• No results found

Is  opacity-­‐induced  minor  metal  market  volatility  a  threat  to  promising  green  technologies?  A  study  of  the  tellurium  market

N/A
N/A
Protected

Academic year: 2021

Share "Is  opacity-­‐induced  minor  metal  market  volatility  a  threat  to  promising  green  technologies?  A  study  of  the  tellurium  market"

Copied!
55
0
0

Loading.... (view fulltext now)

Full text

(1)

 

 

 

Is  opacity-­‐induced  minor  metal  market  

volatility  a  threat  to  promising  green  

technologies?  

A  study  of  the  tellurium  market  

 

Fredrik  Söderqvist  

 

 

Master  of  Science  Thesis  

Uppsala  University  Department  of  Economics   Submitted  June  7,  2013  

(2)

 

(3)

 

 

 

 

 

 

 

       

This   master   thesis   was   written   in   the   spring   of   2013   as   part   of   the   Uppsala   University  Master  Programme  in  Economics.  I  would  like  to  thank  Sander  de  Leeuw   at  New  Boliden  AB  for  the  support,  inspiration,  and  data  access  he  has  generously   granted   me,   and   my   supervisor   Mikael   Bask   for   his   thoughtful   guidance   and   meticulous  supervision  of  this  thesis.  

 

For   questions,   comments   or   inquiries   regarding   the   content,   methods,   data   or  

(4)

Abstract  

Tellurium  is  one  of  the  rarest  metals  in  the  earth’s  crust.  Increased  demand  for   cadmium  telluride  photovoltaic  cells  along  with  an  opaque  pricing  and  quantity-­‐ reporting   system,   have   recently   caused   high   price   volatility   and   a   speculative   bubble  in  the  tellurium  market,  resulting  in  overstocking  and  depressed  prices.   In  a  longer  perspective  this  may  be  a  threat  to  cadmium  telluride  photovoltaics   as  a  power-­‐generating  technology.  This  master  thesis  compares  how  actors  may   perceive  news  innovation  in  the  opaque  tellurium  market  compared  to  the  more   transparent   molybdenum   market.   A   quantitative   analysis   of   industry   news   reporting  on  the  two  metals,  combined  with  a  SVAR  impulse  response  analysis,   helps   me   determine   which   actors   and   factors   exert   most   influence   on   spot   market   prices.   In   the   opaque   tellurium   market,   relatively   unreliable   proxies   of   supply  and  demand  are  most  frequent  in  the  news  reporting  while  having  a  big   impact   on   prices,   whereas   the   transparent   molybdenum   market   uses   more   reliable  variables  –  such  as  futures  prices –  and  transparent  supply  information,   whilst  also  relying  on  a  frequent  stream  of  dependable  proxies  to  scope  market   sentiments.   My   findings   lead   me   to   recommend   policy   makers   to   implement   measures   to   increase   market   transparency,   which   may   be   accomplished   by   extending   the   data-­‐sharing   regime   of   the   REACH   database   to   minor   metal   markets.  Attempting  to  limit  speculation  in  minor  metal  markets  is  perhaps  too   blunt  a  tool  to  fix  an  inherent  problem  of  a  free  exchange-­‐pricing  mechanism.  

Sammanfattning  

Tellur   är   en   av   de   mest   sällsynta   metallerna   på   Jorden.   Ökad   efterfrågan   av   kadmiumtelluridsolpaneler   har   nyligen   orsakat   stor   volatilitet   på   tellurmarknaden.  Ett  opakt  prissättnings-­‐och  kvantitetsrapporteringssystem  har   bidragit   till   att   en   prisbubbla   bildats   och   spruckit,   vilket   resulterat   i   att   marknadsaktörer   köpt   på   sig   stora   lager   till   höga   priser   som   de   sedan   inte   kunnat  sälja  vidare.  I  ett  längre  perspektiv  kan  detta  innebära  begränsningar  vid   tillverkning  av  solcellsteknologi  baserad  på  kadmiumtellurid,  då  ett  volatilt  pris   kan  göra  nya  tellurgruvprojekt  alltför  riskabla.  Denna  masteruppsats  jämför  hur   en   typisk   marknadsaktör   kan   reagera   på   prisinnovationer   i   den   opaka   tellurmarkanden   och   den   mer   transparenta   molybdenmarknaden.   Metoden   består   av   en   kvantitativ   analys   av   facknyheter   rörande   de   två   metallerna,   varifrån   variabler   väljs   till   en   SVAR   modell   med   impuls-­‐responsanalys.   Urvalet   av   variabler   är   få   och   volatila   på   den   opaka   tellurmarknaden,   medan   den   mer   transparenta   molybdenmarknaden   har   ett   större   utbud   av   variabler   som   kännetecknas   av   god   transparens   och   relativ   förutsägbarhet.   Mina   slutsatser   leder   mig   till   att   rekommendera   beslutsfattare   att   vidta   åtgärder   för   att   öka   tellurmarknadens  transparens  genom  EU-­‐samarbetet,  förslagsvis  genom  att  göra   anonymiserad  data  från  REACH  databasen  tillgänglig  för  allmänheten.  Samtidigt   avråder   jag   från   åtgärder   som   syftar   till   att   minska   spekulation,   då   implementering  av  en  sådan  policy  kan  bli  både  dyr  och  komplicerad.  

 

Key  words:  Tellurium,  Minor  Metal,  Market  Volatility,  Market  Transparency,   Molybdenum,  Market  Efficiency,  REACH,  SVAR,  Quantitative  Analysis,  London   Metal  Exchange.    

(5)

Table  of  Contents  

IS  OPACITY-­‐INDUCED  MINOR  METAL  MARKET  VOLATILITY  A  THREAT  TO  

PROMISING  GREEN  TECHNOLOGIES?  A  STUDY  OF  THE  TELLURIUM  MARKET  ...  1  

ABSTRACT  ...  4   SAMMANFATTNING  ...  4   1.  INTRODUCTION  ...  6   2.  BACKGROUND  ...  8   2.1  TELLURIUM  ...  8   2.2  TELLURIUM  SUPPLY  ...  9   2.3  TELLURIUM  DEMAND  ...  11  

