• No results found

Evidence for Electroweak Production of W(+/-)W(+/-)jj in pp Collisions at root s=8 TeV with the ATLAS Detector

N/A
N/A
Protected

Academic year: 2021

Share "Evidence for Electroweak Production of W(+/-)W(+/-)jj in pp Collisions at root s=8 TeV with the ATLAS Detector"

Copied!
19
0
0

Loading.... (view fulltext now)

Full text

(1)

Evidence for Electroweak Production of W



W



jj in pp Collisions at

p

ffiffi

s

¼ 8 TeV

with the ATLAS Detector

G. Aad et al.* (ATLAS Collaboration)

(Received 23 May 2014; published 3 October 2014)

This Letter presents the first study ofWWjj, same-electric-charge diboson production in association with two jets, using20.3 fb−1 of proton-proton collision data atpffiffiffis¼ 8 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two reconstructed same-charge leptons (ee,eμ, and μμ) and two or more jets are analyzed. Production cross sections are measured in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. First evidence forWWjj production and electroweak-only WWjj production is observed with a significance of 4.5 and 3.6 standard deviations, respectively. The measured production cross sections are in agreement with standard model predictions. Limits at 95% confidence level are set on anomalous quartic gauge couplings.

DOI:10.1103/PhysRevLett.113.141803 PACS numbers: 14.70.Fm, 12.60.Cn, 13.38.Be, 13.85.Fb

The scattering of two massive vector bosons (VBS), VV → VV with V ¼ W or Z, is a key process to probe the nature of electroweak symmetry breaking [1,2]. In the absence of a standard model (SM) Higgs boson, the longitudinally polarized VBS amplitude increases as a function of the center-of-mass energy pffiffiffis and violates unitarity at energies around 1 TeV [3–5]. The recent discovery of a 125 GeV SM-like Higgs boson at the Large Hadron Collider (LHC) [6,7] provides a plausible explanation for the mechanism that unitarizes this process. However, many physics scenarios predict enhancements in VBS either from additional resonances or if the observed SM-like Higgs boson only partially unitarizes this amplitude [8,9]. There is no previous evidence for a process involving aVVVV vertex.

At hadron colliders VBS can be idealized as an interaction of gauge bosons radiated from initial state quarks yielding a final state with two bosons and two jets (VVjj) in a purely electroweak process[10]. VBS diagrams are not separately gauge invariant and must be studied in conjunction with additional Feynman graphs leading to the sameVVjj final state [11]. Two classes of physical processes give rise to VVjj final states. The first process, which includes VBS contributions, involves exclusively weak interactions at Born level (of order α4EW without considering the boson decay, where αEW is the electroweak force coupling

con-stant) and is referred to as electroweak production. The second process involves both the strong and electroweak interactions at Born level (of orderα2sα2EW, whereαs is the strong force coupling constant) and is referred to as strong

production. In the case of same-electric-charge WW pro-duction (WWjj), the strong production cross section does not dominate the electroweak cross section, making this channel an ideal choice for initial studies on VBS.

This Letter presents the first evidence for electroweak WWjj production, where both W bosons decay

leptoni-cally (ffiffiffi W→ lν, l ¼ e, μ), using pp collision data at s

p

¼ 8 TeV collected by the ATLAS detector at the LHC. This process has a distinct experimental signature of two same-electric-charge leptons and two jets.

Two fiducial regions are defined. The first region or “inclusive region” is defined to study the combination of electroweak and strong production mechanisms, and in this region both processes are referred to as the signal. It is defined at particle level as follows. Exactly two prompt charged leptons (τ leptons and leptons originating from τ decays are excluded) are required with the same electric charge, transverse momentum pT > 25 GeV, jηj < 2.5

[12], invariant mass mll> 20 GeV, and angular

separa-tion ΔRll≡pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔϕÞ2þ ðΔηÞ2> 0.3. At least two jets reconstructed with the anti-kt algorithm [13]with jet size

R ¼ 0.4 and with pT > 30 GeV, jηj < 4.5, and separated

from the leptons by ΔRlj> 0.3 are also required. The invariant mass of the two jets with the largestpT(mjj) must be larger than 500 GeV, and the magnitude of the missing transverse momentum (Emiss

T ) calculated using all neutrinos

in the final state must be greater than 40 GeV. To reduce the dependence on QED radiation, lepton momenta include contributions from photons withinΔR ¼ 0.1 of the lepton direction. The second region or“VBS region” is a subset of the inclusive region that also requires the two jets with largestpT to be separated in rapidity[14]byjΔyjjj > 2.4. This enhances the purity of electroweak WWjj by removing most of the strongWWjj events, which are considered as a background in this region.

* Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

The expected production cross sections for the pp → WWjj process in the two fiducial regions (“fiducial

cross sections”) are calculated usingPOWHEGBOX[15,16],

with CT10 parton distribution functions (PDFs) [17],

interfaced with PYTHIA8 [18,19] for parton showering, hadronization, and underlying event modeling. The con-tribution from nonresonant production of the same leptonic final state is also considered, but is strongly suppressed

[16]. The cross section for the electroweak WWjj

process is predicted to be 1.00  0.06 fb in the inclusive region and 0.88  0.05 fb in the VBS region. The cross section for the strong WWjj process is 0.35  0.05 fb in the inclusive region and0.098  0.018 fb for the VBS region. The uncertainty on these predictions include 68% confidence level PDF uncertainties [20], parton shower, and hadronization modeling uncertainties estimated by comparing PYTHIA8 and HERWIG++ plus JIMMY [21,22],

the independent variation of renormalization and factori-zation scales by a factor of 2, the difference between the predictions from POWHEGBOX and VBFNLO [23], and the

integration error. The parton shower and generator uncer-tainties are dominant for electroweak production, while scale variations are dominant for strong production. Interference between electroweak and strong production is studied at leading-order accuracy usingSHERPA[24]and

is found to increase the combined strong and electroweak WWjj cross section by ð12  6Þ% in the inclusive

region and ð7  4Þ% in the VBS region. The total SM signal cross-section prediction in the inclusive region is 1.52  0.11 fb, while the sum of electroweak and inter-ference contributions in the VBS region is0.95  0.06 fb. The ATLAS detector described in Ref.[25]is a multi-purpose particle physics detector. It consists of an inner tracking detector (ID) surrounded by a calorimeter and a muon spectrometer (MS). Events for this analysis are selected with single-lepton (e or μ) triggers. After applying data quality requirements, the remaining data set has a total integrated luminosity of20.3  0.6 fb−1 [26].

Electron candidates are reconstructed from a combina-tion of a cluster of energy deposits in the electromagnetic calorimeter and a track in the ID. They are required to havepT > 25 GeV and jηj < 2.47, excluding the transition region between the barrel and endcap calorimeters (1.37 < jηj < 1.52). Candidate electrons must satisfy the tight quality definition described in Ref. [27] and reoptimized for 2012 data taking. Muon candidates are reconstructed by combining tracks in the ID and MS [28]. The combined track is required to have pT > 25 GeV and jηj < 2.4. Leptons are required to originate from the same interaction vertex and, to reduce nonprompt production, calorimeter and tracker isolation requirements are applied within a cone of sizeΔR ¼ 0.3.

Jets are reconstructed from clusters of energy in the calorimeter, using the anti-kt algorithm with jet-size parameter R ¼ 0.4 and calibrated using techniques from

Ref. [29]. Only jets with pT > 30 GeV and jηj < 4.5 are

considered. Jets containing b hadrons (“b jet”) with jηj < 2.5 are identified by combining information on the impact parameter significances of their tracks and explicit secondary vertex reconstruction [30]. The measurement of Emiss

T [31] is based on the energy collected by the

electromagnetic and hadronic calorimeters, and muon tracks reconstructed by the ID and MS.

CandidateWWjj events are required to have exactly two leptons (electrons or muons) with the same electric charge and at least two jets satisfying the above selection criteria. Three different final states (“channels”) are con-sidered based on the lepton flavor, namely, ee, eμ, andμμ. To reduce the contributions fromWZ=γþ jets and ZZ þ jets production, events are removed if they contain additional leptons reconstructed with looser iso-lation requirements, pT > 7 GeV (6 GeV) for electrons (muons) and loose quality definition for electrons [27]. The two leptons must havemll> 20 GeV. The dielectron invariant mass must not be within 10 GeV of theZ boson mass to reduce Z þ jets background from electron charge misidentification. Events are also required to have Emiss

T > 40 GeV, and in order to reject backgrounds from

nonprompt leptons, mainly t¯t → lνjjb¯b, events must not contain a b jet. To further reduce t¯t and WZ=γþ jets backgrounds, events in the inclusive region are required to have mjj> 500 GeV. In addition, in the VBS region jΔyjjj > 2.4 is required.

Monte Carlo (MC) simulation is used to estimate the expected signal events. TheWWjj processes are gen-erated withSHERPA, using up to three jets in the

matrix-element and parton shower model [24], and normalized using the expected cross section in each fiducial region (see above). Generated events are processed with the full detector simulation [32] based on GEANT4 [33], and the

standard ATLAS reconstruction software.

Several SM processes enter theWWjj signal regions as irreducible physics processes or through instrumental effects. About 90% of the expected prompt lepton back-ground originates from WZ=γ→ ll∓lν production that passes signal region selections when one lepton is outside of the experimental acceptance or does not satisfy the lepton identification criteria. Up to 20% of the expected WZ=γ contribution comes from electroweak production.

Smaller contributions from ZZ þ jets and t¯t þ W=Z are also considered. These “prompt lepton backgrounds” are estimated using MC simulation. In the VBS region strong WWjj is estimated using simulation and normalized to

the SM prediction for the fiducial cross section described above. Correction factors for lepton and jet efficiencies, additionalpp interactions (pile-up), and beam-spot location are applied to the simulation to account for differences with data. Furthermore, the simulation is tuned to reproduce the calorimeter response and the muon momentum scale and resolution observed in data. Systematic uncertainties on the

(3)

signal yield and backgrounds estimated from MC simulation are derived from uncertainties on the correction factors, energy smearing parameters, the Emiss

T modeling, and the

b-tagging efficiency and mistag rate[30].

SHERPAis used to produceWZ=γþ jets events, taking

into account both the strong and electroweak production mechanisms. This sample is normalized to the next-to-leading-order calculation in QCD from VBFNLO in each

fiducial region [34,35], with an accuracy of 14% in the inclusive region and 11% in the VBS region. TheSHERPA

extrapolation from the inclusive region to the VBS region differs from the VBFNLO calculation by 3%. The main

sources of uncertainties on theVBFNLO normalization are from the PDF, from factorization and renormalization scale dependence, and from the parton shower model. The small tZj component in this sample is estimated using theSHERPA

prediction.

The production of ZZ þ jets is modeled with SHERPA, while for t¯t þ W=Z processes MADGRAPH [36] with PYTHIA8 is used. The theoretical uncertainties on the

production cross sections of these processes are 19% and30%, respectively, dominated by the jet multiplicity modeling and the scale uncertainties.

Contributions fromWγ production, including electroweak production of Wγjj, where the photon converts to an electron-positron pair inside the detector is included in the “conversion background.” It is estimated usingALPGEN[37]

withHERWIGplusJIMMYandSHERPA(for electroweakWγjj)

MC samples with a total theory uncertainty of17%. The remaining conversion background originates from processes that produce oppositely charged prompt leptons where one lepton’s charge is misidentified, primarily because one electron has undergone hard bremsstrahlung and subsequent photon conversion. This background is estimated from data. The dominant origins of this back-ground are t¯t → lνlνb¯b and Drell-Yan lepton pair pro-duction. The electron charge misidentification rate is measured using Z=γ→ ee events. The muon charge misidentification rate is found to be negligible. The back-ground is estimated by applying the electron charge misidentification rate to data selected using all signal selection criteria except for the electric charges of the leptons, which are instead required to be opposite sign. The dominant systematic uncertainties arise from possible method bias (studied in simulation) and the statistical uncertainty in the charge misidentification rate. The total uncertainty is between 15% and 32% depending on signal region and channel.

