataanalysis

Chargedtracksin BESIIIare reconstructedfromionization sig-nalsofparticlesintheMDC.Thepointofclosestapproachofevery

chargedtracktothee+e− interaction point(IP) isrequiredtobe within

±

10 cminthebeamdirectionandwithin1cmintheplane perpendicular to the beam direction. The polar angle

θ

between the directionof a chargedtrack andthat of thebeam must sat-isfy

|

cos

θ

|

<

0

.

93 foran effectivemeasurementintheMDC.Four chargedtracks are requiredwith zeronetcharge foreach candi-date event. The combined information of the energy loss dE

/

dx and TOF is used to calculate PID confidence levels (C.L.) forthe electron,pionandkaonhypotheses.Boththeelectronandpositron requirethehighestPID C.L.fortheelectron hypothesiswhile the othertwochargedtracksareassumedtobepioncandidates with-outanyPIDrequirements.

Electromagneticshowersarereconstructedfromclustersof en-ergy depositions in the EMC.The shower energy ofphoton can-didates inthe EMCshould be greater than25 MeV inthe barrel region (

|

cos

θ

|

<

0

.

80) or 50 MeV in the endcap region (0

.

86

<

|

cos

θ

|

<

0

.

92),whereas theshowers locatedinthe transition re-gionsbetweenthebarrelandtheendcapsareexcludedduetobad reconstruction.Thephotoncandidatesarerequiredtobeseparated fromtheextrapolatedpositionsofanychargedtrackbymorethan 10◦ to exclude showersfromchargedparticles. Tosuppress elec-tronicnoiseandenergydepositionunrelatedtotheevent,thetime atwhich the photon isrecorded inthe EMC withrespect to the collisionmustbelessthan700ns.Werequireatleastonephoton inthedecaymode

η



γ π

+

π

−andatleasttwophotonsforthe decay

η



π

+

π

η

.

A vertex constraint is enforced on the four charged tracks

π

+

π

e+e− to ensure they originate from the IP. To improve theresolution andsuppressbackgrounds,a kinematicfitwithan energy–momentumconstraint (4C)is performed.For eventswith morethantherequirednumberofphotons,onlythecombination withthe least

χ

2

4C isretained. Inall cases,events with

χ

4C2

<

80

arekeptforfurtheranalysis.

The dominant background originates from the decay of

ψ(

3686

)

π

+

π

J

/ψ,

J

→ 

+



(

γ

)

due to the sizable branching fraction

(

34

.

49

±

0

.

30

)

% [17] ofthe decay

ψ(

3686

)

π

+

π

J

. For the

η



γ π

+

π

− mode, to suppress the huge background from

ψ(

3686

)

π

+

π

J

/ψ,

J

e+e− we re-quire the recoil mass of the

π

+

π

− pair R M

(

π

+

π

)

to be smaller than 2.9 GeV/c2, with which about 99.8% of the

back-ground events are removed. Events of the type

ψ(

3686

)

π

+

π

J

/ψ,

J

μ

+

μ

− survive the selection when

π

or

μ

candidates are misidentified as electrons. An additional criterion

E

/

p

>

0

.

8 is applied to the track withlarger momentum inthe

e+e− pair to further improve the electron identification, where

E and p refer to the energy deposition in the EMC and mo-mentum measured with the MDC, respectively. The relative se-lectionefficiency ofthis E

/

p criterion ismore than 98%.For the

η



π

+

π

η

decay mode, the background is much lower. The candidate events must satisfy R M

(

π

+

π

)

<

3

.

2 GeV

/

c2 to

sup-press thebackground from

ψ(

3686

)

η

J

/ψ,

J

e+e

,

η

π

+

π

π

0

,

π

0

γ γ

, and the invariant mass of the photon pair

M

(

γ γ

)

is required to be within the

η

mass window [0.520, 0.575] GeV/c2.

