• No results found

Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at root s=13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at root s=13 TeV with the ATLAS detector"

Copied!
24
0
0

Loading.... (view fulltext now)

Full text

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

vector-boson

resonances

decaying

to

a

top

quark

and

bottom

quark

in

the

lepton

plus

jets

final

state

in

pp collisions

at

s

=

13 TeV with

the

ATLAS

detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory: Received27July2018

Receivedinrevisedform15October2018 Accepted3November2018

Availableonline22November2018 Editor: W.-D.Schlatter

A search for new charged massive gauge bosons, W, is performed with the ATLAS detector at the LHC. Datawere collectedinproton–proton collisions atacenter-of-massenergy of√s=13 TeV and correspond to an integrated luminosity of 36.1 fb−1. This analysis searches for W bosons in the W→tb decay¯ channelinfinalstateswithanelectronormuonplusjets.Thesearchcoversresonance massesbetween0.5and 5.0 TeV andconsidersright-handedW bosons.Nosignificantdeviationfrom theStandardModel(SM)expectationisobservedandupperlimitsaresetontheWtb cross¯ section timesbranchingratio andthe W bosoneffective couplingsasafunctionofthe W bosonmass.For right-handed W bosonswith couplingto the SMparticlesequal tothe SMweak coupling constant, massesbelow3.15 TeV are excludedatthe95%confidencelevel.Thissearchisalsocombinedwitha previously publishedATLAS result for W→tb in¯ the fully hadronicfinal state. Usingthe combined searches,right-handedW bosonswithmassesbelow3.25 TeV areexcludedatthe95%confidencelevel. ©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ManyapproachestotheoriesbeyondtheStandardModel(SM) introducenew chargedvector currents mediated by heavy gauge bosons, usually referred to as W. For example, the W boson can appear in theories with universal extra dimensions, such as Kaluza–Klein excitations of the SM W boson [1–3], or in mod-els that extend fundamental symmetries ofthe SM and propose amassiveright-handedcounterparttothe W boson [4–6]. Little-Higgs [7] and composite-Higgs [8,9] theories also predict a W boson.ThesearchforaWbosondecayingintoatopquarkanda b-quark (illustratedinFig.1) exploresmodelspotentially inacces-sibletosearchesforaWbosondecayingintoleptons [10–15].

Forinstance,intheright-handedsector, the W boson cannot decayintoachargedleptonandahypotheticalright-handed neu-trino if the latter has a mass greater than the W boson mass (mixingbetweenW andSM W bosonsisusually constrainedto besmallfromexperimentaldata [16]).Also,inseveraltheories be-yondtheSMtheWbosonisexpectedtocouplemorestronglyto thethird generationofquarksthantothefirstandsecond gener-ations [17,18].Searchesfora W bosondecayingintothetb final¯

 E-mailaddress:atlas.publications@cern.ch.

state1 havebeenperformedattheTevatron [19,20] intheleptonic

top-quark decaychannel and atthe Large Hadron Collider (LHC) inboththeleptonic [21–25] andfullyhadronic [26,27] finalstates, andthemostrecentresultsexcluderight-handedWbosonswith massesupto about3.6 TeV atthe 95%confidencelevel.A previ-ousATLASsearchintheleptonicchannel [24] usingproton–proton (pp) collisions ata center-of-mass energyof √s=8 TeV yielded a lower limit of 1.92 TeV on the mass of W boson with right-handed couplings.More recently,the CMSCollaboration reported results usinga 13 TeV pp dataset of 35.9 fb−1 [25], yielding a lowerlimit of3.6 TeV onthemassofright-handed W bosons.A search by the ATLAS Collaboration inthe fullyhadronicdecay of the tb final¯ state using 36.1 fb−1 of 13 TeV data yieldedlower limitsonthemassofright-handedW bosonsat3.0 TeV [27]. In each oftheseanalyses,the couplingstrengthofthe W boson to right-handed particleswas assumed tobe equal tothe SM weak couplingconstant.

ThisLetterpresentsasearchforWbosonsusingdatacollected during the period 2015–2016 by the ATLAS detector [28] at the LHC,correspondingtoanintegratedluminosityof36.1 fb−1 from pp collisionsat acenter-of-mass energyof13 TeV.The search is performedintheWR →tb¯→ νbb decay¯ channel,wherethe

lep-1 Thenotation“tb”¯ isusedtodescribeboththeW +tb and¯ W −→ ¯tb

pro-cesses.

https://doi.org/10.1016/j.physletb.2018.11.032

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Table 1

Eventgeneratorsusedforthesimulationofthesignalandbackgroundprocesses.ThePS/Hadcolumn de-scribestheprogramusedforpartonshowerandhadronization.

Process Generator PS/Had MC Tune PDF

WR MadGraph5_aMC@NLO Pythia8 A14 NNPDF23LO t¯t Powheg-Box Pythia6 Perugia 2012 NLO CT10 Single-top t-channel Powheg-Box Pythia6 Perugia 2012 NLO CT10 Single-top W+t Powheg-Box Pythia6 Perugia 2012 NLO CT10 Single-top s-channel Powheg-Box Pythia6 Perugia 2012 NLO CT10

W,Z + jets Sherpa2.2.1 Sherpa2.2.1 Default NLO CT10

W W , W Z , Z Z Powheg-Box Pythia8 AZNLO LO CTEQ6L1

Fig. 1. Feynmandiagramfor Wbosonproductionfromquark–antiquark annihila-tionwiththesubsequentdecayintotb and¯ aleptonicallydecayingtopquark. ton,,iseitheran electronora muon.Right-handed W bosons, denotedWR ,aresearchedforinthemassrangeof0.5to5.0 TeV. AgeneralLorentz-invariantLagrangianisusedtodescribethe cou-plingsoftheWR bosontofermionsasafunction ofitsmass [29, 30]. The mass of the right-handed neutrino is supposed to be largerthanthemassoftheWR boson,thusnon-hadronicdecaysof theWR bosonhaveanegligiblebranchingfraction.Inthisweakly coupledmodel,theresultingbranching fractionofthe WR tothe tb final¯ stateincreasesasafunctionofmassfrom29.9%at0.5 TeV to33.3%at5 TeV.

2. ATLASdetector

The ATLAS detectorat the LHC covers almost the entiresolid anglearoundthecollisionpoint.2 Chargedparticlesinthe pseudo-rapidityrange|η|<2.5 arereconstructed withtheinner detector (ID), which consists of several layers of semiconductor detectors (pixelandstrip)andastraw-tubetransition–radiation tracker,the latter extending to |η|=2.0. The high-granularity silicon pixel detectorprovides four measurements per track;the closest layer to the interaction point is known as the insertable B-layer [31, 32], which was added in 2014and provides high-resolution hits at small radius to improve the tracking performance. The ID is immersed in a 2 T magnetic field provided by a superconduct-ing solenoid. The solenoidis surrounded by electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air–core toroid magnet systems.The calorimetersystemcoversthepseudorapidityrange|η|<4.9. Elec-tromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) electromagnetic calorimeters, within the region |η|<3.2. There is an additional thinLAr pre-sampler covering |η|<1.8 to correct forenergy loss inmaterial upstream of the calorimeters.For |η|<2.5, the LAr calorimeters

2 ATLASusesaright-handed coordinatesystemwith itsoriginat thenominal

interactionpointinthecenter ofthedetectorandthez-axisalongthebeampipe. Thex-axispointsfromtheinteractionpointtothecenter oftheLHCring,andthe y-axispointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane, φbeingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefined intermsofthepolarangleθasη= −ln tan(θ/2).Observableslabeled “transverse” areprojectedintothex– y planeandangulardistanceismeasuredinunitsofR= 

(η)2+ (φ)2.

aredividedintothreelayersindepth.Hadroniccalorimetryis pro-videdby a steel/scintillator-tilecalorimeter,segmentedinto three barrel structures within |η|<1.7, and two copper/LAr hadronic endcap calorimeters,which coverthe region 1.5<|η|<3.2. The forwardsolid angleout to|η|=4.9 iscoveredbycopper/LArand tungsten/LAr calorimetermodules, which are optimized for elec-tromagnetic and hadronicmeasurements, respectively. The muon spectrometer comprisesseparate triggerandhigh-precision track-ingchambersthatmeasurethedeflectionofmuonsinamagnetic fieldgeneratedbythethreetoroidmagnetsystems.TheATLAS de-tector selects eventsusing a tiered trigger system [33]. The first levelisimplementedincustomelectronicsandreducestheevent ratefromtheLHCcrossingfrequencyof40MHztoadesignvalue of100kHz.The secondlevelisimplementedinsoftwarerunning onacommodityPCfarmwhichprocessestheeventsandreduces therateofrecordedeventsto1.0kHz.

3. Dataandsimulatedsamples

This analysis uses 36.1±0.8 fb−1 of pp collisions data at √

s=13 TeV recordedusingsingle-electronandsingle-muon trig-gers. Additional data-quality requirements are also imposed, and thesearedetailedinSection 4.During 2015thiscorrespondedto 3.2 fb−1 withanaverageof13.4interactions perbunchcrossing. The2016data-takingperiodcorrespondsto32.9 fb−1withan av-erageof25.1interactionsperbunchcrossing.

