• No results found

The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations

N/A
N/A
Protected

Academic year: 2022

Share "The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

royalsocietypublishing.org/journal/rstb

Research

Cite this article: Clarac F, Scheyer TM, Desojo JB, Cerda IA, Sanchez S. 2020 The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations. Phil.

Trans. R. Soc. B 375: 20190132.

http://dx.doi.org/10.1098/rstb.2019.0132

Accepted: 1 October 2019

One contribution of 15 to a theme issue

‘Vertebrate palaeophysiology’.

Subject Areas:

palaeontology, physiology

Keywords:

acidosis buffering, cutaneous respiration, heat transfer, historical constraints

Author for correspondence:

François Clarac

e-mail: francois.clarac@ebc.uu.se

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.

c.4782582.

The evolution of dermal shield vascularization in Testudinata and

Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations

François Clarac

1

, Torsten M. Scheyer

2

, Julia B. Desojo

3

, Ignacio A. Cerda

4

and Sophie Sanchez

1,5

1Department of Organismal Biology, Subdepartment of Evolution and Development, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden

2Paleontological Institute and Museum, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland

3CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n°, B1900FWA La Plata, Argentina

4CONICET, Argentina y Instituto de Investigacion en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Belgrano 1700, Paraje Pichi Ruca ( predio Marabunta), 8300 Cipolletti, Río Negro, Argentina

5European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS-40220, 38043 Grenoble Cedex, France FC, 0000-0001-8247-8507; TMS, 0000-0002-6301-8983; JBD, 0000-0002-2739-3276

Studies on living turtles have demonstrated that shells are involved in the resistance to hypoxia during apnea via bone acidosis buffering; a process which is complemented with cutaneous respiration, transpharyngeal and cloacal gas exchanges in the soft-shell turtles. Bone acidosis buffering during apnea has also been identified in crocodylian osteoderms, which are also known to employ heat transfer when basking. Although diverse, many of these functions rely on one common trait: the vascularization of the dermal shield. Here, we test whether the above ecophysiological func- tions played an adaptive role in the evolutionary transitions between land and aquatic environments in both Pseudosuchia and Testudinata. To do so, we measured the bone porosity as a proxy for vascular density in a set of dermal plates before performing phylogenetic comparative analyses.

For both lineages, the dermal plate porosity obviously varies depending on the animal lifestyle, but these variations prove to be highly driven by phylogenetic relationships. We argue that the complexity of multi-functional roles of the post-cranial dermal skeleton in both Pseudosuchia and Testudi- nata probably is the reason for a lack of obvious physiological signal, and we discuss the role of the dermal shield vascularization in the evolution of these groups.

This article is part of the theme issue‘Vertebrate palaeophysiology’.

1. Introduction

The vertebrate post-cranial dermal skeleton is composed of bony scutes which ossify within the dermis [1–4]. The presence of these bony elements varies tax- onomically, and the resulting shield morphology results from both the shape and the relative position of the dermal plates. These bones can be juxtaposed or articulated as observed in stem archosaurs [5,6], in pseudosuchians [7–9]

and some squamates [10]; they can also be fused as in turtles [11,12] and xenarthrans [13,14] or be isolated as in some ornithischian and sauropod dinosaurs [15–18].

Continuous shields of osteoderms (e.g. Aetosauria, Xenarthra) or bony scutes (e.g. Testudinata) have mostly been considered for their protective

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

(2)

aspects against predators [19–23]. However, experimental investigations on turtles have shown that their dermal shield would also have ecophysiological functions. Indeed, the bone tissues composing the shield would be able to buffer the acidosis which is caused by blood pH decrease after both the blood CO2 pressure has increased and the lactic acid (lactate) has been produced via fermentation during prolonged apnea [24–28]. Bone acidosis buffering con- sists of supplying mineral elements such as (1) bicarbonates that can bind to the free protons which are dissolved in the blood plasma (due to respiratory acidosis) and (2) calcium that can complex with the lactate and thus inhibits its acidity (in answer to metabolic acidosis) [29].

Such a physiological process has also been identified in the osteoderms of crocodylians [30] which are known to be semi-aquatic animals, derived from terrestrial ancestors [5,8,31]. In addition, crocodylian osteoderms are also involved in heat transfer with the environment during emerged and semi-emerged basking periods [17,23,32] via the enclosed vessels of which blood flow is controlled by car- diac activity and vasomotion, thus regulating the distribution of heat to the vital organs [33–35]. Even though no specific studies have yet been performed on this aspect in the testudi- natans, their dermal shield must also be involved in heat transfer [36], since it covers the majority of the body surface while enclosing peripheral blood vessels within bone cavities [37,38].

We quantified the post-cranial dermal bone vascular area as a proxy to assess the number and size of the blood vessels that are both enclosed within bony cavities and closely in contact with the apical bone surface when a superficial orna- mentation is present. Indeed, the sculptural elements that compose the bone ornamentation are known to provide vas- cular openings contributing to the dermal plate global vascularization by conducting blood vessels to the overlying soft dermis [39] as observed in pseudosuchians [40], tryoni- chids [37] and helochelydrids [41,42]. We then analysed the data with phylogenetic comparative methods (in Pseudosu- chia and Testudinata) to reveal whether the post-cranial dermal bone vessel proliferation is: (1) influenced by the phy- logeny and (2) correlated with lifestyle transitions unrelated to the phylogenetic relationships.

2. Material and methods (a) Sampling strategy

We studied 31 cross sections of dermal bones coming from different parts of the shell of both extant and extinct testudinatan species (dry bones and well-preserved fossils) from museum collections or published articles (table 1). The cross sections are transverse and pass by the centre of the sampled bones. The taxo- nomic affiliation and lifestyle attributes of the fossil forms could be identified unambiguously based on anatomical features. We classified the specimens into three categories depending on their lifestyle: terrestrial, freshwater and marine. When there was no ambiguity regarding the taphonomy ( post-mortem trans- portation), the nature of the sediment was also used as a clue to infer their living environment (e.g. marine versus fresh water;

electronic supplementary material, S1).

We sampled 32 cross sections of pseudosuchian osteoderms.

The taxa were categorized based on two different lifestyles:

terrestrial and semi-aquatic (table 1b). We decided not to dis- tinguish the marine animals from the freshwater semi-aquatic forms as they have a similar amphibious ambush predator

lifestyle [43,44]. The pelagic marine forms from the Jurassic (the metryorhinchids) [45,46] had completely lost the osteoderm shield and are therefore not suitable for this study (this aspect is discussed below). Extinct pseudosuchians are categorized based on the orientation of their skull neurosensory organs and limb postures as reviewed in a previous article [47].

(b) Data acquisition

We produced photographs of each cross section before segment- ing and rendering them binary in black and white with Adobe Photoshop CC 2015 (electronic supplementary material, S2 and S3), so that the bone matrix appears in black and the empty cav- ities appear in white. The ornamentation of dermal bones is often made of crests separated by pits, which systematically host large clusters of blood vessels from the soft dermis. These blood vessels are intimately associated with the dermal bone vascular- ization as they pierce its surface [39] and connect vessel clusters in the internal cavities (spongiosa) via these vascular openings at the surface of the bone [37,39]. As pseudosuchians [48], tryoni- chids [37] and helochelydrids [41] possess ornamented post- cranial dermal bones whose dermis vascularization is directly related to the dermal bone internal vascularization. Although these pits are large, they obviously do not over-estimate the por- osity of the bone as they are fully filled in by a great number of blood vessels [39]. For that reason, we decided to include the space of these pits into our measurements. To do so, we con- nected the top of the crests of the ornamentation with a virtual black line of one pixel in the most parsimonious way to embed the surface of the pits into the vascular measurements (electronic supplementary material, S3). We exported the pictures in TIFF format (electronic supplementary material, S2) and analysed them with Bone profiler [49] in order to measure the area occu- pied by the empty spaces proportionally to the entire area covered by bone and vascular spaces (as detailed in electronic supplementary material, S3).