The radiative decay

ψ(

3686

)

η



γ

contributes as a peaking background to the distributions of the

γ π

+

π

− and

γ γ π

+

π

invariant masses(M

(

γ π

+

π

)

and M

(

γ γ π

+

π

)

), ifthe photon subsequentlyconvertsintoan e+e− pairinthebeampipe orthe inner wall of the MDC. The distance

δ

xy fromthe reconstructed

(5)

Fig. 1. (Coloronline.)e+e−pairvertexpositiondistribution:(a)ScatterplotofRy

versusRxforsimulatedMCeventsofψ(3686)ηγ,η→γ π+π−.(b)

Distribu-tionofδxy intheη→γ π+π− mode.Theblackdotswitherrorbarsrepresent

data,thereddot-dashedandgreendashedhistogramsshow thesignalMC sim-ulationandγ conversionMCsimulation,respectively,thegrayshadedhistogram showsthenon-peakingbackgroundestimatedfromηsidebandandthebluesolid histogramisthesumofMCsimulationsandηsideband.

beamaxis (the x- y plane) is used todistinguish such

γ

conver-sion events from signal events [20], where

δ

xy

=



R2x

+

R2y and

Rx and Ry refer to the coordinates of the reconstructed vertex

position in the x and y directions. The scatter plot of Ry

ver-sus Rx from a simulated

γ

conversion MC sample

ψ(

3686

)

η



γ

,

η



γ π

+

π

− is shown in Fig. 1(a), where the inner and outer circles refer to the

γ

conversion occursin the beam pipe andinner wall of the MDC, respectively. The distributions of

δ

xy

forthedata,

γ

conversionbackground,andsignal fromMC simu-lationareshowninFig.1(b),wherethetwopeaksaround

δ

xy

=

3

and

δ

xy

=

6

.

5 cm matchthe positions of the beampipe and

in-nerwalloftheMDC.FromtheMCstudy,requiring

δ

xy

<

2 cmwill

remove morethan 97%of the

γ

conversionbackground,andthe number of remaining events is estimated to be 1

.

19

±

0

.

06 and 0

.

43

±

0

.

02 inthe

η



γ π

+

π

−and

η



π

+

π

η

mode, respec-tively.

Inan e+e− collider,avirtualphotoncanbeemittedfromeach lepton.The interaction ofthesetwo virtual photonswillproduce even C -parity states such as pseudoscalar mesons, called two-photonprocess [21].Inthecaseof

η

 production,thetwo-photon process e+e

e+e

η

 leads to the same final state as signal ifthe outgoing e+ and e− are both detected. It also contributes as a peaking background on the M

(

γ π

+

π

)

and M

(

γ γ π

+

π

)

distributions.An independent

ψ(

3770

)

datasample takenatc.m. energyof3

.

773 GeV,correspondingtoanintegratedluminosityof 2.93fb−1 [22,23],is usedto studythisbackground.Scatter plots of the polar angle cos

θ

of e+ and e− for the selected events fromthesignalMCsampleand

ψ(

3770

)

data,dominatedby two-photon events, are shown in Fig. 2(a). For the signal events, in which the electron is mostly close to the positron in direction, theymainlyaccumulateinthediagonalbandcos

θ (

e+

)

=

cos

θ (

e

)

inthescatterplot.Forthetwophotonbackgroundevens,the out-going direction of the e± approaches its ingoing beam direction thus they mainly accumulate in the bands of cos

θ (

e+

)

>

0

.

8 or cos

θ (

e

)

<

0

.

8, especially in the intersection part. The corre-sponding scatter plot of events from

ψ(

3686

)

data is shown in Fig. 2(b). To suppress the background from two-photon process, cos

θ (

e+

)

<

0

.

8 and cos

θ (

e

)

>

0

.