The WR boson search isperformed inthe semileptonicdecay channel,wheretheWR decaysintoatopquarkandab-quark,the top quark decaysintoa W boson andab-quark, andthe W bo-son decays in turn into a lepton and a neutrino. The final-state signature thereforeconsistsoftwob-quarks,one chargedlepton3

andaneutrino, whichisundetectedandresultsinmissing trans-verse momentum, ETmiss.The dominant backgroundprocesses for thissignaturearethereforetheproductionofW/Z+jets(jets aris-ing fromlight and heavy partons),electroweak single top quarks (t-channel, W t ands-channel),t¯t pairsanddibosons(W W , W Z , and Z Z ).Aninstrumental backgroundduetomultijetproduction, where ahadronicjet ismisidentified asalepton, isalsopresent. MonteCarlo(MC)simulatedeventsareusedtomodeltheWR sig-nal andall the SM background processes, withthe exception of the multijetbackground prediction, which is derived using data. TheMCgeneratorprogramsandconfigurationsaresummarizedin Table1,anddescribedingreaterdetailinthetextbelow.

Simulated signal events were generatedat leading order(LO) by MadGraph5_aMC@NLO v2.2.3 [34–37] usingachiralWR boson model in which the couplings to the right-handed fermions are likethoseintheSM. MadGraph5_aMC@NLO isalsousedtomodel thedecaysofthetop quark,takingspincorrelationsintoaccount.

3 The analysis selects electrons or muons, while the simulation includes τ-leptons.Thustheeventyieldincludesasmallcontributionduetoleptonic de-caysofτ-leptons.

(3)

Pythia8v8.186 [38] wasusedforpartonshoweringand hadroniza-tion, wherein the NNPDF23LO [39] parton distribution functions (PDF)oftheprotonandasetoftunedparameters calledtheA14 Pythiatune [40] were used.Allsamplesofsimulatedeventswere rescaledtonext-to-leading-order(NLO) calculationsusingNLO/LO K -factors rangingfrom 1.1to1.4, decreasing asa function ofthe massofthe WR boson,calculatedwith ZTOP [30].Signalsamples weregenerated between0.5and3 TeV insteps of250 GeV, and between3and5 TeV instepsof500 GeV.

Thebenchmarksignal modelusedforthiswork nominally as-sumesthattheWR bosoncouplingstrengthtofermions, g,isthe sameasforthe W boson: g=g,whereg istheSMSU(2)L cou-pling.The couplingof left chiralfermions tothe WR is assumed tobe zero.Thetotal widthofthe WR boson increasesfrom2to 130 GeV formasses between0.5 and5 TeV [29] for g=g and scalesasthe squareof theratio g/g. Inorderto explorethe al-lowedrangeofthe WR coupling g, sampleswerealsogenerated forvaluesof g/g upto5.0, forseveral WR bosonmass hypothe-ses,allowingtheeffectofincreasedWR widthtoalsobeincluded. Simulated top-quark pair and single-top-quark processes (t-channel,s-channelandW t)wereproducedusingtheNLO Powheg-Box[41,42] generatorwiththeCT10PDF [43].Thepartonshower and the underlying event were added using Pythia v6.42 [44] with the Perugia 2012 tune [45]. The top-quark pair produc-tion MC sample is normalized to an inclusive cross section of σt¯t=832+4651 pb for a top-quarkmass of 172.5 GeV as obtained from next-to-NLO (NNLO) plus next-to-next-to-leading-logarithm (NNLL)QCDcalculationswiththeTop++2.0program [46–52].

The background contributions from W and Z boson produc-tion in association with jets were simulated using the Sherpa v2.2.1 [53] generator. Matrix elements were calculated for up to twopartonsatNLO andfourpartons atLOandmergedwiththe SherpapartonshowerusingtheME+PS@NLOprescription [54–56]. TheW/Z +jetssamplesarenormalizedtotheinclusiveNNLOcross sectionscalculatedwithFEWZ [57,58].

Theproductionofvector-bosonpairs (W W , W Z or Z Z ) with at least one charged lepton in the final state was simulated by the Powheg-Box generatorin combinationwith Pythia8 and the leading-order CTEQ6L1PDF [59].Thenon-perturbativeeffectswere modeled withthe AZNLO setoftunedparameters [60].

Forall MadGraph and Powheg samples,the EvtGen v1.2.0 pro-gram [61] wasusedforthebottomandcharmhadrondecays.

Allsimulated eventsamplesinclude theeffect ofmultiple pp interactionsinthesameandneighboring bunchcrossings(pile-up) byoverlaying,oneachsimulatedsignalorbackgroundevent, sim-ulatedminimum-biaseventsgenerated using Pythia8,the A2 set oftunedparameters [62] andthe MSTW2008LO PDFset [63].

Simulatedsamples were processed through the Geant4-based ATLAS detectorsimulationorthrough a fastersimulation making useof parameterized showers in the calorimeters [64,65]. Simu-latedevents were then processed using the same reconstruction algorithmsandanalysischainasusedfordata.

4. Eventselectionandbackgroundestimation

This search makes use of the reconstruction of multi-particle vertices,theidentificationandthekinematicpropertiesof recon-structedelectrons, muons, jets, andthe determinationofmissing transversemomentum.

Collisionverticesarereconstructedfromatleasttwo IDtracks withtransversemomentum pT>400 MeV. Theprimary vertexis selectedastheonewiththehighestpT2,calculatedconsidering allassociatedtracks.

Electrons are reconstructed from ID tracks that are matched tonoise-suppressedtopologicalclustersofenergydepositions [66]

inthe electromagneticcalorimeter.Theclustersare reconstructed using the standard ATLAS sliding-window algorithm, which clus-ters calorimeter cells within fixed-size rectangles [67]. Electron candidates are requiredto satisfy criteriaforthe electromagnetic showershape,trackquality,andtrack–clustermatching;these cri-teria areappliedusinga likelihood-basedapproach.Electron can-didatesmustmeetthe“Tight”workingpointrequirementsdefined inRef. [68] andare furtherrequiredto have pT > 25 GeV anda pseudorapidityofthecalorimeterclusterposition,|ηcluster|,smaller than2.47. Events withelectrons falling inthecalorimeterbarrel– endcaptransitionregion,1.37<|ηcluster| <1.52,whichhaslimited instrumentation,arerejected.

Muons are identified by matching tracks found in the ID to either full tracks or track segments reconstructed in the muon spectrometer(“combinedmuons”),orbystand-alonetracksinthe muon spectrometer [69]. They are requiredto pass identification requirementsbasedonqualitycriteriaappliedtotheIDandmuon spectrometer tracks. Muon candidates must meet the “Medium” identificationworkingpointrequirementsdefinedinRef. [69],have atransversemomentum pT >25 GeV,andsatisfy|η|<2.5.

Electron andmuon candidates must further satisfy additional isolationcriteriathatimproverejectionofcandidatesarisingfrom sourcesotherthanpromptW/Z bosondecays(e.g.hadrons mim-ickinganelectronsignature,heavy-flavor hadrondecaysorphoton conversions).Muonsarerequiredtobeisolatedusingthe require-mentthatthescalarsumofthe pT ofthetracksinavariable-size conearoundthemuondirection(excludingthetrackidentifiedas the muon) be less than 6% of the transverse momentum of the muon. The trackisolation cone size is givenby the minimum of R=10 GeV/pμT andR=0.3.Electronsarealsorequiredtobe isolatedusingthesametrack-basedvariableasformuons, except thatthemaximumR inthiscaseis0.2.Forthepurposeof mul-tijet background estimation (see Section 5) electrons and muons satisfyingaloosersetofidentificationcriteria,inparticular with-outanisolationrequirement,arealsoconsidered.

Jetsarereconstructedfromtopologicalcalorimeterclusters us-ingtheanti-kt algorithm [70] witharadiusparameterof R=0.4, and must satisfy pT > 25 GeV and |η| < 2.5. To suppress jets originating from in-time pile-up interactions, jets in the range pT<60 GeV and |η|<2.4 are required to pass the jet vertex tagger [71] selection, which has an efficiency of about 90% for jetsoriginatingfromthe primaryvertex. Theclosest jets overlap-ping with selectedelectron candidates within a cone ofsize R equal to 0.2 are removed from events, as the jet and the elec-tron very likely correspond to the same reconstructed object. If a remaining jet with pT > 25 GeV isfound close toan electron withinaconeofsizeR=0.4,thentheelectroncandidateis dis-carded.SelectedmuoncandidatesnearjetsthatsatisfyR(muon, jet)<0.04+10 GeV/pTμare rejectedifthejet hasatleastthree tracksoriginatingfromtheprimaryvertex.Anyjetswithlessthan threetracksthatoverlapwithamuonarerejected.

Theidentificationofjetsoriginatingfromthe hadronizationof b-quarks(“b-tagging”)isbasedonpropertiesspecifictob-hadrons, such aslong lifetimeandlargemass. Suchjetsare identified us-ing the multivariate MV2c10 b-tagging algorithm [72,73], which makes useof informationaboutthejet kinematic properties,the characteristicsoftrackswithinjets,andthepresenceofdisplaced secondary vertices. The algorithm is used at the 77% efficiency working point and provides a rejection factor of 134 (6.21) for jetsoriginatingfromlight-quarksorgluons(charmquarks),as de-termined in simulatedt¯t events.Jets satisfyingthese criteriaare referredtoas“b-tagged”jets.