Contributions from SM processes that produce at least one nonprompt lepton from hadron decays in jets (W þ jets, t¯t, single top or multijet production, denoted by“other nonprompt background”) are estimated from data events that contain one lepton passing all selections and one nonisolated or loose-quality lepton. These events, which are dominated by the nonprompt background, are scaled

by a“fake rate” to predict the nonprompt background. The fake rate is the efficiency for nonprompt leptons to pass the nominal lepton selections with respect to the looser isolation and quality requirements. The fake rate for non-prompt leptons is measured in a dijet sample. The uncer-tainty on the nonprompt background estimate is between 39% and 52% depending on region and channel, dominated by prompt-lepton contamination in the dijet sample and the uncertainty on the extrapolation of fake rates into the signal region.

Contributions from double parton scattering [38] arise mainly in WZ=γ and dijet production. However, simu-lation shows they are negligible after the requirement ofmjj> 500 GeV.

Background predictions are tested in several same-electric-charge dilepton control regions summarized in Table I. The MC modeling of prompt backgrounds is tested in a trilepton control region defined by inverting the third-lepton veto and removing the jΔyjjj and mjj selec-tions. Conversion and prompt backgrounds are tested in a region with at most one jet (≤ 1 jet, in Table I). In this sample theee channel is dominated byZ → ee events, theμμ channel is dominated by prompt processes, and theeμchannel has a mixture of prompt, nonprompt, and conversion backgrounds. Backgrounds from nonprompt leptons originating fromt¯t → lνjjb¯b are tested in a control region that requires at least one of the jets to be identified as ab jet. Finally, the combined background model is tested by inverting themjj selection.

The observed number of events is compared in TableIIto the expected background and signal yield with systematic uncertainties for the three channels in both the inclusive and VBS signal regions. In the VBS region strongWWjj is considered as background using the SM prediction and its experimental and theoretical uncertain-ties. The systematic uncertainty on the background pre-diction is about 20%, dominated by the jet reconstruction uncertainties (11%–15%) and theory uncertainties (4%– 11%). An excess of events over the background expectation is observed in both signal regions and in all three channels; the combined significance over the background-only TABLE I. Expected numbers of events (exp) and measured data counts are shown by channel for each control region described in the text. The uncertainty shown is the systematic uncertainty on the expected yield.

Control region Trilepton ≤ 1 jet b-tagged Low mjj

ee exp 36  6 278  28 40  6 76  9 data 40 288 46 78 eμ exp 110  18 288  42 75  13 127  16 data 104 328 82 120 μμ exp 60  10 88  14 25  7 40  6 data 48 101 36 30

(4)

hypothesis is 4.5 standard deviations in the inclusive region and 3.6 standard deviations in the VBS region. The expected significance for a SM WWjj signal is 3.4 standard deviations in the inclusive region and 2.8 in the VBS region.

Figure 1 shows the expected and observed mjj distri-bution after all inclusive region selection criteria are applied, except mjj > 500 GeV. Figure 2 shows the jΔyjjj distribution after the inclusive region selections.

All three dilepton channels are summed in both figures. The observed excess is consistent with the expected event topology for WWjj production.

We interpret the excess over background as WWjj production, and the fiducial cross sections in the two regions (σfid) are measured by combining the three decay

channels in a likelihood function. Systematic uncertainties are taken into account with nuisance parameters.

The signal efficiency in each fiducial region is defined as the number of expected signal events after selections divided by the number of events passing the respective fiducial region selections at the particle level. The effi-ciency accounts for the detector reconstruction, migration into and out of the fiducial volume, identification, and trigger efficiency; it is 56%, 72%, 77% for the inclusive region and 57%, 73%, 83% for the VBS region in theee, eμ, andμμchannels, respectively. The efficiency also

accounts for the contribution of leptonicτ decays, which are not included in the fiducial cross-section definition: 10% of signal candidates are expected to originate from leptonicτ decays. The uncertainty on the signal efficiency is dominated by the jet reconstruction uncertainty of 6%. The measured fiducial cross section for strong and electroweak WWjj production in the inclusive region

[GeV] jj m Events/50 GeV -1 10 1 10 2

10 Data 2012 Syst. Uncertainty jj Electroweak ± W ± W jj Strong ± W ± W Prompt Conversions Other non-prompt ATLAS = 8 TeV s , -1 20.3 fb [GeV] jj m 200 400 600 800 1000 1200 1400 1600 1800 2000 Data/Background 0 5 Data/Bkg Bkg Uncertainty (Sig+Bkg)/Bkg

FIG. 1 (color online). Themjj distribution for events passing the inclusive region selections except for the mjj selection indicated by the dashed line. The black hatched band in the upper plot represents the systematic uncertainty on the total prediction. On the lower plot the shaded band represents the fractional uncertainty of the total background while the solid line and hatched band represents the ratio of the total prediction to background only and its uncertainty. TheWWjj prediction is normalized to the SM expectation.

| jj y Δ | 0 1 2 3 4 5 6 7 8 9 Events 5 10 15 20 25 30 Data 2012 Syst. Uncertainty jj Electroweak ± W ± W jj Strong ± W ± W Prompt Conversions Other non-prompt ATLAS = 8 TeV s , -1 20.3 fb > 500 GeV jj m

FIG. 2 (color online). ThejΔyjjj distribution for events passing all inclusive region selections. ThejΔyjjj selection is indicated by a dashed line. TheWWjj prediction is normalized to the SM expectation.

TABLE II. Estimated background yields, observed number of data events, and predicted signal yields for the three channels are shown with their systematic uncertainty. Contributions due to interference are included in theWWjj electroweak prediction.

Inclusive region VBS region

ee eμ μμ ee eμ μμ Prompt 3.0  0.7 6.1  1.3 2.6  0.6 2.2  0.5 4.2  1.0 1.9  0.5 Conversions 3.2  0.7 2.4  0.8    2.1  0.5 1.9  0.7    Other nonprompt 0.61  0.30 1.9  0.8 0.41  0.22 0.50  0.26 1.5  0.6 0.34  0.19 WWjj Strong 0.89  0.15 2.5  0.4 1.42  0.23 0.25  0.06 0.71  0.14 0.38  0.08 WWjj Electroweak 3.07  0.30 9.0  0.8 4.9  0.5 2.55  0.25 7.3  0.6 4.0  0.4 Total background 6.8  1.2 10.3  2.0 3.0  0.6 5.0  0.9 8.3  1.6 2.6  0.5 Total predicted 10.7  1.4 21.7  2.6 9.3  1.0 7.6  1.0 15.6  2.0 6.6  0.8 Data 12 26 12 6 18 10

(5)

is σfid¼ 2.1  0.5ðstatÞ  0.3ðsystÞ fb. The measured

fiducial cross section for electroweakWWjj production, including interference with strong production in the VBS region, is σfid¼ 1.3  0.4ðstatÞ  0.2ðsystÞ fb. The

mea-sured cross sections are in agreement with the respective SM expectations of 1.52  0.11 fb and 0.95  0.06 fb.

Additional contributions to WWjj production can be expressed in a model-independent way using higher-dimensional operators leading to anomalous quartic gauge boson couplings (AQGCs). The measured cross section in the VBS fiducial region is used to set limits on AQGCs affecting vertices with four interacting W bosons. The

WHIZARDevent generator[39]is used to generateWWjj

events with AQGCs using aK-matrix unitarization method

[40]. Following existing notations[40,41], deviations from

the SM (which includes a SM Higgs withmH ¼ 126 GeV) are parametrized in terms of two parameters (α4, α5). The reconstruction efficiency is derived using simulated

WHIZARDsamples combined withPYTHIA8. The difference

with respect to SHERPA for the SM case is taken as

additional systematic uncertainty. The reconstruction effi-ciency increases with increasingα4;5values, but the effect is small compared to the increase in the fiducial cross sections in the same parameter space. The expected and observed 95% confidence intervals derived from the profile likelihood function are shown in Fig. 3. The one-dimen-sional projection atα5;4¼ 0 is, respectively, −0.14 < α4< 0.16 and −0.23 < α5< 0.24, compared to an expected

−0.10 < α4< 0.12 and −0.18 < α5< 0.20.

In conclusion, a significant excess of events over back-ground predictions is found using20.3 fb−1ofpp collision data at pffiffiffis¼ 8 TeV recorded by the ATLAS detector at the LHC. This excess is consistent with SM WWjj production. Two fiducial cross sections are measured in regions with different sensitivities to the electroweak and

strong WWjj processes. The measured cross sections are in good agreement with SM predictions. In addition, the first limits on theα4;5 AQGC parameters are set.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] J. Bagger, V. Barger, K. Cheung, J. Gunion, T. Han, G. A. Ladinsky, R. Rosenfeld, and C.-P. Yuan,Phys. Rev. D 49, 1246 (1994).

[2] J. Bagger, V. Barger, K. Cheung, J. Gunion, T. Han, G. A. Ladinsky, R. Rosenfeld, and C.-P. Yuan,Phys. Rev. D 52, 3878 (1995).

[3] M. J. G. Veltman, Acta Phys. Pol. B 8, 475 (1977). [4] B. W. Lee, C. Quigg, and H. B. Thacker,Phys. Rev. Lett. 38,

883 (1977).

[5] B. W. Lee, C. Quigg, and H. B. Thacker,Phys. Rev. D 16, 1519 (1977).

[6] ATLAS Collaboration,Phys. Lett. B 716, 1 (2012). [7] CMS Collaboration,Phys. Lett. B 716, 30 (2012). [8] D. Espriu and B. Yencho,Phys. Rev. D 87, 055017 (2013). [9] J. Chang, K. Cheung, C. T. Lu, and T.-C. Yuan,Phys. Rev.

D 87, 093005 (2013). 4 α -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 5 α -0.6 -0.4 -0.2 0 0.2 0.4 0.6 ATLAS 20.3 fb-1 , s = 8 TeV pp→ W± W± jj K-matrix unitarization 68% CL 95% CL expected 95% CL Standard Model confidence intervals

FIG. 3 (color online). Limits on (α45). Points outside of the solid light ellipse are excluded by the data at 95% confidence level (C.L.). Points outside the inner dark ellipse are excluded at the 68% confidence level. The expected exclusion is given by the solid line.

(6)

[10] R. N. Cahn, S. D. Ellis, R. Kleiss, and W. J. Stirling,Phys. Rev. D 35, 1626 (1987).

[11] E. Accomando, A. Ballestrero, A. Belhouari, and E. Maina,

Phys. Rev. D 74, 073010 (2006).

[12] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and thez axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and they axis points upward. Cylindrical coordinatesðr; ϕÞ are used in the transverse plane,ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angleθ as η ¼ − ln tanðθ=2Þ. Transverse projections are defined relative to the beam axis.

[13] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[14] Rapidity is defined asy ¼ ð1=2Þ ln½ðE þ pzÞ=ðE − pzÞ. [15] P. Nason,J. High Energy Phys. 11 (2004) 040;S. Frixione,

P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070; S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.

[16] B. Jäger, C. Oleari, and D. Zeppenfeld, Phys. Rev. D 80, 034022 (2009); B. Jäger and G. Zanderighi,J. High Energy Phys. 11 (2011) 055;T. Melia, K. Melnikov, R. Rontsch, and G. Zanderighi,J. High Energy Phys. 12 (2010) 053;T. Melia, P. Nason, R. Rontsch, and G. Zanderighi,Eur. Phys. J. C 71, 1670 (2011).

[17] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [18] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026; T. Sjöstrand, S. Mrenna, and P. Skands,Comput. Phys. Commun. 178, 852 (2008). [19] ATLAS Collaboration, Report No.

ATL-PHYS-PUB-2012-003, 2012,https://cds.cern.ch/record/1474107.

[20] J. M. Campbell, J. W. Huston, and W. J. Stirling,Rep. Prog. Phys. 70, 89 (2007).

[21] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber,

J. High Energy Phys. 01 (2001) 010.

[22] J. M. Butterworth, J. R. Forshaw, and M. H. Seymour,

Z. Phys. C 72, 637 (1996).

[23] K. Arnold et al., Comput. Phys. Commun. 180, 1661 (2009); J. Baglio et al., arXiv:1107.4038; K. Arnold et al., arXiv:1207.4975; B. Jäger, C. Oleari, and D. Zeppenfeld,Phys. Rev. D 80, 034022 (2009).

[24] T. Gleisberg, S. Hoeche, F. Krauss, M. Schoenherr, S. Schumann, F. Siegert, and J. Winter,J. High Energy Phys. 02 (2009) 007;T. Gleisberg and S. Hoeche,J. High Energy Phys. 12 (2008) 039;S. Schumann and F. Krauss,J. High Energy Phys. 03 (2008) 038; S. Hoeche, F. Krauss, S. Schumann, and F. Siegert,J. High Energy Phys. 05 (2009) 053.

