• No results found

Thermodynamical String Fragmentation with Torbj¨orn Sj¨ostrand – arXiv:1610.09818 Nadine Fischer - November 24th, 2016

N/A
N/A
Protected

Academic year: 2022

Share "Thermodynamical String Fragmentation with Torbj¨orn Sj¨ostrand – arXiv:1610.09818 Nadine Fischer - November 24th, 2016"

Copied!
20
0
0

Loading.... (view fulltext now)

Full text

(1)

Thermodynamical String Fragmentation

with Torbj¨orn Sj¨ostrand – arXiv:1610.09818

Nadine Fischer - November 24th, 2016 MONASHUNIVERSITY & LUNDUNIVERSITY

(2)

Motivation

p?distributions (ratio plots)

1 2 3 4 5 6

0.6 0.81

1.21.4 Pythia 8

Charged hadron p?at 7 TeV, |h| < 2.4, CMS

MC/Data

0.5 1 1.5 2 2.5 3

0.6 0.81 1.2 1.4

p±p?at 7 TeV, |y| < 0.5, ALICE

MC/Data

1 2 3 4 5 6

0.6 0.81 1.2 1.4

p, ¯p p?at 7 TeV, |y| < 0.5, ALICE

MC/Data

1 2 3 4 5 6

0.60.81 1.2 1.4

K±p?at 7 TeV, |y| < 0.5, ALICE

MC/Data

Enhanced strangeness with increasing nch

(3)

Motivation

p?distributions (ratio plots)

1 2 3 4 5 6

0.6 0.81

1.21.4 Pythia 8

Charged hadron p?at 7 TeV, |h| < 2.4, CMS

MC/Data

0.5 1 1.5 2 2.5 3

0.6 0.81 1.2 1.4

p±p?at 7 TeV, |y| < 0.5, ALICE

MC/Data

1 2 3 4 5 6

0.6 0.81 1.2 1.4

p, ¯p p?at 7 TeV, |y| < 0.5, ALICE

MC/Data

1 2 3 4 5 6

0.60.81 1.2 1.4

K±p?at 7 TeV, |y| < 0.5, ALICE

p?[GeV/c]

MC/Data

Enhanced strangeness with increasing nch

|< 0.5

|η

〉 /dη Nch

〈d

10 102 103

)+π+πRatio of yields to (

3

10 2

10 1

10

×16)

+ ( +

×6)

+ ( +Ξ Ξ

×2) Λ ( Λ+

S

2K0

ALICE = 7 TeV s pp,

= 5.02 TeV sNN

p-Pb,

= 2.76 TeV sNN

Pb-Pb, PYTHIA8 DIPSY EPOS LHC

1/9

(4)

Lund String Fragmentation

q q

_ 2 1 3 q q q q

q q q q _

_ _

_

1 2

2 3 1

3

t x Flavour and transverse momentum of hadrons:

• string streched between q¯q

• q¯q moves apart ! energy stored in string ( potential V (r) =  r )

• creation of qi¯qipairs breaks string:

m? qi= 0 on-shell production in single vertex m? qi> 0 tunneling probability

exp⇣

⇡ m2? qi/⌘

= exp⇣

⇡ m2qi/⌘ exp⇣

⇡ p2? qi/⌘

# #

flavour selection of qi¯qi hp2? qii = /⇡ = 2

• lots of flavour parameters: – suppression of strangeness and diquarks, ⌘ and ⌘0 – rates for different meson multiplets

(5)

Thermodynamical String Model

Idea: hadron-level suppression

exp ( m? had/T ) with m? had= q

m2had+ p2? had

• generate p? had according to

fhad(p? had)d p? had= exp ( p? had/T )d p? had

• fourier transformation to obtain quark-level distribution

fq(p? q)/ Z1

0

b J0(b p? q/T ) (1 + b2)3/4 d b

fit: N exp( c p? q/T ) (p? q/T )d

• pick hadron flavour according to Phad= exp ( m? had/T ) + multiplicative factors for spin-counting, SU(6) symmetry factors, ..

• heavier hadrons obtain more p?

