• No results found

Surface modification of iron oxides by ion bombardment – comparing depth profiling by HAXPES and Ar ion sputtering

N/A
N/A
Protected

Academic year: 2022

Share "Surface modification of iron oxides by ion bombardment – comparing depth profiling by HAXPES and Ar ion sputtering"

Copied!
4
0
0

Loading.... (view fulltext now)

Full text

(1)

JournalofElectronSpectroscopyandRelatedPhenomena224(2018)23–26

ContentslistsavailableatScienceDirect

Journal of Electron Spectroscopy and Related Phenomena

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e l s p e c

Surface modification of iron oxides by ion bombardment – Comparing depth profiling by HAXPES and Ar ion sputtering

M. Fondell

a,b,∗

, M. Gorgoi

b

, M. Boman

a

, A. Lindblad

a,b

aDiv.InorganicChemistry/Dept.ChemistryAngström),UppsalaUniversity,Box538,SE-75221,Uppsala,Sweden

bHelmholtz-ZentrumBerlinfürMaterialienundEnergieGmbH,Albert-Einstein-Str.15,Berlin12489,Germany

a r t i c l e i n f o

Articlehistory:

Received16December2016

Receivedinrevisedform1August2017 Accepted21September2017 Availableonline28September2017

Keywords:

HardX-rayphotoelectronspectroscopy Depthprofiling

Ironoxide HAXPES

Synchrotronradiation

a b s t r a c t

Thinfilmsoftheironoxidemaghemite(-Fe2O3)andhematite(˛-Fe2O3)grownonfluorinedopedtin oxide(FTO)withpulsedchemicalvapourdepositionhavebeeninvestigatedwithhardX-rayphotoelec- tronspectroscopy.Itisfoundthatevenlowenergysputteringinducesareductionofthesurfacelayer intoFeO.SatellitesintheFe2pcorelevelspectraareusedtodeterminetheoxidationstateofiron.Depth profilingwithchangingphotonenergyshowsthattheunsputteredfilmsarehomogeneousandthatthe informationobtainedfromsputteringthus,inthisinstance,representssputterdamagestothesample.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Therearesixteenoxides andoxyhydroxidesofiron [1],with usesrangingfromfoodcolouring(E172)tocatalysts.Iron(III)oxide (Fe2O3),especiallyinitshematitephase(˛-Fe2O3),exhibitattrac- tivepropertiesforsolarwatersplitting,withaadequatebandgap around2eVcombinedwithafavourablepositionforthevalence band’sedgeandefficientphotonabsorption.Thematerialissta- ble,affordable,abundant,nontoxicandenvironmentallyfriendly.

Saidpropertieshavedirectedsignificantresearcheffortsregarding hematiteasacomponentinphotoelectrochemicalcell[2–4].

X-rayphotoelectronspectra(XPS)isastandardtechniquefor quantificationof chemical statesin a materialvia thechemical shiftofcorelevelphotoelectronlines[5,6].Ironoxidespresenta challengingsystemtointerpretphotoelectronspectrafromowing tobackground[7]andsatellitestructures[8,9]aroundtheFe2p region.Asmentioned,thereareanumber ofoxidesandoxyhy- droxides(16)eachhavingdifferentphaseswhichalsocomplicates spectralinterpretation.

Inthispaperwecomparespectraofsputteredandunsputtered surfacesofmaghemiteandhematitetakenwith1487eVphoton energy(i.e.AlK˛).Theunsputteredmaghemitesurfaceandsingle

∗ Correspondingauthorat:Helmholtz-ZentrumBerlinfürMaterialienundEnergie GmbH,Albert-Einstein-str.15,Berlin12489,Germany.

E-mailaddress:mattis.fondell@helmholtz-berlin.de(M.Fondell).

crystalsofFeOand˛-Fe2O3 arealsomeasuredwithsynchrotron basedhardX-rayphotoelectronspectroscopy(HAXPES)datafor comparison.

