• No results found

Measurement of W + W − production in association with one jet in proton–proton collisions at s=8TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of W + W − production in association with one jet in proton–proton collisions at s=8TeV with the ATLAS detector"

Copied!
20
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

W

+

W

production

in

association

with

one

jet

in

proton–proton

collisions

at

s

=

8

TeV with

the

ATLAS

detector

.TheATLAS Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received11August2016

Receivedinrevisedform7October2016 Accepted8October2016

Availableonline14October2016 Editor:W.-D.Schlatter

TheproductionofW bosonpairsinassociationwithonejetinpp collisionsat√s=8 TeV isstudied

usingdatacorrespondingtoanintegratedluminosityof20.3 fb−1collectedbytheATLASdetectorduring

2012attheCERNLargeHadronCollider.Thecrosssectionismeasuredinafiducialphase-spaceregion

defined by the presence ofexactly one electron and one muon, missing transverse momentum and

exactlyonejetwithatransversemomentumabove25 GeVandapseudorapidityof|η|<4.5.Theleptons

are required to have oppositeelectric charge and to pass transverse momentumand pseudorapidity

requirements.ThefiducialcrosssectionisfoundtobeσW Wfid,1-jet=136±6(stat)±14(syst)±3(lumi) fb.

Incombinationwithapreviousmeasurementrestrictedtoleptonicfinalstateswithnoassociatedjets,

the fiducial cross section of W W production with zero or one jet is measured to be σW Wfid,≤1-jet=

511±9(stat)±26(syst)±10(lumi) fb.Theratiooffiducialcrosssectionsinfinalstateswithoneand

zero jetsis determinedto be0.36±0.05.Finally, atotalcrosssectionextrapolatedfrom thefiducial

measurement ofW W productionwith zero oroneassociated jet isreported. The measurements are

comparedtotheoreticalpredictionsandfoundingoodagreement.

©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ThemeasurementoftheproductionoftwoW bosonsisa cru-cial test of the non-Abelian gauge structure of the electroweak theory of the Standard Model (SM). The increasing precision of the experimental measurements at the LHC has elicited im-proved theoretical descriptions of the process. Progress has been made to extend the next-to-leading-order (NLO) [1] calculation of ppW+W− production to include next-to-next-to-leading-order(NNLO)effects[2]inperturbativequantumchromodynamics (QCD). A separate calculation of the loop-induced, non-resonant ggW+W− productionprocesshasbeenmadeavailable at or-derO(α3

S)[3]inthestrongcouplingconstant αS.ResonantW W∗ production via the exchange of a Higgs boson has been calcu-lated to order O(α3

S) [4] and O(αS4) [5]. These predictions can besummed togive anupdated predictionforthetotalcross sec-tion of 65.0+11..21 pb as further detailed in Section 7. In addition to these newcalculations, fullydifferential NNLO predictions [6] havebecomeavailable,ashavededicatedNLOpredictions for jet-associated W W production [7,8] with up to three jets [9]. The resummationof logarithms arising froma selection onthe

num- E-mailaddress:atlas.publications@cern.ch.

berofjetshasbeenpresentedatnext-to-next-to-leading-logarithm (NNLL)accuracyinRefs.[10,11].Itisthereforeinterestingtostudy W W productioninassociationwithjetstoconfrontthese calcula-tionswithexperimentaldatafromtheLHC.

A measurement of the jet multiplicity in W W events at the CDF experimentwas published inRef. [12].At theLHC, theCMS Collaboration has included W W production in association with one jet in their measurement ofthe total W W production cross section at√s=8 TeV[13],buthasnot publisheddedicated fidu-cialcrosssectionsofjet-associatedW W production.

Thisletterpresentsameasurementofthefiducialcrosssection of W W productionusing thedecaychain W+W−→e±νeμνμ infinalstateswithoneassociatedhadronicjet,furtherreferredto as1-jetfinalstate.Thefiducialregionisdefinedusingstable parti-clesatthegeneratorlevelandischosentomatchtheexperimental selectionascloselyaspossible.

Onlyeventswithexactlyonereconstructedjetareselectedfor theanalysis,whileeventswithalargernumberofjetssufferfrom a large background from top-quark production andare not con-sidered. The selected W W candidate event sample is corrected forbackgroundprocesses,detectionefficienciesandresolution ef-fects,andthecrosssectionofW W+1-jetproductionisextracted forthefiducialphase-spaceregion.Theresultsarecombinedwith a previous measurement reported in Ref. [14] restricted to final

http://dx.doi.org/10.1016/j.physletb.2016.10.014

0370-2693/©2016TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

states without any reconstructed jets, referred to as 0-jet final state. The fiducial W W+≤1-jet cross section and the ratio R1 ofthefiducialW W+1-jetandfiducialW W+0-jetcrosssections aredeterminedandcomparedto differenttheoreticalpredictions. Themeasurementthereforeextendsthefiducialphasespaceofthe previousmeasurementoftheW W productioncrosssection. 2. Data and Monte Carlo samples

TheATLASdetector[15]isageneral-purposedetector measur-ing collisions at the Large Hadron Collider (LHC) with coverage over the full azimuthal angle φ. It consists of an inner detector surrounded by a 2 T solenoid to measure tracks with pseudora-piditiesof|η|<2.5,1electromagneticandhadroniccalorimetersto provideenergymeasurementsfor|η|<4.9,andamuon spectrom-eterwithatoroidalmagneticfieldtodetectmuonswith|η|=2.7. Athree-leveltriggersystemselectseventstobereadout.

The measurement uses datacollected withthe ATLAS experi-ment during the 2012 data-taking period. Only runs withstable protonbeamscollidingat√s=8 TeV areusedin whichall rele-vantdetectorcomponentswerefunctional.Thisdatasample corre-spondstoan integratedluminosity of20.3 fb−1 determined with anuncertaintyof±1.9% andderived frombeam-separationscans performedinNovember2012[16].

The analysis relies on event simulation to correct the mea-sured event yields for experimental effects and for the study of background processes. Different simulated event samples are usedto model the signal fromthe individual production mecha-nisms:qq¯→W+W− eventsare simulatedusingthe Powheg 1.0 generator [17–21], which is interfaced to Pythia 8.170 [22]; for the non-resonant gg-induced W W signal the gg2ww pro-gram (version 3.1.3) [23] is employed and interfaced to Her-wig 6.5/Jimmy 4.31 [24,25]; resonant W W∗ production via a Higgs boson with a mass of mH =125 GeV is modelled using Powheg+Pythia 8.170. The three event samples are simulated usingtheCT10NLO [26] partondistributionfunction (PDF). Pho-tonradiation ismodelledusing Photos [27]. Theparameter tune usedfortheunderlyingeventisAU2[28].Theeventsamplesare normalised to a cross section times branching ratio of 5.58 pb (qq¯→W+W− [1]), 0.153 pb(non-resonant ggW+W− [23]) and0.435 pb(ggHW+W− [4]). Thesumofthese contri-butions corresponds to a total W W cross-sectionof 58.7+43..28 pb wheretheuncertainties areduetoscaleandPDF uncertaintiesin the crosssection calculations. For additionalstudies a sample of simulatedqq¯→W+W− eventsproducedwith MC@NLO[18] and Jimmy[24,25]usingtheAUET2tune[29]andtheCT10PDFisused. Production of pairs of top quarks, s-channel single top-quark productionand W -associatedtop-quark productionare modelled with the Powheg+Pythia 6 generator with the AU2 [28] tune. Single top-quarkproduction inthe t-channel is described by the Acer3.7 [30] MC generatorinterfaced to Pythia 6 [31] withthe AUET2B tune [32]. These events samples are normalised to the respectiveNNLO+NNLL calculations[33–36]to obtain therelative contributiontothetotaltop-quarkbackground,whoseoverall nor-malisationisdeterminedfromdataasdetailedinSection4.

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthe nominal

interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupward.Cylindricalcoordinates(r,φ)areusedinthe transverseplane,φ

beingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedinterms ofthepolarangleθas η= −ln tan(θ/2).Thetransverseenergyiscomputedas ET=E·sinθ,whiletheradialdistancebetweentwoobjectsisdefinedas R= 

( η)2+ ( φ)2.

BackgroundfromW andZ bosonproductionismodelledusing Alpgen2.14[37] interfacedto Pythia 6andnormalised toNNLO calculations [38] where needed. The AUET2 tune is used forthe underlyingevent.ThedibosonbackgroundprocessesW Z and Z Z are generatedusingthesamesettings asemployedforthe simu-latedqq¯→W+W− eventsamples.TheproductionofaW boson andavirtualphoton(γ∗)isgeneratedusingthe Sherpa generator (version1.4.2)[39].For production Alpgen+Herwig+Jimmy is employed.

In all simulated event samples, additional pp collisions ac-companying the hard-scatter interactions (pile-up) are modelled by overlaying minimum-biaseventsgenerated using Pythia 8.To simulate the detector response, the generated events are passed throughadetailedsimulationoftheATLASdetector[40]basedon Geant4 [41]or Geant4combinedwithaparameterised calorime-tersimulation[42].

3. Object reconstruction and event selection

Events are selected using reconstructed jets, electrons, muons and missingtransverse momentum. The selection follows closely theoneinRef.[14]tofacilitatethecombinationwiththeW W+ 0-jet final state. Electrons and muons are identified based on tracks in the inner detector matched either to energy deposits in the electromagnetic calorimeter or combined with tracks in the muon spectrometer, respectively. Electrons are reconstructed within |η| <2.47 excluding the transitionregion between barrel andendcapcalorimetersof1.37<|η| <1.52.Muonsarerequired toliewithin |η| <2.4.Thesamereconstructionandidentification requirementsasin Ref. [14]are used, resultinginan event sam-plewithminimalcontributionsfrombackgroundsduetoparticles misidentified asleptons, particularly from W+jets, multijetand events.FortheselectionofW W candidate events,the pres-enceofexactlytwoisolated,oppositelychargedleptons( , )with transversemomentaof p

T>25 GeV andp



T >20 GeV isrequired. Onlyfinalstateswithoneelectronandonemuonareused.Events withadditionalleptonswithpT>7 GeV arerejected,whichhelps tosuppressother dibosonprocesseswithmorethan twoleptons. It is requiredthat atleast one ofthe leptons has met an online single-leptonselectionorbothhavepassedadileptontriggerwith reducedthresholdsandlessstringentobjectidentificationcriteria. Thissetup has an efficiencyof99%–100% withrespect tothe of-flineleptonselection.