[25] ATLAS Collaboration,JINST 3, S08003 (2008). [26] ATLAS Collaboration,Eur. Phys. J. C 73, 2518 (2013). [27] ATLAS Collaboration,arXiv:1404.2240;ATLAS

Collabo-ration,Eur. Phys. J. C 72, 1909 (2012).

[28] ATLAS Collaboration,Phys. Lett. B 707, 438 (2012). [29] ATLAS Collaboration,Eur. Phys. J. C 73, 2304 (2013). [30] ATLAS Collaboration, Report No.

ATLAS-CONF-2011-102, 2011,http://cdsweb.cern.ch/record/1369219. [31] ATLAS Collaboration,Eur. Phys. J. C 72, 1844 (2012). [32] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [33] S. Agostinelli et al.,Nucl. Instrum. Methods Phys. Res.,

Sect. A 506, 250 (2003).

[34] G. Bozzi, B. Jäger, C. Oleari, and D. Zeppenfeld,Phys. Rev. D 75, 073004 (2007).

[35] F. Campanario, M. Kerner, L. D. Ninh, and D. Zeppenfeld,

Phys. Rev. Lett. 111, 052003 (2013).

[36] J. Alwall, P. Demin, S. Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer,J. High Energy Phys. 09 (2007) 028.

[37] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa,J. High Energy Phys. 07 (2003) 001.

[38] A. Del Fabbro and D. Treleani,Phys. Rev. D 63, 057901 (2001).

[39] W. Kilian, T. Ohl, and J. Reuter,Eur. Phys. J. C 71, 1742 (2011); M. Moretti, T. Ohl, and J. Reuter, arXiv:hep-ph/ 0102195.

[40] A. Alboteanu, W. Kilian, and J. Reuter, J. High Energy Phys. 11 (2008) 010.

[41] T. Appelquist and C. Bernard,Phys. Rev. D 22, 200 (1980); A. C. Longhitano, Phys. Rev. D 22, 1166 (1980); Nucl. Phys. B188, 118 (1981).

G. Aad,84B. Abbott,112 J. Abdallah,152 S. Abdel Khalek,116O. Abdinov,11R. Aben,106 B. Abi,113M. Abolins,89 O. S. AbouZeid,159H. Abramowicz,154 H. Abreu,153 R. Abreu,30 Y. Abulaiti,147a,147bB. S. Acharya,165a,165b,b

L. Adamczyk,38a D. L. Adams,25 J. Adelman,177 S. Adomeit,99T. Adye,130T. Agatonovic-Jovin,13a

J. A. Aguilar-Saavedra,125a,125f M. Agustoni,17S. P. Ahlen,22F. Ahmadov,64,c G. Aielli,134a,134bH. Akerstedt,147a,147b T. P. A. Åkesson,80 G. Akimoto,156A. V. Akimov,95G. L. Alberghi,20a,20bJ. Albert,170 S. Albrand,55

M. J. Alconada Verzini,70M. Aleksa,30I. N. Aleksandrov,64C. Alexa,26aG. Alexander,154G. Alexandre,49T. Alexopoulos,10 M. Alhroob,165a,165cG. Alimonti,90aL. Alio,84J. Alison,31B. M. M. Allbrooke,18L. J. Allison,71P. P. Allport,73J. Almond,83 A. Aloisio,103a,103bA. Alonso,36F. Alonso,70C. Alpigiani,75A. Altheimer,35B. Alvarez Gonzalez,89M. G. Alviggi,103a,103b K. Amako,65Y. Amaral Coutinho,24a C. Amelung,23 D. Amidei,88S. P. Amor Dos Santos,125a,125cA. Amorim,125a,125b S. Amoroso,48N. Amram,154G. Amundsen,23C. Anastopoulos,140L. S. Ancu,49N. Andari,30T. Andeen,35C. F. Anders,58b

G. Anders,30K. J. Anderson,31A. Andreazza,90a,90bV. Andrei,58a X. S. Anduaga,70 S. Angelidakis,9 I. Angelozzi,106 P. Anger,44A. Angerami,35F. Anghinolfi,30A. V. Anisenkov,108N. Anjos,125aA. Annovi,47A. Antonaki,9M. Antonelli,47

(7)

A. Antonov,97J. Antos,145b F. Anulli,133aM. Aoki,65L. Aperio Bella,18R. Apolle,119,dG. Arabidze,89I. Aracena,144 Y. Arai,65J. P. Araque,125aA. T. H. Arce,45J-F. Arguin,94S. Argyropoulos,42M. Arik,19aA. J. Armbruster,30O. Arnaez,30 V. Arnal,81H. Arnold,48M. Arratia,28O. Arslan,21A. Artamonov,96G. Artoni,23S. Asai,156N. Asbah,42A. Ashkenazi,154

B. Åsman,147a,147bL. Asquith,6 K. Assamagan,25R. Astalos,145aM. Atkinson,166 N. B. Atlay,142B. Auerbach,6 K. Augsten,127 M. Aurousseau,146bG. Avolio,30G. Azuelos,94,eY. Azuma,156 M. A. Baak,30C. Bacci,135a,135b H. Bachacou,137K. Bachas,155M. Backes,30M. Backhaus,30J. Backus Mayes,144 E. Badescu,26a P. Bagiacchi,133a,133b P. Bagnaia,133a,133bY. Bai,33a T. Bain,35J. T. Baines,130O. K. Baker,177 S. Baker,77P. Balek,128 F. Balli,137E. Banas,39

Sw. Banerjee,174A. A. E. Bannoura,176 V. Bansal,170H. S. Bansil,18L. Barak,173 S. P. Baranov,95E. L. Barberio,87 D. Barberis,50a,50bM. Barbero,84T. Barillari,100M. Barisonzi,176 T. Barklow,144N. Barlow,28B. M. Barnett,130 R. M. Barnett,15Z. Barnovska,5A. Baroncelli,135aG. Barone,49A. J. Barr,119F. Barreiro,81J. Barreiro Guimarães da Costa,57

R. Bartoldus,144A. E. Barton,71P. Bartos,145aV. Bartsch,150A. Bassalat,116 A. Basye,166R. L. Bates,53L. Batkova,145a J. R. Batley,28M. Battaglia,138M. Battistin,30F. Bauer,137H. S. Bawa,144,f T. Beau,79P. H. Beauchemin,162 R. Beccherle,123a,123bP. Bechtle,21H. P. Beck,17K. Becker,176S. Becker,99M. Beckingham,139C. Becot,116A. J. Beddall,19c A. Beddall,19cS. Bedikian,177V. A. Bednyakov,64C. P. Bee,149L. J. Beemster,106T. A. Beermann,176M. Begel,25K. Behr,119

C. Belanger-Champagne,86P. J. Bell,49W. H. Bell,49G. Bella,154 L. Bellagamba,20a A. Bellerive,29M. Bellomo,85 K. Belotskiy,97O. Beltramello,30O. Benary,154D. Benchekroun,136aK. Bendtz,147a,147bN. Benekos,166Y. Benhammou,154

E. Benhar Noccioli,49J. A. Benitez Garcia,160b D. P. Benjamin,45J. R. Bensinger,23K. Benslama,131S. Bentvelsen,106 D. Berge,106E. Bergeaas Kuutmann,16N. Berger,5F. Berghaus,170E. Berglund,106J. Beringer,15C. Bernard,22P. Bernat,77

C. Bernius,78F. U. Bernlochner,170 T. Berry,76P. Berta,128C. Bertella,84G. Bertoli,147a,147bF. Bertolucci,123a,123b D. Bertsche,112 M. I. Besana,90a G. J. Besjes,105O. Bessidskaia,147a,147bM. F. Bessner,42N. Besson,137C. Betancourt,48 S. Bethke,100W. Bhimji,46R. M. Bianchi,124 L. Bianchini,23M. Bianco,30O. Biebel,99S. P. Bieniek,77K. Bierwagen,54

J. Biesiada,15M. Biglietti,135aJ. Bilbao De Mendizabal,49H. Bilokon,47M. Bindi,54S. Binet,116 A. Bingul,19c C. Bini,133a,133bC. W. Black,151J. E. Black,144 K. M. Black,22D. Blackburn,139R. E. Blair,6 J.-B. Blanchard,137 T. Blazek,145aI. Bloch,42C. Blocker,23 W. Blum,82,aU. Blumenschein,54 G. J. Bobbink,106V. S. Bobrovnikov,108 S. S. Bocchetta,80A. Bocci,45C. Bock,99C. R. Boddy,119M. Boehler,48 J. Boek,176 T. T. Boek,176 J. A. Bogaerts,30 A. G. Bogdanchikov,108A. Bogouch,91,aC. Bohm,147aJ. Bohm,126V. Boisvert,76T. Bold,38aV. Boldea,26aA. S. Boldyrev,98

M. Bomben,79 M. Bona,75M. Boonekamp,137A. Borisov,129 G. Borissov,71M. Borri,83S. Borroni,42J. Bortfeldt,99 V. Bortolotto,135a,135bK. Bos,106 D. Boscherini,20a M. Bosman,12H. Boterenbrood,106J. Boudreau,124J. Bouffard,2 E. V. Bouhova-Thacker,71D. Boumediene,34C. Bourdarios,116 N. Bousson,113 S. Boutouil,136dA. Boveia,31J. Boyd,30

I. R. Boyko,64 I. Bozovic-Jelisavcic,13b J. Bracinik,18A. Brandt,8 G. Brandt,15O. Brandt,58a U. Bratzler,157B. Brau,85 J. E. Brau,115H. M. Braun,176,a S. F. Brazzale,165a,165c B. Brelier,159K. Brendlinger,121A. J. Brennan,87 R. Brenner,167 S. Bressler,173K. Bristow,146cT. M. Bristow,46D. Britton,53F. M. Brochu,28I. Brock,21R. Brock,89C. Bromberg,89

J. Bronner,100 G. Brooijmans,35T. Brooks,76W. K. Brooks,32b J. Brosamer,15E. Brost,115G. Brown,83J. Brown,55 P. A. Bruckman de Renstrom,39D. Bruncko,145bR. Bruneliere,48S. Brunet,60 A. Bruni,20a G. Bruni,20a M. Bruschi,20a L. Bryngemark,80T. Buanes,14Q. Buat,143F. Bucci,49P. Buchholz,142R. M. Buckingham,119A. G. Buckley,53S. I. Buda,26a I. A. Budagov,64F. Buehrer,48L. Bugge,118M. K. Bugge,118O. Bulekov,97A. C. Bundock,73H. Burckhart,30S. Burdin,73 B. Burghgrave,107 S. Burke,130I. Burmeister,43E. Busato,34D. Büscher,48V. Büscher,82 P. Bussey,53C. P. Buszello,167 B. Butler,57J. M. Butler,22 A. I. Butt,3C. M. Buttar,53J. M. Butterworth,77P. Butti,106W. Buttinger,28A. Buzatu,53

M. Byszewski,10 S. Cabrera Urbán,168 D. Caforio,20a,20bO. Cakir,4aP. Calafiura,15A. Calandri,137G. Calderini,79 P. Calfayan,99R. Calkins,107L. P. Caloba,24aD. Calvet,34S. Calvet,34R. Camacho Toro,49S. Camarda,42D. Cameron,118

L. M. Caminada,15 R. Caminal Armadans,12S. Campana,30M. Campanelli,77A. Campoverde,149 V. Canale,103a,103b A. Canepa,160a M. Cano Bret,75J. Cantero,81R. Cantrill,76T. Cao,40 M. D. M. Capeans Garrido,30I. Caprini,26a M. Caprini,26aM. Capua,37a,37b R. Caputo,82R. Cardarelli,134aT. Carli,30G. Carlino,103aL. Carminati,90a,90bS. Caron,105 E. Carquin,32aG. D. Carrillo-Montoya,146cJ. R. Carter,28J. Carvalho,125a,125cD. Casadei,77M. P. Casado,12M. Casolino,12

E. Castaneda-Miranda,146b A. Castelli,106V. Castillo Gimenez,168 N. F. Castro,125aP. Catastini,57A. Catinaccio,30 J. R. Catmore,118A. Cattai,30G. Cattani,134a,134bS. Caughron,89 V. Cavaliere,166 D. Cavalli,90aM. Cavalli-Sforza,12 V. Cavasinni,123a,123bF. Ceradini,135a,135bB. Cerio,45K. Cerny,128A. S. Cerqueira,24bA. Cerri,150L. Cerrito,75F. Cerutti,15