AsynchrotronX-raysourceenableustotunetodesiredpho- tonenergies.Herethishavebeenutilisedtoobtainincreasingly largeinformationdepthsinthesamplesatthreephotonenergies aboveAlK˛–withoutmovingthesampleposition.Sincethebind- ingenergy(Eb)forthecorelevelelectronsthatwestudyisconstant, thekineticenergy(Ek)ofthestudiedelectronsincrease instep withthephotonenergy(ω);thekineticenergyisgivenbyEin- stein’srelationforthephotoelectriceffectEk=ω−Eb−,where

istheworkfunctionofthespectrometer.Forsufficientlyhigh kineticenergiesthemeanfreepath()oftheelectronsgetslarger withincomingkineticenergy.Withthesocalleduniversalcurvefor electronmeanfreepathsinmind,thismeanskineticenergiesabove 50eV[10,11].ByusingsynchrotronradiationtheX-rayenergycan bevariedandthustheavailableinformationdepthdefinedas3, givesriseto99%ofthespectralintensity[6].Thelongermeanfree pathintheHAXPESmeasurementsallowsustodiscernsurfaceoxy- hydridesfromthebulksample,whichbycontrastwasimpossible withtheAlK˛photonenergy.

Wehighlightthat relyingonlyonstandard XPSandsputter- ingcanleadtoerroneousinterpretationoffilmcomposition.Itis knownthathydroxidesandoxidesofironcanbereducedbyion bombardment[8,12,13];sputterdamagesintheformofpreferen- tialremovaloflighterspecieshavebeenshowntooccurinphysical vapourdepositedtungstensulphide[14],tinsulphidepowder[15], https://doi.org/10.1016/j.elspec.2017.09.008

0368-2048/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

24 M.Fondelletal./JournalofElectronSpectroscopyandRelatedPhenomena224(2018)23–26

andnanocompositecoatingsofTi-Ni-C[16].Herewespecifically usehardX-rayphotoelectronspectroscopywithvariablephoton energytoassessthecompositionofanexsitusampleconsistingof anmaghemitefilmgrownonfluorinedopedtinoxide(FTO).

2. Experimentalsection

PolycrystallinemaghemiteandhematiteweregrownonFTO substratesbypulsedchemicalvapourdeposition.Asprecursors, ironpentacarbonylandO2wereused.Theonlydifferencebetween the two depositions were the use of either N2 or CO as car- riedgas,resultinginthetwodifferentpolymorphshematiteand maghemite.Theinvestigatedthinfilmswerefromthesamedepo- sitionroundbutnottheexactlysamefilm.Furtherinformationof thedepositionsandthedepositionparameterscanbefoundinRef.

[17].

Phasedeterminationof theiron oxidefilmswereperformed usingRamanspectroscopy.ARenishawmicroRamansystemwas usedwiththe532nmlineofanargonionlaser.X-raydiffraction wasalsousedandisdiscussedwithassociatedreference.

The HAXPES experiments were performed at BESSY II (Helmholtz-ZentrumBerlin),attheKMC-1 dipolemagnetbeam line [18] – using the high kinetic energy photoelectron spec- troscopyendstation(HIKE)[19,20].Thebeamlineisequippedwith aSidoublecrystalmonochromator(DCM)[21]wheretheX-rays arefocussedonthesampleusingaparaboloidglasscapillary.The basepressureinthemeasurementchamberwasinthe10−9mbar regionthroughouttheexperiment.Thephotoelectronspectrawere recordedusingaVGScientaR4000electronenergyanalyseratnor- malemission(90).FortheHAXPESmeasurementsphotonenergies of2005,3000and6015eVwereused.Allspectrawascalibrated withanAustandardwiththeAu4f7/2bindingenergytakentobe 84.00eV[22].ThesputteredfilmsweremeasuredusingaPhysical InstrumentsQuantum2000ESCAutilizingmonochromatizedAlK˛ radiationataemissionangleof45.Thesputteringofthesamples wasdoneatlowenergyfor8minutesusing200VAr+ions.The sputteringwasmadeina4+2+2min.sequenceastoreducethe carbonaccumulatedonthesurface,afterhavingexposedtheiron oxidefilmstoair.TheC1sandSn3dcorelevelbindingenergy

regions(Figs.S1andS2inthesupportingmaterial)weremoni- toredtoascertainthatthesputtersequencedidnotsputteraway theironoxide.Tinisonlyispresentwithinthesubstrateandwas notobservedattheinformationdepthusingAlK˛,neitherbefore norafterthesputteringtookplace.Thustheironoxidefilmcov- ersthesubstrateentirelyandislandformationmaybeexcluded.