2.4  THE  TELLURIUM  MARKETPLACE  ...  12  

2.5  THE  TELLURIUM  MARKET  TODAY  ...  13  

2.6  MOLYBDENUM  -­‐  A  NOT-­‐SO  MINOR  METAL  ...  14  

2.7  CRITICAL  MINOR  METALS  ...  15  

2.8  PREVIOUS  STUDIES  OF  MINOR  METAL  MARKETS  ...  15  

3.  METHOD:  DETERMINING  THE  PRICE  MECHANISMS  OF  TELLURIUM  AND   MOLYBDENUM  ...  17  

3.1  SVAR  AND  IMPULSE  RESPONSE  FUNCTIONS  ...  17  

3.2  QUANTITATIVE  ANALYSIS  ...  18  

4.  DATA  AND  RESULTS  ...  22  

4.1  SPOT  PRICES  AND  RETURNS  ...  22  

4.2  QUANTITATIVE  ANALYSIS  FINDINGS  ...  24  

4.3  INCORPORATING  APPROPRIATE  ACTORS  AND  FACTORS  INTO  THE  SVAR  MODEL  ...  28  

4.3.1  The  Yu  et  al  (2012)  model  on  applied  on  tellurium  ...  28  

4.3.2  A  market-­‐  specific  tellurium  model  ...  32  

4.3.3  A  market-­‐specific  molybdenum  model  ...  36  

4.4  OTHER  FINDINGS  FROM  THE  QUANTITATIVE  ANALYSIS  ...  40  

5.  CONCLUSIONS  ...  44  

REFERENCES  ...  46  

APPENDIX  ...  50  

LIST  OF  ABBREVIATIONS  ...  50  

VAR  AND  SVAR  FUNCTION  DERIVATION  ...  51  

QUANTITATIVE  ANALYSIS  CODING  EXAMPLE  ...  53  

COMPLETE  STRUCTURAL  INNOVATION  GRAPHS  ...  54    

(6)

1.  Introduction  

 

As   photovoltaic   (PV)   technologies   recently   reached   grid   parity   without   government  subsidies  in  several  places  and  thus  becoming  a  cheaper  source  of   power  compared  to  buying  electricity  from  the  power  grid1,  demand  for  critical  

materials   in   PV   technologies   is   expected   to   increase.   One   of   these   critical   materials   is   tellurium   (Te),   a   minor   metal2  and   one   of   the   rarest   metals   in   the  

Earth’s   crust.   Until   recently,   Te   has   mainly   been   used   as   a   machinability-­‐   increasing   alloying   agent   in   steel   manufacturing.   The   metal’s   semi-­‐conducting   properties  –  when  bound  with  cadmium  to  produce  Cadmium  Telluride  (CdTe)  –   have   proven   excellent   at   converting   solar   radiation   into   electricity   in   CdTe   PV   solar   cells.   CdTe   PV   is,   as   of   February   2013,   the   most   efficient   technology   to   harness  the  power  of  the  sun  with  regards  to  costs  per  watt  produced  ($/Wp)   and  conversion  efficiency;  however,  long  term  CdTe  growth  may  be  hemmed  by   the  limited  supply  of  Te  and  its  relative  rarity.  Despite  demand  looking  positive   in  the  long  run,  the  spot  market  price  for  Te  tells  a  conflicting  story.  Prices  have   rocketed  and  fallen  in  recent  years,  and  thus  volatility  is  very  high.  To  compare   the  highs  and  lows;  in  June  2004  99.99%  pure  Te  cost  $31  per  kg  on  the  open   market,  seven  years  later  in  June  2011  it  cost  $430  per  kg,  and  in  June  2012  the   spot  price  was  only  $145  per  kg.  Like  most  minor  metals,  Te  is  not  listed  on  any   commodities   bourse,   and   there   exists   little   reporting   of   traded   quantities.   This   makes  business  and  long-­‐term  investment  difficult  for  actors  on  the  market  and   could   threaten   future   development   of   CdTe   PV   production.   At   a   UK   House   of   Commons  Science  and  Technology  Committee  (2011)-­‐  hearing,  it  was  suggested   that   critical   metal   market   supply-­‐information,   such   as   Te   supply,   should   be   improved,   and   measures   to   limit   speculative   buying   should   be   considered   in   order  to  remedy  volatility  in  minor  metal  markets.  

 

This   thesis   is   an   attempt   to   determine   what   causes   volatility   in   the   Te   metal   market.  The  two  main  research  questions  are:  which  factors,  actors,  and  market   institutions  have  the  biggest  impact  on  Te  prices,  and  what  does  this  tell  us  about   the  overall  trading  conditions  on  the  market?  The  results  and  methodology  could   lend  conclusions  valid  to  other  industry-­‐critical,  opaquely  traded  minor  metals,   and   add   to   the   discussion   as   to   what   can   be   done   to   reduce   volatility   in   these   markets.   This   thesis   also   contributes   to   the   scientific   literature   concerning   Te   supply   limitations   to   CdTe   PV,   which   to   my   knowledge   has   not   focused   on   the   threat  to  the  future  supply  of  Te  that  high  price  volatility  may  pose.  

 

In   order   to   determine   what   makes   the   Te   price   fluctuate,   a   SVAR-­‐model   with   impulse   response   functions   is   estimated   using   the   same   aggregated   macroeconomic   variables   which   Yu   et   al   (2012)   used   to   attempt   to   determine   price  fluctuations  in  the  photovoltaic  silicon  feedstock  (PVSF)  spot  market.  PVSF   is   a   highly   price   volatile,   critical   material   in   a   rival   PV   solar   cell   technology.   A                                                                                                                  

1  REneweconomy  article  UBS:  Boom  in  unsubsidised  solar  PV  flags  energy  

revolution:  http://reneweconomy.com.au/2013/ubs-­‐boom-­‐in-­‐unsubsidised-­‐ solar-­‐pv-­‐flags-­‐energy-­‐revolution-­‐60218  (accessed  May  21  2013).  

2  A  metal  included  in  the  Minor  Metal  Trade  Association:  

(7)

quantitative  analysis  is  then  applied  to  a  set  of  articles  published  in  an  industry   newspaper,  the  Metal  Bulletin,  in  order  to  better  select  variables  that  are  more   market-­‐specific.  In  order  to  benchmark  and  better  relate  the  Te  results,  the  same   method   is   applied   to   molybdenum   (Mo),   which   is   a   minor   metal   with   similar   characteristics  and  applications  as  Te.  The  selection  of  Mo  is  mainly  motivated   by   its   introduction   to   the   London   Metal   Exchange   (LME)   in   2010;   a   market   regime  transition  that  introduced  futures  contracts,  and  transparent  pricing  and   quantitative  reporting  mechanisms.  