M. Cerv,30A. Cervelli,17S. A. Cetin,19b A. Chafaq,136a D. Chakraborty,107 I. Chalupkova,128 K. Chan,3 P. Chang,166 B. Chapleau,86J. D. Chapman,28D. Charfeddine,116D. G. Charlton,18 C. C. Chau,159 C. A. Chavez Barajas,150

(8)

S. Cheatham,86A. Chegwidden,89S. Chekanov,6S. V. Chekulaev,160aG. A. Chelkov,64M. A. Chelstowska,88C. Chen,63 H. Chen,25K. Chen,149L. Chen,33d,g S. Chen,33c X. Chen,146c Y. Chen,35H. C. Cheng,88Y. Cheng,31A. Cheplakov,64 R. Cherkaoui El Moursli,136eV. Chernyatin,25,aE. Cheu,7L. Chevalier,137V. Chiarella,47G. Chiefari,103a,103bJ. T. Childers,6

A. Chilingarov,71G. Chiodini,72a A. S. Chisholm,18R. T. Chislett,77A. Chitan,26aM. V. Chizhov,64 S. Chouridou,9 B. K. B. Chow,99D. Chromek-Burckhart,30M. L. Chu,152J. Chudoba,126 J. J. Chwastowski,39L. Chytka,114 G. Ciapetti,133a,133bA. K. Ciftci,4aR. Ciftci,4a D. Cinca,62V. Cindro,74A. Ciocio,15P. Cirkovic,13b Z. H. Citron,173 M. Citterio,90aM. Ciubancan,26aA. Clark,49P. J. Clark,46R. N. Clarke,15W. Cleland,124J. C. Clemens,84C. Clement,147a,147b

Y. Coadou,84M. Cobal,165a,165cA. Coccaro,139J. Cochran,63L. Coffey,23J. G. Cogan,144J. Coggeshall,166B. Cole,35 S. Cole,107A. P. Colijn,106J. Collot,55 T. Colombo,58cG. Colon,85 G. Compostella,100P. Conde Muiño,125a,125b

E. Coniavitis,167 M. C. Conidi,12S. H. Connell,146b I. A. Connelly,76S. M. Consonni,90a,90bV. Consorti,48 S. Constantinescu,26aC. Conta,120a,120bG. Conti,57F. Conventi,103a,hM. Cooke,15B. D. Cooper,77A. M. Cooper-Sarkar,119

N. J. Cooper-Smith,76K. Copic,15T. Cornelissen,176 M. Corradi,20a F. Corriveau,86,i A. Corso-Radu,164 A. Cortes-Gonzalez,12G. Cortiana,100 G. Costa,90a M. J. Costa,168 D. Costanzo,140D. Côté,8 G. Cottin,28G. Cowan,76 B. E. Cox,83K. Cranmer,109G. Cree,29S. Crépé-Renaudin,55F. Crescioli,79W. A. Cribbs,147a,147bM. Crispin Ortuzar,119

M. Cristinziani,21V. Croft,105G. Crosetti,37a,37bC.-M. Cuciuc,26a T. Cuhadar Donszelmann,140 J. Cummings,177 M. Curatolo,47C. Cuthbert,151H. Czirr,142 P. Czodrowski,3 Z. Czyczula,177S. D’Auria,53M. D’Onofrio,73 M. J. Da Cunha Sargedas De Sousa,125a,125bC. Da Via,83W. Dabrowski,38aA. Dafinca,119T. Dai,88O. Dale,14F. Dallaire,94

C. Dallapiccola,85 M. Dam,36A. C. Daniells,18M. Dano Hoffmann,137 V. Dao,105 G. Darbo,50aS. Darmora,8 J. A. Dassoulas,42A. Dattagupta,60W. Davey,21C. David,170T. Davidek,128E. Davies,119,dM. Davies,154O. Davignon,79

A. R. Davison,77P. Davison,77Y. Davygora,58aE. Dawe,143 I. Dawson,140 R. K. Daya-Ishmukhametova,85K. De,8 R. de Asmundis,103aS. De Castro,20a,20bS. De Cecco,79N. De Groot,105P. de Jong,106H. De la Torre,81F. De Lorenzi,63

L. De Nooij,106 D. De Pedis,133aA. De Salvo,133aU. De Sanctis,165a,165bA. De Santo,150J. B. De Vivie De Regie,116 W. J. Dearnaley,71R. Debbe,25C. Debenedetti,46B. Dechenaux,55D. V. Dedovich,64 I. Deigaard,106J. Del Peso,81

T. Del Prete,123a,123bF. Deliot,137C. M. Delitzsch,49M. Deliyergiyev,74A. Dell’Acqua,30L. Dell’Asta,22 M. Dell’Orso,123a,123bM. Della Pietra,103a,hD. della Volpe,49M. Delmastro,5P. A. Delsart,55C. Deluca,106S. Demers,177 M. Demichev,64A. Demilly,79S. P. Denisov,129D. Derendarz,39J. E. Derkaoui,136dF. Derue,79P. Dervan,73K. Desch,21

C. Deterre,42P. O. Deviveiros,106 A. Dewhurst,130S. Dhaliwal,106 A. Di Ciaccio,134a,134bL. Di Ciaccio,5 A. Di Domenico,133a,133bC. Di Donato,103a,103bA. Di Girolamo,30B. Di Girolamo,30A. Di Mattia,153B. Di Micco,135a,135b

R. Di Nardo,47 A. Di Simone,48R. Di Sipio,20a,20bD. Di Valentino,29M. A. Diaz,32a E. B. Diehl,88 J. Dietrich,42 T. A. Dietzsch,58a S. Diglio,84A. Dimitrievska,13aJ. Dingfelder,21C. Dionisi,133a,133b P. Dita,26aS. Dita,26a F. Dittus,30 F. Djama,84T. Djobava,51bM. A. B. do Vale,24cA. Do Valle Wemans,125a,125gT. K. O. Doan,5D. Dobos,30C. Doglioni,49

T. Doherty,53T. Dohmae,156J. Dolejsi,128Z. Dolezal,128 B. A. Dolgoshein,97,a M. Donadelli,24d S. Donati,123a,123b P. Dondero,120a,120bJ. Donini,34J. Dopke,30A. Doria,103aM. T. Dova,70A. T. Doyle,53M. Dris,10J. Dubbert,88S. Dube,15

E. Dubreuil,34E. Duchovni,173 G. Duckeck,99O. A. Ducu,26a D. Duda,176A. Dudarev,30F. Dudziak,63L. Duflot,116 L. Duguid,76M. Dührssen,30M. Dunford,58a H. Duran Yildiz,4aM. Düren,52A. Durglishvili,51b M. Dwuznik,38a M. Dyndal,38aJ. Ebke,99W. Edson,2N. C. Edwards,46W. Ehrenfeld,21T. Eifert,144G. Eigen,14K. Einsweiler,15T. Ekelof,167

M. El Kacimi,136c M. Ellert,167 S. Elles,5F. Ellinghaus,82N. Ellis,30J. Elmsheuser,99M. Elsing,30D. Emeliyanov,130 Y. Enari,156O. C. Endner,82M. Endo,117R. Engelmann,149J. Erdmann,177A. Ereditato,17D. Eriksson,147aG. Ernis,176

J. Ernst,2 M. Ernst,25J. Ernwein,137 D. Errede,166S. Errede,166 E. Ertel,82M. Escalier,116 H. Esch,43C. Escobar,124 B. Esposito,47A. I. Etienvre,137E. Etzion,154H. Evans,60A. Ezhilov,122L. Fabbri,20a,20bG. Facini,31R. M. Fakhrutdinov,129 S. Falciano,133aR. J. Falla,77J. Faltova,128Y. Fang,33aM. Fanti,90a,90bA. Farbin,8A. Farilla,135aT. Farooque,12S. Farrell,164

S. M. Farrington,171 P. Farthouat,30 F. Fassi,168 P. Fassnacht,30 D. Fassouliotis,9 A. Favareto,50a,50bL. Fayard,116 P. Federic,145aO. L. Fedin,122,jW. Fedorko,169M. Fehling-Kaschek,48S. Feigl,30L. Feligioni,84C. Feng,33d E. J. Feng,6

H. Feng,88A. B. Fenyuk,129 S. Fernandez Perez,30S. Ferrag,53J. Ferrando,53A. Ferrari,167P. Ferrari,106 R. Ferrari,120a D. E. Ferreira de Lima,53A. Ferrer,168 D. Ferrere,49C. Ferretti,88A. Ferretto Parodi,50a,50bM. Fiascaris,31F. Fiedler,82 A. Filipčič,74M. Filipuzzi,42F. Filthaut,105M. Fincke-Keeler,170K. D. Finelli,151M. C. N. Fiolhais,125a,125cL. Fiorini,168 A. Firan,40J. Fischer,176W. C. Fisher,89E. A. Fitzgerald,23M. Flechl,48I. Fleck,142P. Fleischmann,88S. Fleischmann,176

G. T. Fletcher,140G. Fletcher,75T. Flick,176A. Floderus,80L. R. Flores Castillo,174,k A. C. Florez Bustos,160b M. J. Flowerdew,100 A. Formica,137A. Forti,83D. Fortin,160aD. Fournier,116 H. Fox,71S. Fracchia,12P. Francavilla,79

(9)

M. Franchini,20a,20b S. Franchino,30D. Francis,30M. Franklin,57S. Franz,61M. Fraternali,120a,120bS. T. French,28 C. Friedrich,42F. Friedrich,44 D. Froidevaux,30J. A. Frost,28C. Fukunaga,157 E. Fullana Torregrosa,82B. G. Fulsom,144

J. Fuster,168C. Gabaldon,55O. Gabizon,173 A. Gabrielli,20a,20bA. Gabrielli,133a,133bS. Gadatsch,106S. Gadomski,49 G. Gagliardi,50a,50bP. Gagnon,60C. Galea,105B. Galhardo,125a,125cE. J. Gallas,119V. Gallo,17B. J. Gallop,130P. Gallus,127 G. Galster,36K. K. Gan,110R. P. Gandrajula,62J. Gao,33b,gY. S. Gao,144,fF. M. Garay Walls,46F. Garberson,177C. García,168 J. E. García Navarro,168M. Garcia-Sciveres,15R. W. Gardner,31N. Garelli,144V. Garonne,30C. Gatti,47G. Gaudio,120a B. Gaur,142L. Gauthier,94P. Gauzzi,133a,133bI. L. Gavrilenko,95C. Gay,169G. Gaycken,21E. N. Gazis,10P. Ge,33dZ. Gecse,169

C. N. P. Gee,130 D. A. A. Geerts,106 Ch. Geich-Gimbel,21K. Gellerstedt,147a,147bC. Gemme,50a A. Gemmell,53 M. H. Genest,55S. Gentile,133a,133bM. George,54 S. George,76D. Gerbaudo,164A. Gershon,154H. Ghazlane,136b N. Ghodbane,34 B. Giacobbe,20a S. Giagu,133a,133bV. Giangiobbe,12P. Giannetti,123a,123bF. Gianotti,30B. Gibbard,25

S. M. Gibson,76M. Gilchriese,15 T. P. S. Gillam,28D. Gillberg,30 G. Gilles,34D. M. Gingrich,3,e N. Giokaris,9 M. P. Giordani,165a,165cR. Giordano,103a,103bF. M. Giorgi,20a F. M. Giorgi,16P. F. Giraud,137D. Giugni,90a C. Giuliani,48

M. Giulini,58bB. K. Gjelsten,118S. Gkaitatzis,155 I. Gkialas,155,lL. K. Gladilin,98C. Glasman,81J. Glatzer,30 P. C. F. Glaysher,46A. Glazov,42 G. L. Glonti,64M. Goblirsch-Kolb,100J. R. Goddard,75J. Godfrey,143J. Godlewski,30 C. Goeringer,82S. Goldfarb,88T. Golling,177D. Golubkov,129A. Gomes,125a,125b,125dL. S. Gomez Fajardo,42R. Gonçalo,125a