The presence of neutrinos can be inferred from an apparent momentumimbalanceinthetransverseplane.Themissing trans-versemomentum(Emiss

(4)

neg-ative vectorial sum of the transverse momentum of all recon-structed objects (electrons, muons, jets) aswell as specific “soft terms”consideringtracksassociatedwiththeprimaryvertexthat donotmatchtheselectedreconstructedobjects [74].

Candidateeventsarerequiredtohaveexactlyonecharged lep-ton,twotofourjetswithatleastoneofthemb-taggedanda mini-mumEmissT thresholdthatdependsontheleptonflavor.Fromthese objects,W bosonandtop-quarkcandidatesarereconstructedand finalrequirementsontheeventkinematicpropertiesareappliedto defineseveralorthogonalregions withenriched signalcontent,as wellassignal-depletedregions tovalidatedatamodeling.Thejet, b-tag andlepton requirements define basic selections, which are labeled as X -jet Y -tag where X=2,3,4 and Y=1,2, separated forelectronandmuonchannelselections.

The W boson candidateis reconstructed fromthe lepton and Emiss

T ,withtheassumptionthatonlyoneneutrinoispresentinthe event.Thez componentoftheneutrinomomentum(pz)is calcu-latedfromtheinvariantmassofthelepton–EmissT systemwiththe constraintthatmW =80.4 GeV.The constraintyields aquadratic equationandinthecaseoftworealsolutions,thesmallest|pz| so-lutionischosen.Ifthetransversemass,mWT ,ofthereconstructed W boson islargerthanthe valuemW used intheconstraint,the two solutions are imaginary.This casecan be dueto the resolu-tionofthemissingtransversemomentummeasurement.Here,the Emissx,y componentsareadjustedtosatisfymWT =mW,yieldinga sin-glerealsolution.

The four-momentum of the top-quark candidate is recon-structed by adding the four-momenta ofthe W -boson candidate andofthejet,amongallselectedjetsintheevent,thatyieldsthe invariant massclosestto thetop-quarkmass(mtop=172.5 GeV). Thereafter, this jet is referred to as “btop”, and may not be the jet actually b-tagged. Finally, the four-momentum of the candi-dateW bosonisreconstructedbyaddingthefour-momentumof the reconstructed top-quark candidate and the four-momentum of the highest-pT remaining jet (referred to as “b1”). The W four-momentumisused toevaluatetheinvariant massofthe re-constructed W→tb system (mtb),whichisthevariableusedfor backgrounddiscriminationforthissearch.

Aneventselectioncommontoallsignalandvalidationregions is definedas: lepton pT>50 GeV, pT(b1)>200 GeV, pT(top)> 200 GeV,andETmiss>30 GeV.Inordertokeepthemultijet back-ground ata low level an additional selection is imposed, in the muon channel, on the sum of mWT and EmissT : mTW + ETmiss> 100 GeV.Intheelectronchannelthesamerequirementisapplied tokeeptheselectioninbothchannelsassimilaraspossible,and, inadditiontheEmiss

T thresholdisraisedto80 GeV tofurther sup-pressthemultijetbackground.Thisphasespaceisthensubdivided into a signal region (SR), a validation region enriched with the W +jets background (VRpretag), a validation region enriched with the t¯t background (VRt¯t), anda validation region enriched with the W +heavy-flavor jetsbackground(VRHF). Allregionsconsist of events withtwo or three jets, except for the VRt¯t where events withexactly four jetsare selected. The SR andVRt¯t requirethat one or two jets are b-tagged,while only one b-tagged jet is re-quired in the VRHF. No b-tagging requirement is applied in the VRpretag.Specific selectionsarethen appliedinthe twofollowing cases.The SRis definedby requiringthat the angularseparation ofthe lepton andbtop be small:R(,btop)<1.0. An additional criterion mtb>500 GeV is applied toremove a smallnumber of low-massW +jetsandtt events.¯ TheVRHFconsistsofeventswhere thelepton–jet andjet–jetseparations arelarge: R(,btop)>2.0 andR(b1,btop)>1.5.Theapplicationofthesetwoselections re-ducesthet¯t backgroundintheVRHF regionby90%.Theexpected signalcontaminationinthevalidationregionsisatmost5%forlow

Table 2

Summaryoftheeventselectioncriteriausedtodefinesignalandvalidationregions. TheEmiss

T selectioncutisharderforeventswithelectronsthanwithmuons.

Common selection

pT() >50 GeV, pT(b1) >200 GeV, pT(top) >200 GeV EmissT >30 (80) GeV, mWT +E

miss

T >100 GeV

Signal region VRpretag VRt¯t VRHF

2 or 3 jets 2 or 3 jets 4 jets 2 or 3 jets 1 or 2 b-jets pretag 1 or 2 b-jets 1 b-jet

R(,btop) <1.0 R(,btop) >2.0

mtb>500 GeV R(b1,btop) >1.5

Fig. 2. Signal selection efficiency(efficiencyisdefined as thenumber ofevents passingallselectionsdividedbythetotalnumberofsimulatedW→tb¯→ νbb¯ events)inthesignalregionasafunctionofthesimulatedWR mass.Efficienciesare

shownfor:allchannelscombined(fullcircle),electronchannelsonly(fullsquare) andmuonchannelsonly(fulltriangle).Forreference,signalefficiencycurvesare alsoshownwithouttherequirementonb-tagging(pretagselection:dottedlines).

Wmasses,andfallsbelow10−4 forWmassesabove3 TeV.The eventselectioncriteriaforeachregionaresummarizedinTable2. Thesignalselectionefficiency(definedasthenumberofevents passing allselection requirementsdividedby thetotalnumberof simulated W→tb¯→ νbb events)¯ inthesignal regionisshown, as a function ofthe simulated WR mass, in Fig. 2. Selection ef-ficiency curves are shown for the electron and muon channels separately,aswellasforthepretagselection.DuetothejetpTand R(,btop)requirements,thesignal hasvanishingefficiencyfora WR massof500 GeV,buttheefficiencyrisesasthedecayproducts becomemoreboosted.ThemaximumSRsignalefficiency,11.3%,is obtained fora mass of1.5 TeV, then the efficiencydecreases for highermassesto5.3%at5 TeV.Theapplicationoftheb-tagging re-quirementhasalargerimpactonthesignalefficiencyathighWR bosonmassvalues.Intheelectronchanneltheelectron–jetoverlap criteriondoesnotallowtheelectrontobeclose(R(,jet)<0.4) tothejet.Inthemuonchannel,thiscriterionisrelaxedbyusinga variableR conesize,resultinginanimprovedsignalacceptance. 5. Backgroundestimation

The t¯t, single-top-quark, diboson and W/Z +jets backgrounds are modeled usingthesimulatedMCsamplesandarenormalized tothetheorypredictionsoftheinclusivecrosssections,whilethe multijetbackgroundisestimatedusingthedataasdescribedbelow inthissection.Eachofthesebackgroundsamplesgivesriseto indi-vidualdifferentialmtb templatespredictingtheiruniquekinematic properties. These initial background normalizations are taken as

(5)

startingvalues,andthefinal normalizationisdeterminedthrough amaximum-likelihoodfitofthebackgroundtemplatestothedata inwhichthebackgroundnormalizationsare parametersofthefit (describedinSection7).Becausethesignalregionsaredominated by tt and¯ W +jets production, the normalization of these back-grounds isallowed to float freely in the maximum-likelihood fit withnoprior.

The background arising from multijet production consists of events with a jet that is misreconstructed as a lepton or with a non-prompt lepton that satisfies the lepton identification cri-teria. The simulation ofthis backgroundsource is challenging as it suffers from large systematic uncertainties and does not reli-ablyreproducetheobserveddatainregionsenrichedwithmultijet events.Thereforethe multijetbackgroundis estimatedfromdata with the so-called matrixmethod, which is used to disentangle the mixture of non-prompt leptons found in the multijet back-ground and prompt leptons originating from W / Z bosons [75]. Thismethodusesadatasample, withloosened identification cri-teria,dominatedbymultijetproductionandwithasmall contam-inationofelectroweak(EW)W/Z +jetsproduction.Theprobability thata jet frommultijetproductionwhichpassesthe loose selec-tion also satisfies the tight selection criteria is estimated inthis controlregion. The multijetpurityin thissample isimproved by subtracting,usingMCsimulation,theEWcontaminationtoremove biasdueto prompt-leptonsources.The efficiencyforprompt lep-tons passing the loose selection to also pass the tight selection isdetermined using tt MC¯ samples, corrected usingcomparisons of MC and data Z →  events. The number of multijet back-ground events satisfying the selection criteria is estimated from these efficiencies using data events that satisfy all criteria, ex-cept that loose lepton identification criteriaare used. While this data-driven method is a significant improvement on the use of MCsimulation,thelownumberofeventsandinherentsystematic variations oftheEW contributionlead toa significant systematic uncertainty. Systematic uncertainties on the multijet background areevaluated [76] usingvariousdefinitionsofmultijetcontrol re-gionsandbyconsideringsystematicuncertainties associatedwith objectreconstructionandMC simulation.The uncertaintyonthis backgroundistakenas50%ofthetotalrateandtreatedas uncor-relatedbetweenselectedregions.