 

My   findings   indicate   that   market-­‐specific   actors,   factors   and   institutions   amply   describe   price   fluctuations   in   both   the   Te   and   Mo   markets,   whereas   the   aggregate  macroeconomic  variables  presented  by  Yu  et  al  (2012)  do  not  explain   price   fluctuations   well.   The   quantitative   analysis   suggests   that   there   are   few   variables   to   choose   from   in   the   Te   market   (mainly   market   specific   stock   companies).   These   variables   explain   price   fluctuations   quite   well,   but   are   not   very   transparent.   On   the   Mo   market   there   are   plenty   of   proxies   of   supply,   indices,  and  futures  prices  that  amply  explain  variation,  whilst  exhibiting  steady   information  flows  of  transparent  price  and  quantity  reports.  From  this  I  advise   that  measures  are  taken  in  the  Te  market  to  introduce  some  of  the  institutions   that   help   reduce   volatility   on   the   Mo   market.   I   deem   that   the   most   critical   measure   would   be   to   improve   quantitative   transparency   in   the   market,   which   could  be  done  within  the  data-­‐sharing  regime  of  the  REACH  framework.  

 

In  the  second  chapter,  a  background  to  Te,  its  supply,  demand,  marketplace,  and   market   today   is   given,   along   with   a   brief   introduction   to   the   Mo   market,   a   definition   of   minor   metals,   and   a   summary   of   older   studies   regarding   minor   metal   market   information,   efficiencies,   deficiencies   and   transparency.   In   the   third   chapter,   the   SVAR   model,   as   presented   by   Yu   et   al   (2012)   is   introduced,   along  with  a  description  of  my  quantitative  analysis.  In  the  fourth  chapter,  spot   prices   and   returns   of   Te   and   Mo   are   selected.   Results   from   the   quantitative   analysis  are  then  presented,  from  which  variable  selection  is  made,  followed  by   SVAR  and  impulse  response  function  results  from  the  Yu  et  al,  Te-­‐market  specific   and   Mo-­‐   market   specific   SVAR   models.   Finally,   other   findings   from   the   quantitative  analysis  are  presented.  In  the  last  chapter  I  discuss  my  conclusions   and  policy  recommendations.  

(8)

2.  Background  

2.1  Tellurium  

 

Te  is  an  element  in  the  same  family  as  oxygen,  sulphur,  selenium  and  polonium.   Its  abundance  on  Earth,  as  displayed  in  Figure  1,  shows  that  it  is  one  of  the  nine   rarest  metals,  where  seven  of  these  are  considered  “precious”  (Green  2010).  Te   has  semi  conducting  properties,  meaning  it  has  the  electrical  properties  of  both  a   conducting  metal  and  an  insulator  (Nussbaum  1962).  Te  supply  has  traditionally   been  a  by-­‐product  of  copper,  lead,  and  zinc  processing,  but  can  also  be  extracted   from  gold  processing  (Green  2009,  New  Boliden  2011)  and  is  mined  as  a  primary   metal  on  two  locations  in  China,  and  one  in  Mexico  (USGS,  2013a).  

 

 

Figure  1  Shows  that  Te  (inside  the  yellow  Rarest  “metals”-­‐cloud)  is  one  of  the  9  rarest  metals  in  the   Earth’s  crust.  Its  abundance  is  similar  to  that  of  gold  (Au)  and  platinum  (Pt).  Source:  USGS  2002.  

In  recent  years,  an  increase  in  demand  for  Te  has  taken  place  due  to  a  change  in   the  primary  industrial  usages  of  the  metal.  The  Selenium  Tellurium  Development   Association   (STDA),   whose   members   include   most   of   the   world’s   major   producers   of   Te,   estimates   that   global   distribution   by   consumption   is   40%   in   solar   cells,   30%   in   thermoelectric   and   photoelectric   copying   devices,   15%   in   metallurgy   as   an   alloying   metal,   5%   in   rubber   formulation   as   a   vulcanisation-­‐   and   acceleration   in   rubber   compounding   processes,   and   10%   in   other   applications   such   as   in   blasting   caps   and   ceramic-­‐   and   glass   pigments   (STDA,   2012,  USGS  2012a).  

 

The  40%  final  consumption  in  photovoltaic  cells  is  due  to  a  recent  demand  surge   that  started  around  the  year  2000,  when  production  of  CdTe  thin  PV  solar  panels   increased  as  a  result  of  technological  advancements  and  government  subsidies  of   PV  (Candelise  et  al,  2011).  

(9)

2.2  Tellurium  supply  

 

Estimating   an   exact   volume   of   world   supply   for   tellurium   is   difficult.   Many   countries   and   companies   do   not   report   their   production,   while   volumes   recovered   from   recycled   photoelectric   devices   is   not   reported   at   all   (USGS,   2012a).  The  United  States  Geological  Survey  (2013)  has  chosen  to  withhold  total   US-­‐output   from   the   public   in   order   to   “avoid   disclosing   company   proprietary   data”,   and   due   to   inaccuracies   in   the   data,   have   chosen   to   list   world   output   as   N/A   since   2006.   The   British   Geological   Survey   (BGS,   2013)   has   since   2007   published   data   on   Canadian,   American,   Peruvian   and   Japanese-­‐produced   tonnages   of   Te,   estimating   US   production   at   50   tonnes   per   year.   To   add   to   the   inaccuracies,  all  global  production  estimates  are  only  based  on  Te  produced  from   copper   anode   slimes.3  As   Te   is   not   traded   on   any   major   bourse,   there   are   no  

accounting   or   reporting   requirements   –   such   as   those   associated   with   the   London  Metal  Exchange  (2013)  –  and  thus  traded  quantities  remain  unreported.   This   means   that   an   estimated   BGS   (2013)   “total   world   production”   (approximately  96  tonnes)  as  reported  by  Speirs  et  al  (2011),  is  much  lower  than   real  production,  as  it  omits  data  from  Te-­‐producing  countries  such  as  Australia,   Belgium,   Chile,   China,   Colombia,   Germany,   India,   Kazakhstan,   Mexico,   the   Philippines,   and   Poland   (USGS,   2013a).   The   most   thorough   estimate   of   total   world  production  from  copper  anode  slimes  is  between  450  and  500  tonnes  per   year  was  carried  out  by  the  UK  consultancy  firm  Oakdene  Hollins  (2012).  

 

When  discussing  future  supply  of  a  metal,  so-­‐called  reserves  and  reserve  bases   must  be  taken  into  account.  Reserves  are  defined  by  the  USGS  as  the  part  of  the   reserve   base,   which   could   be   economically   extracted   or   produced   at   a   time   of   determination.   Reserve   bases   are   identified   sources   of   a   mineral   which   meet   physical  and  chemical  criteria  related  to  current  mining  practices,  and  that  may   one  day  be  extracted  economically  (USGS  2012a).  Reserves  reported  by  the  USGS   show  only  reserves  of  Te  bound  to  copper  ores,  and  are  thus  an  underestimation   with  regards  to  real  Te  reserves.  The  Oakdene  Hollins  report  (2012)  estimate  the   copper  anode  slimes  reserves  to  be  close  to  24  000  tonnes  of  Te.  