J. Goncalves Pinto Firmino Da Costa,137L. Gonella,21S. González de la Hoz,168G. Gonzalez Parra,12 M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49L. Goossens,30P. A. Gorbounov,96H. A. Gordon,25I. Gorelov,104 B. Gorini,30E. Gorini,72a,72bA. Gorišek,74E. Gornicki,39A. T. Goshaw,6C. Gössling,43M. I. Gostkin,64M. Gouighri,136a

D. Goujdami,136c M. P. Goulette,49A. G. Goussiou,139 C. Goy,5 S. Gozpinar,23H. M. X. Grabas,137 L. Graber,54 I. Grabowska-Bold,38a P. Grafström,20a,20b K-J. Grahn,42 J. Gramling,49E. Gramstad,118S. Grancagnolo,16V. Grassi,149 V. Gratchev,122H. M. Gray,30E. Graziani,135aO. G. Grebenyuk,122Z. D. Greenwood,78,mK. Gregersen,77I. M. Gregor,42 P. Grenier,144J. Griffiths,8 A. A. Grillo,138K. Grimm,71S. Grinstein,12,nPh. Gris,34Y. V. Grishkevich,98J.-F. Grivaz,116 J. P. Grohs,44 A. Grohsjean,42E. Gross,173J. Grosse-Knetter,54G. C. Grossi,134a,134bJ. Groth-Jensen,173Z. J. Grout,150 L. Guan,33bF. Guescini,49D. Guest,177O. Gueta,154C. Guicheney,34E. Guido,50a,50bT. Guillemin,116S. Guindon,2U. Gul,53 C. Gumpert,44J. Gunther,127J. Guo,35S. Gupta,119P. Gutierrez,112N. G. Gutierrez Ortiz,53C. Gutschow,77N. Guttman,154 C. Guyot,137C. Gwenlan,119 C. B. Gwilliam,73A. Haas,109 C. Haber,15H. K. Hadavand,8 N. Haddad,136eP. Haefner,21 S. Hageböck,21Z. Hajduk,39H. Hakobyan,178 M. Haleem,42 D. Hall,119G. Halladjian,89K. Hamacher,176P. Hamal,114 K. Hamano,170M. Hamer,54A. Hamilton,146aS. Hamilton,162P. G. Hamnett,42L. Han,33bK. Hanagaki,117K. Hanawa,156

M. Hance,15P. Hanke,58a R. Hanna,137 J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36K. Hara,161 A. S. Hard,174 T. Harenberg,176F. Hariri,116S. Harkusha,91D. Harper,88R. D. Harrington,46O. M. Harris,139P. F. Harrison,171F. Hartjes,106

S. Hasegawa,102Y. Hasegawa,141A. Hasib,112S. Hassani,137S. Haug,17M. Hauschild,30R. Hauser,89 M. Havranek,126 C. M. Hawkes,18R. J. Hawkings,30 A. D. Hawkins,80T. Hayashi,161 D. Hayden,89C. P. Hays,119H. S. Hayward,73

S. J. Haywood,130S. J. Head,18T. Heck,82 V. Hedberg,80L. Heelan,8 S. Heim,121 T. Heim,176B. Heinemann,15 L. Heinrich,109S. Heisterkamp,36 J. Hejbal,126L. Helary,22C. Heller,99M. Heller,30S. Hellman,147a,147bD. Hellmich,21

C. Helsens,30J. Henderson,119R. C. W. Henderson,71C. Hengler,42A. Henrichs,177 A. M. Henriques Correia,30 S. Henrot-Versille,116 C. Hensel,54G. H. Herbert,16Y. Hernández Jiménez,168 R. Herrberg-Schubert,16G. Herten,48 R. Hertenberger,99L. Hervas,30G. G. Hesketh,77 N. P. Hessey,106R. Hickling,75 E. Higón-Rodriguez,168E. Hill,170 J. C. Hill,28 K. H. Hiller,42S. Hillert,21S. J. Hillier,18I. Hinchliffe,15 E. Hines,121M. Hirose,158D. Hirschbuehl,176 J. Hobbs,149 N. Hod,106 M. C. Hodgkinson,140P. Hodgson,140 A. Hoecker,30M. R. Hoeferkamp,104J. Hoffman,40

D. Hoffmann,84J. I. Hofmann,58a M. Hohlfeld,82T. R. Holmes,15T. M. Hong,121 L. Hooft van Huysduynen,109 J-Y. Hostachy,55S. Hou,152A. Hoummada,136aJ. Howard,119J. Howarth,42M. Hrabovsky,114I. Hristova,16J. Hrivnac,116

T. Hryn’ova,5 P. J. Hsu,82S.-C. Hsu,139D. Hu,35X. Hu,25Y. Huang,42Z. Hubacek,30F. Hubaut,84F. Huegging,21 T. B. Huffman,119 E. W. Hughes,35G. Hughes,71M. Huhtinen,30T. A. Hülsing,82M. Hurwitz,15N. Huseynov,64,c J. Huston,89J. Huth,57G. Iacobucci,49G. Iakovidis,10I. Ibragimov,142L. Iconomidou-Fayard,116E. Ideal,177P. Iengo,103a O. Igonkina,106T. Iizawa,172Y. Ikegami,65K. Ikematsu,142M. Ikeno,65Y. Ilchenko,31,aaD. Iliadis,155N. Ilic,159Y. Inamaru,66

T. Ince,100 P. Ioannou,9M. Iodice,135a K. Iordanidou,9 V. Ippolito,57 A. Irles Quiles,168C. Isaksson,167M. Ishino,67 M. Ishitsuka,158R. Ishmukhametov,110 C. Issever,119S. Istin,19aJ. M. Iturbe Ponce,83R. Iuppa,134a,134bJ. Ivarsson,80 W. Iwanski,39H. Iwasaki,65J. M. Izen,41V. Izzo,103aB. Jackson,121M. Jackson,73P. Jackson,1 M. R. Jaekel,30V. Jain,2

(10)

J. Janssen,21M. Janus,171G. Jarlskog,80N. Javadov,64,cT. Javůrek,48L. Jeanty,15J. Jejelava,51a,oG.-Y. Jeng,151D. Jennens,87 P. Jenni,48,pJ. Jentzsch,43C. Jeske,171S. Jézéquel,5H. Ji,174W. Ji,82J. Jia,149Y. Jiang,33bM. Jimenez Belenguer,42S. Jin,33a A. Jinaru,26aO. Jinnouchi,158M. D. Joergensen,36K. E. Johansson,147aP. Johansson,140K. A. Johns,7K. Jon-And,147a,147b G. Jones,171R. W. L. Jones,71T. J. Jones,73J. Jongmanns,58aP. M. Jorge,125a,125bK. D. Joshi,83J. Jovicevic,148X. Ju,174 C. A. Jung,43R. M. Jungst,30P. Jussel,61A. Juste Rozas,12,n M. Kaci,168 A. Kaczmarska,39M. Kado,116H. Kagan,110 M. Kagan,144 E. Kajomovitz,45C. W. Kalderon,119S. Kama,40N. Kanaya,156 M. Kaneda,30S. Kaneti,28T. Kanno,158 V. A. Kantserov,97J. Kanzaki,65B. Kaplan,109A. Kapliy,31D. Kar,53K. Karakostas,10N. Karastathis,10M. Karnevskiy,82

S. N. Karpov,64K. Karthik,109V. Kartvelishvili,71A. N. Karyukhin,129 L. Kashif,174G. Kasieczka,58bR. D. Kass,110 A. Kastanas,14Y. Kataoka,156A. Katre,49J. Katzy,42V. Kaushik,7 K. Kawagoe,69T. Kawamoto,156 G. Kawamura,54 S. Kazama,156V. F. Kazanin,108M. Y. Kazarinov,64R. Keeler,170R. Kehoe,40M. Keil,54J. S. Keller,42J. J. Kempster,76

H. Keoshkerian,5 O. Kepka,126B. P. Kerševan,74S. Kersten,176K. Kessoku,156 J. Keung,159F. Khalil-zada,11 H. Khandanyan,147a,147bA. Khanov,113A. Khodinov,97A. Khomich,58a T. J. Khoo,28G. Khoriauli,21A. Khoroshilov,176

V. Khovanskiy,96E. Khramov,64 J. Khubua,51b H. Y. Kim,8 H. Kim,147a,147bS. H. Kim,161N. Kimura,172 O. Kind,16 B. T. King,73M. King,168R. S. B. King,119S. B. King,169J. Kirk,130A. E. Kiryunin,100T. Kishimoto,66D. Kisielewska,38a

F. Kiss,48T. Kitamura,66T. Kittelmann,124K. Kiuchi,161 E. Kladiva,145b M. Klein,73U. Klein,73 K. Kleinknecht,82 P. Klimek,147a,147bA. Klimentov,25R. Klingenberg,43J. A. Klinger,83T. Klioutchnikova,30P. F. Klok,105E.-E. Kluge,58a

P. Kluit,106S. Kluth,100E. Kneringer,61E. B. F. G. Knoops,84A. Knue,53T. Kobayashi,156 M. Kobel,44M. Kocian,144 P. Kodys,128 P. Koevesarki,21T. Koffas,29 E. Koffeman,106L. A. Kogan,119S. Kohlmann,176Z. Kohout,127T. Kohriki,65

T. Koi,144H. Kolanoski,16I. Koletsou,5 J. Koll,89A. A. Komar,95,a Y. Komori,156T. Kondo,65N. Kondrashova,42 K. Köneke,48A. C. König,105 S. König,82T. Kono,65,q R. Konoplich,109,rN. Konstantinidis,77 R. Kopeliansky,153 S. Koperny,38a L. Köpke,82A. K. Kopp,48K. Korcyl,39K. Kordas,155 A. Korn,77A. A. Korol,108,s I. Korolkov,12 E. V. Korolkova,140 V. A. Korotkov,129 O. Kortner,100S. Kortner,100V. V. Kostyukhin,21V. M. Kotov,64A. Kotwal,45

C. Kourkoumelis,9 V. Kouskoura,155 A. Koutsman,160aR. Kowalewski,170 T. Z. Kowalski,38a W. Kozanecki,137 A. S. Kozhin,129 V. Kral,127V. A. Kramarenko,98 G. Kramberger,74D. Krasnopevtsev,97 M. W. Krasny,79 A. Krasznahorkay,30J. K. Kraus,21A. Kravchenko,25S. Kreiss,109 M. Kretz,58c J. Kretzschmar,73K. Kreutzfeldt,52

P. Krieger,159 K. Kroeninger,54H. Kroha,100 J. Kroll,121 J. Kroseberg,21J. Krstic,13a U. Kruchonak,64H. Krüger,21 T. Kruker,17N. Krumnack,63Z. V. Krumshteyn,64A. Kruse,174M. C. Kruse,45M. Kruskal,22 T. Kubota,87S. Kuday,4a S. Kuehn,48A. Kugel,58cA. Kuhl,138T. Kuhl,42V. Kukhtin,64Y. Kulchitsky,91S. Kuleshov,32bM. Kuna,133a,133bJ. Kunkle,121

A. Kupco,126 H. Kurashige,66Y. A. Kurochkin,91 R. Kurumida,66 V. Kus,126 E. S. Kuwertz,148 M. Kuze,158J. Kvita,114 A. La Rosa,49L. La Rotonda,37a,37bC. Lacasta,168F. Lacava,133a,133bJ. Lacey,29H. Lacker,16D. Lacour,79V. R. Lacuesta,168 E. Ladygin,64R. Lafaye,5B. Laforge,79T. Lagouri,177S. Lai,48H. Laier,58aL. Lambourne,77S. Lammers,60C. L. Lampen,7 W. Lampl,7 E. Lançon,137U. Landgraf,48M. P. J. Landon,75V. S. Lang,58a C. Lange,42A. J. Lankford,164F. Lanni,25

K. Lantzsch,30S. Laplace,79C. Lapoire,21J. F. Laporte,137 T. Lari,90a M. Lassnig,30P. Laurelli,47W. Lavrijsen,15 A. T. Law,138 P. Laycock,73B. T. Le,55O. Le Dortz,79E. Le Guirriec,84E. Le Menedeu,12T. LeCompte,6 F. Ledroit-Guillon,55C. A. Lee,152H. Lee,106 J. S. H. Lee,117 S. C. Lee,152L. Lee,177 G. Lefebvre,79 M. Lefebvre,170 F. Legger,99 C. Leggett,15A. Lehan,73M. Lehmacher,21 G. Lehmann Miotto,30X. Lei,7W. A. Leight,29A. Leisos,155 A. G. Leister,177M. A. L. Leite,24dR. Leitner,128D. Lellouch,173B. Lemmer,54K. J. C. Leney,77T. Lenz,106G. Lenzen,176