(c) Phylogenetic comparative analyses

For both Pseudosuchia and Testudinata, time-scaled phylogenetic relationships of the sampled specimens were reconstructed in Mesquite [50] by relying on published references [5,41,42,51–63]

(figure 1). We then traced the evolution of the post-cranial dermal bone vascular area using the least-squared parsimony to calculate the ancestral states for each clade. In order to test the influence of the phylogeny (i.e. the historical constraint) on the vascular area of the post-cranial dermal skeleton, we exported the trees in NEX format into R [64] and we further computed both Pagel’s λ [65] and Blomberg’s K [66] after uploading the

‘caper’ package [67,68]. Finally, we tested the correlation between the post-cranial dermal bone vascular area and the corresponding lifestyle for each taxon using a phylogenetic ANOVA. This is a statistical test that reveals a correlation between quantitative and qualitative data while retracting the influence of the phylo- geny, which is quantified either by K or λ—we decided to consider both options [68] (table 2).

3. Results

(a) Evolution of vascular density in the osteoderms of Pseudosuchia

We first tested whether the variability of the vascular area—

proportionally to the dermal bone area—was inherited from the phylogenetic relationships of the studied species. Phyloge- netic tests showed that the vascular area in the osteoderms of the pseudosuchians is significantly influenced by the phylo- geny, as both the Blomberg’s K and the Pagel’s λ tests are

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

2

(3)

Table 1. Description of the sample, (a ) Tes tudina ta and (b ) Pseudouchia. TMM: Te xas Memorial Museum (Aus tin USA); FMNH: Field Museum of Na tur al His tory (Chicago, USA); MCNA: Museo de Ciencias Na tur ales de Al av a (Vitoria- Gas teiz, Spain); YPM: Yale Peabody Museum (Ne w H av en, USA); UPUAM: Unidad de Paleontología, Univ ersidad Autónoma de Madrid (Spain); WU-SILS-RH: W aseda Univ ersity (T oky o, Japan); NSMT: Na tional Museum for Na tur e and Science of Toky o (Japan); ZIN PH: Zoological Ins titute (Russian Academy of Sciences, Saint Petersburg); FPDM: Fukui Pr efectur al Dinosaur Museum (K atsuy ama City , Fukui Pr efectur e, Japan); UA: Univ ersité d’ Antananariv o (Madagascar); SMNS: Smithsonian Ins titution; BSPG: Ba yerische Staa tssammlung für Paläontologie und Geologie, München, Germany; PEF O: Petri fied Fo re st Na tional Park, USA; ISI: Indian Sta tis tical Ins titute (Calcutta, India); UCMP: Univ ersity of California, Museum of Paleontology (Berk ele y, USA); MNHN: Muséum Na tional d’ His toir e N atur elle; IPB: Ins titute of Paleontology (Bonn, Germany); NMS: Na turmuseum Solothurn, Switzerland; MCL: Musée des con fluences (Ly on, Fr ance); PVL: Colección de Paleo vertebr ados del Ins tituto Miguel Lillo (T ucumán, Argentina); n.a.: non-a ttributed.

porositylifestyleregionornamentationagecollectionnumber

(a ) Tes tudina ta Hesper otes tudo sp. 0.07 terr es trial fla t os teoderm no Pleis tocene TMM 30967-1010.1 Hesper otes tudo sp. 0.21 terr es trial spik ed os teoderm no Pleis tocene TMM 30967-1010.2 Terr apene car olina tringuis 0.40 terr es trial neur al no extant FMNH 211806 Terr apene car olina tringuis 0.22 terr es trial cos tal (right) no extant FMNH 211806 Dork ota vasconica 0.21 freshw ater cos tal no Barr emian MCNA 14366 Dork ota vasconica 0.24 freshw ater neur al no Barr emian MCNA 14372 Podocnemis erythr ocephala 0.15 freshw ater sample cos tal no extant YPM 11853 Solemy s sp. 0.07 terr es trial cos tal fragment ye s Maas trichtyian UPUAM-14001 Solemy s vermicula ta 0.14 terr es trial cos tal fragment ye s Maas trichtyian MCNA 15047 Solemy s vermicula ta 0.16 terr es trial shell fragment ye s Maas trichtyian MCNA 15046 Car ettochely s insculpta 0.10 freshw ater cos tal (right 7th) ye s extant WU-SILS RH1044 Pelodiscus sinensis 0.11 freshw ater cos tal ye s extant NSMT-H 6600 Trionychidae indet. 0.11 freshw ater cos tal ye s Aptian-Albian ZIN PH 102 Trionychidae indet. 0.10 freshw ater cos tal ye s early Cenomanian ZIN PH 122 Trionychidae indet. 0.09 freshw ater cos tal ye s Barr emian –Aptian FPDM V0127 Bothr emy s barberi 0.31 marine cos tal no Campanian FM P27406 (FMNH) Bothr emy s barberi 0.32 marine cos tal no Campanian FM P27406 (FMNH) Bothr emy s barberi 0.30 marine neur al no Campanian FM P27406 (FMNH) Car etta car etta 0.39 marine cos tal no extant FMNH 98963 Car etta car etta 0.33 marine hy oplas tr on no extant FMNH 98963 Ar chelon ischyr os 0.26 marine shell fragment no La te Cr eta ceous YPM 1783 Plesiochely s sp. 0.18 marine neur al no Kimmeridgian NMS 8730 Taphr osphy s sulca tus 0.34 marine cos tal no Maas trichtian YPM 40288 Taphr osphy s sulca tus 0.35 marine neur al no Maas trichtian YPM 40288 (C ontinued. ) ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

3

(4)

Table 1. (C ontinued. )