• 3free parameters in total

3/9

(6)

Close-Packing of Strings

Idea: more MPIs ) closer packing of strings

• transverse region shrinks ) larger string tension

• guess momentum of next hadron, based on average quantities

• nstring = number of strings that cross hadron rapidity

• effective number of strings neffstring= 1 + nstring 1 1 + p2? had/ p2? 0

• modify Gaussian width ! ⇣ neffstringr

(similar for temperature)

(7)

Close-Packing of Strings

Idea: more MPIs ) closer packing of strings

• transverse region shrinks ) larger string tension

• guess momentum of next hadron, based on average quantities

• nstring = number of strings that cross hadron rapidity

• effective number of strings neffstring= 1 + nstring 1 1 + p2? had/ p2? 0

• modify Gaussian width ! ⇣ neffstringr

(similar for temperature)

default (neffstring)0.25s

5 10 15 20 25 30 35 40 45 50

0 0.1 0.2 0.3 0.4 0.5 0.6

hp?i vs. nchin toy model (2–8 strings, Â E = 1 TeV)

nch hp?i[GeV/c]

4/9

(8)

Hadron Rescattering

Idea: dense hadronic gas ) hadrons might rescatter on the way out Find hadron pairs that can scatter:

• cut on the invariant mass of the hadron pair minv<q

m21+|~pmax|2+q

m22+|~pmax|2

• rescattering probability: overall probability · probability for same-string

m a x Pm a x

P

d s d s

max Pmax

P

ij ij ij min Pssmin

ss ss

• in CoM frame rotate around angles chosen flat in d ⌦

(9)

Hadron Rescattering

Idea: dense hadronic gas ) hadrons might rescatter on the way out Find hadron pairs that can scatter:

• cut on the invariant mass of the hadron pair minv<q

m21+|~pmax|2+q

m22+|~pmax|2

• rescattering probability: overall probability · probability for same-string

m a x Pm a x

P

d s d s

max Pmax

P

ij ij ij min Pssmin

ss ss

• in CoM frame rotate around angles chosen flat in d ⌦

Gaussian p?wo hadron scattering Gaussian p?w hadron scattering 0.2

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

hp?i for different hadrons in toy model (5 strings with E = mZ)

p K h, h0 r, w K f p,n L, S X D S X W hp?i[GeV/c]

5/9

(10)

Results

Transverse momentum distributions: inclusive and pions

CMS data default Gaussian p? Thermal p?

104 103 102 101 1 101

Charged hadron p?at 7 TeV,|h| <2.4

(1/2pp?)d2nchdhdp?

1 2 3 4 5 6

0.6 0.8 1 1.2 1.4

p?[GeV/c]

MC/Data

ALICE data default Gaussian p? Thermal p?

101 1 101

p±transverse momentum at 7 TeV,|y| <0.5

1/Nineld2Ndydp?

0.5 1 1.5 2 2.5 3

0.6 0.8 1 1.2 1.4

p?[GeV/c]

MC/Data

(11)

Results

Transverse momentum distributions: protons and kaons

ALICE data default Gaussian p? Thermal p?

104 103 102 101

p, ¯p transverse momentum at 7 TeV,|y| <0.5

1/Nineld2Ndydp?

1 2 3 4 5 6

0.6 0.8 1 1.2 1.4

p?[GeV/c]

MC/Data

ALICE data default Gaussian p? Thermal p?

103 102 101 1

K±transverse momentum at 7 TeV,|y| <0.5

1/Nineld2Ndydp?

1 2 3 4 5 6

0.6 0.8 1 1.2 1.4

p?[GeV/c]

MC/Data

7/9

(12)

Results

Enhanced strangeness with increasing nch

2K0S

2 · (L + L)

6 · (X + X+)

16 · (W + W+) default

Gaussian p? Thermal p? 10 3

10 2 10 1

Ratio of yields to (p++ p )at 7 TeV, |h| < 0.5

Ratioofyields

|< 0.5

|η

η

ch/d N

d

10 102 103

)+π+πRatio of yields to (

3 10 2 10

1 10

×16) + ( +

6)

× + ( Ξ

+ Ξ

2)

× ( Λ + Λ

S 2K0

ALICE = 7 TeV s pp,

= 5.02 TeV sNN p-Pb,

= 2.76 TeV sNN Pb-Pb, PYTHIA8 DIPSY EPOS LHC

(13)

Summary and Outlook

What is new?

• option for generating p? had according to exp( p? had/T ) with flavour selection according to exp( m? had/T )

• effect of close-packing of strings

• simple model for hadron rescattering What does it do?

• improves some observables, such as p?spectra, hp?i(mhad)

• does not improve everything, e.g. kaon p?remains difficult

• hadron decays are a limiting factor

Further work required!

• microscopic tracing of the full space-time evolution (partons and hadrons, production and decay vertices)

• more detailed understanding and modelling

9/9

(14)

Summary and Outlook

What is new?

• option for generating p? had according to exp( p? had/T ) with flavour selection according to exp( m? had/T )

• effect of close-packing of strings

• simple model for hadron rescattering What does it do?