 

Scientific   literature   concerned   with   photovoltaic   progress   has   made   several   attempts  to  estimate  present  and  future  world  supply  of  Te,  as  CdTe  technology   will   not   be   a   viable   power   generation   technology   without   a   steadily   available   supply   of   Te.   In   a   meta-­‐study   of   Te   availability,   Candelise   et   al   (2011)   summarises  data  from  six  studies  between  1998  and  2009  that  estimates  future   yearly   cumulative   supply   of   Te   from   128   to   2000   tonnes   per   year.   A   common   fault   in   many   of   these   estimates   is   that   they   use   the   above-­‐mentioned   underestimated   USGS   data   to   reach   their   conclusions.   Green   (2009)   does   a   further   analysis   of   possible   Te   that   can   be   extracted   from   other   ores,   and   so-­‐ called  Bonanza  deposits  that  mines  Te  as  a  primary  metal.  Hourari  et  al  (2013)  is   the  latest  attempt,  and  looks  at  future  supply  from  a  dynamic  perspective,  which   means  that  it  implicitly  takes  Te  prices  and  future  demand  of  CdTe  into  account   when   estimating   future   supplied   quantities   of   Te   in   2050.   The   supply   is   made   dynamic   by   taking   other   possible   final   usages   of   Te   into   account,   as   well   as                                                                                                                  

3  A  product  of  electrolysis  copper  refinement,  from  which  impurities  such  as  Te  

(10)

including  Te  which  could  be  extracted  when  recycling  spent  CdTe  PV  units.  The   study   concludes   that   future   Te   supply   available   for   CdTe   PV   production   is   expected   to   be   slightly   lower   than   in   previous   studies.   These   global   flows   and   feedback   loops   may   in   the   end   influence   both   supply   and   demand.   Figure   2   illustrates   how   loops   of   Te   supply   are   determinant   for   the   production   of   CdTe   PV.    

 

 

Figure  2  The  CdTe  casual  loop  diagram,  which  highlights  areas  where  production  costs  of  producing   CdTe  PV  can  be  reduced.  Source:  Houari  et  al  (2013).  

Figure   3,   the   dynamic   model,   visualises   where   future   sources   of   Te   may   come   from,  and  where  it  may  end  up.  

 

 

Figure  3  The  system  dynamics  model  where  annual  Te  production  plays  a  big  role.  Source:  Houari  et   al  (2013).  

(11)

2.3  Tellurium  demand  

 

Future   demand   of   Te   is   dependent   on   estimates   of   future   technological   advancements   and   production   improvement,   as   well   as   demand   for   PV   power   generation.  To  measure  economic  efficiency  gains  in  CdTe  technology,  an  index   of  USD  cost  per  Watt  produced  is  often  used,  which  enables  comparison  through   time   and   competing   power-­‐generating   technologies.   The   latest   Cost   per   Watt  

produced   estimate   by   the   market   leader   First   Solar,   is   $0.68/Wp   per   panel,   at  

record   breaking   20%   solar   conversion   efficiency,   making   it   the   most   cost-­‐ efficient   PV   technology   readily   available   to   the   market   (First   solar   2012).   This   cost   per   panel   is   not   the   same   as   cost   per   PV-­‐system   or   facility,   which   are   generally  higher.  

   

A  working  paper  by  Speirs  et  al  (2011)  gives  a  clear  overview  of  potential  future   demand  of  Te  in  CdTe  PV  manufacturing.  Future  demand  of  Te  is  dependent  on   the   above-­‐mentioned   cost   of   producing   electricity.   The   working   paper   shows   that  the  limited  future  supply  of  Te  should  not  be  a  threat  to  CdTe  development,   as  CdTe  PV-­‐units  will  in  the  future  require  less  Te  to  produce  the  same  amount  of   energy.  Figure  4  illustrates  the  content  of  a  CdTe  PV  thin  film  cell  and  how  much   of  it  is  composed  of  an  active  CdTe  layer.  This  layer  is  expected  to  decrease  in  the   future  through  technological  progress.  Woodhouse  et  al  (2012)  have  calculated   that   at   a   CdTe   module   produced   at   $0.70/Wp   spends   $0.15/Wp   on   the   CdTe   active  layer,  and  that  future  material  intensity  will  decrease  from  74  tonnes  of  Te   per  GW  today,  to  17  tonnes  per  GW  in  2020.  

 

 

Figure  4  Illustration  of  composition  of  a  CdTe  thin  film  solar  cell.  The  thickness  of  the  Active  CdTe  is   an   area   believed   possible   to   make   thinner,   which   would   decrease   future   demand   for   Te.   Source:   Speirs  et  al  (2011).  

(12)

supply   shortages,   which   will   ultimately   lead   to   higher   prices.   The   previously   mentioned   papers   on   the   possible   limitations   on   CdTe   PV   posed   by   supply   shortages   make   some   estimates   to   a   maximum   price   where   power   generation   would   still   be   profitable,   such   as   Candelise   et   al   (2011),   who   estimate   a   maximum   spot   price   of   $700/kg   of   99.99%   Te,   and   Green   (2009)   at   $800/kg.   Woodhouse  et  al  (2012)  estimate  that  at  current  prices,  production  in  2020  will   be  constrained  at  10  GW  of  annual  production,  which  may  only  be  remedied  with   higher  prices  that  make  future  mining  projects  more  profitable.  

 

Thus,  Te  availability  ought  not  to  constrict  future  production  of  CdTe  PV  as  long   as  costs  for  Te  do  not  exceed  a  certain  threshold,  and  the  active  CdTe  layers  in   the  panels  continue  to  decrease.  This  thesis  attempts  to  fill  a  gap  in  the  scientific   literature,  namely  to  provide  a  more  robust  study  of  how  price  mechanisms  can   affect   future   Te   price   scenarios,   which   has   been   requested   in   most   of   the   key   literature  used  in  this  thesis  (Candelise  et  al  2011,  2012,  Green  2009,  2010,  and   Speirs  et  al  2011).  