Fig. 3 shows the distributions of the reconstructed invariant massoftheWbosoncandidatefordataandforbackground pre-dictions in the 2-jet 1-tag VRHF and 4-jet 2-tag VRt¯t validation regions.BackgroundtemplatesarefittodataineachVRusingthe same statistical method as for the signal region except that the normalizations oft¯t and W +jets backgrounds are constrained to thepost-fitratesobtainedinthesignalregion(seeSection7). 6. Systematicuncertainties

Two primary sources of systematic uncertainty, experimental andmodeling, affect the reconstruction of the mtb distributions. Experimental uncertainties arise due tothe trigger selection, the objectreconstruction andidentification, aswell astheobject en-ergy,momentumandmasscalibrationsandtheirresolutions. Mod-eling uncertaintiesresultinshapeandnormalizationuncertainties ofthe different MC samplesused to model the signal and back-grounds.These stem fromuncertainties inthe generator matrix-element calculation,the choice of partonshower and hadroniza-tionmodelsandtheirparametervalues,thePDFsetandthechoice ofrenormalizationandfactorizationscales.Theimpactonthe sig-nal and background event yields of the main systematic uncer-taintiesissummarizedinTable3,whereintheuncertaintyonthe overall yield is presented foreach backgroundsource. All values aregivenasapercentagechangeinoverallyieldandrepresentthe

priorvaluesassignedbeforefitting.Thesourceofeachuncertainty isdescribedinthissection,anduncertaintiesareconsidered fully correlatedacrossalleightsignalregionsandamongprocesses, un-lessspecificallynoted.

The selection of jets and EmissT has an associated uncertainty relatedto thecalorimetercalibrationof theenergyscale andthe calorimeterresolution,aswell astothe identification/reconstruc-tion efficiencies of objects reconstructed using the calorimeter, sample flavor composition and corrections for pile-up and neu-trinosproduced inhadrondecays.Theuncertaintycontributedby eachsource istypically1–5%oftheexpectedeventratesandcan impacttheshapeofdifferentialdistributions.Inaddition,theEmissT calculationleadstoatypicaluncertaintyintheeventyieldofless than1%.

The process of b-tagging jets hasan uncertainty in the scale factorsrequiredtomatchthetaggingefficiencybetweendataand simulation. These uncertainties are evaluated independently for jetsarisingfromb-quarks,c-quarksandlight-quarksorgluons.The uncertaintyintheselectionefficiencyfortaggingb-quarksis typi-callysmall(1–5%perjet)exceptforveryhighpTjetswhereitcan increase to6% perjet,andthemis-taggingofc-/light-quarks and gluons can be as large as10%. Thesesources ofuncertainty can additionallyinducenon-uniformvariationsindifferential distribu-tionsofupto10%.

Theuncertaintyinthereconstructionefficiencyandacceptance ofleptons dueto trigger,reconstruction andselectionefficiencies in simulated samplesis roughly 1% of the total eventyield. The energy/momentumscaleandresolutionforleptonsiscorrectedin simulationtomatchdatameasurements,andtheresulting uncer-tainty intheefficiencyarising fromthesecorrectionsis lessthan 1–2%.

Thenormalizationofsimulatedsampleshasan associated un-certaintythatvariesbyproductionprocess.Theuncertaintyinthe cross section timesbranching fractionforsingle-top anddiboson productionis takenas 6% [77–79] and11% [80], respectively. An uncertaintyof20%isassumedfor Z +jetsrate, whichrepresentsa very smallbackground,in linewiththe modeling uncertainty as-signed for W +jets (see belowin thissection).The cross sections forthe tt and¯ W +jets samplesare normalizedusing freely float-ingparameterswhosevaluesaredeterminedbyfittingtodata.All simulated samples that are normalized to the ATLAS luminosity measurement are assigneda luminosity uncertaintyof 2.1%. This uncertaintyisderived,followingamethodologysimilartothat de-tailedinRef. [81],fromacalibrationoftheluminosityscaleusing x– y beam-separation scans performed in August 2015 and May 2016.

Differences due to the choice of MC generator, fragmenta-tion/hadronization model, and initial/final-state radiation model are treated as a source of uncertainty for the tt and¯ t-channel single-top-quark simulations. The uncertainty due to the choice of MC generator is evaluated as the difference in yield between the nominal choice of Powheg-Box and the alternative Mad-Graph5_aMC@NLO [82] generator, using Herwig++ [83,84] for showering in both instances. The uncertainty due to the frag-mentation/hadronizationmodelisevaluatedbycomparing Pythia6 and Herwig++ simulated samples. Variations of the amount of additional radiation are studied by changing the scale of the hard-scatter process and the scales in parton-shower simulation simultaneously using the Powheg-Box+Pythia6 set-up. In these samples,avariationofthefactorizationandrenormalizationscales by a factor oftwo is combined withthe Perugia2012radLo tune and a variation of both scales by a factor of 0.5 is combined withthePerugia2012radHi tune [45].Inthecaseoft¯t production the Powheg-Box hdamp parameter, which controls the transverse momentumofthefirst additionalemission beyondthe Born

(6)

con-Fig. 3. DistributionsofthereconstructedinvariantmassoftheWbosoncandidateinthe(top)2-jet1-tagVRHFand(bottom)4-jet2-tagVRt¯tvalidationregions.Background

templatesarefittodataineachVRusingthesamestatisticalmethodasforthesignalregionexceptthatthenormalizationsoftt and¯ W +jetsbackgroundsareconstrained tothepost-fitratesobtainedinthesignalregion(seeSection7).Thepre-fitlinepresentsthebackgroundpredictionbeforethefitisperformed.Uncertaintybandsinclude allthesystematicandstatisticaluncertainties.TheresidualdifferencebetweenthedataandMCyieldsisshownasaratiointhebottomportionofeachfigure,whereinthe errorbarsonthedatapointscorrespondtothedataPoissonuncertainty.

figuration, is also changed simultaneously, using values of mtop and2×mtop,respectively.AnuncertaintyassociatedwiththeNLO calculation of W t production [85] isevaluated by comparingthe baselinesample generatedwiththediagramremovalschemetoa W t samplegeneratedwiththediagramsubtractionscheme.

Thesedifferencesyieldrelativevariationsinshapeand normal-ization of1–3% on average, although the variation can be larger than 10% in the highest mtb regions probed. The normalization componentofthesemodeling uncertaintiesis removedforthett¯ samples becausethe overall normalizationis determined via the datainthiscase.

Differences between the predictions for the ratio of 2-jet to 3-jet yields from different showering simulations were studied forthett and¯ W +jetssimulation.Thesedifferencesare estimated by simultaneously varying the renormalization and factorization scales,andbyusingdifferentMCgenerators.Whileonlysmall dif-ferenceswereobservedfort¯t simulation,theratiooftheyieldsof

2-jetto3-jetselectionsinW +jetssimulationvariedbyupto20%. Thus, an additional uncertaintyof20% is assignedtothe W +jets yieldinthe3-jetselection.4

Uncertainties in W +jets modeling are determined by compar-ing the nominal Sherpa simulation with an alternative sample produced withthe MadGraph5_aMC@NLO generatorinterfacedto Pythia8 forpartonshoweringandhadronization.The uncertainty in our knowledge of the flavor fraction in the W +jets sample is tested by splittingthe W +jets sample intolight-quark/gluon and heavy-flavor components andby decorrelating the W +jets shape uncertaintybetween2-jetand3-jetevents.Ineachcase,no signif-icanteffectontheextractedresultsisobserved.

4 FortheZ +jetsbackgroundasimilarvariationcouldbeexpected,butsincethis

(7)

Table 3

Impactofthemainsourcesofuncertaintyonthesignalandbackgroundeventyields.Allvaluesaregivenasapercentage changeintheoverallyieldandrepresentthepriorvaluesassignedbeforefitting.Uncertaintiesforthesignalaregivenfora WR masshypothesisof2 TeV.Uncertaintiesinthebackgroundarethesameforallsignalmasses.Systematicuncertainties

inthenormalization,2-jetvs3-jetregioncross-extrapolation,andreconstructedmtbshapeofthesignalandbackground

processesaredescribedinthetext.Sourcesofuncertaintymayaffectboththetotaleventyieldandtheshapeofthemtb

distribution.An“S”indicatesthatashapevariationhasbeenincluded,inadditiontotheratevariation,duetothesources listed.“U”referstoregionsthatarenotcorrelatedwithoneanotherand“F”referstoanormalizationthatfloatsfreely. Incertaininstancesoffreelyfloatingnormalizations,theratevariationofsystematiceffectsisremoved,thusleavingonly ashapevariation.Suchcasesareindicatedwitha“*”symbol.The“Jets”columnincludesuncertaintiesrelatedtoEmiss

T .A

rangeofvaluescorrespondtothelowestandthehighestvaluesdeterminedacrossdifferentchannelsintheSR.Thefinal columndescribestheuncertaintyinextrapolatingeventyieldsbetweenthe2-jetand3-jetselections.

Process Norm. Lumi. b-Tagging [S] Jets [S] Leptons Modeling [S] 2j/3j Extrap.