Thereferencemeasurementswereperformedonsinglecrystalsof FeO(100)andFe2O3(0001)purchasedfromMaTeckGmbH.

3. Resultsanddiscussion

TheRamanmeasurementsshowninFig.1areingoodagreement withtheshiftsexpectedfrommaghemiteandhematite[23].The hematitefilmhasalltheexpectedpeaksandalsooneat660cm−1. Thispeakarisefrompossibledislocationsandlackoflongrange orderinthefilm[24].ThemaghemitefilmshowninFig.1consists ofmaghemiteshifts,reportedbyFariaetal.[23].Bothfilmsshowed justonephase,anddidnotexhibitanysignfromotherironoxide phases,likeforinstancemagnetite(Fe3O4)orwüstite(FeO),this alsoindicatesthatthelaserpowerusedforthemeasurementswas lowenoughastonotreducethefilms.X-raydiffractionwasalso usedforcharacterisationofthedepositedfilms.FromtheXRDmea- surementsweseeboththesubstrateandthethinfilmontop.Due tothesmallthicknessoftheironoxidethestrongestpeaksderives fromtheFTOsubstratebuttheironoxidepeaksareaswellclearly visible.ThesemeasurementcanbefoundinRef.[17].

Thenanostructureofthefilmscanbeclearlyobservedinthe scanningelectronmicrographsshowninFig.1(b).Thereisadiffer- enceingrainsizecomparinghematiteandmaghemitereflecting differentgrowthconditions(fordetailsseeRef.[17]).Neitheriron oxidehascrystalparametersthatmatchthatoftheFTOsubstrate, thispromotesgrowthofclusterswhichinturncoalesceintoacon- tinuousfilm.Thelargesurfaceareaobtainedisbeneficialforthe intendedphotoelectrochemicalcellapplication.

InFig.1(c)overviewspectraanddetailspectra(Fig.2)taken aroundtheFe2pandO1sregionsaredisplayed.InFig.2foursets ofdataarecomparedinthepanels:(a)untreated(unsputtered) and(b)sputtereddataofmaghemiteandhematite(c)reference datafromsinglecrystalironoxides,FeO(111)and˛-Fe2O3(0001);

Fig.1. (a)Ramanmeasurementsonthehematiteandmaghemitefilms.Panel(b)showsscanningelectronmicrographsofthenanostructuredfilms.(c)HAXPESmeasurements ofthemaghemitefilm(black)andtheFTOusedassubstrate(dashed).

(3)

M.Fondelletal./JournalofElectronSpectroscopyandRelatedPhenomena224(2018)23–26 25

Fig.2. Fe2pandO1scorelevelphotoelectronspectraofmaghemiteandhematite:(a)untreated,(b)sputtered,and(c)references;(d)HAXPESdepthprofiledataofFe2p andO1sofmaghemite.ValuesineVdesignatephotonenergies.Inthecaseofthesputteredsamples(markedwithanasterisk)thenamingreferstotheinitialsample.

(d)depthprofiledataofmaghemiterecordedwith2005,3000and 6015eVphotonenergywithoutanysurfacetreatment.

Theoverviewspectra(Fig.1)alsocontainareferencetoFTO (substrate).ComparingthemaghemiteandtheFTOitisclearthat themaghemitefilmisacontinuousfilm,sincetherearenotinpeaks visible[15].

The measurements of the single crystalline FeO and Fe2O3

(Fig.2(c))havewellseparatedspinorbitcomponents.InFeOthe positionsfortheFe2p1/2andFe2p3/2arelocatedat723.3eVand 707.9eV,whereasforFe2O3theyareshiftedtowardshigherbind- ingenergyat724.3eVand711.0eV.Thisisingoodagreementto reportedvaluesbyGrosvenoretal.[9].Othervalueshavealsobeen reportedfortheFeOandFe2O3butarenotpositionedmorethan 0.2eVfromvaluespresentedhere[25,26].Thethinsolidvertical linesintheFe2pspectraindicatethepositionsoftheFe3+andFe2+

satellitesat719.3and715.4eVbindingenergyrespectively[9].The referencespectracontainsonlyoneofthosesatellites,thuswecan usethisasafingerprintforthechemicalstateofiron.