2.4  The  tellurium  marketplace  

 

Te  is  traded  through  long-­‐term  supply  contracts  and  individual  trades  between   large   consumers   and   suppliers.   Potential   buyers   and   sellers   can   list   proposed   prices   on   specialist   websites,   which   are   then   matched.   Price   quotes   usually   represent  expert  estimates  of  representative  prices  in  trades  being  executed  on  a   particular   day,   and   not   actual   traded   volumes   and   prices   (Oakdene   Hollins   2012).  My  anonymous  source  (2013)  with  good  insight  in  the  market  adds  minor   metal   conferences   and   companies’   existing   costumer   networks   as   possible   forums   to   meet   potential   customers.   These   marketplaces   are   thus   thoroughly   opaque   to   outsiders.   The   only   “open”   marketplace   I   have   found   is   the   Chinese   trading   website   Alibaba,   where   sellers   can   post   advertisements   to   sell   various   qualities  and  quantities  of  Te.4  

 

Te   prices   are   posted   on   several   trading   and   market   news   sites,   including   the   Metal  Bulletin,  a  UK-­‐based  paper  that  reports  on  global  non-­‐ferrous  metals  and   steel  markets  (Metal  Bulletin  2013a).  As  tellurium  is  not  traded  on  any  bourse,   prices  are  estimated  with  the  aid  of  different  metal  warehouses.  Metal  Bulletin,   which  lists  many  different  spot  prices  of  metals  and  commodities,  has  done  this   for   many   years.   The   goal   is   to   discover   at   what   level   market   participants   have   concluded   business,   made   offers   or   received   bids   over   a   certain   time   period;   usually   the   period   between   the   last   price-­‐listing   in   the   paper.   After   interaction   with  market  actors,  Metal  Bulletin  confirm  the  transaction  with  both  sides,  weigh   the  price  and  quantity  to  other  transactions  during  the  time  period,  and  finally   post  a  price  listing  consisting  of  a  low  and  high  price.  They  reserve  the  right  to   remove   any   data   they   consider   outliers   or   discount   prices   they   consider   questionable.  Metal  Bulletin  stress  that  they  attempt  to  engage  (and  encourage   engagement)  with  all  sellers  and  buyers  on  the  market,  irrespective  of  size,  are                                                                                                                  

4  This  market  can  be  accessed  by  searching  for  Tellurium  on  www.alibaba.com  

or  via  the  link:  

(13)

impartial  and  independent,  and  do  not  have  any  vested  commercial  interests  in   pricing  of  their  listed  metals.  The  smallest  traded  lots  taken  into  consideration   when  determining  the  price  of  Te  is  250kg,  which  recently  changed  from  500kg   (Metal  Bulletin  2013b).  

 

Figure  5  illustrates  how  volatile  the  spot  price  of  Te  is,  which  is  a  common  trait   for  many  minor  metals  (Candelise  et  al  2012).  

 

  Figure  5  Te  average  weekly  price  from  February  6  2006  to  February  28  2013.  Note:  There  are  no   price  listings  for  June  12  and  26,  as  well  as  October  2  2009.  Source:  FOB  USA  Warehouse  (February  4   2006  to  June  22  2012)  and  Metal  Bulletin  (June  29  2012  to  February  22  2013).  

2.5  The  tellurium  market  today  

 

In  a  volatile  spot  market  based  on  estimates  of  long-­‐term  contracts,  there  may  be   incentives  for  actors  to  ride  bubbles  for  short-­‐term  profits  (Harrison  et  al  1978,   Biasis  et  al  1998).  For  example,  in  June  2011  the  price  of  Te  peaked  at  $430/kg,   up  from  $165/kg  in  2009.  After  the  2011-­‐peak,  spot  prices  declined  steadily  for  a   year   and   are   stabilised   at   levels   just   above   $100/kg.   This   is   indicative   that   the   two-­‐year  160%  increase  in  price  bears  the  markings  of  a  speculative  bubble.  A   similar  phenomenon  can  be  observed  for  the  years  2006  to  2008,  when  prices   more  than  doubled  and  then  dropped  to  half  its  peak  value.  It  has  been  suggested   that  these  bubbles  were  initiated  by  speculative  buying  of  Te  under  the  pretext   that  the  limited  supply  of  the  metal  would  be  insufficient  to  meet  future  demand   (USGS,  2013b).  This  lead  to  a  hoarding  of  the  material  in  warehouses,  bought  at   inflated  prices.  Once  the  market  discovered  this,  the  price  rapidly  fell,  and  prices   are   still   depressed,   as   the   stocked   Te   bought   during   the   bubble   has   yet   been   depleted   (Oakdene   Hollins,   2012).   The   recent   change   in   minimum   reported   quantities   in   the   Metal   Bulletin   from   500kg   to   250kg   might   further   be   interpreted  as  an  indicator  that  volumes  on  the  market  are  currently  so  low,  that   making  statistical  samples  of  market  interactions  are  difficult  at  these  volumes.    

(14)

reduced  volatility,  or  else  suppliers  would  find  it  hard  to  finance  future  mining   projects  of  the  metal.5  

 

The  bubble  may  be  the  result  of  speculative  trading  on  an  opaque  market  that   lacks   transparent   reporting   over   whom   trades   what   to   where,   which   has   resulted   in   high   volatility.   In   a   conference   paper,   Green   (2010)   compares   Te   price  fluctuations  to  those  experienced  by  photovoltaic  silicon  feedstock  (PVSF),   which   is   a   material   whose   price   has   recently   been   studied   by   Yu   et   al   (2011).   This  observation  is  discussed  further  in  the  method  chapter.  

 

In   order   to   compare   how   an   opaquely   traded   minor   metal   may   differ   from   a   transparently   traded   minor   metal,   I   make   an   assessment   of   the   market   for   molybdenum   (Mo),   which   is   traded   under   a   more   transparent   market   regime,   and  is  listed  on  the  London  Metal  Exchange  (LME).  

2.6  Molybdenum  -­‐  a  not-­‐so  minor  metal    

 

It   is   difficult   to   justify   a   comparison   of   the   market   of   one   chemical   element   to   another;  should  chemical  characteristics,  chemical  family,  application,  or  price  be   used   as   a   basis   for   comparison?   I   have   chosen   to   compare   Te   to   Mo   for   the   following  reasons:  they  are  both  minor  metals  of  similar  atomic  number  (Mo  no.   42   and   Te   no.   52);   they   are   by-­‐products   of   copper   production,   and   thus   their   supply  relies  heavily  on  the  extraction  and   refinement  of  copper;  and  they  can   both  be  used  as  steel  alloying  agents.  Finally,  Mo  was  one  of  two  minor  metals   introduced   to   the   LME   in   February   2010,   which   may   help   to   illustrate   how   a   minor   metal   is   traded   under   the   transparent   market   conditions   which   were   implemented  prior  to  the  LME-­‐introduction  (Oakdene  Hollins,  2012).  