porositylifestyleregionornamentationagecollectionnumber

Ctenochely s stenoporus 0.36 marine neur al no Campanian FM PR 442 Geochelone elegans 0.14 terr es trial cos tal no extant IPB 561-C Geochelone elegans 0.10 terr es trial cos tal no extant IPB 561-C Geochelone elegans 0.07 terr es trial neur al no extant IPB 561-C Hesper otes tudo cr assiscuta 0.19 terr es trial neur al no Pleis tocene RO M 5540 Hesper otes tudo cr assiscuta 0.30 terr es trial plas ton fragment no Pleis tocene RO M 5541 Hesper otes tudo cr assiscuta 0.28 terr es trial shell fragment no Pleis tocene RO M 5542 (b ) Pseudosuchia Ar aripesuchus tsanga tsangana 0.05 terr es trial n.a. ye s La te Cr eta ceous UA 9966 Ba tr achotomus kupferzellensis 0.01 terr es trial par amedian pr e-caudal ye s La te Ladinian SMNS 80317 Pr es tosuchus chiniquensis 0.05 terr es trial sa cr al par amedian ye s La te Ladinian/Early Carnian BSPG ASXXV7 ‘Pr es tosuchus ’lorica tus 0.04 terr es trial pr e-caudal par amedian ye s La te Ladinian/Early Carnian BSPG ASXXV46d Rauisuchus tir adentes 0.16 terr es trial pr e-caudal par amedian ye s La te Carnian/Early Norian BSPG ASXXV121b Revueltosaurus sp. 0.04 terr es trial par amedian ye s Norian PEF O 33787 Tikisuchus romeri 0.14 terr es trial pr e-caudal par amedian ye s Carnian ISI R 305/ 1 Simosuchus clarki 0.1 terr es trial n.a. no La te Cr eta ceous UA 9965 Simosuchus clarki 0.07 terr es trial n.a. no La te Cr eta ceous UA 9965 Ya rasuchus deccanensis (A vemeta tarsalia) 0.10 terr es trial pr e-caudal par amedian ye s Anisian ISI R 334 Alliga tor mississippiensis 0.15 semi-aqua tic n.a. ye s extant SMNS 10481b Allogna thosuchus w artheni 0.13 semi-aqua tic n.a. ye s W asa tchian UCMP 113731 Cr ocodylus niloticus 0.13 semi-aqua tic dorsal ye s extant MNHN-A C- 1920.90, PC Diplocynodon sp. 0.23 semi-aqua tic n.a. ye s Eocene –Miocene IPB R144 ⁄1 Diplocynodon remensis 0.24 semi-aqua tic nuchal ye s Thanetian MNHN. F. No number Ma chimosaurus hugii 0.22 semi-aqua tic n.a. ye s La te Jur assic SMNS 81608 Sar cosuchus imper ator 0.24 semi-aqua tic n.a. ye s Upper Cr eta ceous MNHN.F . GDF 380 Steneosaurus sp. 0.07 semi-aqua tic n.a. ye s La te Jur assic NMS 752 Steneosaurus jugleri 0.12 semi-aqua tic n.a. ye s La te Jur assic NMS 7152 Paleosuchus trigona tus 0.29 semi-aqua tic n.a. ye s extant MCL 420003939 Pr otocaiman peligr ensis 0.13 semi-aqua tic n.a. ye s Danian UCMP 131693 Teleosaurus cadomensis 0.22 semi-aqua tic n.a. ye s Ba thonian MNHN His to 1960 (C ontinued. ) ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

4

(5)

significant (p-values of less than 0.05; table 2). The fact that the λ-value of 0.99 is very close to the maximum (λ = 1) means that the vascular area covaries in direct proportion with the species’

shared evolutionary history through a Brownian motion on the phylogeny [65,69]. The K-test shows a significant p-value (table 2) and thus emphasizes the tendency of closely related species to share a similar osteoderm vascular area. Neverthe- less, as the K-value itself clearly remains below 1, the phylogeny must not be the only component that explains the resulting evolutionary pattern of vascular area variability within Pseudosuchia [66,70].

A first glimpse of the vascular density distribution would suggest that the lifestyle of the studied taxa could partly explain this variability. Boxplots were calculated to illustrate the distribution of the vascular cross-sectional area in the osteoderms of semi-aquatic and terrestrial pseudosuchians.

Semi-aquatic forms exhibit a larger vascular area (proportion- ally to their dermal bone area) than terrestrial pseudosuchians (while showing a more pronounced apical ornamentation;

table 2 and figure 2a; electronic supplementary material, S2).

Indeed, although both datasets show an equal standard devi- ation (s.d.terrestrial= 0.07; s.d.semi-aquatic= 0.06), the mean value of the osteoderm vascular area is equal to 0.09 in the terrestrial forms, whereas it is twice as high in the semi-aquatic pseudo- suchians (mean = 0.18).

In order to test whether this distribution could partly explain the variability of vascular density in Pseudosuchia, we performed a phylogenetic ANOVA that takes into account the phylogenetic signal. The results present no significant correlation between the osteoderm vascular area and the pseudosuchian lifestyle (table 2).

(b) Evolution of vascular density in the shell of Testudinata

We evaluated the vascular areas of turtle shell in a phyloge- netic context. They show that the dermal shell bone vascular density is significantly influenced by the phylogeny since both the Blomberg’s K and the Pagel’s λ tests are significant (p-values of less than 0.05; table 2). However, both the λ and the K show lower values (λ = 0.83; K = 0.09) than for the pseudosuchian osteoderm vascular area (λ = 0.99; K = 0.41). We deduce that the phylogeny explains to a lesser extent the variability of shell vascular density in testudina- tans than in pseudosuchians (figure 1b).

As presented with boxplots (figure 2b) and in table 2, the testudinatan dermal bone vascular area seems to score higher values than in the pseudosuchian osteoderms although the standard deviation is equal, with the exception of terres- trial testudinatans, whose vascular density varies in a larger spectrum around a mean value of 0.18 (s.d. = 0.10). Unlike semi-aquatic pseudosuchians (which are most often found in freshwater environments), the freshwater turtle dermal bones show a lower vascular density (mean = 0.14) than terrestrial forms (mean = 0.18). The presence of ornamentation in both Trionychia and in Helochelydridae does not seem to influence the global turtle dermal bone vascularity as these bones still score a low vascular area (all values are lower than 0.16;

table 2; see Material and methods). As a third category, the marine turtles, which are fully aquatic (with a very brief terres- trial excursion on land for females to lay eggs), present a high average value of shell vascular area (mean = 0.31) with a

Table 1. (C ontinued. )

porositylifestyleregionornamentationagecollectionnumber

Goniopholis sp. 0.2 semi-aqua tic n.a. ye s Oxfordian-Berriasian MNHN His to 1727 Bor ealosuchus sp. 0.17 semi-aqua tic n.a ye s Campanian-Ypr esian UCMP 133903 Mahajangasuchus insignis 0.17 semi-aqua tic n.a. ye s Campanian UA 9962 Br achychampsa montana 0.22 semi-aqua tic n.a. ye s Maas trichtian UCMP 133901 Os teolaemus tetr aspis 0.12 semi-aqua tic n.a. ye s extant MNHN-A C-1991.4488 Paleosuchus palpebr osus 0.11 semi-aqua tic n.a. ye s extant MNHN.A C-1909.204 Caiman cr ocodilus 0.27 semi-aqua tic nuchal ye s extant Sorbonne Univ ersité - N A Bor ealosuchus wilsoni 0.18 semi-aqua tic n.a. ye s Ypr esian UCMP 131696 Pa ra typothor ax sp. 0.25 terr es trial par amedian ye s La te Triassic PEF O 5030 Aetosaurus scagliai 0.05 terr es trial par amedian ye s La te Triassic PVL 2073 ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

5

(6)

osteoderm vascular area:

parsimony reconstruction (least square)

dermal scute vascular area:

parsimony reconstruction (least square)

0.01–0.038

0.07–0.103 0.103–0.136 0.136–0.169 0.169–0.202 0.202–0.235 0.235–0.268 0.268–0.301 0.301–0.334 0.334–0.367 0.367–0.4 0.4–0.433 0.038–0.066 0.066–0.094 0.094–0.122 0.122–0.15 0.15–0.178 0.178–0.206 0.206–0.234 0.234–0.262 0.262–0.29 0.29–0.318

(b) (a)

Figure 1. (a) Reconstruction of the osteoderm vascular area on the phylogeny of Pseudosuchia using a least-square reconstruction. The phylogeny was reconstructed and time-scaled according to published references [5,51 –58]. The light blue arrows represent the transitions from a terrestrial to a semi-aquatic lifestyle. (b) Recon- struction of the dermal scute vascular area on the phylogeny of Testudinata using a least-square reconstruction. The phylogeny was reconstructed and time-scaled according to published references [41,42,59 –63]. The dark blue arrows represent the transitions from a freshwater to a marine lifestyle. The green arrow represents a transition from a freshwater to a terrestrial lifestyle. Regarding the dermal plates, which belong to the same species or specimen, we decided to separate them from a 1 Myr-old last hypothetical common ancestor: a systematic error which is below 1% when considering the total branch length within the phylogeny timescale (180 Ma for the testudinatans and 250 Ma for the pseudosuchians). Paleog, Paleogene, Ne, Neogene.