Jets are formed using calibrated topological clusters of en-ergy [43] reconstructed in the calorimeters using the anti-kt al-gorithm [44] with radius parameter R=0.4. Further corrections to the jet energy are applied based on simulation [45] and are followed by a pile-upsuppression [46].Jets are requiredto have pT>25 GeV and |η| <4.5.More than 50% of the scalarsum of the pT of all tracks contained within R=0.4 of the jet axis is required to be from tracks associated with the primary ver-tex to suppress contributions from additional pp interactions in theevent[47]ifthejetsatisfies pT<50 GeV and|η| <2.4.Only eventswithexactlyonejetmeetingtheabovecriteriaareselected. Jets containing b-hadrons (so-called b-jets) are identified within the central region ofthe detector, |η| <2.5, usinga multivariate approach [48,49] withan efficiency of 85%. To reduce the back-groundfrom top-quarkproduction, eventscontaining b-jets with pT>20 GeV andwithin|η| <2.5 arerejected.

Selectionrequirementsonthemissingtransversemomentumin thecandidateeventsareusedtoreducethecontributionofevents fromZ/γ∗→τ τ (Drell–Yan)productionwhereboth τ-leptons de-cay leptonically. Missing transverse momentum is reconstructed fromthevectorsumofthetransversemomentaofidentified parti-cles[50]towhicheitherreconstructedjetsandcalorimetric

(3)

depo-Fig. 1. (a) Distributionsofthetransversemomentumoftheselectedjetinthecontrolregionenrichedineventsfromtop-quarkproduction.Thesuminquadratureof statistical,experimentalandtheoreticaluncertaintiesintheMCpredictionareshownasahatchedband.(b)Distributionsofthetransversemomentumoftheselectedjet afterfinaleventselection.DataareshowntogetherwiththeyieldsfromW W signalasestimatedfromsimulatedeventsampleswhicharescaledtoatotalcrosssection of58.7+43..28pb,andtheestimatedbackgroundcontributions.Thesuminquadratureofstatistical,experimentalandtheoreticaluncertaintiesisshownasahatchedband.

In bothfiguresthelastbinofthedistributionisanoverflowbin.

sitions notassociatedwithanyparticle areadded.Missing trans-verse momentum induced by mismeasurements ofthe energy of leptons isfurther reducedinthe calorimeter-basedmeasurement byprojectingthemissingtransversemomentum Emiss

T ontonearby leptons,to calculatetheso-calledrelativemissingtransverse mo-mentum EmissT,Rel. A lepton is considered nearby if the azimuthal separation to the EmissT direction is small, φ (EmissT , )<π/2, andonlyin thiscase, EmissT ismodified to yield EmissT,Rel=EmissT × sin( φ (EmissT , )), otherwise ETmiss,Rel= EmissT . The relative missing transversemomentum isrequired tobe EmissT,Rel>15 GeV. An ad-ditionaltrack-basedmeasureofthemissingtransversemomentum

(pmissT )isconstructedbyaddingthemomentaoftracksassociated withtheprimary vertextothevector sumofthetransverse mo-mentaofidentifiedelectronsandmuons.Byconstruction, pmissT is lesssensitive toenergy depositsfromadditional interactions and itisrequiredtobe pmiss

T >20 GeV.Tofurtherreducethe sensitiv-itytofluctuationsineitherofthe missingtransversemomentum variablesused,the azimuthalseparation betweenEmissT and pmissT mustsatisfy φ (EmissT ,pmissT )<2.0.

Theinvariantmassofthetwoselectedleptons,m ,isrequired

tobegreaterthan10 GeVtosuppresscontributionsfrom misiden-tifiedleptonsproducedinmultijetandW+jets events.Apartfrom therequirementsonthejetsand φ (ETmiss,pmissT ), thisevent selec-tionisidenticaltotheoneemployedinRef.[14].

4. Determination of backgrounds

The experimental signature of exactly one electron and one muon with opposite electric charge, and missing transverse mo-mentum can be produced by a variety of SM processes which are treated as backgrounds. Top quarks decay almost exclusively toa b-quarkanda W boson.This makest¯t andsingle top-quark productionthedominantbackgroundto W W production, in par-ticularforeventswithjetsinthefinalstate.Thebackgroundyield fromtop-quarkproductionisdeterminedusingamethodproposed in Ref. [51]. The eventyield is extrapolatedfrom a control sam-pleenrichedineventsfromtop-quarkproduction.Itisdefinedby thenominalselection requirementsbutmustcontain exactlyone identifiedb-jetwith pT>25 GeV andwithin|η|<2.5,insteadof requiringthe absence ofidentified b-jets. The distribution ofthe transversemomentumoftheb-jetinthecontrolsampleisshown

in Fig. 1(a). The datais usedto constrain the largeexperimental and theoretical uncertainties shownby the error bands.The fac-tor to extrapolate fromthis control sample to the signal sample is determined as theratio of jetspassing or failingthe b-jet re-quirementin additionalcontrol samples,definedbythe presence of two jets, at leastone of which passes theb-tag requirement. Systematiceffectsresultingfromthechoiceofthecontrolsample arecorrectedforbyanadditionalfactorestimatedfromsimulated eventsamples.Thecorrection introduces experimentalsystematic uncertaintiesof±3.1%,mainlyfromtheuncertaintyinthejet en-ergyscale.Theoreticaluncertaintiesarefoundtoamountto±2.5% and are dominated by differences in simulatedtt event samples producedwith Powheg and MC@NLO,anduncertaintiesintheW t productioncrosssection.Statistical uncertaintiesfromthelimited size of the control samples in data and simulation introduce an uncertaintyof±3.5%,resultinginanoverallprecision inthe esti-matedtop-quarkbackgroundyieldof±5.2%.

The estimationof theremaining background processesclosely follows the methodologydescribed inRef. [14].Data-driven esti-mates of the yields of W+jets and multijet productionare de-terminedinaneventsampleindatathatisselectedwithrelaxed identification andisolation criteriaforthe leptons. The composi-tion ofthiseventsample withgenuine andmisidentifiedleptons canbeinferredusingtheprobabilitiesofgenuineandmisidentified leptons selected withthe relaxed criteria to satisfy the nominal lepton selection criteria. The yield ofbackground fromDrell–Yan productionisobtainedfroma simultaneousfitofthedistribution ofsimulatedeventsamplestothe φ (EmissT ,pmissT )distributionof the data in the signal region and in a control sample, defined by a selection of 5 GeV<pmissT <20 GeV and no selection on

φ (EmissT ,pmissT ). The yields of the diboson processes, W Z , Z Z and production,aredeterminedusingsimulationandare nor-malised toNLO predictions [1].Theuncertainties assignedto the NLOpredictionsareinflatedtocoverdifferencesfromthe calcula-tions inRefs.[52,53].For productiona K -factoriscalculated fromRef.[54]andappliedtotheNLOprediction.

The observed data and the estimated signal and background yields are summarised in Table 1. Half of the events selected in data are estimated to originate from background processes, where top-quark production represents the largest contribution. Thetransversemomentumdistributionoftheselectedjetafterthe finaleventselectionisshownin Fig. 1(b),wheredataisshown

(4)

to-Table 1

SummaryoftheeventyieldsintheselectedW W+1-jeteventsobservedindata andestimatedfromsignalandbackgroundcontributions.Theestimatedeventyields fortheW W signalaredeterminedfromsimulatedeventsampleswhicharescaled toatotalcrosssectionof58.7+4.2

−3.8 pb.Theestimatedyieldsfromdiboson

produc-tionaredeterminedfromsimulatedeventsampleswhereastheyieldsofallother backgroundsareestimatedusingdata-drivenmethods.Thestatisticaland system-aticuncertaintiesareshownseparately.Forreference, thenumbersofobserved, expectedsignalandbackgroundeventsfortheW W+0-jetmeasurement[14]are alsogiven.

Process W W+1-jet W W+0-jet

Observed events 3458 5067

Total expected events 3310±50±340 4420±30±320 (Signal+background) W W signal 1490±10±330 3240±10±280 Top quark 1236±43± 49 609±18± 52 W+jets 121±15± 50 250±20±140 Drell–Yan 267±12± 49 175± 3± 18 Other diboson 195± 5± 53 150± 4± 30 Total background 1820±50±100 1180±30±150

gether withthe simulated W W signal eventsand theestimated backgroundyields.Goodagreementbetweenthedataandthe es-timatedyieldsisobservedfortheselectedW W+1-jetcandidate sample.

5. Cross-section measurement

The cross section for W W production in the final state with exactly one jet is measured. The definition of the fiducial phasespaceisderivedfromtheselectionappliedtoreconstructed events.Leptonsarerecombinedwithanyfinal-statephotonsfrom QEDradiationwithinasurroundingconeofsize R=0.1,toform so-called‘dressed leptons’.Furthermore,electrons andmuonsare requiredtobeoppositelychargedandtooriginatedirectlyfromW decays.Thesameselectionrequirementsontransversemomentum andpseudorapidity as at reconstruction level are applied to the dressedleptons.Stableparticleswithalifetime τ>30 ps, exclud-ingmuonsandneutrinos,areusedtoformparticle-leveljetsusing theanti-kt algorithmwitharadiusparameterofR=0.4.Theyare selectedif pT>25 GeV and |η| <4.5. Toremove jetsoriginating fromelectrons,jetswhichareadistance R<0.3 fromany elec-tron from W decays selected asdetailedabove are ignored. The four-momentumsumoftheneutrinosoriginatingfromtheW bo-sondecaysisusedforthecalculationofboth pmissT andEmissT,Rel at generatorlevel.