8 arefurther required.To es-timatethe number ofreamingtwo-photon background eventsin the

ψ(

3686

)

data, we use

ψ(

3770

)

data as a normalization. Af-ter applying all above selection criteria, the number of survived two-photon events in

ψ(

3770

)

data is obtained by fitting the

M

(

γ π

+

π

)

and M

(

γ γ π

+

π

)

distributions. A scale factor f is

Fig. 2. (Coloronline.) Scatterplot ofpolaranglecosθ (e)versuscosθ (e+). The areaswithpinkcrosshatchedlinesrefertotherejectedregioncosθ (e+)>0.8 or cosθ (e)<−0.8.(a)ThereddotsrepresentsignalMCeventsψ(3686)ηe+e

andthebluesquaresarefromψ(3770)data.(b)Theblackdotsrepresentψ(3686)

data.

definedastheratiooftheobservednumberoftwo-photonevents

N in

ψ(

3686

)

datatothatinthe

ψ(

3770

)

data

f

Nψ (3686) Nψ (3770)

=

L

ψ (3686)

L

ψ (3770)

·

σ

ψ (3686)

σ

ψ (3770)

·

ε

ψ (3686)

ε

ψ (3770)

,

where N,

L

,

σ

and

ε

refer to the observed number of two-photon events,integratedluminosity ofdata samples(

L

ψ (3686)

=

668

.

55 pb−1 [12],

L

ψ (3770)

=

2

.

93 fb−1), crosssection and

detec-tionefficiencyoftwo-photonprocessatthetwoc.m.energies.The details on thecross-section canbe found inRef. [21]. The detec-tionefficiencyratios εψ (3686)

εψ (3770) aredeterminedtobe1

.

10

±

0

.

01 and

1

.

19

±

0

.

02 for thetwo modesby the simulation withgenerator ekhara [24,25].The scale factoriscalculated to be0.245 (0.265)

and the normalized number of the remaining two-photon

back-groundeventsinthe

ψ(

3686

)

datais1

.

4

±

1

.

7 (0

.

5

±

0

.

4) forthe decaymode

η



γ π

+

π

−(

η



π

+

π

η

).

After applying the above selection criteria, the studies with the inclusiveMC sample indicate that the remaining background mainly arises from

ψ(

3686

)

π

+

π

J

/ψ,

J

e+e

(

γ

)

events, which contributes as a non-peaking background on the

M

(

γ π

+

π

)

and M

(

γ γ π

+

π

)

distributions. To determine the signal yield of

ψ(

3686

)

η

e+e−, an unbinned maximum like-lihood(ML)fitisperformedtotheM

(

γ π

+

π

)

andM

(

γ γ π

+

π

)

distributions in the range of [0.85, 1.05] GeV/c2, as shown in Figs. 3(a)and3(b).In thefit,the signal probability density func-tion (PDF) is described by the signal MC shape convolved with a Gaussian function, which is used to compensate the resolu-tiondifferencebetweendataandMCsimulation.Thenon-peaking backgroundPDF isparameterized witha second orderChebychev polynomial function forthe decaymode

η



γ π

+

π

− andwith an exponentialfunctionforthe

η



π

+

π

η

mode.Theshapeof the peakingbackground from

ψ(

3686

)

η



γ

dueto

γ

conver-sionisderivedfromtheMCsimulation,anditsmagnitudeisfixed to the value estimated by taking intoaccount thecorresponding branching fractionsfromPDG [17]. Thepeakingbackgroundfrom the two-photon process e+e

e+e

η

 is described using the shape obtainedfrom

ψ(

3770

)

dataandits magnitude isfixed at evaluated values.The corresponding distributions ofe+e− invari-antmassM

(

e+e

)

forthecandidateeventswithin

η

massregion [0.93, 0.98] GeV/c2 are shown in Figs. 3(c) and 3(d), where the

number of signal MC events is normalized to the corresponding fitted yield.The signal MC sample generatedwith monopoleTFF agreeswellwith

ψ(

3686

)

data.

Theindividual branchingfractionsforthetwo

η

 decaymodes arecalculatedwith

B

(ψ (

3686

)

η

e+e

)

=

Nsig

Nψ (3686)

·

B



X

)

·



(6)

Fig. 3. (Coloronline.)(a,b)Massdistributionsfortheηsignal,(c,d)theM(e+e)

distributioninη→γ π+π−/η→π+πηmode.In(a)and(b),theblackdots witherrorbarsrepresentdata, thebluesolidlineisthe totalfitresult, thered dashedlineshowsthesignal,thegreendot-dashedlinedenotesthenon-peaking background,thepinkandgreenshadedareasindicatethepeakingbackgroundfrom two-photonandγ conversion,respectively.In(c)and(d),theblackdotswitherror barsrepresentdata,theredsolidandgrayshadedhistogramsrepresentsignalMC simulationandnon-peakingbackgroundestimatedfromη sideband,respectively, theinsetsshowtheM(e+e)distributionsinawiderrange.