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

6

(7)

standard deviation similar to that of the freshwater turtles (figure 2b and table 2).

A phylogenetic ANOVA was performed and shows that the vascular area in the testudinatan post-cranial dermal bones was not significantly correlated with their lifestyle (table 2), despite these discrete boxplot distributions.

4. Discussion

(a) Pseudosuchian osteoderm vascularization: historical constraints versus ecophysiological adaptations

Our results show that the variability of the osteoderm vascu- larization correlates with the phylogenetic relationships within Pseudosuchia. Although the lifestyle seems to partly explain the rest of the correlation factor according to the global distribution of the data, our phylogenetic ANOVA revealed no significant correlation between osteoderm vascu- lar variability and lifestyle. The high osteoderm vascularity in the semi-aquatic forms was therefore likely the result of a his- torical constraint (as evidenced by the significant values ofλ andK) rather than an ecological adaptation based on natural selection. Nevertheless, some recent studies on living species have shown that the bone cavities in the crocodylian osteo- derms reveal an enclosed vascular proliferation [39], which is involved in acidosis buffering during prolonged apnea [30], as well as in heat transfer during emerged and semi- emerged basking periods [23]. Therefore, we cannot refute the existence of such physiological mechanisms in the extinct crocodylomorphs who shared the same semi-aquatic ambush predator behaviour as the extant crocodylians: the extinct neosuchians (e.g. Sarcosuchus imperator, Goniopholis sp.) [31,71,72] and the teleosaurids [45,55,73].

Regarding the thalattosuchians that adopted a pelagic life- style involving long-term apneas (Metriorhynchidae; [44–46]), the loss of the dermal shield must have negatively impacted their performance in bone acidosis buffering. Nevertheless, other pathways can buffer acidosis via the involvement of soft tissues [74]. Such mechanisms have already been observed in marine birds and mammals [75–77]. Contrary to extant

crocodylians, marine birds and mammals are very active swimmers. Their lack of oxygen due to apnea essentially affects their appendicular musculature. To compensate for the acidity increase, limb muscles synthetize a protein (carno- sine) [78–80] which complexes with protons and thus buffers the intracellular acidosis in muscle tissues where free oxygen concentration is the lowest. As the fossil forms—metrior- hynchids—probably were active sea predators, as evidenced by the presence of a tail fluke and swimming paddles [45,46], we can assume that metabolic acidosis buffering could have involved the muscular system as in extant marine birds and mammals. However, the reasons for the metriorhynchids to have lost their osteoderm shield remain unknown. This loss could reflect a complex conjuncture invol- ving both phylogenetic and structural constraints influencing the development of the dorsal shield in disregard of its phys- iological implication(s) (i.e. weight loss, flexibility along the anteroposterior axis, etc. [45,46,81]).

(b) Testudinatan shell vascularization: historical constraints versus ecophysiological adaptations

Likewise, our results show that the testudinatan shell vascu- lar density is essentially constrained by the phylogeny despite the noticeable differences in the mean values of vas- cular area between taxa belonging to different lifestyle categories (table 2 and figure 2b).

Higher porosity is encountered in the marine forms. It probably provides a dense vascular system, which facilitates long-term apnea via bone acidosis buffering since this func- tion is essential to sea turtles, of which only the females emerge on land for nesting [82]. Most of their feeding habits rely on a vegetarian or omnivorous diet from the sea bottom [83]. Density reduction due to the lightening of the shell bone perforated by a large number of vascular canals obviously increases their buoyancy and intensifies their effort to dive and remain at the bottom of the sea. Because the control of buoyancy is moderated by the lungs [84,85], we strongly suspect that the porosity of the shell could be better explained as the result of physiological functions

Table 2. Statistical results. s.d.: standard deviation; max: maximum value; min: minimum value.

Pseudosuchia Testudinata

phylogenetic analyses result/value p-value phylogenetic analyses result/value p-value

K signi ficant/K = 0.41 0.004 K signi ficant/K = 0.09 0.003

ANOVA(K ) non-signi ficant 0.21 ANOVA(K ) non-signi ficant 0.6658

λ signi ficant/λ = 0.99 1.97 × 10

−5

λ signi ficant/λ = 0.83 2.48 × 10

−5

ANOVA( λ) non-signi ficant 0.21 ANOVA( λ) non-signi ficant 0.6658

statistical results statistical results

lifestyle terrestrial semi-aquatic terrestrial freshwater marine

mean porosity 0.09 0.18 0.18 0.14 0.31

median 0.06 0.19 0.16 0.11 0.33

s.d. 0.07 0.06 0.10 0.06 0.06

min 0.01 0.07 0.07 0.09 0.18

max 0.25 0.29 0.40 0.24 0.39

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

7

(8)

such as bone acidosis buffering than in relation to biomechanics.

Unlike the marine forms, the freshwater turtles do not exhibit a high shell bone porosity although they are known to perform bone acidosis buffering during prolonged apnea and while hibernating in freezing and/or anoxic conditions [24–30,86]. Some freshwater species such as the trionychids seem to have developed a different strategy to withstand long duration apneas. Indeed, in comparison with the other freshwater testudinatans, the trionychids are known to have a lower performance in bone acidosis buffering as they are less tolerant to anoxia [87]. Instead, they exchange blood gases with those dissolved in the surrounding water using pharyngeal, cloacal and cutaneous respiration [88]. Although gas exchanges are not possible through scales of keratin in sauropsids (including crocodylians and testudinatans), this mechanism is rendered possible in trionychids by the second- ary loss of their superficial keratin layer [63]. It is worth mentioning that the use of cutaneous respiration in Trionychia correlates with a rare expression of shell apical ornamentation in testudines. As illustrated in previous studies [37], the pits which compose the trionychid shell sculpture always house one or several vascular openings which provide a proliferation of superficial vessels as in crocodylian ornamented osteoderms [39]. This configuration provides a large blood-vessel network for gas exchanges in cutaneous respiration [89].

Even if heat exchange with the environment is vital for testudinatans [90], which are ectotherms, this function does not seem to correlate with the evolutionary pattern of shield vascularization (considering the vascular area as a proxy). Indeed, both freshwater and terrestrial turtle dermal bones globally show a lower vascular density than marine forms, although temperature variations in the sea are much narrower than on land or in freshwater environments.

In conclusion, the dermal shield of the testudinatans seems to play multiple physiological roles which differently concern: (1) marine turtles (acidosis buffering during pro- longed apnea); (2) freshwater turtles (cutaneous respiration and/or acidosis buffering in response to prolonged apnea or hibernation in anoxic or freezing conditions, heat transfer when basking); and (3) terrestrial tortoises (heat transfer).

Therefore, it seems unlikely that any resulting combination of these functions represents the primary determinant of mor- phology once we have considered the influence of the phylogenetic relationships (historical constraints).

(c) Evolutionary trends in Pseudosuchia and Testudinata

Pseudosuchians and testudinatans have been repeatedly defined as sister taxa according to several phylogenetic recon- structions [91–97]. Among amniotes, these two groups are the main ones to have developed a large post-cranial dermal 0.30

0.25

0.20

0.15

0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 0.10

0.05

0 terrestrial

terrestrial freshwater marine

*0.05

**

*

***

**

*

*0.14

G. elegans P. sinensis C. caretta

**0.11 ***0.35

P. chiniquensis S. imperator

**0.24

semi-aquatic (a)

(b)

Figure 2. (a) Boxplot of the osteoderm vascular area in the pseudosuchians. (b) Boxplot of the dermal scute vascular area in the testudinatans. The four quartiles represent the dispersion of the values for each lifestyle.

