• No results found

List of Papers

N/A
N/A
Protected

Academic year: 2021

Share "List of Papers "

Copied!
74
0
0

Loading.... (view fulltext now)

Full text

(1)

Indoor air quality and chemcial emissions of organic compounds in newly bui It low-energy preschools

(2)
(3)
(4)
(5)

Abstract

Josefin Persson (2018): Indoor air quality and chemical emissions of organic compounds in newly built low-energy preschools. Örebro Studies in

Chemistry 22.

In 2010, the European Union (EU) introduced the “Energy performance of Buildings”

directive, which stipulates that all new buildings must reduce their energy consumption by constructing low-energy buildings. This could be achieved by constructing airtight and energy efficient envelopes with functional building materials such as age-resistant plastic films, insulation and different sealing products. However, functional building materials are known to contain a large amount of man-made chemicals that could be released to the indoor environment and might cause health issues among the occupants.

In view of this, the indoor air quality (IAQ) and contamination of selected organic compounds were investigated in newly built low-energy preschools in order to evaluate whether the new building concept, low-energy housing, can have a negative effect to the indoor environment and the occupants. The IAQ was satisfactory in all preschools and the indoor air chemical mixture was heavily influenced by the mechanical heat recovery ventilation system. Furthermore, the levels of formaldehyde, total volatile or- ganic compounds (TVOC), brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) were lower in the environmental certified low-energy pre- schools compared to those preschools without environmental certification. Thus, a conscious choice of building materials, interior decoration and chemical products can reduce the occurrence and levels of hazardous organic compounds. Emission tests showed that collected building materials only contributed to a small fraction of the measured indoor chemical levels. Furthermore, preliminary exposure risk estimation of the indoor chemical mixture showed potential health risk from some individual com- pounds to the occupants, but further investigations are needed for a more complete risk assessment. In conclusion, the comprehensive and unique study design presented in this thesis will contribute to the ongoing work towards a non-toxic environment, further development of the low-energy building concept and the legislative movement on limit values for chemical emissions from building materials.

Keywords: Indoor air quality; volatile organic compounds; brominated flame retardants; organophosphate flame retardants; low-energy preschools, environ- mental certification; indoor dust; surface wipes

Josefin Persson, School of Science and Technology

Örebro University, SE-701 82 Örebro, Sweden, josefin.persson@oru.se

(6)
(7)

List of Papers

This thesis is based on the following papers, which hereafter will be re- ferred by their Roman numerals.

Paper I Persson, J., Wang, T., Hagberg, J. 2018. Indoor air quality of newly built low-energy preschools – are chemical emis- sions reduced in houses with eco-labelled building materi- als? Indoor and Built Environment, 28, 1-14.

Paper II Persson, J., Wang, T., Hagberg, J. Temporal trends of decabromodiphenyl ether and emerging brominated flame retardants in dust, air and window surfaces of newly built low-energy preschools. Submitted.

Paper III Persson, J., Wang, T., Hagberg, J. 2018. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools. Sci- ence of the Total Environment, 628-629, 159-168.

Paper IV Persson, J., Hagberg, J., Arvidsson, H., Wang, T. Chemical emissions from building materials used in low-energy con- structions and their presence in the indoor air. Submitted.

All published papers have been reprinted with permission from the respec- tive publisher.

Reports not included in this thesis:

Report I Persson, J., Hagberg, J., Wang, T. 2018. A survey of or- ganic flame retardants and plasticizers in building materials on the Swedish market and their occurrence in the indoor environment. Commissioned by the Swedish Environmental Protection Agency.

(8)
(9)
(10)
(11)
(12)
(13)

ė

(14)

∙ ∙

(15)
(16)

˚

α

(17)

˚

ė

ė

(18)
(19)
(20)
(21)

α α

β β

γ δ γ δ

α α

β β

(22)
(23)

(24)

∙ ∙

(25)
(26)

∙ ∙

(27)
(28)
(29)
(30)
(31)

µ ∙

𝑆𝐸𝑅𝑚=𝑐𝑎∙ 𝐴𝐶𝑡

𝐿𝑚𝑡

𝑐 = 𝑆𝐸𝑅𝑚∙ 𝐿𝑚 𝐴𝐶

𝐻𝑄𝑖 = 𝐶𝑖/𝑅𝑉𝑖 𝐻𝐼 = ∑ 𝐻𝑄𝑖 𝑀𝐶𝑅 = 𝐻𝐼/𝑚𝑎𝑥𝐻𝑄𝑖

(32)

˚

˚

(33)

µ

(34)

µ µ

µ

0 2 4 6 8 10 12

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 5 6 7 8 PM2.5g/m3]

Hours

RP LEP A LEP B LEP C

(35)

0 4 8 12 16 20

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 5 6 7 8 PM2.5g/m3]

Hours

RP LEP A LEP B LEP C

(36)

0 1 2 3 4 5 6 7 8

PM2.5g/m3]

RP LEP A LEP B LEP C

0 10 20 30 40 50 60 70

PM2.5g/m3]

RP LEP A LEP B LEP C

(37)

(38)

µ

µ

µ

(39)

µ

µ µ µ

µ

Spring

Spring Spring

Spring

Autumn

Spring Spring

Spring

0 5 10 15 20 25 30 35

SP1 SP2 SP3 SP4 SP5

First year of occupany Follow-up Formaldehyde g/m3]