ThenumberofselectedW W candidateeventswithexactlyone associatedjetmayreceivecontributionsfromeventswithdifferent jet multiplicitiesdue tothe detectorresolution. Aftersubtracting the background contributions, Nb, fromthe number of observed events,Nobs,theobservedsignalyield,Ns=Nobs−Nb,iscorrected fordetectorinefficiencies, resolutionandjetmigrationeffects us-ing a correction matrix Ri j. The correction matrix also accounts forjetsoriginatingfrompileupwhichincreasetheexpectedsignal yieldby5%.ItisevaluatedusingsimulatedW W eventsamplesas theratio of the numberof events reconstructed injet-bin i and generatedinjet-bin j, Nreco igen j,to thenumberofeventsgenerated inthefiducialvolumewith j associatedjets,Ngen jfid :

Ri j= Ngen jreco i

Nfidgen j (1)

where all jet multiplicities j>1 are contained in Nreco i gen j in the jet-bincorresponding to j=1 toaccount formigrations intothe eventsample.

Table 2

NumericalvaluesofthecorrectionmatrixRi j whichaccountsforthefulldetector efficiencymigrationsbetweenjetbins,andthefactorAW Wwhichaccountsforthe extrapolationfromtheW W+≤1-jetfinalstatetothetotalphasespace.Forboth variablesthetotaluncertaintiesareshown.

Ri j(i=nreco jets, j=n gen jets) R00 R01 R10 R11 AW W qq¯→W+W− 0.501 0.036 0.050 0.458 0.327 ggW+W− 0.502 0.061 0.067 0.450 0.447 ggHW+W− 0.410 0.035 0.055 0.423 0.169 Total W W 0.499 0.037 0.051 0.456 0.319 Uncertainty 4% 45% 24% 6% 4.9%

Electronsandmuonsfromnon-prompt τ-leptondecaysare ac-countedforinthenumeratorofEq.(1)butnotinthedenominator, which effectively removes the contribution of Wτ ν decays. This allows a definition of the fiducial region for prompt decays ofW bosonsintoelectronsandmuonsonly.Whilethecalculation ofthetotal ppW+W−crosssectionatNNLOdoesnotinclude b-quarks, such events can occur in the simulated event samples fromgluonsplitting, gbb.¯ The vetoon identifiedb-jets affects thesecontributionsinthecalculationofthecorrectionmatrixRi j. Theeffectonthemeasuredcrosssectionislessthan1%.The val-uesofthematrixRi j aregivenin Table 2togetherwiththeirtotal uncertainties.Eventsreconstructedwiththewrongjetmultiplicity causenon-zerovaluesforRi j withi =j.

ThefiducialW W crosssectioninjet-bin j isgivenbythe mea-suredsignalyieldsinjet-binsi=0,1:

σW Wfid,j=L1 1 

i=0

Ri j1Nis, (2)

where L is the integrated luminosity and Ni

s the background-subtracted events yield in jet bin i. The cross sections for W W productionwithzero andone associatedjet are extracted simul-taneouslyusingaprofilelikelihoodfit[55,56]todataobservedin 0-jet and1-jet final states.Information fromboth the 0-jet final statesfromRef.[14]and1-jetfinalstatesareused,where system-aticuncertaintiesareaddedtothelikelihoodfunctionasnuisance parametersandtreatedascorrelatedbetween0-jetand1-jetfinal states.

Thesumofthefiducial0-jetand1-jetcrosssectionsis extrap-olated to the total phase space by correcting for the acceptance AW W andthebranchingfractionBofW→ ν decays:

σW Wtot =σ fid,0 W W+σ fid,1 W W AW W·B2 . (3)

Here, theacceptance AW W isdefinedastheratioof events gen-eratedin the≤1-jet fiducialvolumeto allgeneratedevents.The acceptancecorrectionfactorisAW W=0.319,whichisroughly40% larger than forpure W W+0-jet final states [14]. The W → ν,

=e, μorτ,branchingfractionisB =0.1083[57]. 6. Systematic uncertainties

Systematic uncertainties arising from the limited knowledge of the event reconstruction efficiency and the determination of theparticlefour-momentaarepropagated tothemeasurementby varyingthecorrespondingparametersinthecalculationofthe cor-rectionmatrixRi j.Uncertaintiesintheefficiencyofthetriggerand the selection ofthe leptons result inan uncertainty of ±1.8% in the fiducial cross section [58–62]. An uncertainty of ±2.9% [49] is attributedto theidentification andrejectionof jetscontaining b-hadrons.

Uncertaintiesinthejetenergyscaleandthejetenergy resolu-tionaffectthematrixelements Ri j especially foreventswithjets

(5)

nearthetransversemomentumthresholdof pT=25 GeV, result-inginuncertaintiesthatcanbeaslargeas±40% forRi j withi = j. TheeffectontheW W+1-jet crosssection isfoundtobe±4.2% and±1.0% fromthejetenergyscaleandresolution[45,63], respec-tively. The uncertainty dueto Emiss

T scale andresolution as well as pmiss

T scaleandresolutionaccount for±0.4% intotal [64].The uncertainty fromthe modelling ofadditional pp interactions oc-curringinthesameornearbybunchcrossingsislessthan±0.6%. Uncertaintiesinthefiducialcrosssectionduetothetheoretical modellingof the correction matrix Ri j are evaluated using alter-native simulated qq¯→W+W− event samples. The uncertainty due to the choice of generator and parton shower model is es-timated by comparing simulated event samples generated with Powheg+Pythia 8 and with MC@NLO+Jimmy. The resulting un-certainty in the measured cross section is ±2.4%. The effect of higher-ordercorrectionsis estimatedbyvarying the renormalisa-tionand factorisationscales simultaneously byfactors of0.5 and 2andcomparingtheresultingcorrectionmatrices.Theassociated uncertaintyinthemeasured1-jetcrosssectionamountsto±0.5%. The uncertainty due to the choice of PDF is calculated accord-ing to Ref. [65] and amountsto less than ±0.1%. Accounting for migrations from higher jet multiplicities introduces uncertainties of±2.1%. The uncertainty inthe correction matrix duethe rela-tivenormalisationsofthedifferentsignalsamples,qq¯→W+W−, non-resonant gg andresonant ggH production,isfoundtobe negligibleincomparisontootheruncertainties.

The extrapolation from the fiducial to the total phase space introduces additionaluncertainties. These are assessed separately forthe qq¯→W+W−, non-resonant ggW+W− andresonant ggHW+W− processes and amountto ±1.9% for the MC generator and parton shower uncertainty evaluated as described above.ThePDF-induceduncertaintyisestimatedtobe±0.8%.The uncertainties duetopotential contributionsfromhigher-order ef-fectsaredetermined tobe ±4.0% originatingfromtherestriction tospecificjetmultiplicities.Theyarecomputedinthetotalphase spacebyconsideringthescaledependenceofsuccessiveinclusive jet-binned cross sections to be uncorrelated [66]. The scale de-pendence of the remaining selection criteria is assessed without applyinganyjetrequirementsandisfoundtobe±0.2%.

7. Results

The cross section for W W +1-jet production in the fiducial regionismeasuredtobe:

σW Wfid,1-jet=136±6(stat)±14(syst)±3(lumi)fb. (4)

The total relative uncertainty ofthe measured value is ±15% and correlated with the uncertainty of the fiducial W W+0-jet crosssectionof σW Wfid,0-jet=374±7(stat)+2523(syst)+87(lumi) fb pre-sented in Ref. [14]. The correlation coefficient betweenthe total uncertainties of the 0- and the 1-jet fiducial measurements is found to be ρ= −0.051. The measured cross sections and un-certaintiescanbe usedtocompute acrosssectiondefinedinthe fiducialW W+≤1-jetregion:

σW Wfid,≤1-jet=511±9(stat)±26(syst)±10(lumi) fb. (5)

Uncertainties causing migrations of events between jet bins are significantly reduced when comparing the fiducial W W +0-jet crosssectionandthe W W+≤1-jetcrosssection. Thepreviously dominantexperimental uncertaintyin the jet energy scale is re-ducedbyafactorof2.5byextendingthemeasurementtoinclude 1-jetfinalstates.

Additional uncertainties introduced by the rejection of b-jets andincreaseduncertainties inthe estimationofbackground con-tributions causethe overallexperimental uncertaintyto be lower byonly18%.

Theratioofjet-binnedfiducialcrosssectionsR1ismeasuredto be:

R1=σW Wfid,1-jet 

σW Wfid,0-jet=0.36±0.05 (6)

andallows atest oftheoretical calculationswithoutknowing the totalcrosssection.

Theoretical predictions of the fiducial cross sections are ob-tainedby combiningthreeseparate theoreticalcalculationsofthe totalcrosssectionswiththeirrespectiveacceptancecorrection fac-tors AW W.Thesefactorsare calculatedusingthesimulatedevent samplesgeneratedatlowerorderintheperturbativeexpansionfor thethreeseparateprocessescontributingtoW W production.

ThetheoreticalcalculationofppW+W−toorderO(α2 S)[2] isused,whichformallyincludestheloop-inducedgg contribution at order O(α2

S). This gg contribution is subtracted and replaced by a calculation of the gg loop-process to order O(α3

S) [3] in-stead. To this non-resonant W W prediction, the prediction for resonant W W∗ production via aHiggs boson witha subsequent decayintotwoW bosonsatorderO(α4

S)[67]isaddedtoyieldthe totalcross-sectionpredictionof65.0+11..21 pb,2 wherethe

contribu-tions fromresonant and non-resonant ggW+W− production amount to 6.4% and 4.2% of the total cross section, respectively. Theoretical uncertainties in the acceptance are assigned as de-scribed in Section 6. The approximate theoretical fiducial cross sectionsarefoundtobe:

σW Wfid,1-jet=141±30 fb (7)

σW Wfid,≤1-jet=487±22 fb. (8)

Acomparisonofthemeasuredandpredictedfiducialcrosssections is givenin Fig. 2(a).Whilethefiducial W W+0-jetcrosssection was measured slightlyhigher thanthe theoretical prediction,the fiducial W W +1-jet and W W+≤1-jet cross-section measure-mentsagreewellwiththetheoreticalprediction.