 

Mo  is  a  refractory  metallic  element  principally  used  as  an  alloying  agent  in  iron,   steel,   and   superalloys   to   enhance   desirable   properties   such   as   machinability,   toughness,   strength   and   corrosion-­‐resistance   (USGS,   2012b).   These   properties,   along   with   it   having   one   of   the   highest   melting   points   of   all   the   chemical   elements,   means   that   Mo   has   few   chemical   substitutes.   Mo   does   not   exist   in   nature   as   a   free   metal,   and   is   usually   found   in   deposits   bound   to   low-­‐grade   porphyry-­‐molybdenum   and   copper   deposits.   The   most   important   ore   is   molybdenite,  and  total  world  supply  is  roughly  composed  of  half  Mo  mined  as  a   primary  product  and  half  as  a  by-­‐product  of  copper  mining.  Final  usages  of  the   metal   are   24%   stainless   steel,   16%   full   alloy   steel,   11%   tool-­‐   and   high-­‐speed   steel,  10%  high  strength  low  alloy  (HSLA)  steel,  9%  carbon  steel,  6%  cast  iron,   8%   catalysts,   6%   metal   &   alloys,   5%   superalloys,   and   5%   others   (Oakdene   Hollins,   2012).   An   interesting   development   is   the   relatively   small-­‐scale   application   of   Mo   in   CIGS-­‐PV6  cells   as   an   electrical   conductor,   which   lends   the  

metal   a   small   application-­‐   connection   with   the   Te   market.   Data   of   yearly   production  and  usage  of  Mo  is  readily  available  and  indicates  a  market  roughly  in   balance  with  regards  to  supply  and  demand  (IMOA,  2011).    

                                                                                                               

5  “Tellurium  price  seen  in  $100-­‐150/kg  range  this  year  –  5N  Plus”  by  Martin  

Hayes,  http://www.fastmarkets.com/minor_metals/5nt1  (accessed  on  March  

26,  2013).    

(15)

Mo   spot   prices   are   reported   using   the   same   sampling   procedure   as   Te   (Metal   Bulletin,  2013).  Recently,  an  official  cash  price  was  also  made  available  via  the   LME,   which   differs   slightly   in   sampling   procedure,   but   will   not   be   used   in   this   thesis  due  to  the  limited  time  span  of  the  data.  The  main  difference  between  the   two   metals   is   there   exists   a   futures   market   for   Mo   via   the   London   Metal   Exchange   (LME,   2013),   and   thus   the   spot   prices   can   be   seen   as   a   reflection   of   long-­‐term  contracts  traded  transparently  on  a  free  market.  Although  only  6  702   tonnes   of   Mo   had   been   traded   on   the   bourse   between   its   opening   and   March   2012,   which   amounts   to   approximately   1   %   of   total   estimated   traded   volumes   (Oakdene   Hollins,   2012),   one   can   argue   that   the   mere   existence   of   a   regulated   futures  market  will  reduce  volatility  (Slade,  1988).  

2.7  Critical  minor  metals  

 

Apart  from  being  considered  minor  metals,  Mo  and  Te  have  both  been  assessed   for  their  criticality  by  the  European  Commission  (2010).  To  qualify  as  a  critical   material,  a  raw  material  must  “face  high  risks  with  regard  to  access  to  it,  i.e.  high  

supply  risks  or  high  environmental  risks,  and  be  of  high  economic  importance…  the   likelihood  that  impediments  to  access  occur  is  relatively  high  and  impacts  for  the   whole   EU   economy   would   be   relatively   significant.”   Many   of   the   materials  

considered  in  the  report  are  minor  metals.  Although  this  assessment  from  2010   did   not   qualify   Mo   or   Te   as   critical   materials,   the   2011   the   Commissions   Joint   Research  Centre  (JRC,  2011)  added  Te  to  the  list  due  to  it  being  a  critical  material   in  strategic  energy  technologies.  

 

In   January   2013   the   US   Federal   Energy   Department   (2013)   followed   suit   by   adding  Te  to  a  research  hub  of  critical  materials  known  as  the  Critical  Materials   Institute  (CMI).  The  hub  mainly  focuses  on  research  that  reduces  supply  risks  to   the   metal,   which   includes   making   extraction   techniques   more   efficient   and   reducing  the  usage  in  production  and  manufacturing.  

2.8  Previous  studies  of  minor  metal  markets    

 

Although  I  have  not  found  any  studies  on  the  effects  of  information  transparency   on   a   minor   metal   market,   I   have   found   older   papers   that   are   tangent   to   the   subject.   The   first   example   is   Lee   et   al   (1998),   who   concludes   that   increased   transparency   helps   the   price   discovery   process   become   more   efficient,   by   looking  at  how  the  opening  of  limit  order  books  in  the  Korean  stock  exchange  in   1992  decreased  price  volatility  and  increased  liquidity  in  the  stock  market.    

(16)

cost  of  increased  market  volatility.  Apart  from  profits,  the  exchange  system  has  a   significant   advantage   due   to   its   pricing   transparency,   which   means   that   the   transaction  price  is  always  true  and  uniform  to  all  customers.  Well  functioning   institutional  rules,  such  as  contract  enforcement,  where  breaches  may  lead  to  (a   very  public)  expulsion  from  the  exchange,  is  another  reason  why  a  system  shift   took  place.  Slade’s  description  of  a  period  of  transition  between  two  systems  of   price  setting  captures  the  resistance  many  had  (and  still  have)  to  future  markets;   namely  that  they  are  inherently  risky  and  bubble-­‐inducing.  More  recent  studies   have  disproved  this,  and  attribute  this  superstition  to  a  lack  of  understanding  of   how  transparent  futures  market  actually  work  (Irwin  et  al,  2009).    

 

Hallwood  (1988)  argues  that  an  unregulated  exchange  market  is  not  as  efficient   as   a   regulated   one.   At   the   time,   copper   contracts   were   traded   on   the   LME,   but   industry  preference  meant  contracts  were  often  negotiated  using  LME  futures  as   a   benchmark.   These   prices   are   by   definition   less   efficient   than   the   LME-­‐ negotiated  contracts,  and  caused  prices  that  fluctuated  more  than  actual  cyclical   demand.   According   to   this   argument,   the   low-­‐volume   Mo   market   of   today   will   become   less   volatile   if   higher   volumes   are   traded   over  the   LME.   Eggert   (1991)   looked   at   how   prices   of   more   commonly   traded   metals   and   commodities   fluctuate   more   compared   to   consumption   of   the   metal,   thus   pointing   out   inefficiencies   in   the   market.   The   debate   focused   mainly   on   whether   or   not   the   market  could  be  deemed  efficient.  The  final  say  in  the  debate  was  the  disproval   of  efficiency  by  Sephton  and  Cochrane  (1990).  Although  debating  whether  or  not   a  market  could  be  deemed  efficient  was  a  frequently  debated  topic  at  the  time,   proving   or   disproving   a   specific   market’s   efficiency   may   be   considered   an   antiquated   discussion   today.   However,   these   discussions   revolved   around   a   proposed   paradigm   shift   in   pricing   systems,   and   need   to   be   read   from   that   perspective.  