WR – 2.1 8–12 1–4 1–2 – –

t¯t F – 2–6 4–8 1–2 0 [*] –

W +jets F – 6–15 2–12 1–3 0 [*] 20

Z +jets 20 2.1 6–12 2–9 1–3 – –

Diboson 11 2.1 3–10 2–8 1–2 – –

Single top quark 6 2.1 2–7 1–4 1–2 6–22 –

Multijet 50 [U] – – – – – –

Table 4

Thenumbersofsignaland backgroundeventsand thenumbersofobserveddataeventsareshowninthe2-jet1-tagand 3-jet1-tagsignalregions. Forsignal,the valuescorrespondtoexpectedeventyieldsandquoteduncertaintiesaccountfor thestatisticaluncertaintyofthenumberofeventsinthesimulatedsamples.Thenumberofbackgroundeventsisobtained followingaMLfittothedataanduncertaintiescontainstatisticalandsystematicuncertainties.

2-jet 1-tag (e±) 2-jet 1-tag (μ±) 3-jet 1-tag (e±) 3-jet 1-tag (μ±) WR (1.0 TeV) 1517 ± 32 2030 ± 40 1159 ± 31 1665 ± 35 WR (2.0 TeV) 83.4 ± 1.7 132.9 ± 2.1 105.0 ± 1.9 167.4 ± 2.2 WR (3.0 TeV) 4.7 ± 0.1 10.4 ± 0.2 7.0 ± 0.2 15.7 ± 0.2 WR (4.0 TeV) 0.43 ± 0.01 1.01 ± 0.02 0.64 ± 0.02 1.62 ± 0.03 WR (5.0 TeV) 0.076 ± 0.002 0.153 ± 0.003 0.096 ± 0.003 0.232 ± 0.004 t¯t 1112 ± 23 1505 ± 28 3220 ± 50 4090 ± 70 Single-top 472 ± 20 657 ± 25 482 ± 21 624 ± 24 W +jets 520 ± 50 1280 ± 120 550 ± 40 1130 ± 90 Multijets 358 ± 35 630 ± 100 196 ± 20 390 ± 60 Z +jets, diboson 129 ± 14 211 ± 19 128 ± 12 242 ± 20 Total background 2590 ± 60 4290 ± 160 4580 ± 70 6470 ± 130 Data 2622 4260 4555 6433

Theuncertaintyintheyieldofsimulatedt¯t backgroundevents due to the choice of PDF is evaluated using the PDF4LHC rec-ommendations [86]. The statisticaluncertainty ofthelimited MC samplesisincludedineachhistogrambinofthemtbdistribution. 7.Results

In orderto test for the presence ofa massive resonance,the mtb templatesobtainedfromthesignalandbackgroundsimulated eventsamplesarefittodatausinga binnedmaximum-likelihood (ML) approach based on the RooStats framework [87–89]. Each signal region selection is considered simultaneously as an inde-pendentsearchchannel,foratotalofeightregions corresponding tomutually exclusive categoriesof electron andmuon, 2-jet and 3-jet,and1-b-tagand2-b-tags.

Thenormalizationsofthet¯t and W +jetsbackgroundsare free parameters inthe fit,while other backgroundnormalizations are assignedGaussian priors based ontheir respective normalization uncertainties.The systematicuncertainties described inSection 6 are incorporated in the fit as nuisance parameters with correla-tions acrossregions andprocesses takenintoaccount. The signal normalizationisafreeparameterinthefit.

The expected and observed event yields after the ML fit are showninTables4and5andcorrespondtoanintegrated luminos-ityof 36.1 fb−1. The fittedt¯t and W +jets rates relative to their nominalpredictions arefoundtobe 0.98±0.04 and0.78±0.19, respectively. Forthese two backgrounds the total uncertainty re-portedintheeventyieldtablesissmallerthantheuncertaintyin

the fitted normalizationfactor because there are anticorrelations betweennuisanceparametersinthelikelihoodfit.

Themtb distributionsfortheSRafterthe MLfitare shownin Figs. 4and5.An expectedsignalcontributioncorresponding toa WR bosonwithamassof2.0 TeV isshownasadashedhistogram overlay.The binningofthemtb distributionischosen tooptimize thesearchsensitivitywhileminimizingstatisticalfluctuations. Re-quirements are imposed on the expectednumber of background eventsperbin,andthebinwidthisadaptedtoaresolution func-tionthatrepresentsthewidthofthereconstructedmasspeakfor eachstudiedWR bosonsignalsample.

Fora WR boson witha massof 2 TeV and nominal g/g=1 coupling the total expected uncertainty in estimating the signal strength5 is 12%. The total systematicuncertainty is 9%, and the

largest uncertainties are due to the tt generator¯ (4.0%), jet en-ergyscale(JES)(2.8%),tt showering¯ (2.5%),t¯t normalization (2.0%) andJES η intercalibrationmodeling (1.3%). Forresonanceswitha mass of2.5 TeV or above,the data Poissonuncertainty becomes thelargestuncertaintyinestimatingthesignal rate,whilethe to-talsystematicuncertaintyisdominatedbytheuncertaintyonthe b-taggingefficiency.

As nosignificantexcess overthebackground predictionis ob-served, upper limits at the 95% confidence level (CL) are set on the production cross section times the branching fraction for

5 Thesignalstrengthisdefinedastheratioofthesignalcrosssectionestimated

(8)

Table 5

Thenumbersofsignalandbackgroundeventsandthenumbersofobserveddataeventsareshowninthe2-jet2-tagand 3-jet2-tagsignalregions.Forsignal, thevaluescorrespondtoexpectedeventyieldsand quoteduncertaintiesaccountfor thestatisticaluncertaintyofthenumberofeventsinthesimulatedsamples.Thenumberofbackgroundeventsisobtained followingaMLfittothedataanduncertaintiescontainstatisticalandsystematicuncertainties.

2-jet 2-tag (e±) 2-jet 2-tag (μ±) 3-jet 2-tag (e±) 3-jet 2-tag (μ±) WR(1.0 TeV) 1584 ± 35 2060 ± 40 1241 ± 30 1749 ± 34 WR(2.0 TeV) 33.5 ± 1.0 55.5 ± 1.2 51.6 ± 1.2 84.3 ± 1.5 WR(3.0 TeV) 1.4 ± 0.1 2.6 ± 0.1 2.5 ± 0.1 5.1 ± 0.1 WR(4.0 TeV) 0.131 ± 0.007 0.25 ± 0.01 0.21 ± 0.01 0.46 ± 0.01 WR(5.0 TeV) 0.035 ± 0.002 0.053 ± 0.002 0.044 ± 0.002 0.080 ± 0.002 tt¯ 536 ± 14 789 ± 16 2459 ± 31 3200 ± 40 Single-top 121 ± 6 176 ± 10 235 ± 12 347 ± 17 W +jets 28 ± 6 42 ± 4.0 50 ± 5 97 ± 9 Multijets 36 ± 6 71 ± 13 95 ± 11 135 ± 22 Z +jets, diboson 2.5 ± 0.4 11.5 ± 1.3 21.2 ± 2.1 26.9 ± 2.3 Total background 723 ± 16 1088 ± 21 2859 ± 33 3810 ± 50 Data 683 1091 2869 3797

Fig. 4. Post-fitdistributionsofthereconstructedmassofthe WR bosoncandidateinthe(top)2-jet1-tagand(bottom)2-jet2-tagsignalregions,for(left)electronand

(right)muonchannels.AnexpectedsignalcontributioncorrespondingtoaWRbosonmassof2.0 TeV enhanced20timesisshown.Thepre-fitlinepresentsthebackground

predictionbeforethefitisperformed.Uncertaintybandsincludeallthesystematicandstatisticaluncertainties.TheresidualdifferencebetweenthedataandMCyieldsis shownasaratiointhebottomportionofeachfigure,whereintheerrorbarsonthedatapointscorrespondtothedataPoissonuncertainty.

(9)

Fig. 5. Post-fitdistributionsofthereconstructedmassoftheWR bosoncandidateinthe(top)3-jet1-tagand(bottom)3-jet2-tagsignalregions,for(left)electronand

(right)muonchannels.AnexpectedsignalcontributioncorrespondingtoaWRbosonmassof2.0 TeV enhanced20timesisshown.Thepre-fitlinepresentsthebackground

predictionbeforethefitisperformed.Uncertaintybandsincludeallthesystematicandstatisticaluncertainties.TheresidualdifferencebetweenthedataandMCyieldsis shownasaratiointhebottomportionofeachfigure,whereintheerrorbarsonthedatapointscorrespondtothedataPoissonuncertainty.

each model. The limits are evaluated using a modified frequen-tistmethodknownasCLs [90] with aprofile-likelihood-ratiotest statistic [91] usingtheasymptoticapproximation.

The95% CLupperlimitsontheproductioncross section mul-tipliedbythebranchingfractionforWR →tb are¯ showninFig.6 asa function ofthe resonancemass. Theobserved andexpected limitsarederived using alinear interpolationbetweensimulated signalmasshypotheses.Theexclusionlimitsrangebetween4.9 pb and2.9×10−2pbforW

Rbosonmassesfrom0.5 TeV to5 TeV.The lowerobservedlimitsforWR massesaround2.5 TeV areduetoa deficitofdataeventsinthe2–2.5 TeV mtb¯ rangeinthe2-jet1-tag and3-jet1tag(muon)signalregions.TheexistenceofWR bosons withmassesmW

R<3.15 TeV isexcludedforthe ZTOPbenchmark modelforWR,assumingthat the WR coupling gis equaltothe SMweakcouplingconstant g.