Theratioofthejet-binnedfiducialcrosssections R1 measured indataiscompared toseveraltheoreticalpredictionsin Fig. 2(b). Alltheoreticalvaluesagreewellwiththemeasurementwithin un-certainties. The first two theoretical predictions are taken from eitherthe Powheg+Pythia 8orthe MC@NLO+Jimmy q¯qW+W− samples. The theoretical uncertainty in these predictions is as-sessedby varying therenormalisationandfactorisationscales in-dependently by factors of 0.5 and 2 with the constraint 0.5<

μFR<2. The contributions from resonant and non-resonant ggW+W−productionaretakeninbothcasesfromthe respec-tive Powheg+Pythia 8 and gg2ww samples, which increase the prediction for R1 dueto more initial-stateradiation fromgluons than quarks.The fulleffectofomittingthe ggW+W− contri-butions is assigned asfurther theoretical uncertainty. To investi-gate resummationeffects,a thirdprediction isobtainedfromthe qq¯→W+W−andggW+W−samplesasdiscussedabove,but with the Powheg+Pythia 8 qq¯→W+W− sample reweighted to reproduce the pT,W W distributionaspredictedby theNLO+NNLL calculationinRef.[10].Inadditiontorenormalisationand factori-sationscales,theresummationscaleisvariedhere.Finally, predic-tions for R1 are obtainedby usingrecentfixed-ordercalculations

2 Thepredictionforthetotalcrosssectionisslightlylargerthantheonecitedin

Ref.[14]duetotheinclusionofthehigher-ordercalculationoftheloop-induced gg processesandtheuseofanalternativescalechoiceinthecalculationofthe qq¯→W+W−process.

(6)

Fig. 2. (a) Comparisonofthemeasuredcrosssectionsinthe0-jet,1-jetand≤1-jetfiducialregions.Theratioofthemeasuredcrosssectionstotheirrespectivetheoretical predictionisshown.Thetheoreticalpredictionswereobtainedbymultiplyingthetotalcrosssectionof65.0+1.2

−1.1pb withthetotalacceptanceobtainedbycombiningthe

acceptancecorrectionfactorsAW WfortheW W processesaccordingtotheircontribution.(b)Jet-binnedfiducialcross-sectionratioR1measuredindataandcomparedto

theoreticalpredictions.Thevaluesareobtainedfortwodifferentqq¯→W+W−generatorsandbyreweighting Powheg+Pythia 8toaresummationcalculationatNLO+NNLL. Contributionsfromresonantandnon-resonantggW+W−productionareaddedtoallthreetheoreticalvalues.Fixed-ordercalculationsatNNLOusing Matrix[6]andat NLOusing MCFM[1,8]arealsoshown,wherecontributionsfromggHW+W−productionareaddedusingsimulated Powheg+Pythia 8samples.Forthemeasured crosssectionsin(a)and(b)thecombinedstatisticalandsystematicuncertaintiesareshownasablueband.Whenstatisticaluncertaintiesaregiventheyareindicatedas horizontalerrorbars.Theuncertaintiesintheoreticalcrosssectionsareshownasagreyband.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereader isreferredtothewebversionofthisarticle.)

fortheqq¯→W+W− andnon-resonant ggW+W− processes from Matrix at NNLO [6] and MCFM at NLO, where the latter uses the implementations of inclusive W W production [1] and W W+1-jetproduction[8].Theseprogramsallowtheapplication ofthefiducialleptonandmissingtransversemomentumselections avoiding the use of acceptance factors derived from lower-order programs.Jetsareclusteredfromthefinalstate partonsusingthe anti-kt algorithmwiththeradiusparameter R=0.4.Acorrection fornon-perturbativeeffectsfromhadronisationandtheunderlying eventis derived by comparing samples of Madgraph [68] using the CT10 PDF interfaced with Pythia 8 and the AU2 tune with theseeffectsenabledordisabled. Asystematicuncertaintyis de-rived by interfacing the Madgraph samples with Herwig++ [69] andtheAUET2 tune.The renormalisationandfactorisation scales forthe Matrix and MCFM predictions are setto μR=μF=mW andanuncertaintyisobtainedbyvaryingthoseindependentlyby factorsof0.5and2withtheconstraint0.5FR<2.Inboth ofthesecalculations,the non-resonant ggW+W− production onlycontributesinthedenominatorofR1.Contributionsfrom res-onant ggHW+W− production are included using event samplessimulatedwith Powheg+Pythia 8.

The total W W cross section isextrapolated fromthe fiducial W W+≤1-jetcrosssectionusingEq.(3)andfoundtobe:

σW Wtot =68.2±1.2(stat)±3.4(syst)±2.8(theo)±1.4(lumi)pb. (9)

Theresultpresentedhereis12% moreprecisethan the previ-ousATLAS measurement based on W W +0-jet candidateevents only [14] dueto smaller experimental uncertainties in the fidu-cial W W+≤1-jet cross-section measurement. The measured cross section is compatible with the theoretical prediction of 65.0+11..21pb.

8. Conclusion

TheproductionofW bosonpairsinassociationwithahadronic jet was studied in pp collisions at a centre-of-mass energy of √

s=8 TeV usingdatawithanintegratedluminosityof20.3 fb−1

collectedbytheATLASdetectorattheLHC.Theanalysisextendsa previous analysistofinalstateswithone jet.Thefiducial W W+ 1-jetcrosssectionismeasuredtobe136±16 fb withinthefiducial volumedefinedbythekinematicrequirementsplacedinthe anal-ysis.Itisfoundtobeinverygoodagreementwiththetheoretical prediction obtained by combining the total cross-section calcu-lations of qq¯→W+W− at Oα2 S  , non-resonant ggW+W− at Oα3 S  , and resonant ggW+W− at Oα4 S  and multiply-ing themwiththeir respective acceptancefactor AW W.Similarly, themeasured fiducialW W+≤1-jet crosssection of511±29 fb agrees within the uncertainty with the prediction. The fiducial W W+≤1-jet cross section is extrapolated to the total phase space, yielding a measurement of the total ppW+W− cross section of 68.2±4.7 pb.This resultis compared tothe highest-ordertheorycalculationavailableof65.0±1.2 pb.

The total cross section extrapolated from the ≤1-jet fiducial volume is in better agreement with the theory calculation than thetotalcrosssectionextrapolatedfromthe0-jetfiducialvolume. Theuncertaintyisimprovedby12%.

To investigate further how well current predictions are able to describe the relative contributions of theseexclusive jet cross sections, the ratio of the fiducial W W +1-jet to the fiducial W W+0-jetcrosssection,R1,isdeterminedtobe0.36±0.05 and comparedtovarioustheoreticalpredictions,whichareallfoundto agreewiththemeasurementwithintheuncertainties.

Acknowledgements

We thank CERN forthe very successfuloperation of the LHC, aswell as thesupport staff fromour institutionswithout whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia;ARC,Australia;BMWFWandFWF,Austria; ANAS, Azerbai-jan; SSTC,Belarus;CNPqandFAPESP,Brazil; NSERC,NRCandCFI, Canada;CERN;CONICYT,Chile;CAS,MOSTandNSFC,China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Re-public; DNRF and DNSRC,Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece;RGC,HongKongSAR,China;ISF,I-COREandBenoziyo

(7)

Cen-ter, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland;FCT,Portugal;MNE/IFA,Romania; MESofRussiaandNRC KI,RussianFederation;JINR;MESTD,Serbia;MSSR,Slovakia;ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden;SERI, SNSF and Cantons of BernandGeneva,Switzerland;MOST,Taiwan;TAEK,Turkey;STFC, UnitedKingdom;DOEandNSF,UnitedStatesofAmerica. In addi-tion,individual groupsand membershavereceived support from BCKDF,theCanadaCouncil,Canarie,CRC,ComputeCanada,FQRNT, andtheOntarioInnovationTrust,Canada;EPLANET,ERC,FP7, Hori-zon 2020 and Marie Skłodowska-Curie Actions,European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne andFondationPartagerleSavoir,France;DFGandAvHFoundation, Germany;Herakleitos,ThalesandAristeiaprogrammesco-financed byEU-ESFandtheGreekNSRF;BSF,GIFandMinerva, Israel;BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; theRoyalSocietyandLeverhulmeTrust,UnitedKingdom.

The crucial computingsupport fromall WLCG partners is ac-knowledged gratefully,in particularfrom CERN,the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresourcesarelisted in Ref.[70].

References

[1]J.M.Campbell,R.K.Ellis,C.Williams,VectorbosonpairproductionattheLHC, J.HighEnergyPhys.07(2011)018,arXiv:1105.0020[hep-ph].

[2]T.Gehrmann,etal.,W+W−productionathadroncollidersinnexttonextto leadingorderQCD,Phys.Rev.Lett.113(2014)212001,arXiv:1408.5243 [hep-ph].

[3]F.Caola,etal.,QCDcorrectionstoW+W−productionthroughgluonfusion, Phys.Lett.B754(2016)275,arXiv:1511.08617[hep-ph].

[4]LHCHiggsCrossSectionWorkingGroup,HandbookofLHCHiggscross sec-tions:3.Higgsproperties,arXiv:1307.1347[hep-ph],2013.

[5]C. Anastasiou,et al., Higgsboson gluon-fusionproduction inQCD at three loops,Phys.Rev.Lett.114(2015)212001,arXiv:1503.06056[hep-ph].

[6]M.Grazzini,etal.,W+W−productionattheLHC:fiducialcrosssectionsand distributionsinNNLOQCD,arXiv:1605.02716[hep-ph],2016.

[7]S. Dittmaier, S. Kallweit, P. Uwer, NLO QCD corrections to pp/ppbar –> WW+jet+Xincludingleptonic W-bosondecays,Nucl.Phys.B826(2010)18, arXiv:0908.4124[hep-ph].

[8]J.M. Campbell, D.J. Miller, T. Robens, Next-to-leading order predictionsfor WW+jetproduction,Phys.Rev.D92(2015)014033,arXiv:1506.04801 [hep-ph].

[9]F.F.Cordero,P.Hofmann,H.Ita,W+W−+3 jetproductionatthelargehadron colliderinNLOQCD,arXiv:1512.07591[hep-ph],2015.

[10]P.Meade,H.Ramani,M.Zeng,Transversemomentumresummationeffectsin

W+W−measurements,Phys.Rev.D90(2014)114006,arXiv:1407.4481 [hep-ph].

[11]M.Grazzini,etal.,Transverse-momentumresummationforvector-bosonpair production at NNLL+NNLO,J.High EnergyPhys. 08(2015) 154,arXiv:1507. 02565[hep-ph].