RP LEP A LEP B LEP C

(40)

µ

Spring

Spring Spring

Spring

Autumn

Spring Spring

Spring

0 200 400 600 800 1000 1200 1400 1600 1800

SP1 SP2 SP3 SP4 SP5

First year of occupany Follow-up TVOC g/m3toluene equivalents]

RP LEP A LEP B LEP C

(41)
(42)

0 200 400 600 800 1000 1200 1400

SP1 SP2 SP3 SP4 SP5 SP1 SP2 SP3 SP4 SP5 SP1 SP2 SP3 SP4 SP5 SP1 SP2 SP3 SP4 SP5

RP LEP A LEP B LEP C

[ng/g]

BDE-209 DBDPE

(43)
(44)
(45)

α α

(46)

γ δ

α β

α β

(47)
(48)
(49)
(50)

α α

(51)

µ µ µ

µ

(52)

µ µ µ

µ µ µ

µ µ

(53)

µ µ

µ

µ

µ

(54)

µ

µ

α β

β

β

(55)

µ

µ

(56)
(57)
(58)

(59)

(60)
(61)
(62)
(63)
(64)
(65)

Ė Ė

Č Ė Č

(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)

Publications in the series Örebro Studies in Chemistry

1. Bäckström, Mattias, On the Chemical State and Mobility of Lead and Other Trace Elements at the Biogeosphere/Technosphere Interface. 2002.

2. Hagberg, Jessika, Capillary zone electrophoresis for the analysis of low molecular weight organic acids in environmental systems. 2003.

3. Johansson, Inger, Characterisation of organic materials from incineration residues. 2003.

4. Dario, Mårten, Metal Distribution and Mobility under alkaline conditions. 2004.

5. Karlsson, Ulrika, Environmental levels of thallium – Influence of redox properties and anthropogenic sources. 2006.

6. Kärrman, Anna, Analysis and human levels of persistent perfluorinated chemicals. 2006.

7. Karlsson Marie, Levels of brominated flame retardants in humans and their environment: occupational and home exposure. 2006.

8. Löthgren, Carl-Johan, Mercury and Dioxins in a MercOx-scrubber.

2006.

9. Jönsson, Sofie, Microextraction for usage in environmental monitoring and modelling of nitroaromatic compounds and haloanisoles. 2008.

10. Ericson Jogsten, Ingrid, Assessment of human exposure to per- and polyfluorinated compounds (PFCs). Exposure through food, drinking water, house dust and indoor air. 2011.

11. Nilsson, Helena, Occupational exposure to fluorinated ski wax.

2012.

12. Salihovic, Samira, Development and Application of High-

throughput Methods for Analysis of Persistent Organic Pollutants in Human Blood. 2013.

13. Larsson, Maria, Chemical and bioanalytical characterisation of PAH-contaminated soils. Identification, availability and mixture toxicity of AhR agonists. 2013.

(74)

14. Kalaitzaki, Argyro, Biocompatible microemulsions: formulation, encapsulation of bioactive compounds and their potential application. 2014

15. Saqib, Naeem, Distribution and chemical association of trace elements in incinerator residues and mining waste from a leaching perspective. 2016

16. Chatzidaki, Maria, Formulation and characterization of W/O nano-dispersions for bioactive delivery applications. 2016 17. Geng, Dawei, Gas Chromatography-Atmospheric Pressure

Chemical Ionization-Tandem Mass Sepctrometry Methods for the Determination of Envrionmental Contaminants. 2016

18. Eriksson, Ulrika, Contribution of polyfluoroalkyl phosphate esters (PAPs) and other precursor compounds to perfluoroalkyl carboxylates (PFCAs) in humans and the environment. 2016 19. Riddell, Nicole, Packed Column Supercritical Fluid

Chromatography: Applications in Environmental Chemistry. 2017 20. Bjurlid, Filip, Polybrominated dibenzo-p-dioxins and furans:

from source of emission to human exposure. 2017

21. Stubleski, Jordan, Assessing the longitudinal trend of POP

concentrations in humans using high-throughput sample preparation methods developed for low-volume samples. 2018

22. Persson, Josefin, Indoor air quality and chemical emissions of organic compounds in newly built low-energy preschools. 2018

References

Related documents

Av dessa har 158 e-postadresser varit felaktiga eller inaktiverade (i de flesta fallen beroende på byte av jobb eller pensionsavgång). Det finns ingen systematisk

Av tabellen framgår att det behövs utförlig information om de projekt som genomförs vid instituten. Då Tillväxtanalys ska föreslå en metod som kan visa hur institutens verksamhet

Syftet eller förväntan med denna rapport är inte heller att kunna ”mäta” effekter kvantita- tivt, utan att med huvudsakligt fokus på output och resultat i eller från

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av

a) Inom den regionala utvecklingen betonas allt oftare betydelsen av de kvalitativa faktorerna och kunnandet. En kvalitativ faktor är samarbetet mellan de olika

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

• Utbildningsnivåerna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

Denna förenkling innebär att den nuvarande statistiken över nystartade företag inom ramen för den internationella rapporteringen till Eurostat även kan bilda underlag för