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

8

(9)

skeleton which is known to be used in both acidosis buffering and heat transfer. This pattern leads us to wonder if this ability of the post-cranial dermal bones to perform ecophysiological functions results from a phylogenetic heritage or consists of a functional analogy. The vascular density in the post-cranial dermal skeleton increased when pseudosuchians transited to a semi-aquatic lifestyle in the Early Jurassic and when turtles transited to a marine lifestyle (within Pleurodira during the Cretaceous, within Cryptodira during the Jurassic and maybe in some early testudinatan species such asEileanchelys waldmani and Heckerochelys romani for which the assumed marine lifestyle is still debated [38,98]; figures 1 and 2). All these transitions probably induced bone acidosis buffering to balance prolonged apnea, which directly depends on the bone vascularization inside the shell cavities [29].

Even though the vascularization in post-cranial dermal bones must also be involved in heat transfer due to its periph- eral location on the body [20,35], testudinatans and pseudosuchians nevertheless have evolved through very different thermal metabolism patterns. Indeed, the pseudosu- chians derive from an endothermic ancestor [99–103] whereas ectothermy is a plesiomorphic condition in Testudinata [38,104]. The increase in dermal bone vascularization relates to heat transfer in the semi-aquatic crocodylomorphs [23,39,47] but this process does not explain the observed pat- tern in the testudinatan shell as the terrestrial forms score lower relative vascular area although they are the most exposed to external thermal variations.

The functional role(s) of bone ornamentation may also differ between the turtles and the crocodylians. Indeed, even though the vascular openings within the ornamental pits must play a role in cutaneous respiration in soft-shell tur- tles, this function is not possible in the crocodylians since their entire body is covered by a layer of keratine [31]. The function(s) of bone ornamentation in Crocodylomorpha must instead concern acidosis buffering and heat transfer via the housing of vessel clusters straight over the bone apical surface in connection with the blood vessels under- neath, which are enclosed in the bone cavities within the osteoderm core (spongiosa).

As a conclusion, we suggest that the vascular plasticity of the post-cranial dermal bones in both Testudinata and Pseudosuchia probably helped these clades make major evolutionary shifts by offering various pathways to oxygen and/or heat management. Despite the fact that upshifts in vascular density often relate to an increased frequency of internal low oxygen due to a freshwater or marine lifestyle, we do not exclude that vascular density also relates to other vital functions as well as historical and structural constraints which drive the development and morphology of the dermal plates [105]. The complexity of multi-functional roles of the post-cranial dermal skeleton in both pseudosuchians and testudinatans might be a reason why our phylogenetic ANOVA revealed no relation between ‘vascular area’ and

‘ecology’ despite obvious differences between the lifestyle categories. Our results however demonstrate that the advanced development of a post-cranial skeleton in these groups was crucial for the survival and dispersal of these taxa in various ecological niches. This major evolutionary step should be more thoroughly investigated.

Data accessibility. The data are accessible in electronic supplementary material files.

Authors’ contributions.F.C. computed and analysed the data before writ- ing the first version of the manuscript. S.S. funded this study and gave important input regarding the interpretation of the data.

T.M.S. provided his expertise on the testudinatan anatomy and phy- logenetic relationships. J.B.D. and I.A.C. provided their expertise on the histology and on the natural history of the pseudosuchians. All authors worked on the finalization of the manuscript.

Competing interests.We declare we have no competing interests.

Funding.This work was supported by a grant from the Vetenskapsrå- det awarded to S.S. (grant no. 2015–04335). T.M.S. acknowledges support by the Swiss National Science Foundation (grant no.

205321_162775).

Acknowledgements.We thank Damien Germain (curator of the paleohis- tology collection in the Muséum National d’ Histoire Naturelle;

MNHN) for giving us access to the sample of European pseudosu- chian specimens as well as the curators of the museums and collections who granted access to materials used in the previous studies on the histology of armoured animals.

References

1. Dubansky BH, Dubansky BD. 2018 Natural development of dermal ectopic bone in the American alligator (Alligator mississippiensis) resembles heterotopic ossification disorders in humans. Anat. Rec. 301, 56–76. (doi:10.1002/ar.

23682)

2. Gilbert SF, Loredo GA, Brukman A, Burke AC. 2001 Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol. Dev.

3, 47–58. (doi:10.1046/j.1525-142x.2001.

003002047.x)

3. Vickaryous MK, Hall BK. 2008 Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. J. Morphol. 269, 398–422. (doi:10.1002/jmor.10575)

4. Vickaryous MK, Sire JY. 2009 The integumentary skeleton of tetrapods: origin, evolution and

development. J. Anat. 214, 441–464. (doi:10.1111/

j.1469-7580.2008.01043.x)

5. Nesbitt SJ. 2011 The early evolution of archosaurs:

relationships and the origin of major clades. Bull. Am.

Mus. Nat. Hist. 352, 1–292. (doi:10.1206/352.1) 6. Cerda IA, Desojo JB, Trotteyn MJ, Scheyer TM. 2015

Osteoderm histology of Proterochampsia and Doswelliidae (Reptilia: Archosauriformes) and their evolutionary and paleobiological implications.

J. Morphol. 276, 385–402. (doi:10.1002/jmor.

20348)

7. Cerda IA, Desojo JB. 2011 Dermal armour histology of aetosaurs (Archosauria: Pseudosuchia), from the Upper Triassic of Argentina and Brazil. Lethaia 44, 417–428. (doi:10.1111/j.1502-3931.2010.00252.x) 8. Irmis RB, Nesbitt SJ, Sues HD. 2013 Early

Crocodylomorpha. Geol. Soc. London Spec. Publ.

379, 275–302. (doi:10.1144/SP379.24)

9. Burns ME, Vickaryous MK, Currie PJ. 2013 Histological variability in fossil and recent alligatoroid osteoderms: systematic and functional implications. J. Morphol. 274, 676–686. (doi:10.

1002/jmor.20125)

10. Anjan B, Bhullar S. 2008 Osteoderms of the California legless lizard Anniella (Squamata:

Anguidae) and their relevance for considerations of miniaturization. Copeia 4, 785–793. (doi:10.1643/

CG-07-189)

11. Acrai B, Wagner HD. 2013 Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. Acta Biomater. 9, 5890–5902. (doi:10.1016/j.actbio.2012.12.023) 12. Chen IH, Yang W, Meyers MA. 2015 Leatherback sea

turtle shell: a tough and flexible biological design.

Acta Biomater. 28, 2–12. (doi:10.1016/j.actbio.

2015.09.023)

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

9

(10)

13. Vickaryous MK, Hall BK. 2006 Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J. Morphol. 267, 1273–1283.

(doi:10.1002/jmor.10475)

14. Wolf D, Kalthoff DC, Sander PM. 2012 Osteoderm histology of the Pampatheriidae (Cingulata, Xenarthra, Mammalia): implications for systematics, osteoderm growth, and biomechanical adaptation.

J. Morphol. 273, 388–404. (doi:10.1002/jmor.

11029)

15. Scheyer TM, Sander PM. 2004 Histology of ankylosaur osteoderms: implications for systematics and function. J. Vertebr. Paleontol. 24, 874–893.

(doi:10.1671/0272-4634)

16. Main RP, de Ricqlès A, Horner JR, Padian K. 2005 The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs. Paleobiology 31, 291–314. (doi:10.