[12]CDF Collaboration,T.A.Aaltonen,etal., Measurementoftheproductionand differentialcrosssectionsofW+W− bosonsinassociationwith jetsinp¯p

collisionsat√s=1.96TeV,Phys.Rev.D91(2015)111101,Addendum:Phys. Rev.D92 (3)(2015)039901,arXiv:1505.00801[hep-ex].

[13]CMSCollaboration,MeasurementoftheW+W−crosssectioninppcollisions at √s=8TeV andlimitson anomalousgaugecouplings,arXiv:1507.03268 [hep-ex],2015.

[14]ATLASCollaboration,MeasurementoftotalanddifferentialW+W−production crosssectionsinproton–protoncollisionsat√s=8TeV withtheATLAS detec-torandlimitsonanomaloustriple-gauge-bosoncouplings,arXiv:1603.01702 [hep-ex],2016.

[15]ATLASCollaboration,TheATLASexperimentattheCERNlargehadroncollider, J.Instrum.3(2008)S08003.

[16]ATLASCollaboration,Luminositydeterminationinppcollisionsat√s=8TeV usingtheATLASdetectorattheLHC,arXiv:1608.03953[hep-ex],2016.

[17]P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040,arXiv:hep-ph/0409146.

[18]S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070, arXiv:0709.2092[hep-ph].

[19]S.Alioli, et al., A general frameworkfor implementing NLOcalculations in showerMonteCarloprograms: the POWHEGBOX,J. HighEnergy Phys. 06 (2010)043,arXiv:1002.2581[hep-ph].

[20]S.Alioli,etal.,NLOvector-bosonproductionmatchedwithshowerinPOWHEG, J.HighEnergyPhys.07(2008)060,arXiv:0805.4802[hep-ph].

[21]T.Melia,etal.,W+W-,WZandZZproductioninthePOWHEGBOX,J.High EnergyPhys.11(2011)078,arXiv:1107.5051[hep-ph].

[22]T.Sjostrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820[hep-ph].

[23]T.Binoth,etal.,Gluon-inducedW-bosonpairproductionattheLHC,J.High EnergyPhys.12(2006)046,arXiv:hep-ph/0611170.

[24]G.Corcella,et al.,HERWIG6.5:aneventgeneratorfor hadronemission re-actionswithinterferinggluons(includingsupersymmetricprocesses),J.High EnergyPhys.01(2001)010,arXiv:hep-ph/0011363.

[25]J.M.Butterworth,J.R.Forshaw,M.H.Seymour,Multipartoninteractionsin pho-toproductionatHERA,Z.Phys.C72(1996)637,arXiv:hep-ph/9601371.

[26]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241[hep-ph].

[27]P.Golonka,Z.Was,PHOTOSMonteCarlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97,arXiv:hep-ph/0506026.

[28] ATLAS Collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003,http://cds.cern.ch/record/1474107,2012.

[29] ATLAS Collaboration,New ATLAS event generator tunesto 2010data, ATL-PHYS-PUB-2011-008,http://cds.cern.ch/record/1345343,2011.

[30]B.P.Kersevan,E.Richter-Was,TheMonteCarloeventgenerator AcerMC ver-sions2.0to3.8withinterfacestoPYTHIA6.4,HERWIG6.5andARIADNE4.1, Comput.Phys.Commun.184(2013)919,arXiv:hep-ph/0405247.

[31]T.Sjöstrand, et al., High-energyphysics event generation with PYTHIA 6.1, Comput.Phys.Commun.135(2001)238,arXiv:hep-ph/0010017.

[32] ATLASCollaboration,ATLAStunesofPYTHIA6andPythia8forMC11, ATL-PHYS-PUB-2011-009,http://cds.cern.ch/record/1363300,2011.

[33]M.Czakon, A.Mitov, Top++: aprogramfor the calculation ofthe top-pair cross-sectionat hadroncolliders,Comput.Phys.Commun.185(2014)2930, arXiv:1112.5675[hep-ph].

[34]N.Kidonakis,Two-loopsoftanomalousdimensionsforsingletopquark asso-ciatedproductionwithaW- orH-,Phys.Rev.D82(2010)054018,arXiv:1005. 4451[hep-ph].

[35]N. Kidonakis, Next-to-next-to-leading-order collinearand soft gluon correc-tionsfort-channelsingletopquarkproduction,Phys.Rev.D83(2011)091503, arXiv:1103.2792[hep-ph].

[36]N.Kidonakis, NNLLresummationfor s-channelsingletopquarkproduction, Phys.Rev.D81(2010)054028,arXiv:1001.5034[hep-ph].

[37]M.L.Mangano,etal.,ALPGEN,ageneratorforhardmultipartonprocessesin hadroniccollisions,J.HighEnergyPhys.07(2003)001,arXiv:hep-ph/0206293.

[38]S.Catani,M.Grazzini,AnNNLOsubtractionformalisminhadroncollisionsand itsapplicationtoHiggsbosonproductionattheLHC,Phys.Rev.Lett.98(2007) 222002,arXiv:hep-ph/0703012.

[39]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622[hep-ph].

[40]ATLASCollaboration, TheATLASsimulation infrastructure,Eur.Phys. J.C70 (2010)823,arXiv:1005.4568[physics.ins-det].

[41]S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl.Instrum.Meth.A506 (2003)250.

[42] ATLASCollaboration,ThesimulationprincipleandperformanceoftheATLAS fastcalorimetersimulationFastCaloSim, ATL-PHYS-PUB-2010-013,http://cds. cern.ch/record/1300517,2010.

[43] ATLASCollaboration,Calorimeterclusteringalgorithms:descriptionand perfor-mance,ATL-LARG-PUB-2008-002,http://cds.cern.ch/record/1099735,2008. [44]M.Cacciari,G.P.Salam,G.Soyez,Theanti-k(t)jetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189[hep-ph].

[45]ATLASCollaboration,Jetenergymeasurementanditssystematicuncertaintyin proton–protoncollisionsat√s=7TeV withtheATLASdetector,Eur.Phys.J.C 75(2015)17,arXiv:1406.0076[hep-ex].

[46]M.Cacciari,G.P.Salam,Pileupsubtractionusingjetareas,Phys. Lett.B659 (2008)119,arXiv:0707.1378[hep-ph].

[47] ATLAS Collaboration,Pile-up subtraction andsuppressionfor jetsinATLAS, ATLAS-CONF-2013-083,http://cds.cern.ch/record/1570994,2013.

[48]ATLASCollaboration,Performanceofb-jetidentificationintheATLAS experi-ment,J.Instrum.11(2016)P04008,arXiv:1512.01094[hep-ex].

[49] ATLAS Collaboration,Calibration ofthe performanceofb-tagging forc and light-flavourjetsinthe2012ATLAS data,ATLAS-CONF-2014-046, http://cds. cern.ch/record/1741020,2014.

[50]ATLAS Collaboration, Performance ofmissing transverse momentum recon-structioninproton–protoncollisionsat7 TeVwithATLAS,Eur.Phys.J.C72 (2012)1844,arXiv:1108.5602[hep-ex].

(8)

[51]ATLAS Collaboration, Observation and measurement of Higgs boson de-cays to W W∗ with the ATLAS detector, Phys. Rev. D 92 (2015) 012006, arXiv:1412.2641[hep-ex].

[52]M. Grazzini, S. Kallweit, D. Rathlev, ZZ production at the LHC: fiducial crosssectionsand distributionsinNNLOQCD,Phys.Lett.B750(2015)407, arXiv:1507.06257[hep-ph].

[53]M.Grazzini,etal.,W±Z productionathadroncollidersinNNLOQCD,arXiv: 1604.08576[hep-ph],2016.

[54]M.Grazzini,S.Kallweit,D.Rathlev, and production atthe LHCin NNLOQCD,J.HighEnergyPhys.07(2015)085,arXiv:1504.01330[hep-ph].

[55] K.Cranmer,etal.,HistFactory:atoolforcreatingstatisticalmodelsforusewith RooFitandRooStats,http://cds.cern.ch/record/1456844/,2012.

[56]W.Verkerke,D.P.Kirkby,TheRooFittoolkitfordatamodeling,arXiv:physics/ 0306116.

[57]ALEPH,DELPHI,L3andOPALCollaborationsandtheLEPElectroweakWorking Group,J.Alcaraz,et al.,Acombinationofpreliminaryelectroweak measure-mentsandconstraintsonthestandardmodel,arXiv:hep-ex/0612034,2006.

[58]ATLASCollaboration,Measurementofthemuonreconstructionperformanceof theATLASdetectorusing2011and2012LHCproton–protoncollisiondata,Eur. Phys.J.C74(2014)3130,arXiv:1407.3935[hep-ex].

[59]ATLASCollaboration,PerformanceoftheATLASmuontriggerinpp collisions

at√s=8TeV,Eur.Phys.J.C75(2015)120,arXiv:1408.3179[hep-ex].

[60] ATLASCollaboration,PerformanceoftheATLASelectronandphotontriggerin pp collisionsat √s=7TeV in2011, ATLAS-C0NF-2012-048,http://cds.cern. ch/record/1450089,2012.

[61] ATLASCollaboration,ElectronefficiencymeasurementswiththeATLAS detec-torusingthe2012LHCproton–protoncollisiondata, ATLAS-C0NF-2014-032,

http://cds.cern.ch/record/1706245,2014.

[62]ATLAS Collaboration,ElectronandphotonenergycalibrationwiththeATLAS detectorusingLHCRun1data,Eur.Phys.J.C74(2014)3071,arXiv:1407.5063 [hep-ex].

[63] ATLASCollaboration,MonteCarlocalibrationandcombinationofin-situ mea-surements ofjet energyscale,jetenergyresolutionandjetmass inATLAS, ATLAS-C0NF-2015-037,http://cds.cern.ch/record/2044941,2015.

[64] ATLASCollaboration,Pile-upsuppressioninmissingtransversemomentum re-construction in the ATLAS experimentinproton–proton collisions at √s= 8TeV,ATLAS-C0NF-2014-019,http://cds.cern.ch/record/1702055,2014. [65]M.Botje,etal.,ThePDF4LHCworkinggroupinterimrecommendations,arXiv:

1101.0538[hep-ph],2011.