B. Lenzi,30R. Leone,7K. Leonhardt,44S. Leontsinis,10C. Leroy,94 C. G. Lester,28C. M. Lester,121M. Levchenko,122 J. Levêque,5D. Levin,88L. J. Levinson,173M. Levy,18A. Lewis,119G. H. Lewis,109A. M. Leyko,21M. Leyton,41B. Li,33b,t B. Li,84H. Li,149H. L. Li,31L. Li,45L. Li,33eS. Li,45Y. Li,33c,uZ. Liang,138H. Liao,34B. Liberti,134aP. Lichard,30K. Lie,166

J. Liebal,21W. Liebig,14C. Limbach,21A. Limosani,87 S. C. Lin,152,v T. H. Lin,82F. Linde,106 B. E. Lindquist,149 J. T. Linnemann,89E. Lipeles,121A. Lipniacka,14M. Lisovyi,42T. M. Liss,166D. Lissauer,25A. Lister,169A. M. Litke,138 B. Liu,152D. Liu,152J. B. Liu,33bK. Liu,33b,wL. Liu,88M. Liu,45M. Liu,33bY. Liu,33bM. Livan,120a,120bS. S. A. Livermore,119

A. Lleres,55J. Llorente Merino,81S. L. Lloyd,75F. Lo Sterzo,152 E. Lobodzinska,42P. Loch,7 W. S. Lockman,138 T. Loddenkoetter,21F. K. Loebinger,83A. E. Loevschall-Jensen,36A. Loginov,177C. W. Loh,169T. Lohse,16K. Lohwasser,42

M. Lokajicek,126V. P. Lombardo,5 B. A. Long,22J. D. Long,88R. E. Long,71L. Lopes,125aD. Lopez Mateos,57 B. Lopez Paredes,140 I. Lopez Paz,12J. Lorenz,99N. Lorenzo Martinez,60M. Losada,163 P. Loscutoff,15 X. Lou,41 A. Lounis,116J. Love,6P. A. Love,71A. J. Lowe,144,fF. Lu,33aH. J. Lubatti,139C. Luci,133a,133bA. Lucotte,55F. Luehring,60 W. Lukas,61L. Luminari,133aO. Lundberg,147a,147bB. Lund-Jensen,148M. Lungwitz,82D. Lynn,25R. Lysak,126E. Lytken,80

(11)

H. Ma,25L. L. Ma,33d G. Maccarrone,47A. Macchiolo,100 J. Machado Miguens,125a,125bD. Macina,30D. Madaffari,84 R. Madar,48H. J. Maddocks,71W. F. Mader,44A. Madsen,167 M. Maeno,8 T. Maeno,25 E. Magradze,54K. Mahboubi,48

J. Mahlstedt,106S. Mahmoud,73C. Maiani,137C. Maidantchik,24a A. Maio,125a,125b,125dS. Majewski,115 Y. Makida,65 N. Makovec,116P. Mal,137,xB. Malaescu,79Pa. Malecki,39V. P. Maleev,122F. Malek,55U. Mallik,62D. Malon,6C. Malone,144

S. Maltezos,10V. M. Malyshev,108 S. Malyukov,30J. Mamuzic,13b B. Mandelli,30L. Mandelli,90a I. Mandić,74 R. Mandrysch,62J. Maneira,125a,125bA. Manfredini,100 L. Manhaes de Andrade Filho,24bJ. A. Manjarres Ramos,160b A. Mann,99P. M. Manning,138A. Manousakis-Katsikakis,9 B. Mansoulie,137 R. Mantifel,86L. Mapelli,30 L. March,168

J. F. Marchand,29G. Marchiori,79M. Marcisovsky,126 C. P. Marino,170M. Marjanovic,13a C. N. Marques,125a F. Marroquim,24aS. P. Marsden,83Z. Marshall,15L. F. Marti,17S. Marti-Garcia,168B. Martin,30B. Martin,89T. A. Martin,171 V. J. Martin,46B. Martin dit Latour,14H. Martinez,137M. Martinez,12,nS. Martin-Haugh,130A. C. Martyniuk,77M. Marx,139

F. Marzano,133aA. Marzin,30L. Masetti,82 T. Mashimo,156 R. Mashinistov,95 J. Masik,83A. L. Maslennikov,108 I. Massa,20a,20b N. Massol,5P. Mastrandrea,149 A. Mastroberardino,37a,37b T. Masubuchi,156 T. Matsushita,66P. Mättig,176

S. Mättig,42J. Mattmann,82J. Maurer,26aS. J. Maxfield,73D. A. Maximov,108,sR. Mazini,152L. Mazzaferro,134a,134b G. Mc Goldrick,159S. P. Mc Kee,88A. McCarn,88R. L. McCarthy,149T. G. McCarthy,29N. A. McCubbin,130 K. W. McFarlane,56,a J. A. Mcfayden,77G. Mchedlidze,54S. J. McMahon,130 R. A. McPherson,170,iA. Meade,85 J. Mechnich,106 M. Medinnis,42S. Meehan,31S. Mehlhase,36A. Mehta,73K. Meier,58a C. Meineck,99B. Meirose,80

C. Melachrinos,31 B. R. Mellado Garcia,146cF. Meloni,90a,90b A. Mengarelli,20a,20b S. Menke,100 E. Meoni,162 K. M. Mercurio,57S. Mergelmeyer,21N. Meric,137P. Mermod,49L. Merola,103a,103bC. Meroni,90a F. S. Merritt,31

H. Merritt,110 A. Messina,30,y J. Metcalfe,25A. S. Mete,164C. Meyer,82C. Meyer,31J-P. Meyer,137J. Meyer,30 R. P. Middleton,130S. Migas,73L. Mijović,21G. Mikenberg,173M. Mikestikova,126M. Mikuž,74D. W. Miller,31C. Mills,46 A. Milov,173D. A. Milstead,147a,147bD. Milstein,173A. A. Minaenko,129I. A. Minashvili,64A. I. Mincer,109B. Mindur,38a

M. Mineev,64Y. Ming,174 L. M. Mir,12G. Mirabelli,133aT. Mitani,172J. Mitrevski,99 V. A. Mitsou,168 S. Mitsui,65 A. Miucci,49P. S. Miyagawa,140J. U. Mjörnmark,80 T. Moa,147a,147bK. Mochizuki,84 V. Moeller,28S. Mohapatra,35

W. Mohr,48S. Molander,147a,147bR. Moles-Valls,168 K. Mönig,42C. Monini,55J. Monk,36E. Monnier,84 J. Montejo Berlingen,12F. Monticelli,70 S. Monzani,133a,133bR. W. Moore,3 A. Moraes,53N. Morange,62D. Moreno,82

M. Moreno Llácer,54 P. Morettini,50aM. Morgenstern,44M. Morii,57S. Moritz,82 A. K. Morley,148G. Mornacchi,30 J. D. Morris,75L. Morvaj,102H. G. Moser,100M. Mosidze,51bJ. Moss,110R. Mount,144E. Mountricha,25S. V. Mouraviev,95,a

E. J. W. Moyse,85S. Muanza,84R. D. Mudd,18F. Mueller,58a J. Mueller,124 K. Mueller,21T. Mueller,28T. Mueller,82 D. Muenstermann,49Y. Munwes,154 J. A. Murillo Quijada,18W. J. Murray,171,130H. Musheghyan,54E. Musto,153 A. G. Myagkov,129,z M. Myska,127 O. Nackenhorst,54J. Nadal,54K. Nagai,61R. Nagai,158 Y. Nagai,84K. Nagano,65 A. Nagarkar,110Y. Nagasaka,59M. Nagel,100A. M. Nairz,30Y. Nakahama,30K. Nakamura,65T. Nakamura,156I. Nakano,111 H. Namasivayam,41G. Nanava,21R. Narayan,58bT. Nattermann,21T. Naumann,42G. Navarro,163R. Nayyar,7H. A. Neal,88 P. Yu. Nechaeva,95T. J. Neep,83A. Negri,120a,120bG. Negri,30M. Negrini,20aS. Nektarijevic,49A. Nelson,164T. K. Nelson,144 S. Nemecek,126P. Nemethy,109A. A. Nepomuceno,24aM. Nessi,30,bbM. S. Neubauer,166M. Neumann,176R. M. Neves,109

P. Nevski,25P. R. Newman,18D. H. Nguyen,6 R. B. Nickerson,119R. Nicolaidou,137 B. Nicquevert,30J. Nielsen,138 N. Nikiforou,35A. Nikiforov,16V. Nikolaenko,129,z I. Nikolic-Audit,79K. Nikolics,49K. Nikolopoulos,18P. Nilsson,8 Y. Ninomiya,156 A. Nisati,133aR. Nisius,100 T. Nobe,158 L. Nodulman,6 M. Nomachi,117I. Nomidis,155S. Norberg,112 M. Nordberg,30S. Nowak,100M. Nozaki,65L. Nozka,114K. Ntekas,10G. Nunes Hanninger,87T. Nunnemann,99E. Nurse,77 F. Nuti,87B. J. O’Brien,46F. O’grady,7 D. C. O’Neil,143V. O’Shea,53F. G. Oakham,29,e H. Oberlack,100T. Obermann,21 J. Ocariz,79A. Ochi,66M. I. Ochoa,77S. Oda,69S. Odaka,65H. Ogren,60A. Oh,83S. H. Oh,45C. C. Ohm,30H. Ohman,167

T. Ohshima,102W. Okamura,117 H. Okawa,25Y. Okumura,31T. Okuyama,156A. Olariu,26a A. G. Olchevski,64 S. A. Olivares Pino,46D. Oliveira Damazio,25E. Oliver Garcia,168A. Olszewski,39 J. Olszowska,39A. Onofre,125a,125e P. U. E. Onyisi,31,aaC. J. Oram,160aM. J. Oreglia,31Y. Oren,154D. Orestano,135a,135bN. Orlando,72a,72bC. Oropeza Barrera,53

R. S. Orr,159B. Osculati,50a,50bR. Ospanov,121 G. Otero y Garzon,27H. Otono,69M. Ouchrif,136d E. A. Ouellette,170 F. Ould-Saada,118A. Ouraou,137K. P. Oussoren,106Q. Ouyang,33aA. Ovcharova,15M. Owen,83V. E. Ozcan,19aN. Ozturk,8

K. Pachal,119 A. Pacheco Pages,12C. Padilla Aranda,12M. Pagáčová,48S. Pagan Griso,15 E. Paganis,140C. Pahl,100 F. Paige,25P. Pais,85K. Pajchel,118G. Palacino,160bS. Palestini,30M. Palka,38bD. Pallin,34A. Palma,125a,125bJ. D. Palmer,18

Y. B. Pan,174E. Panagiotopoulou,10J. G. Panduro Vazquez,76P. Pani,106 N. Panikashvili,88S. Panitkin,25D. Pantea,26a L. Paolozzi,134a,134bTh. D. Papadopoulou,10K. Papageorgiou,155,lA. Paramonov,6D. Paredes Hernandez,34M. A. Parker,28

(12)

F. Parodi,50a,50b J. A. Parsons,35U. Parzefall,48E. Pasqualucci,133aS. Passaggio,50a A. Passeri,135aF. Pastore,135a,135b,a Fr. Pastore,76G. Pásztor,29S. Pataraia,176N. D. Patel,151 J. R. Pater,83S. Patricelli,103a,103bT. Pauly,30J. Pearce,170 M. Pedersen,118 S. Pedraza Lopez,168R. Pedro,125a,125bS. V. Peleganchuk,108D. Pelikan,167 H. Peng,33bB. Penning,31

J. Penwell,60D. V. Perepelitsa,25E. Perez Codina,160aM. T. Pérez García-Estañ,168V. Perez Reale,35 L. Perini,90a,90b H. Pernegger,30R. Perrino,72a R. Peschke,42V. D. Peshekhonov,64K. Peters,30R. F. Y. Peters,83 B. A. Petersen,30

T. C. Petersen,36 E. Petit,42A. Petridis,147a,147bC. Petridou,155 E. Petrolo,133aF. Petrucci,135a,135b M. Petteni,143 N. E. Pettersson,158 R. Pezoa,32bP. W. Phillips,130G. Piacquadio,144 E. Pianori,171 A. Picazio,49E. Piccaro,75