Limitsonthe ratioofcouplings g/g asa functionofthe WR bosonmasscanbederivedfromthelimitsontheWR bosoncross section.Limitscanalsobesetforg/g>1,asmodelsremain per-turbativeuptoaratioofaboutfive [30].TheWR bosoncross

sec-tionhasa dependenceonthecoupling g,comingfromthe vari-ation oftheresonance width. Thescaling ofthe WR boson cross section asafunction of g/g andmW isestimatedatNLO using the ZTOP generator. Inaddition, specific signal samplesare used inordertotakeintoaccount theeffectontheacceptanceandon kinematicaldistributionsoftheincreasedsignalwidth(compared withthenominalsamples)forvaluesofg/g>1.Fig.7showsthe excludedparameterspaceasafunctionoftheWR resonancemass, whereintheeffectofincreasing WR widthforcouplingvaluesof g/g>1 isincludedforsignalacceptanceanddifferential distribu-tions.Thelowestobserved(expected)limitong/g,obtainedfora WR bosonmassof0.75 TeV,is0.13(0.13).

The ATLAS experimenthas recently searched for WR →tb in¯ thefullyhadronicfinal state [27] using 36.1 fb−1,corresponding tothesamedatacollectionperiodastheanalysispresentedhere. As thesetwo searches are complementary and use mutually or-thogonaleventselections,amoregeneralandpowerfulsearchfor WR→tb production¯ canbeobtainedviatheirstatistical combina-tion.Thesignal simulationwasproducedinthesamemannerfor

(10)

Fig. 6. Upperlimitsatthe95%CLonthe WR productioncrosssectiontimesthe WRtb branching¯ fractionasafunctionofresonancemass,assumingg/g=1. Thesolid curvecorrespondsto theobserved limit,whilethe dashed curveand shadedbandscorrespondtothelimitexpectedintheabsenceofsignalandthe re-gionsenclosingone/twostandarddeviation(s.d.)fluctuationsoftheexpectedlimit. Thepredictionmadebythebenchmarkmodelgenerator ZTOP [30],anditswidth thatcorrespondtovariationsduetoscaleandPDFuncertainty,arealsoshown.

Fig. 7. Observedand expected95%CLlimit onthe ratio g/g,asa functionof resonancemass,for right-handedW coupling.Thefilledareacorrespondtothe observedlimitwhilethedashed lineand theonestandarddeviation(s.d.) band correspondtheexpectedlimit.TheimpactoftheincreasedWR widthforcoupling

valuesofg/g>1 ontheacceptanceandonkinematicaldistributionsistakeninto account.

bothsearches,andthesimulationofsharedbackgroundsourcesis obtainedwithidenticalorsimilartools.Thefullyhadronicsearch hasabackgrounddominatedbyQCDmultijetproduction,whichis estimatedviadata-drivenmethods.Thesmallercontributionfrom tt and¯ singlyproducedtopquarksiscommontothetwoanalyses, andthusallsystematicuncertaintiesrelatedtoshared reconstruc-tionorselectionmethodsaretreatedasfullycorrelated.

Theresultofthecombinationofthecrosssectiontimes branch-ing fraction limits of the leptonic and fully hadronic analyses is shownin Fig. 8. The individual limits andtheir combinationare showninFig.9.Theexpectedlimitsproducedbythetwosearches are similar above a resonance mass of 2 TeV, below which the fullyhadronicsearchsuffers duetoinefficiency fromdijettrigger thresholdscausingitnottocontributeforresonancemassesbelow 1 TeV. Thus, theexpected limitson the productioncross section multiplied by the branching fraction improve by approximately 35%above1 TeV andthecombinedresultraisesthelowerlimiton

Fig. 8. Observedandexpected95%CLupperlimitontheWR productioncross sec-tiontimesthe WR→tb branching¯ fractionasafunctionofresonancemassfor

the combinationofsemileptonic andhadronic [27] W→tb searches,¯ assuming g/g=1.Thehadronicsearchcoversamassrangebetween1.0and5.0 TeV.The solidblackcurvecorrespondstotheobservedlimit,whilethedashed curveand shadedbandscorrespondtothelimitexpectedintheabsenceofsignalandthe re-gionsenclosingone/twostandarddeviation(s.d.)fluctuationsoftheexpectedlimit. Thepredictionmadebythebenchmarkmodelgenerator ZTOP [30],anditswidth thatcorrespondtovariationsduetoscaleandPDFuncertainty,arealsoshown.

Fig. 9. Observedandexpected95%CLupperlimitontheWR productioncross

sec-tiontimestheWR→tb branching¯ fractionasafunctionofresonancemass,forthe

semileptonicandhadronic [27] W→tb searches,¯ aswellastheircombination.The solidcurvescorrespondtotheobservedupperlimits,whilethedashedlinesarethe expectedlimits.

the WR massto3.25 TeV.Ontheother hand,thegainfrom com-bining the observed crosssection times branching fractionlimits israthermodest,comparedwiththeresultoftheleptonicanalysis only,becauseofupwardfluctuationsobservedinthefullyhadronic analysisdata.

8. Conclusion

Asearchfor WRtb in¯ theleptonplus jetsfinalstate is per-formedusing36.1 fb−1 of13 TeV pp collisiondatacollectedwith the ATLAS detector at the LHC. No significant excess of events is observedabove the SM predictions.Upper limitsare placedat the95%CLonthecrosssectiontimesbranchingfraction, σ(ppWR→tb¯),rangingbetween4.9 pband2.9×10−2 pbinthemass range of 0.5 TeV to 5 TeV for a right-handed W boson. Exclu-sion limitsare alsocalculatedforthe ratioofthe couplings g/g

(11)

andthelowest observedlimit, obtainedfora WR boson massof 0.75 TeV,is0.13.Astatisticalcombinationofthecross-section lim-itsisperformedwiththeresultsobtainedwhenthefullyhadronic decaysofWR →tb are¯ considered.Theupperlimitsonthecross section times branching fraction improve by approximately 35% above 1 TeV.Masses below3.15(3.25) TeV are excluded for WR bosonsinthebenchmark ZTOPmodelforthesemileptonic (com-binedsemileptonicandhadronic)scenarios.

Acknowledgements

We thankCERN for thevery successful operation ofthe LHC, aswell asthe support stafffromour institutions without whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan;SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT,Chile; CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, andMPG, Germany; GSRT, Greece;RGC,HongKong SAR,China;ISFandBenoziyo Center, Is-rael; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands;RCN, Norway;MNiSW andNCN, Poland;FCT, Portu-gal; MNE/IFA, Romania; MES of Russiaand NRC KI, Russian Fed-eration; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia;DST/NRF,SouthAfrica;MINECO,Spain;SRCand Wallen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF, UnitedStatesofAmerica. Inaddition, in-dividualgroupsandmembershavereceivedsupportfromBCKDF, theCanadaCouncil,Canarie,CRC,ComputeCanada,FQRNT,andthe OntarioInnovationTrust, Canada;EPLANET, ERC,ERDF,FP7, Hori-zon 2020 andMarie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne andFondationPartagerleSavoir,France;DFGandAvHFoundation, Germany;Herakleitos,ThalesandAristeiaprogrammesco-financed byEU-ESFandtheGreekNSRF;BSF,GIF andMinerva,Israel;BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana,Spain;theRoyalSocietyandLeverhulmeTrust,United Kingdom.

The crucialcomputing support fromall WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresources arelistedin Ref. [92].

References

[1]G.Burdman,B.A.Dobrescu, E.Ponton, Resonancesfrom twouniversalextra dimensions,Phys.Rev.D74(2006)075008,arXiv:hep-ph/0601186.

[2]H.-C.Cheng,C.T.Hill,S.Pokorski,J.Wang,Standardmodelinthe latticized bulk,Phys.Rev.D64(2001)065007,arXiv:hep-th/0104179.

[3]T.Appelquist,H.-C.Cheng,B.A.Dobrescu,Boundsonuniversalextra dimen-sions,Phys.Rev.D64(2001)035002,arXiv:hep-ph/0012100.

[4]J.C.Pati,A.Salam,Leptonnumberasthefourth“color”,Phys.Rev.D10(1974) 275–289.

[5]R.N. Mohapatra, J.C. Pati, Left-rightgauge symmetryand an “isoconjugate” modelofCPviolation,Phys.Rev.D11(1975)566–571.

[6]G.Senjanovic,R.N.Mohapatra,Exactleft-rightsymmetryandspontaneous vi-olationofparity,Phys.Rev.D12(1975)1502–1505.

[7]M.Perelstein,LittleHiggsmodelsandtheirphenomenology,Prog.Part.Nucl. Phys.58(2007)247–291,arXiv:hep-ph/0512128.

[8]M.J.Dugan,H.Georgi,D.B.Kaplan,AnatomyofacompositeHiggsmodel,Nucl. Phys.B254(1985)299.