Maghemite and hematite have almost identical XPS spectra (Fig.2a),thedifferenceinlatticestructure(cubicvs.hexagonal) havingnoimpactonthechemicalshifts.Intheunsputteredcases both lookakintothehematitereferencespectrum allhavinga prominentFe3+satellite[9,26].

Uponsputteringofboththehematiteandmaghemitethereis ashiftoftheFe2pcomponents’bindingenergiestowardlower energiesandthesatellitestructurechangesintothatoftheFeO, visibleinFig.2(b).ThisisaccompaniedbyashiftoftheO1sbinding energytowardhigherbindingenergyandalowerintensityofthe featurearound532eVbindingenergy–aregionassociatedwith surfacehydroxy-groups[26].Sputteringofmaghemitethusacts similarlytoheattreatmentinvacuum,i.e.asareducingatmosphere [17].Thesputteredfilmshaveashoulderonthelowerenergyside oftheFe2p3/2filmthatcoincideswiththelowenergyshapeofFeO.

Argonionsputteringofironoxideshasbeenobservedtoresultin FeOratherthanmetallicFe,bothwithhematiteandmaghemite (Fe2O3)andthemagnetitespinelFe3O4[8].

The depth profile obtained by varying the photon energy withoutchangingthesampleposition(Fig.2(d))showsthatthe maghemitespectralstructureoftheFe2ppersistsatleastdown totheinformationdepth(25nmat6015eV,calculatedwithTPP- 2Mmodel[27]),furthermorethehighbindingenergyfeaturein theO1sisindeedemanatingfromthesurfaceasitloosesinten- sitywithincreasingphotonenergy.InFig.1thesurfaceexhibits apronouncedroughness,thisaddsuncertaintytothemagnitude oftheinformationdepth[28]calculatedwiththeTPP-2Mmodel [27].Thecalculateddepthsaresystematicallyoverestimatedsince thesurfacesarenotflat,measurementsongoldsurfaces[29],and SiO2onSi[30]withvaryingroughnesssuggestthatthedifference ininformationdepthsbetweenthe“flat”andthe“coarse”surface isapproximatelyaconstant,i.e.thedifferentinformationdepths shouldallbemultipliedbyan(unknown)factor(<1).

If,havingdeterminedthesputteringrateandonlytheinforma- tioninthepanels(a)–(c)wereused,anaïveinterpretationwould bethatourdepositedfilmconsistedofamaghemite/hematiteover layer(atleast6nmthick,theinformationdepthat1487eV[27]) which is sputtered away, revealing an understoichiometryfilm beneath,predominantlyconsistingofFeO.

BesidesashiftintheO1sbindingenergytowardshigherbinding energies(+0.2eV[8,17])forhematite,theFe2p3/2peak-shapehas alowbindingenergyshoulder,asseeninthereference˛-Fe2O3

spectrum(Fig.2,panel(c).McIntyreetal.havetheseparationof 1.1eV[8]betweentheshoulder’speakandthehighestintensity peak–formaghemitetheydonotresolveanysuchstructure.In panel(d)ofFig.2wealsofindthatsuchatwo-peakstructureis absentformaghemite.

(4)

26 M.Fondelletal./JournalofElectronSpectroscopyandRelatedPhenomena224(2018)23–26

BasedonXRD,RamanspectroscopyandHAXPES,weconclude thatthefilmsareeithermaghemiteorhematitebeforethesput- teringtakesplace.ItisunlikelythatFeOweretobedepositedat thechosenprocesstemperatureof300C.FeOismetastablebelow 570CanditsdecompositionleadstometallicironandFe3O4.The presenceofeitherofthoseproductswoulddominatetheRaman spectrum,since they aremuch more Raman-activethan either Fe2O3 phase[23].Furthermore,metalliciron ifpresentinthese kindoffilmsisclearlyvisibleinX-raydiffraction[31].Byneither methoddecompositionofFeOwasobservedhere.