1666/0094-8373)

17. Farlow JO, Hayashi S, Tattersall GJ. 2010 Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora). Swiss. J. Geosci. 103, 173–185. (doi:10.1007/s00015-010-0021-5) 18. Carrano MT, D’Emic MD. 2015 Osteoderms of the

titanosaur sauropod dinosaur Alamosaurus sanjuanensis Gilmore, 1922. J. Vertebr. Paleontol.

35, e901334. (doi:10.1080/02724634.2014.901334) 19. Sun CY, Chen PY. 2013 Structural design and

mechanical behavior of alligator (Alligator mississippiensis) osteoderms. Acta Biomater. 9, 9049–9064. (doi:10.1016/j.actbio.2013.07.016) 20. Chen IH, Yang W, Meyers MA. 2014 Alligator

osteoderms: mechanical behavior and hierarchical structure. Mater. Sci. Eng. C 35, 441–448. (doi:10.

1016/j.msec.2013.11.024)

21. Broeckhoven C, Diedericks G, Mouton PLFN. 2015 What doesn’t kill you might make you stronger:

functional basis for variation in body armour.

J. Anim. Ecol. 84, 1213–1221. (doi:10.5061/dryad.

7h4r3)

22. Du Plessis A, Broeckhoven C, Yadroitsev I, Yadroitsava I, le Roux SG. 2018 Analyzing nature’s protective design: the glyptodont body armor.

J. Mech. Behav. Biomed. 82, 218–223. (doi:10.1016/

j.jmbbm.2018.03.037)

23. Clarac F, Quilhac A. 2019 The crocodylian skull and osteoderms: a functional exaptation to ectothermy?

Zoology 132, 31–40. (doi:10.1016/j.zool.2018.

12.001)

24. Jackson DC, Heisler N. 1982 Plasma ion balance in submerged anoxic turtles at 3°C: the role of calcium lactate formation. Res. Physiol. 49, 159–174.

(doi:10.1016/0034-5687(82)90071-8)

25. Jackson DC, Goldberger Z, Visuri S, Armstrong RN.

1999 Ionic exchanges of turtle shell in vitro and their relevance to shell function in the anoxic turtle.

J. Exp. Biol. 202, 503–520.

26. Jackson DC. 2000 Living without oxygen: lessons from the freshwater turtle. Comp. Biochem. Physiol. A 125, 299–315. (doi:10.1016/S1095-6433(00)00160-4) 27. Jackson DC, Crocker CE, Ultsch GR. 2000 Bone and shell

contribution to lactic acid buffering of submerged

turtles Chrysemys picta bellii at 3°C. Am. J. Physiol. Reg.

Integr. Comp. Physiol. 278, R1564–R1571. (doi:10.

1152/ajpregu.2000.278.6.r1564)

28. Jackson DC, Ramsey AL, Paulson JM, Crocker CE, Ultsch GR. 2000 Lactic acid buffering by bone and shell in anoxic softshell and painted turtles. Phys.

Chem. Zool. 73, 290–297. (doi:10.1086/316754) 29. Jackson DC. 2004 Surviving extreme lactic acidosis:

the role of calcium lactate formation in the anoxic turtle. Resp. Physiol. Neurobiol. 144, 173–178.

(doi:10.1016/j.resp.2004.06.020)

30. Jackson DC, Andrade D, Abe AS. 2003 Lactate sequestration by osteoderms of the broad-nose caiman, Caiman latirostris, following capture and forced submergence. J. Exp. Biol. 206, 3601–3606.

(doi:10.1242/jeb.00611)

31. Trutnau L, Sommerlad R. 2006 Crocodilians their natural history and captive husbandry. Frankfurt am Main, Germany: Edition Chimaira.

32. Seidel MR. 1979 The osteoderms of the American alligator and their functional significance. Herpetol.

Leag. 35, 375–380.

33. Seebacher F, Franklin CE. 2004 Integration of autonomic and local mechanisms in regulating cardiovascular responses to heating and cooling in a reptile (Crocodylus porosus). J. Comp. Physiol. B 174, 577–585. (doi:10.1007/s00360-004-0446-0) 34. Seebacher F, Franklin CE. 2007 Redistribution of

blood within the body is important for thermoregulation in an ectothermic vertebrate (Crocodylus porosus). J. Comp. Physiol. B 177, 841–848. (doi:10.1007/s00360-007-0181-4) 35. Grigg GC, Alchin J. 1976 The role of the

cardiovascular system in thermoregulation of Crocodylus johnstoni. Physiol. Zool. 49, 24–36.

(doi:10.1086/physzool.49.1.30155674)

36. Tattersall DJ, Cadena V. 2010 Insights into animal temperature adaptations revealed through thermal imaging. Imaging Sci. J. 58, 261–268. (doi:10.1179/

136821910X12695060594165)

37. Scheyer TM, Sander PM, Joyce WG, Böhme W, Witzel U. 2007 A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications. Org. Divers. Evol.

7, 136–144. (doi:10.1016/j.ode.2006.03.002) 38. Scheyer TM, Sander PM. 2007 Carapace bone

histology in the giant pleurodiran turtle Stupendemys geographicus: phylogeny and function.

Proc. R. Soc. B 274, 1885–1893. (doi:10.1098/rspb.

2007.0499)

39. Clarac F, Buffrénil V, Cubo J, Quilhac A. 2018 Vascularisation in ornamented osteoderms:

physiological implications in ectothermy and amphibious lifestyle in the crocodylomorphs? Anat.

Rec. 301, 175–183. (doi:10.1002/ar.23695) 40. Buffrénil V, Clarac F, Fau M, Martin S, Martin B,

Pellé E, Laurin M. 2015 Differentiation and growth of bone ornamentation in vertebrates: a comparative histological study among the Crocodylomorpha. J. Morphol. 276, 425–445.

(doi:10.1002/jmor.20351)

41. Joyce WG, Chapman SD, Moody RTJ, Walker CA.

2011 The skull of the solemydid turtle Helochelydra

nopcsai from the Early Cretaceous of the Isle of Wight (UK) and a review of Solemydidae.

Palaeontology 86, 75–97. (doi:10.1111/j.1475-4983.

2011.01075.x)

42. Joyce WG. 2017 A review of the fossil record of basal Mesozoic turtles. Bull. Peabody Mus. Nat. Hist.

58, 65–113. (doi:10.3374/014.058.0105) 43. Young MT, de Andrade MB, Cornéed JJ, Steel L,

Foffa D. 2014 Re-description of a putative Early Cretaceous‘teleosaurid’ from France, with implications for the survival of metriorhynchids and teleosaurids across the Jurassic-Cretaceous Boundary. Hist. Biol. 27, 947–953. (doi:10.1016/j.

annpal.2014.01.002)

44. Fanti F, Miyashita T, Cantelli L, Mnasri F, Dridi J, Contessi M, Cau A. 2016 The largest thalattosuchian (Crocodylomorpha) supports teleosaurid survival across the Jurassic-Cretaceous boundary. Cret. Res.

61, 263–274. (doi:10.1016/j.cretres.2015.11.011) 45. Buffetaut E. 1982 Radiation évolutive, paléoécologie

et biogéographie des crocodiliens mésosuchiens.

Mém. Soc. Géol. France N S 142, 1–88.

46. Young MT, Brusatte SL, Ruta M, de Andrade MB.

2010 The evolution of Metriorhynchoidea (Mesoeucrocodylia, Thalattosuchia): an integrated approach using geometric morphometrics, analysis of disparity, and biomechanics. Zool. J. Linnean Soc.

158, 801–859. (doi:10.1111/j.1096-3642.2009.

