2018-12-05 LeifLönnblad PartonDistributionsandtherunningcoupling

30  Download (0)

Full text

(1)

DIS Running coupling

Parton Distributions and the running coupling

Leif Lönnblad

Institutionen för Astronomi och teoretisk fysik Lunds Universitet

2018-12-05

(2)

DIS Running coupling

Kinematics Cross section ˇPartons

Deeply inelastic scattering

e

p

e k

X q

k

P

P γ

e(k)p(P) → e(k)X (P)

Q2 = −q2= −(k − k)2= 2kk− 2m2e

≈ 2EE(1 − cos θ) = 4EEsin2θ/2 W2 = (P + q)2= mp2+ 2Pq − Q2.

PDFs & α(Q2) 2 Leif Lönnblad Lund University

(3)

DIS Running coupling

Kinematics Cross section ˇPartons

W2is the invariant mass squared of X

W = mp: Elastic scattering

W > mp: Inelastic, the proton is excited

W ≫ mp: Deeply inelastic scattering

(4)

DIS Running coupling

Kinematics Cross section ˇPartons

Can we write down the matrix element without knowing X ? If it had been an elastic scattering we could have written

M ∼ e(¯kγµk)ǫµν

q2e( ¯PγνP)

Let’s try that, but introduce a form factor F(Q2). We expect that F(0) = 1. If F (Q2) < 1 it means that the proton is not point-like.

PDFs & α(Q2) 4 Leif Lönnblad Lund University

(5)

DIS Running coupling

ˆ Cross section Partons ˇParton Densities

Partons

Assume that the proton is a bound state of point-like constituents (a.k.a. partons) and look at

e(k)q( ˆP) → e(k)q( ˆP), where we have ˆP= xP.

Assuming that the constituents are (nearly) massless Pˆ′2= (xP + q)2= x2P2+ 2xPq + q2≈ 2xPq − Q2≈ 0

⇒ x = 2PqQ2 ≡ xBj

(6)

DIS Running coupling

ˆ Cross section Partons ˇParton Densities

Mi ≈ e(¯kγµk)ǫµν

q2eQi(P¯ˆγµPˆ) ≈ e2Qi

ˆs

−Q2 where ˆs= (k − xP)2≈ x(k + P)2= xs

dσˆi = Mi

2

√ˆs/2

32π2ˆs3/2d ˆΩ = e4Qi2ˆs2 Q4

d ˆΩ 64π2ˆs

= (4π)2α2Q2iˆs2 Q4

d ˆΩ 64π2ˆs

= α2Qi2ˆs 4Q4 d ˆΩ, In the collision rest frame.

PDFs & α(Q2) 6 Leif Lönnblad Lund University

(7)

DIS Running coupling

ˆ Cross section Partons ˇParton Densities

Q2= −(k − k)2≈ 2

√ˆs 2

√ˆs

2 (1 − cos ˆθ) so

dQ2= ˆs

2d(cos ˆθ) and

d ˆΩ = dφd(cos ˆθ) = 2dφdQ2 integrating overφ gives the cross section

dσˆ

dQ2 = πα2 Q4 Q2i.

(8)

DIS Running coupling

ˆ Cross section Partons ˇParton Densities

Compare this with standard Rutherford scattering using Q2= ˆs(1 − cos ˆθ2)/2 = ˆs sin2θ/2 = ˆˆ s sin2θ/2 We get

dΩ ∝ 1

sin4θ/2.

PDFs & α(Q2) 8 Leif Lönnblad Lund University

(9)

DIS Running coupling

ˆ Partons Parton Densities Evolution

Parton Densities

i

dQ2dx ≈ πα2

Q4 Qi2fi(x).

If we now define the structure function F2(x) =X

i

Q2ixfi(x)

we can write the cross section dσ

dQ2dx = πα2 Q4

F2(x)

x 2(1 + (1 − y)2)

(they-dependencecomes from proper spin treatment, with y = P · q/P · k)

(10)

DIS Running coupling

ˆ Partons Parton Densities Evolution

From this we can actually measure the density of quarks species. But not the individual ones.