UsingonlyXPSwithAlK˛photonenergyitwouldbeimpos- sibletodiscernbetweenmaghemiteandhematiteinthefilm.The electronmeanfreepathistooshorttoprobebeneaththehydroxy- groupsonthesurface,andanionsputteringofthesurfacewould reducethetopmost layer(seenwiththis )to FeO.ThisCatch 22canbeavoidedathigherphotonenergies:theHAXPESdepth profilerevealsthatthefilmishomogenousdownto25nmwith hydroxy-groupsontheimmediatevicinityofthesurface.

4. Conclusion

Weconcludethatgreatcautionmustbeexercisedwhensput- teringisusedtoobtaindepthprofiles,andwiththedatapresented hereaclearcutcaseisdemonstratedwhereionbombardmentsput- teringofthesurfaceprohibitsacorrectinterpretationofthefilm composition.Byavoidingsputteringofthesurfaceandincreasing thephotelectrons’meanfreepathwithincreasedphotonenergywe havebeenabletoassessthecompositionofthefilmoveradepth rangerelevantforapplications,e.g.ironoxidefilmsonFTOforpho- toelectrochemicalwater-splittinghavethicknessesinthevicinity of25nm.

Acknowledgements

WeacknowledgetheHelmholtz-ZentrumBerlinforprovision ofsynchrotronradiationbeamtimeatbeamlineKMC-1ofBESSY II. The research leading to these results has received funding fromtheEuropeanCommunity’sSeventhFrameworkProgramme (FP7/2007-2013)undergrantagreementno.312284.MFthankfully acknowledgetheSwedishRoyalAcademyofSciences(KVA)andAL theSwedishResearchCouncil(No.2014-6463),MarieSklodowska CurieActions,Cofund,ProjectINCA600398foreconomicalsupport.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttps://doi.org/10.1016/j.elspec.2017.09.008.

References

[1]R.M.Cornell,U.Schwertmann,TheIronOxides,2nded.,Wiley-VCH,2003.

[2]J.H.Kennedy,K.W.Frese,Photooxidationofwateratalpha-Fe2O3electrodes, J.Electrochem.Soc.125(5)(1978)709,http://dx.doi.org/10.1149/1.2131532.

[3]K.Sivula,F.LeFormal,M.Grätzel,Solarwatersplitting:progressusing hematite(␣-Fe(2)O(3))photoelectrodes,ChemSusChem4(4)(2011)432, http://dx.doi.org/10.1002/cssc.201000416.

[4]D.K.Bora,A.Braun,E.C.Constable,Inrustwetrust.Hematitetheprospective inorganicbackboneforartificialphotosynthesis,Energy.Environ.Sci.6(2) (2013)407,http://dx.doi.org/10.1039/c2ee23668k.

[5]K.Siegbahn,C.Nordling,R.Fahlman,R.Nordberg,K.Hamrin,J.Hedman,G.

Johansson,T.Bergmark,S.-E.Karlsson,I.Lindgren,B.Lindberg,ESCA,Atomic, MolecularandSolidStateStructureStudiesbyMeansofElectron

Spectroscopy,Vol.20ofIV,NovaActaRegiaeSoc.Sci.Upsaliensis,1967.

[6]S.Suga,A.Sekiyama,PhotoelectronSpectroscopyBulkandSurface ElectronicStructures,Vol.176ofSpringerSeriesinOpticalSciences,1sted., Springer,Berlin,2014.

[7]M.Aronniemi,J.Sainio,J.Lahtinen,Chemicalstatequantificationofironand chromiumoxidesusingXPS:theeffectofthebackgroundsubtraction method,Surf.Sci.578(1–3)(2005)108–123,http://dx.doi.org/10.1016/j.susc.

2005.01.019.

[8]N.S.McIntyre,D.G.Zetaruk,X-rayphotoelectronspectroscopicstudiesofiron oxides,Anal.Chem.49(11)(1977)1521–1529,http://dx.doi.org/10.1021/

ac50019a016.