00571.x)

47. Clarac F, de Buffrénil V, Brochu CA, Cubo J. 2017 The evolution of bone ornamentation in Pseudosuchia:

morphological constraints versus ecological adaptation. Biol. J. Linn. Soc. 121, 395–408.

(doi:10.1093/biolinnean/blw034)

48. Clarac F, Souter T, Cornette R, Cubo J, de Buffrénil V.

2015 A quantitative assessment of bone area increase due to ornamentation in the Crocodylia.

J. Morphol. 276, 1183–1192. (doi:10.1002/jmor.

20408)

49. Girondot M, Laurin M. 2003 Bone Profiler: a tool to quantify, model, and statistically compare bone- section compactness profiles. J. Vertebr. Paleontol.

23, 458–461. (doi:10.1671/0272-4634(2003)023 [0458:bpattq]2.0.co;2)

50. Maddison WP, Maddison DR. 2011 Mesquite: a modular system for evolutionary analysis. Version 2.75. See http://mesquiteproject.org.

51. Jouve S. 2009 The skull of Teleosaurus cadomensis (Crocodylomorpha; Thalattosuchia). J. Vertebr.

Paleontol. 29, 88–102. (doi:10.1671/039.029.0129) 52. de Andrade MB, Edmonds R, Benton MJ, Schouten R. 2011 A new Berriasian species of Goniopholis (Mesoeucrocodylia, Neosuchia) from England, and a review of the genus. Zool. J. Linnean Soc. 163, S66–S108. (doi:10.1111/j.1096-3642.2011.00709.x) 53. Pol D, Nascimento PM, Carvahlo AB, Riccomini C,

Pires-Domingue RA, Zaher H. 2014 A new notosuchian from the late Cretaceous of Brazil and the phylogeny of advanced notosuchians. PLoS ONE 9, e93105. (doi:10.1371/journal.pone.0093105) 54. Pol D, Leardi JM. 2015 Diversity patterns of

Notosuchia (Crocodyliformes, Mesoeucrocodylia) during the Cretaceous of Gondwana. In Reptiles

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

10

(11)

extintos-volumen en homenaje a zulma a gasparini.

Publicacion electronica de la asociacion paleontologica Argentina 15(1) (eds M Fernandez, Y Herrera), pp. 172–186. Buenos Aires, Argentina:

Asociación Paleontológica Argentina.

55. Young MT et al. 2014 Revision of the Late Jurassic teleosaurid genus Machimosaurus

(Crocodylomorpha, Thalattosuchia). R. Soc. open sci.

1, 140222. (doi:10.1098/rsos.140222) 56. Wilberg EW. 2015 What’s in an outgroup? The

impact of outgroup choice on the phylogenetic position of Thalattosuchia (Crocodylomorpha) and the origin of Crocodyliformes. Syst. Biol. 64, 621–637. (doi:10.1093/sysbio/syv020)

57. Nesbitt SJ et al. 2019 The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–544. (doi:10.1038/nature22037) 58. Bona P, Ezcurra MD, Barrios F, Blanco MVF. 2018 A

new Paleocene crocodylian from southern Argentina sheds light on the early history of caimanines.

Proc. R. Soc. B 285, 20180843. (doi:10.1098/rspb.

2018.0843)

59. Meylan PA, Sterrer W. 2000 Hesperotestudo (Testudines: Testudinidae) from the Pleistocene of Bermuda, with comments on the phylogenetic position of the genus. Zool. J. Linnean. Soc. 128, 51–76. (doi:10.1006/zjls.1998.0199)

60. Kear BP, Lee MSY. 2006 A primitive protostegid from Australia and early sea turtle evolution. Biol.

Lett. 2, 116–119. (doi:10.1098/rsbl.2005.0406) 61. Joyce WG, Parham JF, Lyson TR, Warnock RCM,

Donoghue PCJ. 2013 A divergence dating analysis of turtles using fossil calibrations: an example of best practices. J. Paleontol. 87, 612–634. (doi:10.1666/

12-149)

62. Sterli J, Pol D, Laurin M. 2013 Incorporating phylogenetic uncertainty on phylogeny-based palaeontological dating and the timing of turtle diversification. Cladistics 9, 232–246. (doi:10.1111/j.

1096-0031.2012.00425.x)

63. Nakajima Y, Danilov IG, Hirayama R, Sonoda T, Scheyer TM. 2017 Morphological and histological evidence for the oldest known softshell turtles from Japan. J. Vertebr. Paleontol. 37, e1278606. (doi:10.

1080/02724634.2017.1278606)

64. R Development Core Team. 2012 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for statistical Computing.

(http://www.r-project.org/)

65. Pagel M. 1999 Inferring the historical patterns of biological evolution. Nature 401, 877–884. (doi:10.

1038/44766)

66. Blomberg SP, Garland T. 2002 Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910.

(doi:10.1046/j.1420-9101.2002.00472.x) 67. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S,

Isaac N, Pearse W. 2012 The caper package: comparative analysis of phylogenetics and evolution in R. R package version 0.5.2. London, UK: CRAN.R Project.

68. Revell LJ. 2012 Phytools: an R package for phylogenetic comparative biology (and other

things). Methods Ecol. Evol. 3, 217–223. (doi:10.

1111/j.2041-210X.2011.00169.x)

69. Garland Jr T, Dickerman AW, Janis CM, Jason AJ.

1993 Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–292.

(doi:10.1093/sysbio/42.3.265)

70. Freckleton RP. 2012 Fast likelihood calculations for comparative analyses. Methods Ecol. Evol. 3, 940–947. (doi:10.1111/j.2041-210X.2012.00220.x) 71. Blomberg SP, Garland Jr T, Ives AR. 2003 Testing for

phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.

(doi:10.1111/j.0014-3820.2003.tb00285.x) 72. Sereno PC, Larsson HC, Sidor CA, Gado B. 2001 The

giant crocodyliform Sarcosuchus from the Cretaceous of Africa. Science 294, 1516–1519. (doi:10.1126/

science.1066521)

73. Buscalioni AD, Piras P, Vullo R, Signore M, Barbera C. 2011 Early eusuchia crocodylomorpha from the vertebrate-rich Plattenkalk of Pietraroia (Lower Albian, southern Apennines, Italy). Zool. J. Linnean Soc. 163, S199–S227. (doi:10.1111/j.1096-3642.

2011.00718.x)

74. Hua S, de Buffrénil V. 1996 Bone histology as a clue in the interpretation of functional adaptations in the Thalattosuchia (Reptilia, Crocodylia). J. Vertebr.

Paleontol. 16, 703–717. (doi:10.1080/02724634.

1996.10011359)

75. Bickler PE, Buck LT. 2007 Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu. Rev. Physiol. 69, 145–170. (doi:10.1146/annurev.physiol.69.031905.

162529)

76. Brix O, Condo SG, Lazzarino G, Clémenti ME, Scatena R, Giardina B. 1989 Arctic life adaptation-III.

The function of whale (Balaenoptera acutorastrata) hemoglobin. Comp. Biochem. Physiol. 94B, 139–142. (doi:10.1016/0305-0491(89)90024-2) 77. Lestyk KC, Folkow LP, Blix AS, Hammil MO, Burns

JM. 2009 Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J. Comp. Physiol. B 179, 985–996. (doi:10.1007/s00360-009-0378-9) 78. Andrews RD, Enstipp MR. 2016 Diving physiology of

seabirds and marine mammals: relevance, challenges and some solutions for field studies.

Comp. Biochem. Physiol. A 202, 38–52. (doi:10.

1016/j.cbpa.2016.07.004)

79. Artioli GG, Gualano B, Smith A, Stout J, Lancha Jr AH. 2010 The role ofβ-alanine supplementation on muscle carnosine and exercise performance. Med.