Table 1

Signalandbackgroundyields,detectionefficiency,significanceandobtained branch-ingfractionBofψ(3686)ηe+e−forη→γ π+π− andη→π+πηmodes. Thefirstuncertaintiesofbranchingfractionsarestatisticalwhilethesecondones aresystematic. η→γ π+πη→π+πη Signal yield 57.4±9.6 20.2±4.3 Background yield 224.1±16.2 12.0±3.6 (%) 22.04 14.89 Significance (σ) 7.0 6.3 B(×10−6) 1.99±0.33±0.12 1.79±0.38±0.11

where Nsig is the signal yield obtained from fitting, Nψ (3686)

=

(

448

.

1

±

2

.

9

)

×

106 [12] is the total numberof

ψ(

3686

)

events,

B(

η



X

)

isthebranchingfractionof

η

mesondecayingto spe-cific final state X and quoted from PDG [17],



is the detection efficiency fromsignal MC simulation. The statistical significance, asdeterminedbytheratioofmaximumlikelihoodvalueandthat withsignal contribution set to zero, are 7

.

0

σ

and 6

.

3

σ

for the

η



γ π

+

π

− and

η



π

+

π

η

modes, respectively. The yields obtained from the fit, the detection efficiency, statistical signif-icance, and the obtained branching fractions for each mode are listedinTable1,individually.

4. Systematicuncertainties

Systematicuncertaintiesinthebranchingfractionmeasurement aresummarizedinTable2.Mostofthemaredeterminedby com-paringtheselectionefficiencyofcontrolsamplesbetweendataand MCsimulations.

Thetrackingefficiencydifference betweendataandMC simu-lation,bothforelectrons [26] andchargedpions [27],isestimated

Table 2

SummaryofrelativesystematicuncertaintiesoftheB(ψ(3686)ηe+e)(in%). Thecorrelatedsourcesbetweentwoηreconstructedmodesaredenotedwith as-terisk. Sources η→γ π+πη→π+πη MDC tracking* 4.0 4.0 Photon detection* 0.6 1.2 PID * 0.6 0.6 E/p>0.8 0.2 – Veto ofγconversion* 1.0 1.0 4C kinematic fit 0.8 1.4 ηreconstruction – 1.0 R M(π+π)requirement 0.2 1.9 Form factor 0.9 0.2 Signal shape 2.6 0.5

Fit range and background shape 2.8 4.5 Fixed peaking background 1.3 0.7 Number ofψ(3686)events* 0.6 0.6 Quoted branching fractions 1.7 1.7

Total 6.2 7.0

tobe1%foreachchargedtrack,whichresultsinatotalsystematic uncertainty4%forbothmodes.

Theuncertaintyassociatedwiththephotondetectionefficiency, derived froma controlsample of J

π

+

π

π

0

,

π

0

γ γ

,is

1.5%foreach photonintheendcapregionand0.5%foreach pho-toninbarrelregion.Theaveragevalue,weightedaccordingtothe ratio of numbers of photon in the endcap and barrelregions, is 0.6% for each photon. As a result, 0.6% is assigned as the pho-tonuncertaintyin

η



γ π

+

π

− modeand1.2%in

η



π

+

π

η

mode.

The uncertainty on electron identification is studied withthe control sample of radiative Bhabha scattering events e+e

γ

e+e−.Theaverageefficiencydifferenceforelectronidentification betweenthe data andMC simulation, weighted according tothe polarangleandmomentum distribution ofsignal MCsamples, is determinedto be0.3%forelectronandpositron,individually.The averageefficiencydifferencebetweendataandMC simulation as-sociated withthe requirement E

/

p

>

0

.

8 isestimatedto be0.2% withasimilarmethod.