[66]I.W.Stewart,F.J.Tackmann,TheoryuncertaintiesforHiggsandothersearches usingjetbins,Phys.Rev.D85(2012)034011,arXiv:1107.2117[hep-ph].

[67] LHCHiggsCrossSectionWorkingGroup,CurrentrecommendationsforHiggs cross-sections (2016), url: http://twiki.cern.ch/twiki/bin/view/LHCPhysics/ LHCHXSWG.

[68]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301[hep-ph].

[69]M.Bahr,etal.,Herwig++physicsandmanual,Eur.Phys.J.C58(2008)639–707, arXiv:0803.0883[hep-ph].

[70] ATLAS Collaboration, ATLAS computingacknowledgements 2016–2017, ATL-GEN-PUB-2016-002,http://cds.cern.ch/record/2202407,2016.

ATLAS Collaboration

M. Aaboud136d, G. Aad87, B. Abbott114,J. Abdallah8,O. Abdinov12, B. Abeloos118, R. Aben108,

O.S. AbouZeid138,N.L. Abraham152,H. Abramowicz156,H. Abreu155,R. Abreu117,Y. Abulaiti149a,149b, B.S. Acharya168a,168b,a, S. Adachi158,L. Adamczyk40a,D.L. Adams27,J. Adelman109,S. Adomeit101, T. Adye132,A.A. Affolder76,T. Agatonovic-Jovin14, J.A. Aguilar-Saavedra127a,127f, S.P. Ahlen24, F. Ahmadov67,b, G. Aielli134a,134b, H. Akerstedt149a,149b,T.P.A. Åkesson83,A.V. Akimov97,

G.L. Alberghi22a,22b, J. Albert173,S. Albrand57,M.J. Alconada Verzini73, M. Aleksa32, I.N. Aleksandrov67, C. Alexa28b, G. Alexander156, T. Alexopoulos10,M. Alhroob114, B. Ali129, M. Aliev75a,75b,G. Alimonti93a, J. Alison33, S.P. Alkire37,B.M.M. Allbrooke152, B.W. Allen117, P.P. Allport19, A. Aloisio105a,105b,

A. Alonso38, F. Alonso73,C. Alpigiani139, A.A. Alshehri55,M. Alstaty87, B. Alvarez Gonzalez32, D. Álvarez Piqueras171,M.G. Alviggi105a,105b,B.T. Amadio16,K. Amako68,Y. Amaral Coutinho26a, C. Amelung25, D. Amidei91, S.P. Amor Dos Santos127a,127c, A. Amorim127a,127b, S. Amoroso32,

G. Amundsen25,C. Anastopoulos142, L.S. Ancu51,N. Andari19,T. Andeen11, C.F. Anders60b, G. Anders32, J.K. Anders76,K.J. Anderson33, A. Andreazza93a,93b,V. Andrei60a,S. Angelidakis9, I. Angelozzi108,

A. Angerami37, F. Anghinolfi32,A.V. Anisenkov110,c, N. Anjos13, A. Annovi125a,125b,C. Antel60a, M. Antonelli49, A. Antonov99,∗,F. Anulli133a, M. Aoki68, L. Aperio Bella19,G. Arabidze92,Y. Arai68, J.P. Araque127a,A.T.H. Arce47,F.A. Arduh73, J-F. Arguin96,S. Argyropoulos65,M. Arik20a,

A.J. Armbruster146, L.J. Armitage78,O. Arnaez32,H. Arnold50,M. Arratia30, O. Arslan23,

A. Artamonov98, G. Artoni121,S. Artz85, S. Asai158,N. Asbah44,A. Ashkenazi156, B. Åsman149a,149b, L. Asquith152,K. Assamagan27,R. Astalos147a, M. Atkinson170,N.B. Atlay144, K. Augsten129,G. Avolio32, B. Axen16,M.K. Ayoub118, G. Azuelos96,d,M.A. Baak32,A.E. Baas60a,M.J. Baca19, H. Bachacou137, K. Bachas75a,75b,M. Backes121, M. Backhaus32,P. Bagiacchi133a,133b,P. Bagnaia133a,133b,Y. Bai35a, J.T. Baines132,O.K. Baker180,E.M. Baldin110,c,P. Balek176,T. Balestri151,F. Balli137,W.K. Balunas123, E. Banas41, Sw. Banerjee177,e,A.A.E. Bannoura179, L. Barak32,E.L. Barberio90, D. Barberis52a,52b,

M. Barbero87,T. Barillari102,M-S Barisits32, T. Barklow146, N. Barlow30,S.L. Barnes86,B.M. Barnett132, R.M. Barnett16,Z. Barnovska-Blenessy59, A. Baroncelli135a,G. Barone25, A.J. Barr121,

L. Barranco Navarro171,F. Barreiro84, J. Barreiro Guimarães da Costa35a,R. Bartoldus146,A.E. Barton74, P. Bartos147a, A. Basalaev124,A. Bassalat118,f, R.L. Bates55, S.J. Batista162, J.R. Batley30,M. Battaglia138, M. Bauce133a,133b, F. Bauer137,H.S. Bawa146,g,J.B. Beacham112, M.D. Beattie74,T. Beau82,

P.H. Beauchemin166,P. Bechtle23, H.P. Beck18,h, K. Becker121,M. Becker85,M. Beckingham174, C. Becot111, A.J. Beddall20e, A. Beddall20b, V.A. Bednyakov67,M. Bedognetti108, C.P. Bee151, L.J. Beemster108,T.A. Beermann32, M. Begel27,J.K. Behr44,C. Belanger-Champagne89,A.S. Bell80, G. Bella156, L. Bellagamba22a, A. Bellerive31,M. Bellomo88, K. Belotskiy99,O. Beltramello32,

(9)

N.L. Belyaev99,O. Benary156,∗, D. Benchekroun136a, M. Bender101, K. Bendtz149a,149b,N. Benekos10, Y. Benhammou156,E. Benhar Noccioli180,J. Benitez65, D.P. Benjamin47,J.R. Bensinger25,

S. Bentvelsen108, L. Beresford121,M. Beretta49,D. Berge108,E. Bergeaas Kuutmann169,N. Berger5, J. Beringer16,S. Berlendis57,N.R. Bernard88,C. Bernius111,F.U. Bernlochner23, T. Berry79, P. Berta130, C. Bertella85,G. Bertoli149a,149b,F. Bertolucci125a,125b,I.A. Bertram74, C. Bertsche44, D. Bertsche114, G.J. Besjes38,O. Bessidskaia Bylund149a,149b,M. Bessner44,N. Besson137, C. Betancourt50, A. Bethani57, S. Bethke102, A.J. Bevan78, R.M. Bianchi126, L. Bianchini25,M. Bianco32,O. Biebel101,D. Biedermann17, R. Bielski86,N.V. Biesuz125a,125b,M. Biglietti135a,J. Bilbao De Mendizabal51,T.R.V. Billoud96,

H. Bilokon49, M. Bindi56,S. Binet118, A. Bingul20b, C. Bini133a,133b,S. Biondi22a,22b, T. Bisanz56, D.M. Bjergaard47,C.W. Black153,J.E. Black146, K.M. Black24, D. Blackburn139,R.E. Blair6,

J.-B. Blanchard137,T. Blazek147a,I. Bloch44,C. Blocker25,A. Blue55, W. Blum85,, U. Blumenschein56,

S. Blunier34a,G.J. Bobbink108,V.S. Bobrovnikov110,c,S.S. Bocchetta83,A. Bocci47,C. Bock101, M. Boehler50,D. Boerner179, J.A. Bogaerts32, D. Bogavac14, A.G. Bogdanchikov110, C. Bohm149a, V. Boisvert79,P. Bokan14, T. Bold40a,A.S. Boldyrev168a,168c,M. Bomben82,M. Bona78,

M. Boonekamp137, A. Borisov131,G. Borissov74,J. Bortfeldt32,D. Bortoletto121,V. Bortolotto62a,62b,62c, K. Bos108,D. Boscherini22a,M. Bosman13,J.D. Bossio Sola29,J. Boudreau126, J. Bouffard2,

E.V. Bouhova-Thacker74,D. Boumediene36,C. Bourdarios118,S.K. Boutle55,A. Boveia32, J. Boyd32, I.R. Boyko67,J. Bracinik19, A. Brandt8, G. Brandt56, O. Brandt60a, U. Bratzler159,B. Brau88, J.E. Brau117, W.D. Breaden Madden55,K. Brendlinger123, A.J. Brennan90, L. Brenner108,R. Brenner169, S. Bressler176, T.M. Bristow48, D. Britton55,D. Britzger44,F.M. Brochu30, I. Brock23,R. Brock92,G. Brooijmans37, T. Brooks79,W.K. Brooks34b,J. Brosamer16,E. Brost109,J.H Broughton19,P.A. Bruckman de Renstrom41, D. Bruncko147b, R. Bruneliere50,A. Bruni22a, G. Bruni22a, L.S. Bruni108,BH Brunt30,M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark83,T. Buanes15,Q. Buat145,P. Buchholz144, A.G. Buckley55, I.A. Budagov67,F. Buehrer50, M.K. Bugge120, O. Bulekov99, D. Bullock8,H. Burckhart32,S. Burdin76, C.D. Burgard50, B. Burghgrave109,K. Burka41,S. Burke132,I. Burmeister45, J.T.P. Burr121,E. Busato36, D. Büscher50, V. Büscher85,P. Bussey55,J.M. Butler24, C.M. Buttar55,J.M. Butterworth80,P. Butti108, W. Buttinger27,A. Buzatu55,A.R. Buzykaev110,c, S. Cabrera Urbán171, D. Caforio129, V.M. Cairo39a,39b, O. Cakir4a, N. Calace51, P. Calafiura16,A. Calandri87, G. Calderini82,P. Calfayan63, G. Callea39a,39b, L.P. Caloba26a, S. Calvente Lopez84,D. Calvet36,S. Calvet36, T.P. Calvet87,R. Camacho Toro33, S. Camarda32,P. Camarri134a,134b,D. Cameron120, R. Caminal Armadans170, C. Camincher57, S. Campana32, M. Campanelli80,A. Camplani93a,93b,A. Campoverde144, V. Canale105a,105b, A. Canepa164a, M. Cano Bret141,J. Cantero115,T. Cao42,M.D.M. Capeans Garrido32,I. Caprini28b, M. Caprini28b,M. Capua39a,39b, R.M. Carbone37,R. Cardarelli134a,F. Cardillo50,I. Carli130,T. Carli32, G. Carlino105a, L. Carminati93a,93b,R.M.D. Carney149a,149b,S. Caron107, E. Carquin34b,