M. Piccinini,20a,20b R. Piegaia,27D. T. Pignotti,110J. E. Pilcher,31A. D. Pilkington,77J. Pina,125a,125b,125d M. Pinamonti,165a,165c,ccA. Pinder,119 J. L. Pinfold,3 A. Pingel,36B. Pinto,125aS. Pires,79M. Pitt,173 C. Pizio,90a,90b L. Plazak,145aM.-A. Pleier,25V. Pleskot,128E. Plotnikova,64P. Plucinski,147a,147bS. Poddar,58aF. Podlyski,34R. Poettgen,82

L. Poggioli,116 D. Pohl,21M. Pohl,49G. Polesello,120aA. Policicchio,37a,37bR. Polifka,159A. Polini,20a C. S. Pollard,45 V. Polychronakos,25K. Pommès,30L. Pontecorvo,133aB. G. Pope,89G. A. Popeneciu,26bD. S. Popovic,13aA. Poppleton,30

X. Portell Bueso,12G. E. Pospelov,100S. Pospisil,127K. Potamianos,15I. N. Potrap,64C. J. Potter,150 C. T. Potter,115 G. Poulard,30J. Poveda,60V. Pozdnyakov,64P. Pralavorio,84A. Pranko,15S. Prasad,30R. Pravahan,8S. Prell,63D. Price,83 J. Price,73L. E. Price,6D. Prieur,124M. Primavera,72a M. Proissl,46K. Prokofiev,47F. Prokoshin,32b E. Protopapadaki,137

S. Protopopescu,25J. Proudfoot,6 M. Przybycien,38a H. Przysiezniak,5 E. Ptacek,115 E. Pueschel,85D. Puldon,149 M. Purohit,25,dd P. Puzo,116J. Qian,88G. Qin,53Y. Qin,83A. Quadt,54D. R. Quarrie,15W. B. Quayle,165a,165b M. Queitsch-Maitland,83D. Quilty,53A. Qureshi,160b V. Radeka,25V. Radescu,42S. K. Radhakrishnan,149P. Radloff,115 P. Rados,87F. Ragusa,90a,90bG. Rahal,179S. Rajagopalan,25M. Rammensee,30A. S. Randle-Conde,40C. Rangel-Smith,167

K. Rao,164 F. Rauscher,99T. C. Rave,48T. Ravenscroft,53M. Raymond,30A. L. Read,118 N. P. Readioff,73 D. M. Rebuzzi,120a,120bA. Redelbach,175G. Redlinger,25R. Reece,138K. Reeves,41L. Rehnisch,16H. Reisin,27M. Relich,164 C. Rembser,30H. Ren,33aZ. L. Ren,152A. Renaud,116M. Rescigno,133aS. Resconi,90aO. L. Rezanova,108,sP. Reznicek,128 R. Rezvani,94R. Richter,100M. Ridel,79P. Rieck,16 J. Rieger,54M. Rijssenbeek,149A. Rimoldi,120a,120bL. Rinaldi,20a

E. Ritsch,61 I. Riu,12F. Rizatdinova,113E. Rizvi,75S. H. Robertson,86,iA. Robichaud-Veronneau,86D. Robinson,28 J. E. M. Robinson,83A. Robson,53C. Roda,123a,123bL. Rodrigues,30S. Roe,30O. Røhne,118S. Rolli,162A. Romaniouk,97 M. Romano,20a,20bG. Romeo,27E. Romero Adam,168N. Rompotis,139 L. Roos,79E. Ros,168S. Rosati,133aK. Rosbach,49

M. Rose,76P. L. Rosendahl,14 O. Rosenthal,142V. Rossetti,147a,147bE. Rossi,103a,103bL. P. Rossi,50aR. Rosten,139 M. Rotaru,26a I. Roth,173 J. Rothberg,139D. Rousseau,116C. R. Royon,137 A. Rozanov,84Y. Rozen,153X. Ruan,146c F. Rubbo,12I. Rubinskiy,42V. I. Rud,98 C. Rudolph,44M. S. Rudolph,159 F. Rühr,48A. Ruiz-Martinez,30Z. Rurikova,48

N. A. Rusakovich,64A. Ruschke,99 J. P. Rutherfoord,7N. Ruthmann,48Y. F. Ryabov,122M. Rybar,128 G. Rybkin,116 N. C. Ryder,119 A. F. Saavedra,151S. Sacerdoti,27A. Saddique,3 I. Sadeh,154 H. F-W. Sadrozinski,138R. Sadykov,64 F. Safai Tehrani,133aH. Sakamoto,156Y. Sakurai,172 G. Salamanna,75A. Salamon,134aM. Saleem,112 D. Salek,106 P. H. Sales De Bruin,139D. Salihagic,100A. Salnikov,144 J. Salt,168 B. M. Salvachua Ferrando,6 D. Salvatore,37a,37b

F. Salvatore,150A. Salvucci,105 A. Salzburger,30D. Sampsonidis,155 A. Sanchez,103a,103bJ. Sánchez,168

V. Sanchez Martinez,168H. Sandaker,14R. L. Sandbach,75H. G. Sander,82M. P. Sanders,99M. Sandhoff,176T. Sandoval,28 C. Sandoval,163 R. Sandstroem,100 D. P. C. Sankey,130A. Sansoni,47C. Santoni,34R. Santonico,134a,134bH. Santos,125a

I. Santoyo Castillo,150 K. Sapp,124A. Sapronov,64J. G. Saraiva,125a,125dB. Sarrazin,21G. Sartisohn,176O. Sasaki,65 Y. Sasaki,156G. Sauvage,5,aE. Sauvan,5P. Savard,159,eD. O. Savu,30C. Sawyer,119L. Sawyer,78,mD. H. Saxon,53J. Saxon,121

C. Sbarra,20a A. Sbrizzi,3 T. Scanlon,77D. A. Scannicchio,164M. Scarcella,151 J. Schaarschmidt,173 P. Schacht,100 D. Schaefer,121R. Schaefer,42S. Schaepe,21S. Schaetzel,58bU. Schäfer,82A. C. Schaffer,116 D. Schaile,99 R. D. Schamberger,149V. Scharf,58aV. A. Schegelsky,122D. Scheirich,128M. Schernau,164M. I. Scherzer,35C. Schiavi,50a,50b J. Schieck,99C. Schillo,48M. Schioppa,37a,37bS. Schlenker,30E. Schmidt,48K. Schmieden,30C. Schmitt,82C. Schmitt,99 S. Schmitt,58bB. Schneider,17Y. J. Schnellbach,73U. Schnoor,44L. Schoeffel,137A. Schoening,58b B. D. Schoenrock,89 A. L. S. Schorlemmer,54M. Schott,82D. Schouten,160aJ. Schovancova,25S. Schramm,159M. Schreyer,175C. Schroeder,82 N. Schuh,82M. J. Schultens,21H.-C. Schultz-Coulon,58aH. Schulz,16M. Schumacher,48B. A. Schumm,138Ph. Schune,137 C. Schwanenberger,83A. Schwartzman,144 Ph. Schwegler,100 Ph. Schwemling,137R. Schwienhorst,89J. Schwindling,137 T. Schwindt,21M. Schwoerer,5 F. G. Sciacca,17E. Scifo,116G. Sciolla,23W. G. Scott,130F. Scuri,123a,123bF. Scutti,21 J. Searcy,88G. Sedov,42E. Sedykh,122 S. C. Seidel,104 A. Seiden,138F. Seifert,127 J. M. Seixas,24a G. Sekhniaidze,103a S. J. Sekula,40K. E. Selbach,46D. M. Seliverstov,122,aG. Sellers,73N. Semprini-Cesari,20a,20bC. Serfon,30L. Serin,116

(13)

L. Serkin,54T. Serre,84R. Seuster,160aH. Severini,112F. Sforza,100A. Sfyrla,30E. Shabalina,54M. Shamim,115L. Y. Shan,33a R. Shang,166J. T. Shank,22Q. T. Shao,87M. Shapiro,15P. B. Shatalov,96K. Shaw,165a,165bC. Y. Shehu,150P. Sherwood,77 L. Shi,152,eeS. Shimizu,66C. O. Shimmin,164M. Shimojima,101M. Shiyakova,64A. Shmeleva,95M. J. Shochet,31D. Short,119 S. Shrestha,63E. Shulga,97M. A. Shupe,7S. Shushkevich,42P. Sicho,126O. Sidiropoulou,155D. Sidorov,113A. Sidoti,133a F. Siegert,44 Dj. Sijacki,13aJ. Silva,125a,125dY. Silver,154D. Silverstein,144S. B. Silverstein,147aV. Simak,127O. Simard,5 Lj. Simic,13aS. Simion,116E. Simioni,82B. Simmons,77R. Simoniello,90a,90bM. Simonyan,36P. Sinervo,159N. B. Sinev,115

V. Sipica,142 G. Siragusa,175 A. Sircar,78A. N. Sisakyan,64,a S. Yu. Sivoklokov,98 J. Sjölin,147a,147bT. B. Sjursen,14 H. P. Skottowe,57K. Yu. Skovpen,108P. Skubic,112M. Slater,18T. Slavicek,127K. Sliwa,162V. Smakhtin,173B. H. Smart,46

L. Smestad,14S. Yu. Smirnov,97Y. Smirnov,97L. N. Smirnova,98,ff O. Smirnova,80K. M. Smith,53M. Smizanska,71 K. Smolek,127A. A. Snesarev,95G. Snidero,75S. Snyder,25R. Sobie,170,iF. Socher,44A. Soffer,154 D. A. Soh,152,ee C. A. Solans,30M. Solar,127J. Solc,127E. Yu. Soldatov,97U. Soldevila,168E. Solfaroli Camillocci,133a,133bA. A. Solodkov,129 A. Soloshenko,64O. V. Solovyanov,129V. Solovyev,122P. Sommer,48H. Y. Song,33bN. Soni,1A. Sood,15A. Sopczak,127 B. Sopko,127 V. Sopko,127 V. Sorin,12M. Sosebee,8 R. Soualah,165a,165cP. Soueid,94A. M. Soukharev,108D. South,42 S. Spagnolo,72a,72bF. Spanò,76W. R. Spearman,57R. Spighi,20a G. Spigo,30M. Spousta,128T. Spreitzer,159B. Spurlock,8

R. D. St. Denis,53,a S. Staerz,44J. Stahlman,121 R. Stamen,58a E. Stanecka,39R. W. Stanek,6 C. Stanescu,135a M. Stanescu-Bellu,42M. M. Stanitzki,42S. Stapnes,118E. A. Starchenko,129J. Stark,55P. Staroba,126P. Starovoitov,42 R. Staszewski,39P. Stavina,145a,aP. Steinberg,25B. Stelzer,143H. J. Stelzer,30O. Stelzer-Chilton,160aH. Stenzel,52S. Stern,100 G. A. Stewart,53J. A. Stillings,21M. C. Stockton,86M. Stoebe,86G. Stoicea,26aP. Stolte,54S. Stonjek,100A. R. Stradling,8 A. Straessner,44M. E. Stramaglia,17J. Strandberg,148S. Strandberg,147a,147bA. Strandlie,118 E. Strauss,144 M. Strauss,112 P. Strizenec,145b R. Ströhmer,175D. M. Strom,115R. Stroynowski,40S. A. Stucci,17B. Stugu,14N. A. Styles,42D. Su,144

J. Su,124HS. Subramania,3 R. Subramaniam,78A. Succurro,12Y. Sugaya,117 C. Suhr,107 M. Suk,127V. V. Sulin,95 S. Sultansoy,4cT. Sumida,67X. Sun,33aJ. E. Sundermann,48K. Suruliz,140G. Susinno,37a,37bM. R. Sutton,150Y. Suzuki,65

M. Svatos,126S. Swedish,169 M. Swiatlowski,144I. Sykora,145aT. Sykora,128D. Ta,89K. Tackmann,42J. Taenzer,159 A. Taffard,164R. Tafirout,160a N. Taiblum,154Y. Takahashi,102H. Takai,25R. Takashima,68 H. Takeda,66T. Takeshita,141

Y. Takubo,65M. Talby,84 A. A. Talyshev,108,sJ. Y. C. Tam,175 K. G. Tan,87J. Tanaka,156 R. Tanaka,116S. Tanaka,132 S. Tanaka,65A. J. Tanasijczuk,143K. Tani,66N. Tannoury,21S. Tapprogge,82S. Tarem,153F. Tarrade,29G. F. Tartarelli,90a