Sci. Sports Exerc. 42, 1162–1173. (doi:10.1249/MSS.

0b013e3181c74e38)

80. Baguet A, Koppo K, Pottier A, Derave W. 2010 β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur. J. Appl. Physiol. 108, 495–503.

(doi:10.1007/s00421-009-1225-0)

81. Boldyrev AA, Aldini G, Derave W. 2013 Physiology and pathophysiology of carnosine. Physiol. Rev. 93, 1803–1845. (doi:10.1152/physrev.00039.2012)

82. Clarac F, Souter T, Cubo J, de Buffrénil V, Brochu C, Cornette R. 2016 Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia. J. Anat. 229, 292–301. (doi:10.

1111/joa.12470)

83. Lutz PL, Musick JA, Wyneken J. 2002 The biology of the sea turtles, vol. 2. Boca Raton, FL: CRC Press.

84. Broderick AC, Godley BJ, Hays GC. 2001 Trophic status drives interannual variability in nesting numbers of marine turtles. Proc. R. Soc.

Lond. B 268, 1481–1487. (doi:10.1098/rspb.

2001.1695)

85. Hochscheid S, Bentivegna F, Speakman JR. 2003 The dual function of the lung in chelonian sea turtles:

buoyancy control and oxygen storage. J. Exp. Mar.

Biol. Ecol. 297, 123–140. (doi:10.1016/j.jembe.

2003.07.004)

86. Hochscheid S, McMahon CR, Bradshaw CJA, Maffucci F, Bentivegna F, Hays GC. 2007 Allometric scaling of lung volume and its consequences for marine turtle diving performance. Comp. Biochem. Phys. A 148, 360–367. (doi:10.1016/j.cbpa.2007.05.010) 87. Dinkelacker SA, Costanzo JP, Lee Jr RE. 2005 Anoxia

tolerance and freeze tolerance in hatchling turtles.

J. Comp. Physiol. B 175, 209–217. (doi:10.1007/

s00360-005-0478-0)

88. Reese SA, Jackson DC, Ultsch GR. 2003 Hibernation in freshwater turtles: softshell turtles (Apalone spinifera) are the most intolerant of anoxia among North American species. J. Comp. Physiol. B 173, 263–268. (doi:10.1007/s00360-003-0332-1) 89. Dunson WA. 1960 Aquatic respiration in Trionyx

spinifer asper. Herpetologica 16, 277–283.

90. Feder ME, Burggren WW. 1985 Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol. Rev. 60, 1–45. (doi:10.1111/

j.1469-185X.1985.tb00416.x)

91. Hochscheid S, Bentivegna F, Speakman JR. 2002 Regional blood flow in sea turtles: implications for heat exchange in an aquatic ectotherm. Physiol.

Biochem. Zool. 75, 66–76. (doi:10.1086/339050) 92. Kumazawa Y, Nishida M. 1999 Complete

mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol. Biol. Evol. 16, 784–792. (doi:10.1093/oxfordjournals.molbev.

a026163)

93. Zardoya R, Meyer A. 1998 Complete mitochondrial genome suggests diapsid affinities of turtles. Proc.

Natl Acad. Sci. USA 95, 14 226–14 231. (doi:10.

1073/pnas.95.24.14226)

94. Zardoya R, Meyer A. 2001 The evolutionary position of turtles revised. Naturwissenschaften 88, 193–200. (doi:10.1007/s001140100228) 95. Cao Y, Sorenson MD, Kumazawa Y, Mindell DP,

Hasegawa M. 2000 Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 259, 139–148. (doi:10.1016/

S0378-1119(00)00425-X)

96. Hedges SB, Poling LL. 1999 A molecular phylogeny of reptiles. Science 283, 998–1001. (doi:10.1126/

science.283.5404.998)

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

11

(12)

97. Crawford NG, Faircloth BC, McCormackn JE, Brumfield RT, Winker K, Travis C, Glenn TC. 2012 More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol. Lett. 8, 783–786. (doi:10.5061/

dryad.75nv22qj)

98. Joyce WG. 2015 The origin of turtles: a paleontological perspective. J. Exp. Zool. B Mol. Dev.

Evol. 324B, 181–193. (doi:10.1002/jez.b.22609) 99. Scheyer TM, Danilov IG, Sukhanov VB,

Syromyatnikova EV. 2014 The shell bone histology of fossil and extant marine turtle revisited. Biol. J. Linn.

Soc. 112, 701–718. (doi:10.1111/bij.12265) 100. Ricqlès A, Padian K, Horner JR. 2003 On the bone

histology of some Triassic pseudosuchian archosaurs

and related taxa. Ann. Paleontol. 89, 67–101.

(doi:10.1016/S0753-3969(03)00005-3)

101. Ricqlès A, Padian K, Knoll F, Horner JR. 2008 On the origin of high growth rates in archosaurs and their ancient relatives: complementary histological studies on Triassic archosauriforms and the problem of a

‘phylogenetic signal’ in bone histology. Ann. Paleontol.

94, 57–76. (doi:10.1016/j.annpal.2008.03.002) 102. Seymour RS, Bennett-Stamper CL, Johnston SD,

Carrier DR, Grigg GC. 2004 Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiol. Biochem. Zool. 77, 1051–1067.

(doi:10.1086/422766)

103. Legendre L, Segalen L, Cubo J. 2013 Evidence for high bone growth rate in Euparkeria obtained using

a new paleohistological inference model for the humerus. J. Vertebr. Paleontol. 33, 1343–1350.

(doi:10.1080/02724634.2013.780060)

104. Legendre L, Guenard G, Botha-Brink J, Cubo J. 2016 Palaeohistological evidence for ancestral high metabolic rate in archosaurs. Syst. Biol. 65, 989–996. (doi:10.1093/sysbio/syw033)

105. Lyson TR, Rubidge B, Scheyer TM, de Queiroz K, Schachner ER, Smith RM, Botha-Brink J, Bever GS.

2016 Fossorial origin of the turtle shell. Curr.

Biol. 14, 1887–1894. (doi:10.1016/j.cub.2016.

05.020)

106. Seilacher A. 1970 Arbeitskonzept zur Konstruktionsmorphologie. Lethaia 3, 393–396.

(doi:10.1111/j.1502-3931.1970.tb00830.x)

ro yalsocietypublishing.org/journal/rs tb Phil. Trans. R. Soc. B 375 : 20190132

12

References

Related documents

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar

I dag uppgår denna del av befolkningen till knappt 4 200 personer och år 2030 beräknas det finnas drygt 4 800 personer i Gällivare kommun som är 65 år eller äldre i

Den förbättrade tillgängligheten berör framför allt boende i områden med en mycket hög eller hög tillgänglighet till tätorter, men även antalet personer med längre än

På många små orter i gles- och landsbygder, där varken några nya apotek eller försälj- ningsställen för receptfria läkemedel har tillkommit, är nätet av

Detta projekt utvecklar policymixen för strategin Smart industri (Näringsdepartementet, 2016a). En av anledningarna till en stark avgränsning är att analysen bygger på djupa

DIN representerar Tyskland i ISO och CEN, och har en permanent plats i ISO:s råd. Det ger dem en bra position för att påverka strategiska frågor inom den internationella

Den här utvecklingen, att både Kina och Indien satsar för att öka antalet kliniska pröv- ningar kan potentiellt sett bidra till att minska antalet kliniska prövningar i Sverige.. Men

Av 2012 års danska handlingsplan för Indien framgår att det finns en ambition att även ingå ett samförståndsavtal avseende högre utbildning vilket skulle främja utbildnings-,