[9]A.P.Grosvenor,B.A.Kobe,M.C.Biesinger,N.S.McIntyre,Investigationof multipletsplittingofFe2pXPSspectraandbondinginironcompounds,Surf.

InterfaceAnal.36(12)(2004)1564,http://dx.doi.org/10.1002/sia.1984.

[10]M.P.Seah,W.Dench,Quantitativeelectronspectroscopyofsurfaces:a standarddatabaseforelectroninelasticmeanfreepathsinsolids,Surf.

InterfaceAnal.1(1)(1979)2–11.

[11]S.Tanuma,C.J.Powell,D.R.Penn,Calculationsofelectroninelasticmeanfree paths.II.Datafor27elementsoverthe50–2000eVrange,Surf.InterfaceAnal.

17(13)(1991)911–926.

[12]T.Chuang,C.Brundle,K.Wandelt,AnX-rayphotoelectronspectroscopystudy ofthechemicalchangesinoxideandhydroxidesurfacesinducedbyAr+ion bombardment,ThinSolidFilms53(1)(1978)19–27,http://dx.doi.org/10.

1016/0040-6090(78)90365-6.

[13]R.Kelly,Bombardment-inducedcompositionalchangewithalloys,oxides, oxysaltsandhalidesIII.Theroleofchemicaldrivingforces,Mater.Sci.Eng.A 115(1989)11–24,SixthInternationalConferenceonSurfaceModificationof MetalsbyIonBeams.

[14]J.Sundberg,R.Lindblad,M.Gorgoi,H.Rensmo,U.Jansson,A.Lindblad, UnderstandingtheeffectsofsputterdamageinW-SthinfilmsbyHAXPES, Appl.Surf.Sci.305(2014)203,http://dx.doi.org/10.1016/j.apsusc.2014.03.

038.

[15]M.Fondell,M.Gorgoi,M.Boman,A.Lindblad,AnHAXPESstudyofSn,SnS, SnOandSnO2,J.Electron.Spectrosc.Relat.Phenom.195(2014)195–199, http://dx.doi.org/10.1016/j.elspec.2014.07.012.

[16]E.Lewin,M.Gorgoi,F.Schäfers,S.Svensson,U.Jansson,Influenceofsputter damageontheXPSanalysisofmetastablenanocompositecoatings,Surf.Coat.

Technol.204(4)(2009)455–462,http://dx.doi.org/10.1016/j.surfcoat.2009.

08.006.

[17]M.Fondell,F.Johansson,M.Gorgoi,L.vonFieandt,M.Boman,A.Lindblad, Phasecontrolofironoxidesgrowninnano-scalestructuresonFTOand Si(100):hematite,maghemiteandmagnetite,Vacuum117(2015)85–90, http://dx.doi.org/10.1016/j.vacuum.2015.03.037.

[18]F.Schaefers,ThecrystalmonochromatorbeamlineKMC-1atBESSYII,J.

Large-ScaleRes.Facil.2(2016)A96,http://dx.doi.org/10.1063/1.2808334.

[19]M.Gorgoi,S.Svensson,F.Schäfers,G.Öhrwall,M.Mertin,P.Bressler,O.Karis, H.Siegbahn,A.Sandell,H.Rensmo,W.Doherty,C.Jung,W.Braun,W.

Eberhardt,Thehighkineticenergyphotoelectronspectroscopyfacilityat BESSYprogressandfirstresults,Nucl.Instrum.MethodsA601(1–2)(2009) 48–53,http://dx.doi.org/10.1016/j.nima.2008.12.244.

[20]M.Gorgoi,S.Svensson,F.Schäfers,W.Braun,W.Eberhardt,HardX-rayhigh kineticenergyphotoelectronspectroscopyattheKMC-1beamlineatBESSY, Eur.Phys.J.Spec.Top.169(1)(2009)221–225,http://dx.doi.org/10.1140/

epjst/e2009-00996-5.

[21]F.Schaefers,M.Mertin,M.Gorgoi,KMC-1:ahighresolutionandhighfluxsoft X-raybeamlineatBESSY,Rev.Sci.Instrum.78(12)(2007)

123102-1–123102-14,http://dx.doi.org/10.1063/1.2808334.