P. Tas,128M. Tasevsky,126T. Tashiro,67E. Tassi,37a,37bA. Tavares Delgado,125a,125bY. Tayalati,136d F. E. Taylor,93 G. N. Taylor,87W. Taylor,160bF. A. Teischinger,30M. Teixeira Dias Castanheira,75P. Teixeira-Dias,76K. K. Temming,48 H. Ten Kate,30P. K. Teng,152J. J. Teoh,117S. Terada,65K. Terashi,156J. Terron,81S. Terzo,100M. Testa,47R. J. Teuscher,159,i J. Therhaag,21T. Theveneaux-Pelzer,34J. P. Thomas,18 J. Thomas-Wilsker,76 E. N. Thompson,35P. D. Thompson,18 P. D. Thompson,159A. S. Thompson,53L. A. Thomsen,36E. Thomson,121M. Thomson,28W. M. Thong,87R. P. Thun,88,a F. Tian,35M. J. Tibbetts,15V. O. Tikhomirov,95,gg Yu. A. Tikhonov,108,sS. Timoshenko,97E. Tiouchichine,84P. Tipton,177 S. Tisserant,84T. Todorov,5S. Todorova-Nova,128B. Toggerson,7J. Tojo,69S. Tokár,145aK. Tokushuku,65K. Tollefson,89 L. Tomlinson,83M. Tomoto,102L. Tompkins,31K. Toms,104N. D. Topilin,64E. Torrence,115H. Torres,143E. Torró Pastor,168 J. Toth,84,hh F. Touchard,84D. R. Tovey,140 H. L. Tran,116 T. Trefzger,175 L. Tremblet,30A. Tricoli,30I. M. Trigger,160a S. Trincaz-Duvoid,79M. F. Tripiana,70N. Triplett,25W. Trischuk,159B. Trocmé,55C. Troncon,90aM. Trottier-McDonald,143

M. Trovatelli,135a,135bP. True,89M. Trzebinski,39A. Trzupek,39 C. Tsarouchas,30J. C-L. Tseng,119 P. V. Tsiareshka,91 D. Tsionou,137G. Tsipolitis,10N. Tsirintanis,9S. Tsiskaridze,12V. Tsiskaridze,48E. G. Tskhadadze,51a I. I. Tsukerman,96

V. Tsulaia,15 S. Tsuno,65D. Tsybychev,149A. Tudorache,26a V. Tudorache,26a A. N. Tuna,121 S. A. Tupputi,20a,20b S. Turchikhin,98,ffD. Turecek,127I. Turk Cakir,4dR. Turra,90a,90bP. M. Tuts,35A. Tykhonov,74M. Tylmad,147a,147b M. Tyndel,130K. Uchida,21I. Ueda,156R. Ueno,29M. Ughetto,84M. Ugland,14M. Uhlenbrock,21F. Ukegawa,161G. Unal,30 A. Undrus,25G. Unel,164F. C. Ungaro,48Y. Unno,65D. Urbaniec,35P. Urquijo,87G. Usai,8 A. Usanova,61L. Vacavant,84

V. Vacek,127 B. Vachon,86 N. Valencic,106S. Valentinetti,20a,20bA. Valero,168L. Valery,34S. Valkar,128

E. Valladolid Gallego,168S. Vallecorsa,49J. A. Valls Ferrer,168P. C. Van Der Deijl,106R. van der Geer,106H. van der Graaf,106 R. Van Der Leeuw,106 D. van der Ster,30N. van Eldik,30 P. van Gemmeren,6 J. Van Nieuwkoop,143 I. van Vulpen,106 M. C. van Woerden,30M. Vanadia,133a,133bW. Vandelli,30 R. Vanguri,121A. Vaniachine,6 P. Vankov,42F. Vannucci,79 G. Vardanyan,178 R. Vari,133a E. W. Varnes,7T. Varol,85D. Varouchas,79A. Vartapetian,8 K. E. Varvell,151 F. Vazeille,34

T. Vazquez Schroeder,54 J. Veatch,7 F. Veloso,125a,125cS. Veneziano,133aA. Ventura,72a,72b D. Ventura,85M. Venturi,170 N. Venturi,159 A. Venturini,23V. Vercesi,120aM. Verducci,139W. Verkerke,106 J. C. Vermeulen,106 A. Vest,44

(14)

M. C. Vetterli,143,eO. Viazlo,80I. Vichou,166T. Vickey,146c,iiO. E. Vickey Boeriu,146cG. H. A. Viehhauser,119S. Viel,169 R. Vigne,30M. Villa,20a,20bM. Villaplana Perez,90a,90b E. Vilucchi,47M. G. Vincter,29V. B. Vinogradov,64J. Virzi,15

I. Vivarelli,150 F. Vives Vaque,3 S. Vlachos,10D. Vladoiu,99M. Vlasak,127A. Vogel,21M. Vogel,32a P. Vokac,127 G. Volpi,123a,123bM. Volpi,87H. von der Schmitt,100H. von Radziewski,48E. von Toerne,21V. Vorobel,128 K. Vorobev,97

M. Vos,168 R. Voss,30J. H. Vossebeld,73N. Vranjes,137 M. Vranjes Milosavljevic,106V. Vrba,126M. Vreeswijk,106 T. Vu Anh,48R. Vuillermet,30I. Vukotic,31Z. Vykydal,127 P. Wagner,21W. Wagner,176 H. Wahlberg,70S. Wahrmund,44 J. Wakabayashi,102J. Walder,71R. Walker,99W. Walkowiak,142R. Wall,177P. Waller,73B. Walsh,177C. Wang,152,jjC. Wang,45 F. Wang,174H. Wang,15H. Wang,40J. Wang,42J. Wang,33aK. Wang,86R. Wang,104S. M. Wang,152T. Wang,21X. Wang,177 C. Wanotayaroj,115A. Warburton,86C. P. Ward,28D. R. Wardrope,77M. Warsinsky,48 A. Washbrook,46C. Wasicki,42 I. Watanabe,66P. M. Watkins,18A. T. Watson,18I. J. Watson,151M. F. Watson,18G. Watts,139S. Watts,83B. M. Waugh,77 S. Webb,83M. S. Weber,17S. W. Weber,175J. S. Webster,31A. R. Weidberg,119P. Weigell,100B. Weinert,60J. Weingarten,54 C. Weiser,48H. Weits,106P. S. Wells,30T. Wenaus,25D. Wendland,16Z. Weng,152,eeT. Wengler,30S. Wenig,30N. Wermes,21 M. Werner,48P. Werner,30M. Wessels,58aJ. Wetter,162K. Whalen,29A. White,8M. J. White,1R. White,32bS. White,123a,123b D. Whiteson,164D. Wicke,176 F. J. Wickens,130 W. Wiedenmann,174M. Wielers,130 P. Wienemann,21C. Wiglesworth,36 L. A. M. Wiik-Fuchs,21P. A. Wijeratne,77A. Wildauer,100M. A. Wildt,42,kkH. G. Wilkens,30J. Z. Will,99H. H. Williams,121 S. Williams,28C. Willis,89S. Willocq,85A. Wilson,88J. A. Wilson,18I. Wingerter-Seez,5F. Winklmeier,115B. T. Winter,21

M. Wittgen,144 T. Wittig,43J. Wittkowski,99S. J. Wollstadt,82M. W. Wolter,39H. Wolters,125a,125cB. K. Wosiek,39 J. Wotschack,30M. J. Woudstra,83K. W. Wozniak,39M. Wright,53M. Wu,55S. L. Wu,174X. Wu,49Y. Wu,88E. Wulf,35 T. R. Wyatt,83B. M. Wynne,46S. Xella,36M. Xiao,137D. Xu,33aL. Xu,33b,llB. Yabsley,151S. Yacoob,146b,mmM. Yamada,65 H. Yamaguchi,156Y. Yamaguchi,156A. Yamamoto,65K. Yamamoto,63S. Yamamoto,156T. Yamamura,156T. Yamanaka,156 K. Yamauchi,102Y. Yamazaki,66Z. Yan,22H. Yang,33e H. Yang,174 U. K. Yang,83 Y. Yang,110S. Yanush,92L. Yao,33a W-M. Yao,15Y. Yasu,65 E. Yatsenko,42K. H. Yau Wong,21J. Ye,40S. Ye,25A. L. Yen,57E. Yildirim,42M. Yilmaz,4b R. Yoosoofmiya,124K. Yorita,172R. Yoshida,6 K. Yoshihara,156C. Young,144 C. J. S. Young,30S. Youssef,22D. R. Yu,15

J. Yu,8 J. M. Yu,88J. Yu,113L. Yuan,66A. Yurkewicz,107 B. Zabinski,39R. Zaidan,62 A. M. Zaitsev,129,z A. Zaman,149 S. Zambito,23L. Zanello,133a,133bD. Zanzi,100 C. Zeitnitz,176M. Zeman,127A. Zemla,38a K. Zengel,23O. Zenin,129 T.Ženiš,145aD. Zerwas,116G. Zevi della Porta,57D. Zhang,88F. Zhang,174H. Zhang,89J. Zhang,6L. Zhang,152X. Zhang,33d Z. Zhang,116Z. Zhao,33bA. Zhemchugov,64J. Zhong,119B. Zhou,88L. Zhou,35N. Zhou,164C. G. Zhu,33dH. Zhu,33aJ. Zhu,88 Y. Zhu,33bX. Zhuang,33aK. Zhukov,95A. Zibell,175D. Zieminska,60N. I. Zimine,64C. Zimmermann,82R. Zimmermann,21 S. Zimmermann,21S. Zimmermann,48Z. Zinonos,54M. Ziolkowski,142G. Zobernig,174A. Zoccoli,20a,20bM. zur Nedden,16

G. Zurzolo,103a,103b V. Zutshi107 and L. Zwalinski30 (ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia 2

Physics Department, SUNY Albany, Albany, NY, USA

3Department of Physics, University of Alberta, Edmonton AB, Canada 4a

Department of Physics, Ankara University, Ankara, Turkey

4bDepartment of Physics, Gazi University, Ankara, Turkey 4c

Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey

4dTurkish Atomic Energy Authority, Ankara, Turkey 5

LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

6High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA 7

Department of Physics, University of Arizona, Tucson, AZ, USA

8Department of Physics, The University of Texas at Arlington, Arlington, TX, USA 9

Physics Department, University of Athens, Athens, Greece

10Physics Department, National Technical University of Athens, Zografou, Greece 11

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

12Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain 13a

Institute of Physics, University of Belgrade, Belgrade, Serbia

13bVinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia 14

Department for Physics and Technology, University of Bergen, Bergen, Norway

15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA 16

Figure

FIG. 1 (color online). The m jj distribution for events passing the inclusive region selections except for the m jj selection indicated by the dashed line
FIG. 3 (color online). Limits on ( α 4 , α 5 ). Points outside of the solid light ellipse are excluded by the data at 95% confidence level (C.L.)

References

Related documents

Undersökningen visade även att pedagoger inte har några riktigt fasta metoder för flerspråkiga elevernas språkutveckling, de anser att det är väldigt individuellt från elev

Objectives: To demonstrate the feasibility of GafChromic ® XR-QA2 (ISP Corp., Wayne, NJ) as a dosemeter when performing measurements of the effective dose from three cone beam CT

Att använda språket i alla skolans ämne och i olika sammanhang är en avgörande aspekt för eleverna språkutveckling anser många läraren när de berättade om nyanländas

Cummins fyrdomänmodell (figur 1) visar hur läraren kan arbeta med flerspråkiga elever. Läraren kan utmana och stödja eleverna för att hjälpa dem att lära sig

Det är inte lätt att sluta röka bland annat på grund av abstinensbesvären (Anthenelli 2005; von Bothmer 2010) men om sjuksköterskan lär sig behärska MI, har hon ett

(2014) agree that the usage of digital literature in the classroom can become a challenging matter due to aspects such as the digital can cause distractions in students'

Eftersom majoriteten av eleverna med svenska som andraspråk samt nyanlända elever har svårigheter med det svenska språket, tar specialpedagog och andra lärare hjälp av

Om skolan inte involverar föräldrar med annat modersmål än svenska hur kan de då hjälpa sina barn i skolan när barnen har svårigheter i till exempel matematik.. Känner