[9]K.Agashe,R.Contino,A.Pomarol,TheminimalcompositeHiggsmodel,Nucl. Phys.B719(2005)165–187,arXiv:hep-ph/0412089.

[10]D0Collaboration,SearchforWbosonsdecayingtoanelectronandaneutrino withtheD0detector,Phys.Rev.Lett.100(2008)031804,eprint,arXiv:0710. 2966.

[11]CDFCollaboration,SearchforanewheavygaugebosonWwithevent signa-tureelectron+missingtransverseenergyinpp collisions¯ at√s=1.96 TeV, Phys.Rev.D83(2011)031102,arXiv:1012.5145.

[12]CMSCollaboration,Searchforphysicsbeyondthestandardmodelinfinalstates with alepton andmissingtransverseenergyinproton–proton collisionsat

s=8 TeV,Phys.Rev.D91(2015)092005,arXiv:1408.2745 [hep-ex].

[13]ATLASCollaboration,Searchfornewparticlesineventswithoneleptonand missingtransversemomentuminpp collisionsat√s=8 TeV withtheATLAS detector,J.HighEnergyPhys.09(2014)037,arXiv:1407.7494 [hep-ex].

[14]ATLASCollaboration,Searchfornewresonancesineventswithoneleptonand missingtransversemomentuminpp collisionsat√s=13 TeV withtheATLAS detector,Phys.Lett.B762(2016)334,arXiv:1606.03977 [hep-ex].

[15]CMSCollaboration,SearchforheavygaugeW bosonineventswith an en-ergeticleptonandlargemissingtransversemomentumat√s=13 TeV,Phys. Lett.B770(2017)278,arXiv:1612.09274 [hep-ex].

[16]C.Patrignani,etal.,Rev.ParticlePhys.,Chin.Phys.C40(2016)100001.

[17]D.J.Muller,S.Nandi,Topflavor:aseparateSU(2)forthethirdfamily,Phys.Lett. B(ISSN 0370-2693)383(1996)345–350.

[18]E.Malkawi,T.M.Tait,C.Yuan,Amodelofstrongflavordynamicsforthetop quark,Phys.Lett.B385(1996)304–310,arXiv:hep-ph/9603349.

[19]D0Collaboration,SearchforW→tb resonanceswithleft- andright-handed couplingstofermions,Phys.Lett.B699(2011)145–150,arXiv:1101.0806.

[20]CDFCollaboration,Searchfortheproductionofnarrowt anti-b resonancesin 1.9fb−1ofpp collisions¯ ats=1.96 TeV,Phys.Rev.Lett.103(2009)041801,

arXiv:0902.3276.

[21]ATLAS Collaboration,Searchfortb resonancesinproton–protoncollisionsat

s=7 TeV withtheATLASdetector,Phys.Rev.Lett.109(2012)081801,arXiv: 1205.1016.

[22]CMSCollaboration,SearchforaW bosondecayingtoabottomquarkanda topquarkinpp collisionsat√s=7 TeV,Phys.Lett.B718(2013)1229–1251, arXiv:1208.0956.

[23]CMSCollaboration,SearchforW→tb decaysinthelepton+jetsfinalstate inpp collisionsat√s=8 TeV,J.HighEnergyPhys.05(2014)108,arXiv:1402. 2176.

[24]ATLASCollaboration,SearchforW→tb intheleptonplusjetsfinalstatein proton–protoncollisionsat acentre-of-massenergyof√s=8 TeV withthe ATLASdetector,Phys.Lett.B743(2015)235–255,arXiv:1410.4103 [hep-ex].

[25]CMSCollaboration,Searchforheavyresonancesdecayingtoatopquarkanda bottomquarkinthelepton+jetsfinalstateinproton–protoncollisionsat13 TeV,Phys.Lett.B777(2018)39–63,arXiv:1708.08539 [hep-ex].

[26]ATLAS Collaboration,Searchfor W→tbqqbb decaysin pp collisionsat

s=8 TeV withtheATLASdetector,Eur.Phys.J.C75(2015)165,arXiv:1408. 0886 [hep-ex].

[27]ATLAS Collaboration,Searchfor W→tb decaysinthehadronicfinalstate usingpp collisionsat√s=13 TeV withtheATLASdetector,Phys.Lett.B781 (2018)327–348,arXiv:1801.07893 [hep-ex].

[28]ATLASCollaboration,TheATLASexperimentattheCERNlargehadroncollider, J.Instrum.3(2008)S08003.

[29]Z.Sullivan,FullydifferentialWproductionanddecayatnext-to-leadingorder inQCD,Phys.Rev.D66(2002)075011,arXiv:hep-ph/0207290.

[30]D. Duffty,Z.Sullivan,Modelindependentreachfor W -primebosonsatthe LHC,Phys.Rev.D86(2012)075018,arXiv:1208.4858.

[31] ATLASCollaboration,ATLASInsertableB-LayerTechnicalDesignReport, CERN-LHCC-2010-013.ATLAS-TDR-19,https://cds.cern.ch/record/1291633,2010. [32] ATLASCollaboration,ATLASInsertableB-LayerTechnicalDesignReport

Adden-dum,AddendumtoCERN-LHCC-2010-013,ATLAS-TDR-019,https://cds.cern.ch/ record/1451888,2012.

[33] ATLASCollaboration,Performanceofthe ATLAStriggersystemin2015,Eur. Phys.J.C77(2017)317,https://doi.org/10.1140/epjc/s10052-017-4852-3. [34]J.Alwall,M.Herquet,F.Maltoni, O.Mattelaer,T.Stelzer,MadGraph5:going

beyond,J.HighEnergyPhys.06(2011)128,arXiv:1106.0522.

[35]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301 [hep-ph].

[36]C.Degrande,etal.,UFO–TheUniversalFeynRulesOutput,Comput.Phys. Com-mun.183(2012)1201–1214,arXiv:1108.2040.

[37]A.Alloul,N.D.Christensen,C.Degrande,C.Duhr,B.Fuks,FeynRules 2.0–a completetoolboxfortree-levelphenomenology,Comput.Phys.Commun.185 (2014)2250–2300,arXiv:1310.1921.

[38]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852–867,arXiv:0710.3820.

[39]R.D.Ball,L.DelDebbio,S.Forte,A.Guffanti,J.I.Latorre,etal.,Afirstunbiased globalNLOdeterminationofpartondistributionsandtheiruncertainties,Nucl. Phys.B838(2010)136–206,arXiv:1002.4407 [hep-ph].

(12)

[40] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7TeV data, ATL-PHYS-PUB-2014-021,https://cds.cern.ch/record/1966419,2014.

[41]S.Alioli,P.Nason,C.Oleari,E.Re,AgeneralframeworkforimplementingNLO calculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High En-ergyPhys.06(2010)043,arXiv:1002.2581.

[42]S.Frixione,P.Nason,G.Ridolfi,Apositive-weightnext-to-leading-orderMonte Carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126, arXiv:0707.3088.

[43]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241 [hep-ph].

[44]T. Sjöstrand, et al., High-energy physics event generation with PYTHIA 6.1, Comput.Phys.Commun.135(2001)238–259,arXiv:hep-ph/0010017.

[45]P.Z.Skands,TuningMonteCarlogenerators:ThePerugiaTunes,Phys.Rev.D82 (2010)074018,arXiv:1005.3457 [hep-ph].

[46]M.Cacciari,M.Czakon,M.Mangano,A.Mitov,P.Nason,Top-pairproduction athadroncolliderswithnext-to-next-to-leadinglogarithmicsoft-gluon resum-mation,Phys.Lett.B710(2012)612–622,arXiv:1111.5869.

[47]M.Beneke,P.Falgari,S.Klein,C.Schwinn,Hadronictop-quarkpairproduction withNNLLthresholdresummation,Nucl.Phys.B855(2012)695–741,arXiv: 1109.1536.

[48]P.Baernreuther, M. Czakon,A.Mitov, Percent-level-precisionphysics at the tevatron:next-to-next-to-leadingorderQCDcorrectionstoqq¯→t¯t+X ,Phys. Rev.Lett.109(2012)132001,arXiv:1204.5201.

[49]M.Czakon,P.Fiedler,A.Mitov,Totaltop-quarkpair-productioncrosssection at hadroncollidersthrough O(α4

S),Phys.Rev.Lett.110 (25)(2013)252004,

arXiv:1303.6254.

[50]M.Czakon,A.Mitov,NNLOcorrectionstotoppairproductionathadron col-liders:thequark–gluonreaction,J.HighEnergyPhys. 01(2013)080,arXiv: 1210.6832.

[51]M.Czakon,A.Mitov,NNLOcorrectionstotop-pairproductionathadron collid-ers:theall-fermionicscatteringchannels,J.HighEnergyPhys.12(2012)054, arXiv:1207.0236.

[52]M.Czakon,A.Mitov,Top++:aprogramforthecalculationofthetop-pair cross-section at hadron colliders,Comput. Phys. Commun.(ISSN 0010-4655)185 (2014)2930–2938.

[53]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622 [hep-ph].

[54]S.Höche,F.Krauss,S.Schumann,F.Siegert,QCDmatrixelementsand trun-catedshowers,J.HighEnergyPhys.05(2009)053,arXiv:0903.1219 [hep-ph].