Thesystematicuncertaintyrelatedwiththe

γ

conversionveto criterion

δ

xy

<

2 cmhasbeen investigatedwithacontrol sample

of J

π

+

π

π

0

,

π

0

γ

e+e.Therelative differenceof

effi-ciencyassociatedwiththe

γ

conversionrejectedcriterionbetween dataandMCsimulationis1% [9],whichistakenasthesystematic uncertainty.

Inthe4Ckinematicfit,thehelixparameters ofchargedtracks arecorrectedforthesignalMCsamplestoimprovetheconsistency between data and MC simulation, as described in Ref. [28]. We comparethedetectionefficienciesobtainedwithandwithouthelix parameterscorrectionofsignalMCsamples.Therelativechangein results,0.8%for

η



γ π

+

π

− and1.4%for

η



π

+

π

η

modes, aretakenasthesystematicuncertaintiesassociatedwith4C kine-maticfit.

The uncertainty forthe

η

reconstruction using

γ γ

pair is1% basedonastudyofacontrolsampleof J

pp

¯

η

[29].

The uncertaintyrelatedto the R M

(

π

+

π

)

requirementis es-timated bychanging theselection criteriaofit from2.90to 2.87 GeV/c2 andfrom3.20to3.17GeV/c2 for

η



γ π

+

π

− and

η



π

+

π

η

mode, respectively. The differenceof branching fractions betweentheresultingandnominalrequirement,0.2%and1.9%,are assignedasthesystematicuncertaintyforthetwomodes, respec-tively.

The nominal signal MC samples are generated based on the

amplitude described in Ref. [8], where the parameter

for the monopoleform factor F

(

q2

)

isset tobe 3.773 GeV/c2. Following theprocedure usedinRef. [9], weadjustthe

toa largervalue

(7)

5.0GeV/c2 orasmallervalue3.2GeV/c2andre-generatethe

alter-nativesignalMCsamples.Theresultantlargestefficiencieschange, 0.9%and0.2% fortwoindividual

η

 decaymodes, areregardedas systematicuncertaintiesassociatedwiththeuncertainty fromthe formfactor.

Inthenominalfit,anMC-basedshapeconvolvedwitha Gaus-sian function is used to model the signal PDF. An alternative fit isperformedinwhichthesignalshapeisdescribedwiththe MC-simulatedshapeonly. Thechangesofthe signalyieldresult, 2.6% and0.5%fortheindividualmodes,areassignedassystematic un-certaintiesassociatedwiththesignalshapeinthefit.

The systematicuncertainty dueto non-peaking backgroundis estimated by varying the fit range and changing its shape. In addition to the nominal fit range [0.85, 1.05] GeV/c2, two

alter-native ones are chosen by varying the edge of the fit range by

±

20 MeV/c2.Athird-order Chebychev polynomial functionis

se-lected as an alternative background shape for the

η



γ π

+

π

mode. For the

η



π

+

π

η

mode, the MC shape of the major non-peakingbackground

ψ(

3686

)

π

+

π

J

/ψ,

J

γ

e+e− is usedtomodelthebackgroundshape.Aseriesofalternativefitsare performedforallpossiblecombinationsoffitrangesandmodeling ofnon-peakingbackground.Theresultantlargestdifferenceof sig-nalyieldwithrespectivetothenominalvalues,2.8%and4.5%for eachmode,aretakenasthesystematicuncertainties.

Theuncertaintyarisingfrompeakingbackgroundduetothe

γ

conversion process isnegligible. Forthe two-photon process, the uncertaintyassociatedwiththescalefactorisfarlessthanthe sta-tisticaluncertaintiesofthebackgroundeventsandcanbeignored. Weperform aseriesofalternativefits,varying theinput normal-izednumber ofbackgroundevents followinga Gaussian function witha widthofthestatisticaluncertainty.Thestandard deviation ofthesignalyieldsfromthesefitresults,1.3%and0.7%,aretaken asuncertaintiesforeachmode.

The uncertainty fromthe total number of

ψ(

3686

)

events is 0.6% [12] and those of quoted branching fractions of

B(

η



X

)

fromPDGare1

.