• improves some observables, such as p?spectra, hp?i(mhad)

• does not improve everything, e.g. kaon p?remains difficult

• hadron decays are a limiting factor Further work required!

• microscopic tracing of the full space-time evolution (partons and hadrons, production and decay vertices)

• more detailed understanding and modelling

(15)

Backup

10/9

(16)

Flavour Asymmetry in Thermodynamical Model

Toy model with d and s quarks only

• (d ! s) competes with (d ! d) ! d¯s obtains larger p?

• (s ! d) competes with (s ! s) ! s¯d obtains smaller p?

(d ! s) with hp?i = 0.46 (s ! d) with hp?i = 0.41

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Same T for (d ! s) and (s ! d) transitions

1/NdN/dp?

0 0.5 1 1.5 2

0.60.81 1.2 1.4

p?[GeV/c]

(s!d)/(d!s)

(d ! s) with hp?i = 0.46 (s ! d) with hp?i = 0.46

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Different T for (d ! s) and (s ! d) transitions

1/NdN/dp?

0 0.5 1 1.5 2

0.60.81 1.2 1.4

p?[GeV/c]

(s!d)/(d!s)

(17)

Rapidity Distributions

-10 -5 0 5 10

0 2 4 6 8

10Rapidity distribution of the strings in an event

y nstring

-10 -5 0 5 10

0 2 4 6 8

10Rapidity distribution of the strings in an event

y nstring

12/9

(18)

Limiting factor: Decays

pion transverse momentum @ LHC, with and without decays, similar for protons

Gaussian p?wo decays Gaussian p?w decays Termal p?wo decays Termal p?w decays

0 0.5 1 1.5 2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2p±transverse momentum at LHC

p?[GeV/c]

1/NdN/dp?

0.60.81

1.21.4 w/wo (Gaussian)

ratio

0.60.81

1.21.4 w/wo (Thermal)

ratio

0.60.81

1.21.4 Thermal/Gaussian (wo)

ratio

0 0.5 1 1.5 2

0.60.81

1.21.4 Thermal/Gaussian (w)

p?[GeV/c]

ratio

) decays wash out effects present after fragmentation

(19)

Hadron Rescattering

hp?i in toy model ( 5 strings with E = mZon the z axis)

Gaussian p?wo hadron scattering Gaussian p?w hadron scattering 0.2

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

hp?ifor different hadron species

hp?i[GeV/c]

0.70.8 0.91.0 1.11.2 1.31.4

p K h, h0 r, w K f p,n L, S X D S X W

w/wo

Termal p?wo hadron scattering Termal p?w hadron scattering 0.2

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

hp?ifor different hadron species

hp?i[GeV/c]

0.70.8 0.91.0 1.11.2 1.31.4

p K h, h0 r, w K f p,n L, S X D S X W

w/wo

14/9

(20)

Results

Average transverse momentum: as a function of nchand mhad

ATLAS data default Gaussian p? Thermal p? 0.1

0.2 0.3 0.4 0.5 0.6 0.7

0.8Ch.hp?ivs. nchat 7 TeV, p? track>100 MeV, nch 2,|h| <2.5

hp?i[GeV/c]

20 40 60 80 100 120 140 160 180 200

0.9 0.95 1.0 1.05

nch

MC/Data

p+ K+

K⇤ 0 p

f X

S⇤ ± X⇤ 0 W ALICE data

default Gaussian p? Thermal p?

1

Mean transverse momentum vs. mass at 7 TeV,|y| <0.5

hp?i[GeV/c]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.7 0.8 0.9 1.0 1.1 1.2 1.3

m [GeV/c2]

MC/Data

References

Related documents

Complications due to trade policies and taxation aiming to protect domestic actors are also brought up in the theory (see chapter 2.4), but with a suggestion that these

Torbj¨ orn Sj¨ ostrand Nonperturbative models in PYTHIA slide 3/23...

Torbj¨ orn Sj¨ ostrand Open Issues in Soft Physics slide

Torbj¨ orn Sj¨ ostrand QCD Aspects of BSM Physics slide 12/18. R-hadrons: long-lived ˜ g or

Torbj¨ orn Sj¨ ostrand PYTHIA 8 for CORSIKA 8 slide 2/22... PYTHIA and the structure of an LHC

Torbj¨ orn Sj¨ ostrand Status and Developments of Event Generators slide 3/28... 1980: string (colour

Torbj¨ orn Sj¨ ostrand Past, Present and Future of the PYTHIA Event Generator slide 2/31...

Torbj¨ orn Sj¨ ostrand Monte Carlo Generators and Soft QCD 1 slide 4/40... in