 

This  thesis  does  not  focus  on  the  nature  of  the  Efficient  Market  Hypothesis  per  se,   but  acknowledges  that  more  information  and  transparency  both  lead  to  a  more   efficient   market   and   reduced   price   volatility.   I   conclude   that   the   results   from   these   early   studies   carry   little   validity   in   today’s   markets   where   global   news   have   a   much   more   instantaneous   effect   of   markets,   nor   does   their   topic   of   discussion   add   much   to   current   academic   debate.   In   the   following   chapter   a   method  is  selected  to  determine  how  markets  react  to  availability  of  information,   which  may  differ  depending  on  the  efficiency  of  the  market.  

(17)

3.   Method:   Determining   the   price   mechanisms   of   tellurium  

and  molybdenum  

3.1  SVAR  and  impulse  response  functions  

 

Robust  long-­‐term  prognostics  of  price  scenarios  on  a  volatile  market  are  difficult   to   design,   and   as   with   all   forecasts   under   high   volatility,   results   are   often   imprecise  and  should  merely  be  seen  as  best  guesses  of  future  scenarios.  Still,  if   one   can   better   understand   what   makes   the   market   tick,   decisions   regarding   future  investments  may  become  better  informed.  This  is  what  Yu,  Song,  and  Bao   (2012)  attempt  to  do  by  modelling  real  price  fluctuations  of  PVSF,  which  is  the   primary   component   of   a   PV  technology   rival   to   CdTe.   This   is   done   by   studying   impulse   response   functions   on   number   of   variables   using   a   Structural   Vector   Autoregressive  Model  (SVAR)  that  includes  (p)  periods  of  lag.  

  𝐴!𝑧! = 𝛼!+ 𝐴!𝑧!!! ! !!! + 𝜀!    

where  𝑧!  is  a  𝑘×1-­‐vector  of  the  𝑘  variables  that  are  to  be  studied;  𝛼  is  a  constant   𝑘×1-­‐vector;  𝐴!  is  the  time-­‐invariant  𝑘×𝑘-­‐  matrix  where  the  main  diagonal  terms   are  set  to  1.  𝜀!  is  the  𝑘×1  error  term,  which  satisfies  the  assumptions  E 𝜀! = 0,   or  every  error  term  has  mean  zero;  E 𝜀!𝜀!′ = Σ,  or  the  contemporaneous  matrix   of   error   terms   is   Σ  (a  𝑘×𝑘  positive-­‐semidefinite   matrix);   and   E 𝜀!𝜀!!! = 0,   meaning   for   every   non-­‐zero  𝑘,   there   is   no   correlation   across   time,   or   more   specifically,  no  serial  correlation  in  individual  terms  across  time.  

 

A   SVAR   model   imposes   restrictions   on   the   response   of   underlying   Vector   Autoregressive   (VAR)-­‐variables,   meaning   one   can   include   assumed   inter-­‐ variable   causality,   from   which   impulse   response   functions   can   be   calculated   using   OLS   estimation.   More   information   on   derivation   and   assumptions   of   the   VAR  and  SVAR  models  are  found  in  the  Appendix.  

 

For  𝑒! = 𝐴!!! 𝜀!,   we   can   incorporates   the   causality   assumptions   for   each   model  

into  the  𝐴!!!-­‐matrix.  The  optimal  number  of  lags  (p)  is  then  determined  using  the  

Akaike  Information  Criterion  (AIC).    

In  the  Yu  et  al  model,  𝑧! = (𝑒𝑢𝑟𝑜!, 𝑛𝑎𝑡!, 𝑜𝑖𝑙!, 𝑎𝑔𝑔!, 𝑐𝑜𝑛!, 𝑠𝑝𝑜𝑡!),  where  the  lagged  

variables  𝑒𝑢𝑟𝑜!  represents   euro-­‐to-­‐dollar   exchange   rate,  𝑛𝑎𝑡!  and  𝑜𝑖𝑙!  the   price   of  natural  gas  and  oil,  𝑎𝑔𝑔!  real  economic  activity,  and  𝑐𝑜𝑛!  and  𝑠𝑝𝑜𝑡!  represents  

contract-­‐   and   spot   prices   of   PVSF,   all   expressed   in   logs.   I   use   the   same   assumptions   as   Yu,   Song,   and   Bao,   which   can   be   read   in   Section   3.1.2   in   their   article.   These   assumptions   are   translated   into   the   equation   below,   where   the   diagonal  𝑎!!= 𝑎!!= ⋯ = 𝑎!! = 1  by  construction.  

(18)

𝑒! ≡ 𝑒!!"# 𝑒!!"# 𝑒!!"# 𝑒!!"! 𝑒!!" = 𝑎!! 0 0 0 0 0 𝑎!! 𝑎!" 0 0 𝑎!" 𝑎!" 𝑎!! 0 0 𝑎!" 𝑎!" 𝑎!" 𝑎!! 0 𝑎!" 𝑎!" 𝑎!" 𝑎!" 𝑎!! 𝜀!!"# 𝜀!!"# 𝜀!!"# 𝜀!!"! 𝜀!!"    

This  thesis  attempts  to  develop  this  model  further  by  placing  greater  emphasis   on  variable  selection.  The  above  Yu  et  al  (2012)-­‐  variables  are  selected  to  best   capture  macroeconomic  impacts  on  the  market.  As  PVSF  is  a  critical  component   of  a  rival  technology,  the  Yu  et  al-­‐  variables  and  restrictions  should  work  just  as   well   for   the   Te   market.   However,   I   believe   market   specific   shocks   may   better   capture   fluctuations   on   a   specific   market   via   market   spillover   effects   (Morales,   2008).  To  do  this,  inter-­‐variable  causality  in  the  SVAR-­‐model  has  to  be  explicitly   stated,  and  then  translated  into  the  (𝐴!!! )-­‐causality  assumption  matrix  as  is  done  

above.   The   error   term   matrix   (Σ)   is   estimated   separately   and   indicates   if   the   error   term   assumptions   are   fulfilled.7  This   thesis   only   considers   short-­‐term  

causality  shocks  to  the  Te  and  Mo  prices,  which  means  that  Te  and  Mo  spot  price   will  not  have  an  effect  on  other  market  variables  in  the  short  run.8  

 

From   the   SVAR   model,   structural   impulse   response   functions   and   Cholesky   accumulated   response   functions   are   then   calculated.   The   structural   impulse   response  function  gives  an  indication  of  how  a  response  variable  reacts  to  a  one   standard   deviation   shock   from   an   impulse   variable.   The   Cholesky   function   is   a   measure   of   how   an   accumulated   one   standard   deviation   shock   to   an   impulse   variable   affects   the   mean   square   error   of   a   response   variable,   expressed   as   a   fraction  of  the  response  variable’s  total  mean  square  error.  This  gives  a  measure   of   how   much   a   shock   of   the   impulse   variable   affects   a   response   variable’s   deviation  from  its  mean,  or  more  explicitly:  its  volatility.  