[55]T.Gleisberg,S.Hoche,Comix,anewmatrixelementgenerator,J.HighEnergy Phys.12(2008)039,arXiv:0808.3674 [hep-ph].

[56]S.Schumann,F.Krauss,APartonshoweralgorithmbasedonCatani–Seymour dipolefactorisation,J.HighEnergyPhys.03(2008)038,arXiv:0709.1027 [hep -ph].

[57]R.Hamberg,W.VanNeerven,T.Matsuura,Acompletecalculationoftheorder

a2

s correctiontotheDrell–YanKfactor,Nucl.Phys.B359(1991)343–405;

R.Hamberg,W.VanNeerven,T.Matsuura,Nucl.Phys.B644(2002)403 (Erra-tum).

[58]C.Anastasiou,L.J.Dixon,K.Melnikov,F.Petriello,HighprecisionQCDathadron colliders:electroweakgaugebosonrapiditydistributionsatNNLO,Phys.Rev.D 69(2004)094008,arXiv:hep-ph/0312266.

[59]J.Pumplin, etal.,Newgeneration ofpartondistributionswith uncertainties fromglobalQCDanalysis,J.HighEnergyPhys.07(2002)012,arXiv:hep-ph/ 0201195 [hep-ph].

[60]ATLASCollaboration,MeasurementoftheZ/y∗bosontransversemomentum distributioninpp collisionsat √s=7 TeV withtheATLAS detector,J.High EnergyPhys.09(2014)55.

[61]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152–155.

[62] ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003,https://cds.cern.ch/record/1474107,2012.

[63]A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,PartondistributionsfortheLHC, Eur.Phys.J.C63(2009)189–285,arXiv:0901.0002 [hep-ph].

[64]ATLAS Collaboration,TheATLAS simulationinfrastructure,Eur.Phys.J. C70 (2010)823–874,arXiv:1005.4568.

[65]S.Agostinelli,etal.,GEANT4–asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250–303.

[66] W.Lampl, et al., Calorimeter clustering algorithms:description and perfor-mance,ATL-LARG-PUB-2008-002,https://cds.cern.ch/record/1099735,2008.

[67]ATLASCollaboration,ElectronandphotonenergycalibrationwiththeATLAS detectorusingLHCRun1data,Eur.Phys.J.C74(2014)3071,arXiv:1407.5063 [hep-ex].

[68]ATLASCollaboration,Electronreconstructionandidentificationefficiency mea-surementswiththeATLASdetectorusingthe2011LHCproton–protoncollision data,Eur.Phys.J.C74(2014)2941,arXiv:1404.2240 [hep-ex].

[69]ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton–protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292, arXiv:1603.05598 [hep-ex].

[70]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189.

[71]ATLASCollaboration,Performanceofpile-upmitigationtechniquesforjetsin

pp collisionsat√s=8 TeV usingtheATLASdetector,Eur.Phys.J.C76(2016) 581,arXiv:1510.03823 [hep-ex].

[72]ATLASCollaboration,Performanceofb-jetidentificationintheATLAS Experi-ment,J.Instrum.11(2016)P04008,arXiv:1512.01094 [hep-ex].

[73] ATLASCollaboration,OptimisationoftheATLASb-taggingperformanceforthe 2016 LHCRun, ATL-PHYS-PUB-2016-012, https://cds.cern.ch/record/2160731, 2016.

[74]M.Aaboud,etal.,Performanceofmissingtransversemomentum reconstruc-tionwiththeATLASdetectorusingproton–protoncollisionsat√s=13 TeV, arXiv:1802.08168 [hep-ex],2018.

[75]ATLAS Collaboration, Measurementofthe topquark pair production cross-sectionwithATLASinthesingleleptonchannel,Phys.Lett.B711(2012)244, arXiv:1201.1889 [hep-ex].

[76]ATLASCollaboration,Searchforheavyparticlesdecayingintotop-quarkpairs usinglepton-plus-jetseventsinproton–proton collisionsat√s=13 TeV with theATLASdetector,Eur.Phys.J.C78(2018)565,arXiv:1804.10823 [hep-ex].

[77]N. Kidonakis, Next-to-next-to-leading-order collinearand soft gluon correc-tionsfort-channelsingletopquarkproduction,Phys.Rev.D83(2011)091503, arXiv:1103.2792 [hep-ph].

[78]N.Kidonakis,NNLLresummationfor s-channelsingletopquarkproduction, Phys.Rev.D81(2010)054028,arXiv:1001.5034.

[79]N.Kidonakis,Two-loopsoftanomalousdimensionsforsingletopquark asso-ciatedproductionwithaW− orH−,Phys.Rev.D82(2010)054018,arXiv: 1005.4451.

[80]J.M.Campbell,R.Ellis,MCFMfortheTevatronandtheLHC,Nucl.Phys.B,Proc. Suppl.205–206(2010),arXiv:1007.3492 [hep-ph].

[81]ATLASCollaboration,Luminositydeterminationinpp collisionsat√s=8 TeV usingtheATLASdetectorattheLHC,Eur.Phys.J.C76(2016)653,arXiv:1608. 03953 [hep-ex].

[82]J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,etal.,Theautomated computationoftree-levelandnext-to-leadingorderdifferentialcrosssections, andtheirmatchingtopartonshowersimulations,arXiv:1405.0301 [hep-ph], 2014.

[83]M.Bahr,etal.,Herwig++physicsandmanual,Eur.Phys.J.C58(2008)639–707, arXiv:0803.0883 [hep-ph].

[84]J.Bellm,etal.,Herwig7.0/Herwig++3.0releasenote,Eur.Phys.J.C76(2016) 196,arXiv:1512.01178 [hep-ph].

[85]S.Frixione,etal.,Single-tophadroproductioninassociationwithaW boson,J. HighEnergyPhys.07(2008)029,arXiv:0805.3067.

[86]J.Butterworth,etal.,PDF4LHCrecommendationsforLHCRunII,J.Phys.G43 (2016)023001,arXiv:1510.03865 [hep-ph].

[87]L.Moneta,K.Cranmer,G.Schott,W.Verkerke,TheRooStatsproject,57,arXiv: 1009.1003 [physics.data-an],2010.

[88]W.Verkerke,D.P.Kirkby,TheRooFittoolkitfordatamodeling,eConfC0303241 (2003),MOLT007,186,arXiv:physics/0306116 [physics],2003.

[89]M.Baak,etal.,HistFittersoftwareframeworkforstatisticaldataanalysis,Eur. Phys.J.C75(2015)153,arXiv:1410.1280 [hep-ex].

[90]A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002) 2693–2704,11(2002).

[91]G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554;Erratum,Eur.Phys. J.C73(2013)2501,arXiv:1007.1727 [physics.data-an].

[92] ATLAS Collaboration, ATLAS computing acknowledgements, ATL-GEN-PUB-2016-002https://cds.cern.ch/record/2202407.

TheATLASCollaboration

M. Aaboud34d,G. Aad99,B. Abbott124, O. Abdinov13,∗,B. Abeloos128,D.K. Abhayasinghe91, S.H. Abidi164, O.S. AbouZeid39,N.L. Abraham153, H. Abramowicz158,H. Abreu157,Y. Abulaiti6,

Figure

Fig. 3. Distributions of the reconstructed invariant mass of the W  boson candidate in the (top) 2-jet 1-tag VR HF and (bottom) 4-jet 2-tag VR t ¯ t validation regions
Fig. 4. Post-fit distributions of the reconstructed mass of the W R  boson candidate in the (top) 2-jet 1-tag and (bottom) 2-jet 2-tag signal regions, for (left) electron and (right) muon channels
Fig. 5. Post-fit distributions of the reconstructed mass of the W  R boson candidate in the (top) 3-jet 1-tag and (bottom) 3-jet 2-tag signal regions, for (left) electron and (right) muon channels
Fig. 9. Observed and expected 95% CL upper limit on the W R  production cross sec- sec-tion times the W R → t b branching¯ fraction as a function of resonance mass, for the semileptonic and hadronic [27] W  → t b searches,¯ as well as their combination

References

Related documents

Vilka är de stora idéerna? Vilka är de absoluta grunder inom kemin som undervisningen skulle kunna utgå ifrån för att eleverna lättare skall få en helhet kring ämnet och att

In that case study, they attempted to identify the thumbnail characteristics aim- ing for the customisation of existing file carving tools in a way to recover effectively the

Eftersom forskningen kommer grunda sig i hur situationen ser ut för barnet när föräldrarna anländer till Sverige så kommer termen ensamkommande flyktingbarn inte vara

In summary, PLGA MSPs loaded with clarithromycin was suggested as drug delivery system for sustained drug release to enhance bone regeneration in the calvaria defect model used

Vilka specialpedagogiska insatser anser förskolans pedagoger att de behöver för att kunna hjälpa barn som är i behov av språkligt stöd.. Vilka utökade kunskaper

Recommendations: A quality assurance system for research needs to be developed at university, faculty and research unit levels in order to build strong frames for development, where

Jag menar att denna kunskapsöversikt lyfter frågor som är relevanta och användbara för alla som utbildar sig till lärare, eller redan undervisar i ämnet geografi i

Dock väljer jag att inte referera eller dra paralleller till Falkners avhandling av flera anledningar; skillnaden i tidpunkt mellan undersökningar spänner över