G.D. Carrillo-Montoya32,J.R. Carter30,J. Carvalho127a,127c,D. Casadei19, M.P. Casado13,i,M. Casolino13, D.W. Casper167,E. Castaneda-Miranda148a,R. Castelijn108,A. Castelli108, V. Castillo Gimenez171, N.F. Castro127a,j, A. Catinaccio32,J.R. Catmore120,A. Cattai32, J. Caudron23, V. Cavaliere170, E. Cavallaro13,D. Cavalli93a,M. Cavalli-Sforza13,V. Cavasinni125a,125b,F. Ceradini135a,135b, L. Cerda Alberich171,A.S. Cerqueira26b, A. Cerri152, L. Cerrito134a,134b, F. Cerutti16,M. Cerv32,

A. Cervelli18,S.A. Cetin20d,A. Chafaq136a, D. Chakraborty109,S.K. Chan58,Y.L. Chan62a,P. Chang170, J.D. Chapman30, D.G. Charlton19,A. Chatterjee51, C.C. Chau162, C.A. Chavez Barajas152, S. Che112, S. Cheatham168a,168c,A. Chegwidden92, S. Chekanov6,S.V. Chekulaev164a,G.A. Chelkov67,k,

M.A. Chelstowska91, C. Chen66, H. Chen27,K. Chen151,S. Chen35b,S. Chen158,X. Chen35c,Y. Chen69, H.C. Cheng91,H.J Cheng35a,Y. Cheng33,A. Cheplakov67,E. Cheremushkina131,

R. Cherkaoui El Moursli136e,V. Chernyatin27,∗,E. Cheu7, L. Chevalier137,V. Chiarella49, G. Chiarelli125a,125b,G. Chiodini75a,A.S. Chisholm32, A. Chitan28b, M.V. Chizhov67, K. Choi63, A.R. Chomont36,S. Chouridou9, B.K.B. Chow101, V. Christodoulou80, D. Chromek-Burckhart32, J. Chudoba128, A.J. Chuinard89, J.J. Chwastowski41, L. Chytka116,G. Ciapetti133a,133b,A.K. Ciftci4a, D. Cinca45,V. Cindro77,I.A. Cioara23,C. Ciocca22a,22b,A. Ciocio16,F. Cirotto105a,105b,Z.H. Citron176, M. Citterio93a, M. Ciubancan28b,A. Clark51,B.L. Clark58, M.R. Clark37,P.J. Clark48,R.N. Clarke16, C. Clement149a,149b, Y. Coadou87,M. Cobal168a,168c, A. Coccaro51,J. Cochran66,L. Colasurdo107, B. Cole37, A.P. Colijn108, J. Collot57,T. Colombo167, G. Compostella102,P. Conde Muiño127a,127b,

(10)

E. Coniavitis50, S.H. Connell148b, I.A. Connelly79, V. Consorti50,S. Constantinescu28b,G. Conti32,

F. Conventi105a,l, M. Cooke16, B.D. Cooper80, A.M. Cooper-Sarkar121,K.J.R. Cormier162, T. Cornelissen179, M. Corradi133a,133b,F. Corriveau89,m, A. Cortes-Gonzalez32, G. Cortiana102,G. Costa93a, M.J. Costa171, D. Costanzo142,G. Cottin30, G. Cowan79, B.E. Cox86,K. Cranmer111,S.J. Crawley55,G. Cree31,

S. Crépé-Renaudin57, F. Crescioli82, W.A. Cribbs149a,149b, M. Crispin Ortuzar121, M. Cristinziani23, V. Croft107, G. Crosetti39a,39b, A. Cueto84, T. Cuhadar Donszelmann142,J. Cummings180,M. Curatolo49, J. Cúth85, H. Czirr144,P. Czodrowski3,G. D’amen22a,22b,S. D’Auria55,M. D’Onofrio76,

M.J. Da Cunha Sargedas De Sousa127a,127b,C. Da Via86,W. Dabrowski40a,T. Dado147a, T. Dai91, O. Dale15,F. Dallaire96,C. Dallapiccola88,M. Dam38, J.R. Dandoy33, N.P. Dang50, A.C. Daniells19, N.S. Dann86, M. Danninger172,M. Dano Hoffmann137,V. Dao50, G. Darbo52a, S. Darmora8,

J. Dassoulas3,A. Dattagupta117, W. Davey23,C. David173,T. Davidek130,M. Davies156, P. Davison80, E. Dawe90, I. Dawson142,K. De8, R. de Asmundis105a,A. De Benedetti114,S. De Castro22a,22b, S. De Cecco82, N. De Groot107, P. de Jong108,H. De la Torre92, F. De Lorenzi66, A. De Maria56, D. De Pedis133a, A. De Salvo133a,U. De Sanctis152,A. De Santo152, J.B. De Vivie De Regie118, W.J. Dearnaley74,R. Debbe27,C. Debenedetti138, D.V. Dedovich67,N. Dehghanian3,I. Deigaard108, M. Del Gaudio39a,39b, J. Del Peso84,T. Del Prete125a,125b,D. Delgove118,F. Deliot137,C.M. Delitzsch51, A. Dell’Acqua32,L. Dell’Asta24,M. Dell’Orso125a,125b, M. Della Pietra105a,l,D. della Volpe51,

M. Delmastro5,P.A. Delsart57,D.A. DeMarco162,S. Demers180,M. Demichev67,A. Demilly82,

S.P. Denisov131,D. Denysiuk137,D. Derendarz41,J.E. Derkaoui136d, F. Derue82,P. Dervan76, K. Desch23, C. Deterre44,K. Dette45, P.O. Deviveiros32,A. Dewhurst132,S. Dhaliwal25, A. Di Ciaccio134a,134b,

L. Di Ciaccio5,W.K. Di Clemente123, C. Di Donato105a,105b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco135a,135b, R. Di Nardo32,A. Di Simone50,R. Di Sipio162, D. Di Valentino31,C. Diaconu87, M. Diamond162, F.A. Dias48,M.A. Diaz34a, E.B. Diehl91,J. Dietrich17,S. Díez Cornell44,

A. Dimitrievska14,J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32, F. Djama87, T. Djobava53b,

J.I. Djuvsland60a,M.A.B. do Vale26c, D. Dobos32,M. Dobre28b, C. Doglioni83, J. Dolejsi130,Z. Dolezal130, M. Donadelli26d,S. Donati125a,125b,P. Dondero122a,122b, J. Donini36,J. Dopke132, A. Doria105a,

M.T. Dova73,A.T. Doyle55, E. Drechsler56, M. Dris10, Y. Du140, J. Duarte-Campderros156, E. Duchovni176, G. Duckeck101, O.A. Ducu96,n,D. Duda108, A. Dudarev32, A.Chr. Dudder85,E.M. Duffield16,L. Duflot118, M. Dührssen32,M. Dumancic176, M. Dunford60a, H. Duran Yildiz4a,M. Düren54,A. Durglishvili53b, D. Duschinger46,B. Dutta44,M. Dyndal44,C. Eckardt44,K.M. Ecker102,R.C. Edgar91, N.C. Edwards48, T. Eifert32, G. Eigen15,K. Einsweiler16,T. Ekelof169, M. El Kacimi136c, V. Ellajosyula87, M. Ellert169, S. Elles5,F. Ellinghaus179, A.A. Elliot173,N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov132, Y. Enari158, O.C. Endner85,J.S. Ennis174, J. Erdmann45,A. Ereditato18, G. Ernis179,J. Ernst2, M. Ernst27, S. Errede170,E. Ertel85,M. Escalier118, H. Esch45,C. Escobar126, B. Esposito49, A.I. Etienvre137,

E. Etzion156,H. Evans63, A. Ezhilov124,M. Ezzi136e,F. Fabbri22a,22b, L. Fabbri22a,22b,G. Facini33, R.M. Fakhrutdinov131, S. Falciano133a,R.J. Falla80, J. Faltova32,Y. Fang35a, M. Fanti93a,93b, A. Farbin8, A. Farilla135a, C. Farina126, E.M. Farina122a,122b, T. Farooque13,S. Farrell16,S.M. Farrington174,

P. Farthouat32,F. Fassi136e, P. Fassnacht32,D. Fassouliotis9,M. Faucci Giannelli79,A. Favareto52a,52b, W.J. Fawcett121,L. Fayard118,O.L. Fedin124,o,W. Fedorko172, S. Feigl120, L. Feligioni87, C. Feng140,

E.J. Feng32,H. Feng91, A.B. Fenyuk131, L. Feremenga8,P. Fernandez Martinez171, S. Fernandez Perez13, J. Ferrando44,A. Ferrari169,P. Ferrari108, R. Ferrari122a, D.E. Ferreira de Lima60b, A. Ferrer171,

D. Ferrere51,C. Ferretti91,A. Ferretto Parodi52a,52b,F. Fiedler85,A. Filipˇciˇc77,M. Filipuzzi44, F. Filthaut107, M. Fincke-Keeler173,K.D. Finelli153, M.C.N. Fiolhais127a,127c,L. Fiorini171, A. Firan42, A. Fischer2, C. Fischer13,J. Fischer179,W.C. Fisher92, N. Flaschel44,I. Fleck144,P. Fleischmann91,

G.T. Fletcher142,R.R.M. Fletcher123,T. Flick179,L.R. Flores Castillo62a,M.J. Flowerdew102,G.T. Forcolin86, A. Formica137,A. Forti86, A.G. Foster19,D. Fournier118,H. Fox74, S. Fracchia13, P. Francavilla82,

M. Franchini22a,22b,D. Francis32, L. Franconi120, M. Franklin58, M. Frate167,M. Fraternali122a,122b, D. Freeborn80,S.M. Fressard-Batraneanu32,F. Friedrich46, D. Froidevaux32, J.A. Frost121, C. Fukunaga159, E. Fullana Torregrosa85, T. Fusayasu103, J. Fuster171, C. Gabaldon57,O. Gabizon155,A. Gabrielli22a,22b, A. Gabrielli16,G.P. Gach40a, S. Gadatsch32, S. Gadomski79, G. Gagliardi52a,52b, L.G. Gagnon96,