 

This   thesis   is   a   continuation   of   the   discussion   called   for   by   Yu   et   al   regarding   variable   selection,   as   they   did   not   achieve   significant   results   in   their   paper.   In   some  sense,  it  is  also  an  attempt  to  validate  the  appropriateness  of  using  a  SVAR-­‐ model   to   assess   how   different   variables   impact   critical   minor   materials.   Apart   from   applying   the   Yu   et   al   macroeconomic   variables   to   the   Te   spot   price,   this   thesis  investigates  which  variables  more  specific  to  the  Te  and  Mo  markets  are   appropriate,   which   is   established   using   quantitative   analysis   methodology   described  in  the  next  section.  

3.2  Quantitative  analysis  

 

Selecting   reliable   market-­‐specific   variables   presents   some   difficulties   to   a   layman   not   familiar   with   a   market.   In   order   to   determine   which   factors   and   actors  may  be  deemed  most  important  in  a  market,  a  content  analysis  is  carried                                                                                                                  

7  All  models  and  estimations  are  done  using  STATA  12.  The  causality  

assumptions  of  the  𝐴!!!-­‐matrix  is  input  as  the  A-­‐matrix,  and  the  standard  

assumptions  for  the  Σ-­‐matrix  is  input  as  the  B-­‐matrix.  

8  Estimating  long-­‐run  impulse  response  functions  could  capture  these  causalities.  

(19)

out   on   a   set   of   articles   published   in   the   Metal   Bulletin.   The   coding   scheme   is   designed  with  reliability,  validity,  accuracy,  and  precision  in  mind,  using  method   established   in   Neuendorf   (2002).   The   methodological   inspiration   partly   comes   from  Tetlock  (2007),  which  uses  a  simple  quantitative  analysis  on  a  popular  Wall  

Street   Journal   column   to   study   how   the   media   and   stock   prices   interact,   and  

Tetlock  et  al  (2008),  that  looks  at  how  linguistic  qualities  in  firm-­‐specific  news   reporting   may   predict   a   firm’s   accounting   earnings   and   stock   returns;   or   more   specifically,  how  the  market  has  a  tendency  to  underreact  to  the  usage  of  words   that   may   reveal   negative   sentiments   on   returns   and   earnings.   My   approach   is   different  to  these  studies,  and  focuses  more  on  determining  if  and  how  a  news   innovation   is   expected   to   cause   a   price   change,   and   who   is   the   catalyst   of   the   event.  

 

The   selection   of   SVAR-­‐model   variables   takes   frequency   of   actor-­‐   and   factor-­‐ mentions,  market  mechanisms,  and  other  insights  from  the  quantitative  analysis   into   account.   Actors   and   factors   can   either   have   an   effect   on   supply,   such   as   stocks   of   mining   companies,   or   demand,   such   as   stocks   of   consumers   of   the   metals.   If   possible,   effects   of   actors   and   factors   are   quantified   using   their   respective  stock  prices,  and  relevant  factor  indices.  

 

The  articles  are  collected  from  the  Metal  Bulletin  news  archive  by  searching  for   the  terms  tellurium  –“MB  NON-­‐FERROUS  PRICE  CHANGE”  and  molybdenum  –“MB  

NON-­‐FERROUS   PRICE   CHANGE”.   The   –“MB   NON-­‐FERROUS…”-­‐term   excludes   so-­‐

called   price-­‐update   articles,   which   are   not   proper   news   articles,   but   listings   of   daily  price  changes.  All  articles  from  February  20  2010  until  February  28  2013   are   pasted   into   word   documents   and   imported   into   excel-­‐spread   sheets   where   the  coding  scheme  is  inserted  at  the  top  of  each  sheet.  

 

The   decoding   of   the   articles   is   done   in   six   steps.   The   first   step   determines   whether   the   news   article   is   price-­‐pertinent;   or   can   the   described   event   in   the   article   theoretically   change   the   price   of   the   metal?   Examples   of   non-­‐pertinent   articles  are  those  that  do  not  directly  deal  with  the  supply  or  demand  of  Te  or   Mo,   such   as   those   dealing   with   Te   as   an   impurity   in   steel   scrap.   Examples   of   pertinent   topics   include   business   reports   of   increased   production,   changes   in   market   conditions,   opening   of   new   mines,   or   reporting   on   changes   in   trade   barriers.  Articles  may  also  be  deemed  pertinent  if  the  content  is  deemed  relevant   to  the  research  question  of  my  thesis.    

 

If  the  article  is  deemed  pertinent,  the  next  step  is  to  determine  the  general  topic   of   the   article,   which   is   best   described   as   a   one-­‐sentence   description   of   the   article’s   effect   on   a   metal   price.   This   is   done   with   the   purpose   of   improving   referencing  ability,  so  the  description  does  not  need  to  be  consistent  with  how   previous  topics  are  coded.  

 

References

Related documents

Denna illustration kan ge en översikt av inkludering för elever med Ushers syndrom utifrån studien men inte vara en bestämd mall för eleverna eftersom varje elev är unik och

In the second part an analysis of the integration process, pattern of cross-border acquisitions, horisontal, vertical and conglomerate strategies and financial

On the basis of previous research, it has been found that there is a FMA within traditional shopping, but the aim was to investigate if this also was the case

It is essential for this study to have this type of case study structure since the Dubai e- commerce market is the main empirical topic and paved the way for the

Ytterligare en skillnad är dock att deras studie även undersöker hur sentiment påverkar specifika aktie segment, det gör inte vår studie, vilket leder till att det

In the corporate bond sample, the yield spread and difference in liquidity are different from zero and negative with a 95% confidence interval indicating that the bonds in

column represents the F-statistic of the joint hypothesis test with the null that the constant (intercept) is equal to zero and the slope coefficient is equal to one. The coefficient

Motivated by the economic theory relating macroeconomic variables to stock prices as well as previous literature on this topic, this study will examine if changes in the