[22]M.P.Seah,Post-1989calibrationenergiesforX-rayphotoelectron spectrometersandthe1990Josephsonconstant,Surf.InterfaceAnal.14(8) (1989)488,http://dx.doi.org/10.1002/sia.740140813.

[23]D.L.A.D.Faria,S.Vena,Ramanmicrospectroscopyofsomeironoxidesand oxyhydroxides,J.RamanSpectrosc28(February)(1997)873,http://dx.doi.

org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO.

[24]J.Glasscock,P.Barnes,I.Plumb,A.Bendavid,P.Martin,Structural,opticaland electricalpropertiesofundopedpolycrystallinehematitethinfilmsproduced usingfilteredarcdeposition,ThinSolidFilms516(8)(2008)1716,http://dx.

doi.org/10.1016/j.tsf.2007.05.020.

[25]P.C.Graat,M.A.Somers,Simultaneousdeterminationofcompositionand thicknessofthiniron-oxidefilmsfromXPSFe2pspectra,Appl.Surf.Sci.100 (1996)36–40,http://dx.doi.org/10.1016/0169-4332(96)00252-8.

[26]T.Yamashita,P.Hayes,AnalysisofXPSspectraofFe2+andFe3+ionsinoxide materials,Appl.Surf.Sci.254(8)(2008)2441–2449,http://dx.doi.org/10.

1016/j.apsusc.2007.09.063.

[27]S.Tanuma,C.J.Powell,D.R.Penn,Calculationsofelectroninelasticmeanfree paths.v.datafor14organiccompoundsoverthe50–2000eVrange,Surf.

InterfaceAnal.21(3)(1994)165–176.

[28]J.Rubio-Zuazo,G.Castro,Effectiveattenuationlengthdependenceon photoelectronkineticenergyforAufrom1keVto15keV,J.Electron.

Spectrosc.Relat.Phenom.184(7)(2011)384–390,http://dx.doi.org/10.1016/

j.elspec.2011.03.006.

[29]S.V.Merzlikin,N.N.Tolkachev,T.Strunskus,G.Witte,T.Glogowski,C.Wöll, W.Grünert,Resolvingthedepthcoordinateinphotoelectronspectroscopy comparisonofexcitationenergyvariationvs.angularresolvedXPSforthe analysisofaself-assembledmonolayermodelsystem,Surf.Sci.602(3)(2008) 755–767.

[30]A.Artemenko,A.Choukourov,D.Slavinska,H.Biederman,Influenceofsurface roughnessonresultsofXPSmeasurements,WDSProc.Contr.Pap.,vol.3 (2009)175–181.

[31]M.Fondell,SynthesisandCharacterisationofUltraThinFilmOxidesfor EnergyApplications(Ph.D.thesis),UppsalaUniversity,InorganicChemistry, 2014.

References

Related documents

As digital technology revolutionises the world, it is not surprising that it is altering the way states conduct themselves, especially in terms of war. War is a powerful policy

By the AFM colloidal probe experiment it was shown that the interfacial  adhesion  between  pure  PCL  and  cellulose  was  significantly  improved  by 

How will different inundation risk levels caused by a range of different increases in sea level, and a combination of sea level and highest projected high water, affect the

Every core level spectral main line in Sn has an accompanying plasmon progression with intensities distributed (at the energies considered here) as exponentially decaying.. A

Utifrån sitt ofta fruktbärande sociologiska betraktelsesätt söker H agsten visa att m ycket hos Strindberg, bl. hans ofta uppdykande naturdyrkan och bondekult, bottnar i

The structural as well as the magnetic properties of these two systems have been investiged using different characterization methods like x-ray diffraction (XRD),

Re-examination of the actual 2 ♀♀ (ZML) revealed that they are Andrena labialis (det.. Andrena jacobi Perkins: Paxton &amp; al. -Species synonymy- Schwarz &amp; al. scotica while

If a unique token is requested and sent to the controller for ev- ery request sent by the Control Builder the token has to grant access to a single resource.. This was the initial