7% [17] forbothmodes.

Assumingall sources tobe independentin asingle mode and addingallindividualcontributionsinquadrature,thetotalrelative systematicuncertainties of the

B(ψ(

3686

)

η

e+e

)

, are deter-minedtobe6.2%and7.0%forthetwo

η

 modes,individually. 5. Results

The resulting

B(ψ(

3686

)

η

e+e

)

from the two

η

 recon-structed modes

η



γ π

+

π

− and

η



π

+

π

η

with

η

γ γ

are (1.99

±

0.33

±

0.12)

×

10−6 and(1.79

±

0.38

±

0.11)

×

10−6, where the first uncertainties are statistical and second ones are systematic.Themeasuredbranchingfractionsfromthetwomodes areconsistentwitheachotherwithintheiruncertainties.Following themethoddescribedinRef. [30],themeasurementsfromthetwo modesare combined,takingintoaccount thecorrelationbetween uncertainties amongthe twomodes, asdenoted withan asterisk inTable2.The weightedaveragedresultforbranchingfractionof

ψ(

3686

)

η

e+e−iscalculatedtobe

(

1

.

90

±

0

.

25

±

0

.

11

)

×

10−6,

wherethefirstuncertaintyisstatisticalandthesecondis system-atic.

6. Summary

Insummary,withadatasampleof448

.

1

×

106

ψ(

3686

)

events collected with the BESIII detector, we observe the charmonium EM Dalitz decay

ψ(

3686

)

η

e+e− forthe first time by recon-structing

η

 mesonvia the two decay modes

η



γ π

+

π

− and

η



π

+

π

η

,withastatisticalsignificanceof7

.

0

σ

and6

.

3

σ

, re-spectively.Theweightedaveragebranchingfractionof

ψ(

3686

)

η

e+e− ismeasuredtobe

(

1

.

90

±

0

.

25

±

0

.

11

)

×

10−6,wherethe

first uncertainty is statistical and second one is systematic. The observation of thisprocess provides new information forthe in-teraction of charmonium states with the EM field, although the statisticsofcurrentdatadoesnotallowforapreciseTFF measure-ment.

Acknowledgements

TheBESIIIcollaborationthanksthestaffofBEPCIIandtheIHEP computingcenterfortheirstrongsupport.Thisworkissupported in part by National Key Basic Research Program of China under

Contract No. 2015CB856700; National Natural Science

Founda-tion of China (NSFC) under Contracts Nos. 11235011, 11335008,

11425524, 11625523, 11635010; the Chinese Academy of

Sci-ences(CAS)Large-ScaleScientificFacilityProgram;theCASCenter for Excellence in Particle Physics (CCEPP); Joint Large-Scale Sci-entific Facility Funds of the NSFC andCAS under Contracts Nos.

U1232105, U1332201, U1532257, U1532258; CAS Key Research

Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040;100TalentsProgramofCAS;National 1000 TalentsProgram ofChina;INPAC andShanghai Key Labora-toryforParticlePhysicsandCosmology;GermanResearch Founda-tion DFG underContractsNos.Collaborative Research CenterCRC 1044,FOR2359;IstitutoNazionalediFisicaNucleare,Italy;

Konin-klijke Nederlandse Akademie van Wetenschappen (KNAW) under

ContractNo.530-4CDP03;MinistryofDevelopmentofTurkey un-der Contract No. DPT2006K-120470; National Science and Tech-nology fund; The Swedish Research Council; U.S. Department of Energy underContractsNos.DE-FG02-05ER41374,DE-SC-0010118,

DE-SC-0010504, DE-SC-0012069; University of Groningen (RuG)

and the Helmholtzzentrum fuer Schwerionenforschung GmbH

(GSI), Darmstadt; WCU Programof National ResearchFoundation ofKoreaunderContractNo.R32-2008-000-10155-0.

References

[1]L.G.Landsberg,Phys.Rep.128(1985)301.