P. Gagnon63, C. Galea107,B. Galhardo127a,127c,E.J. Gallas121, B.J. Gallop132, P. Gallus129,G. Galster38, K.K. Gan112,S. Ganguly36,J. Gao59,Y. Gao48, Y.S. Gao146,g,F.M. Garay Walls48,C. García171,

(11)

J.E. García Navarro171,M. Garcia-Sciveres16,R.W. Gardner33,N. Garelli146, V. Garonne120, A. Gascon Bravo44,K. Gasnikova44, C. Gatti49, A. Gaudiello52a,52b, G. Gaudio122a,L. Gauthier96,

I.L. Gavrilenko97,C. Gay172, G. Gaycken23, E.N. Gazis10, Z. Gecse172, C.N.P. Gee132,Ch. Geich-Gimbel23, M. Geisen85,M.P. Geisler60a,K. Gellerstedt149a,149b, C. Gemme52a,M.H. Genest57,C. Geng59,p,

S. Gentile133a,133b,C. Gentsos157,S. George79, D. Gerbaudo13, A. Gershon156,S. Ghasemi144,

M. Ghneimat23,B. Giacobbe22a,S. Giagu133a,133b,P. Giannetti125a,125b, B. Gibbard27, S.M. Gibson79, M. Gignac172,M. Gilchriese16,T.P.S. Gillam30,D. Gillberg31, G. Gilles179,D.M. Gingrich3,d,N. Giokaris9, M.P. Giordani168a,168c, F.M. Giorgi22a, F.M. Giorgi17, P.F. Giraud137, P. Giromini58, D. Giugni93a,

F. Giuli121,C. Giuliani102, M. Giulini60b,B.K. Gjelsten120,S. Gkaitatzis157, I. Gkialas157,

E.L. Gkougkousis118, L.K. Gladilin100, C. Glasman84,J. Glatzer50, P.C.F. Glaysher48,A. Glazov44,

M. Goblirsch-Kolb25, J. Godlewski41, S. Goldfarb90, T. Golling51, D. Golubkov131,A. Gomes127a,127b,127d, R. Gonçalo127a, J. Goncalves Pinto Firmino Da Costa137,G. Gonella50, L. Gonella19, A. Gongadze67, S. González de la Hoz171,S. Gonzalez-Sevilla51,L. Goossens32, P.A. Gorbounov98, H.A. Gordon27, I. Gorelov106,B. Gorini32, E. Gorini75a,75b, A. Gorišek77, E. Gornicki41, A.T. Goshaw47, C. Gössling45, M.I. Gostkin67,C.R. Goudet118, D. Goujdami136c,A.G. Goussiou139,N. Govender148b,q, E. Gozani155, L. Graber56,I. Grabowska-Bold40a, P.O.J. Gradin57,P. Grafström22a,22b,J. Gramling51, E. Gramstad120, S. Grancagnolo17, V. Gratchev124,P.M. Gravila28e,H.M. Gray32,E. Graziani135a, Z.D. Greenwood81,r, C. Grefe23,K. Gregersen80,I.M. Gregor44, P. Grenier146,K. Grevtsov5, J. Griffiths8,A.A. Grillo138, K. Grimm74,S. Grinstein13,s,Ph. Gris36, J.-F. Grivaz118, S. Groh85, E. Gross176, J. Grosse-Knetter56, G.C. Grossi81,Z.J. Grout80,L. Guan91,W. Guan177, J. Guenther64,F. Guescini51,D. Guest167,

O. Gueta156, B. Gui112,E. Guido52a,52b,T. Guillemin5, S. Guindon2, U. Gul55,C. Gumpert32,J. Guo141, Y. Guo59,p, R. Gupta42,S. Gupta121,G. Gustavino133a,133b,P. Gutierrez114,N.G. Gutierrez Ortiz80, C. Gutschow46, C. Guyot137, C. Gwenlan121, C.B. Gwilliam76, A. Haas111,C. Haber16, H.K. Hadavand8, N. Haddad136e, A. Hadef87,S. Hageböck23,M. Hagihara165,Z. Hajduk41, H. Hakobyan181,∗,

M. Haleem44,J. Haley115,G. Halladjian92, G.D. Hallewell87,K. Hamacher179, P. Hamal116, K. Hamano173,A. Hamilton148a,G.N. Hamity142,P.G. Hamnett44,L. Han59, K. Hanagaki68,t, K. Hanawa158,M. Hance138,B. Haney123, P. Hanke60a, R. Hanna137,J.B. Hansen38, J.D. Hansen38, M.C. Hansen23,P.H. Hansen38,K. Hara165, A.S. Hard177, T. Harenberg179, F. Hariri118,S. Harkusha94, R.D. Harrington48, P.F. Harrison174, F. Hartjes108,N.M. Hartmann101,M. Hasegawa69, Y. Hasegawa143, A. Hasib114,S. Hassani137, S. Haug18, R. Hauser92,L. Hauswald46, M. Havranek128,C.M. Hawkes19, R.J. Hawkings32, D. Hayakawa160, D. Hayden92, C.P. Hays121,J.M. Hays78, H.S. Hayward76,

S.J. Haywood132, S.J. Head19, T. Heck85, V. Hedberg83,L. Heelan8, S. Heim123,T. Heim16, B. Heinemann16, J.J. Heinrich101, L. Heinrich111,C. Heinz54, J. Hejbal128,L. Helary32,

S. Hellman149a,149b,C. Helsens32,J. Henderson121, R.C.W. Henderson74,Y. Heng177, S. Henkelmann172, A.M. Henriques Correia32,S. Henrot-Versille118,G.H. Herbert17,H. Herde25,V. Herget178,

Y. Hernández Jiménez171,G. Herten50,R. Hertenberger101,L. Hervas32, G.G. Hesketh80, N.P. Hessey108, J.W. Hetherly42,R. Hickling78, E. Higón-Rodriguez171, E. Hill173,J.C. Hill30,K.H. Hiller44,S.J. Hillier19, I. Hinchliffe16,E. Hines123,R.R. Hinman16, M. Hirose50,D. Hirschbuehl179,J. Hobbs151,N. Hod164a, M.C. Hodgkinson142,P. Hodgson142, A. Hoecker32, M.R. Hoeferkamp106, F. Hoenig101,D. Hohn23, T.R. Holmes16,M. Homann45, T. Honda68,T.M. Hong126,B.H. Hooberman170,W.H. Hopkins117, Y. Horii104, A.J. Horton145,J-Y. Hostachy57, S. Hou154,A. Hoummada136a,J. Howarth44, J. Hoya73, M. Hrabovsky116,I. Hristova17, J. Hrivnac118, T. Hryn’ova5, A. Hrynevich95,C. Hsu148c, P.J. Hsu154,u, S.-C. Hsu139, Q. Hu59,S. Hu141,Y. Huang44,Z. Hubacek129,F. Hubaut87, F. Huegging23,

T.B. Huffman121,E.W. Hughes37, G. Hughes74,M. Huhtinen32, P. Huo151,N. Huseynov67,b,J. Huston92, J. Huth58,G. Iacobucci51,G. Iakovidis27,I. Ibragimov144,L. Iconomidou-Fayard118,E. Ideal180,

Z. Idrissi136e,P. Iengo32,O. Igonkina108,v,T. Iizawa175,Y. Ikegami68,M. Ikeno68,Y. Ilchenko11,w, D. Iliadis157, N. Ilic146, T. Ince102, G. Introzzi122a,122b,P. Ioannou9,∗,M. Iodice135a, K. Iordanidou37, V. Ippolito58, N. Ishijima119,M. Ishino158, M. Ishitsuka160, R. Ishmukhametov112,C. Issever121, S. Istin20a,F. Ito165,J.M. Iturbe Ponce86, R. Iuppa163a,163b,W. Iwanski64, H. Iwasaki68,J.M. Izen43, V. Izzo105a, S. Jabbar3, B. Jackson123,P. Jackson1,V. Jain2,K.B. Jakobi85, K. Jakobs50, S. Jakobsen32, T. Jakoubek128,D.O. Jamin115,D.K. Jana81,R. Jansky64, J. Janssen23,M. Janus56, G. Jarlskog83, N. Javadov67,b, T. Jav ˚urek50, F. Jeanneau137, L. Jeanty16, G.-Y. Jeng153, D. Jennens90,P. Jenni50,x,

Figure

Fig. 1. (a) Distributions of the transverse momentum of the selected jet in the control region enriched in events from top-quark production
Fig. 2. (a) Comparison of the measured cross sections in the 0-jet, 1-jet and ≤ 1-jet fiducial regions

References

Related documents

varandra ömsesidigt genom social interaktion ledde till reflektioner över hur arbetsgivarnas efterfrågan på kun- skap förhåller sig till den kunskap som produceras

Värderingar som kommer till uttryck för att legitimera att idrotten förtjänar statligt stöd på grund av detta är att elitidrotten förser medborgarna med underhållning

Idrottsforskning inom hum/sam-området i Skåneregionen bedrivs främst vid Malmö högskola, och i mindre utsträckning vid Lunds universitet och Högskolan Kristianstad..

I studien har jag använt mig av kvalitativ metod med verktyget observation för att utifrån syftet; synliggöra den styrning barnen använder sig av mot varandra till att följa normer

I denna slutsats besvarar jag mina frågeställningar sammanfattningsvis utefter mitt resultat och min diskussion. Det som kan ses är att socialarbetarna inte upplever att det finns

Enligt Jürgen Habermas inom familjens ”intimsfär” hörde känslor, religion och moral till inom området privat och det traditionella tankesättet är något Anna Braun förhåller

Denna studie skall försöka besvara frågeställningen “hur har svenska läroböcker inom samhällskunskap förändrat sig i hur de beskriver svenskhet och andra kulturer

Frånvaron av Räddningstjänsten Syds ledning i den kontakt med skolorna kan beskrivas ha bidragit till att samverkans struktur kommit att inta en form av kolle- gial samverkan som