[2]R.R.Akhmetshin,etal.,CMD-2Collaboration,Phys.Lett.B613(2005)29. [3]P.Adlarson,etal.,A2Collaboration,Phys.Rev.C95(2017)035208. [4]R.Arnaldi,etal.,NA60Collaboration,Phys.Lett.B677(2009)260. [5]A.Anastasi,etal.,KLOE-2Collaboration,Phys.Lett.B757(2016)362. [6]M.N.Achasov,etal.,SNDCollaboration,Phys.Lett.B504(2001)275. [7]D.Babusci,etal.,KLOE-2Collaboration,Phys.Lett.B742(2015)1. [8]J.Fu,H.B.Li,X.Qin,M.Z.Yang,Mod.Phys.Lett.A27(2012)1250223. [9]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D89(2014)092008. [10]Q.Zhao,G.Li,C.H.Chang,Phys.Lett.B645(2007)173.

[11]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C37(2013)063001. [12]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C42(2018)023001. [13]M.Ablikim,etal.,BESIIICollaboration,Nucl.Instrum.MethodsA614(2010)

345.

[14]S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. MethodsA 506 (2003)250.

[15]S.Jadach,B.F.L.Ward,Z.Was,Comput.Phys.Commun.130(2000)260; S.Jadach,B.F.L.Ward,Z.Was,Phys.Rev.D63(2001)113009. [16]D.J.Lange,Nucl.Instrum.MethodsA462(2001)152;

R.G.Ping,Chin.Phys.C32(2008)599.

[17]C.Patrignani,etal.,ParticleDataGroup,Chin.Phys.C40(2016)100001. [18]J.C.Chen,G.S.Huang,X.R.Qi,D.H. Zhang,Y.S.Zhu,Phys. Rev.D62(2000)

034003.

[19]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D87(2013)092011. [20]Z.R.Xu,K.L.He,Chin.Phys.C36(2012)742.

[21]J.M.Bian,etal.,Int.J.Mod.Phys.A24(2009)267.

[22]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C37(2013)123001. [23]M.Ablikim,etal.,BESIIICollaboration,Phys.Lett.B753(2016)629. [24]H.Czyz,S.Ivashyn,Nucl.Phys.B,Proc.Suppl.225–227(2012)131.

[25]H.Czyz,S.Ivashyn,A.Korchin,O.Shekhovtsova,Phys.Rev.D85(2012)094010. [26]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.Lett.118(2017)221802. [27]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D83(2011)112005. [28]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D87(2013)012002. [29]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D81(2010)052005. [30]M.Ablikim,etal.,BESIIICollaboration,Phys.Rev.D89(2014)074030.

Figure

Fig. 2. (Color online.) Scatter plot of polar angle cos θ ( e − ) versus cos θ ( e + )
Fig. 3. (Color online.) (a, b) Mass distributions for the η  signal, (c, d) the M ( e + e − ) distribution in η  → γ π + π − / η  → π + π − η mode

References

Related documents

When taking the exceptionalist arguments found in the foreign policy discourse of the South African executive as a context for understanding the country’s withdrawal from the RS,

Detta leder till stigmatisering och många deltagare känner sig generade inför hälso- och sjukvården och även ute i samhället då det snabbt dras en slutsats att de är rökare

Det framgick att barnen inte ville visa det antingen på grund av skam, av rädsla för sin förälder eller rädslan att bli fråntagen sin förälder (Ericsson 2007; Eriksson

 I liten grupp kommer man på tillsammans, det är mycket bättre att ha många fler i gruppen, får man fler förslag, för är man bara en eller två eller är man bara en person

Där arbetssätten och lärarnas syfte med skönlitteraturen sviktar begränsas elevernas språkutveckling och de får inte möjligheter till alla dessa kontexter som de måste hamna i

På grund av områdets nuvarande komplexitet, kraftiga markföroreningar, samt att det som ovan nämnt kommer vara en byggarbetsplats under lång tid, är det därför

Något som urskiljer sig från det normativa i resultatet var att flickorna hade svårare för att vara stilla och göra det som samlingen handlade om då de var ute vilket

undervisning om klimatförändringen i olika steg och göra efterföljande intervjuer med frågor hur eleverna tänker och känner sig efter undervisning i detta ämne. En av lärarna