F2(x) = 4

9(xfu(x) + xf¯u(x) + xfc(x) + xfc¯(x)) + 1

9 xfd(x) + xf¯d(x) + xfs(x) + xf¯s(x)

PDFs & α(Q2) 10 Leif Lönnblad Lund University

(11)

DIS Running coupling

ˆ Partons Parton Densities Evolution

We can also do “charged current” DIS, where the electron exchanges a W±with the target: e+ p → νe+ X . This is of course a bit tricky, since we cannot detect the neutrino. But we can infer its momentum by measuring all particles in the X system.

1

Q4 ⇒ 1

(mW2 − q2)2 ≈ 1 m4W We can then measure

X

i

Qi2xfi(x) ⇒ xfu(x) + xfd¯(x) + xfc(x) + xf¯s(x).

With e++ p → ¯νe+ X we can also measure xfd(x) + xf¯u(x) + xfs(x) + xf¯c(x).

(12)

DIS Running coupling

ˆ Partons Parton Densities Evolution

Eight unknown PDFs, only three measurements. But:

fs≈ f¯s

fc ≈ f¯c

f¯u≈ fd¯

assume valens is similar, fu− fu¯ ≈ 2(fd− fd¯)

look for D-mesons in the final state

PDFs & α(Q2) 12 Leif Lönnblad Lund University

(13)

DIS Running coupling

ˆ Partons Parton Densities Evolution

Evolution of parton densities

In reality the parton densities also depends on Q2.

1/Q2corresponds to resolution power.

For very small Q2we only see the whole proton.

when 1/Q . rpwe start to see quarks.

For even larger Q2we can resolve fluctuations q → qg → q.

The larger Q2the more parton fluctuations can be

resolved, the more partons we see, the smaller x they will have.

(14)

DIS Running coupling

ˆ Partons Parton Densities Evolution

PDFs & α(Q2) 14 Leif Lönnblad Lund University

(15)

DIS Running coupling

ˆ Partons Parton Densities Evolution

Small Q2

(16)

DIS Running coupling

ˆ Partons Parton Densities Evolution

Large Q2

PDFs & α(Q2) 14 Leif Lönnblad Lund University

(17)

DIS Running coupling

ˆ Partons Parton Densities Evolution

DGLAP evolution

δfi(x, Q2) δ ln Q2 ∝ αs

−Pifi(x, Q2) +X

j

Z 1 x

dz

z fj(z, Q2)Pj→i(x z)

The Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equation (enables indirect measurement of gluon density)

(18)

DIS Running coupling

The QED case The QCD case

Running couplings

What is a coupling constant and how do we measure it?

αEM= e2/4π, but an electric charge is always surrounded by an EM field where there are virtual fluctuations that will screen the charge.

e

−+

+

+ +

PDFs & α(Q2) 16 Leif Lönnblad Lund University

(19)

DIS Running coupling

The QED case The QCD case

So far we have only calculated “leading order” Feynman diagrams. Higher order typically can get messy:

M ∝ α

M ∝ α4 Every vertex comes with a factor√

α. But there can be many and there are loops.

(20)

DIS Running coupling

The QED case The QCD case

We can never measure the bare coupling. Any observable will depend on higher orders:

R= αn

R0+ R1α + R2α2+ . . . and the sum is in general divergent.

The trick to renormalise the coupling, which makes it scale dependent, so that the sum in

R= αn(Q2)

R0+ R1(Q2)α + R2α2(Q2) + . . . becomes convergent (with R0αn(Q2) a good approximation).

PDFs & α(Q2) 18 Leif Lönnblad Lund University

(21)

DIS Running coupling

The QED case The QCD case

+ k kk

q

+ p

+ · · ·

M = e¯u(kµu(k)εµ

Z d4p

(2π)4[e¯u(kµu(k)] 1 q2 ×

×[e¯u(p)γµu(p − q)][e¯u(p − q)γλu(p)]

(p2− m2e)((p − q)2− me2) ελ + . . .

(minus sign due to fermion loop – a boson loop gives +)

(22)

DIS Running coupling

The QED case The QCD case

e¯u(kµu(k)εµ(1 − I(q2) + I2(q2) − I3(q2) + . . .) with

I(q2) =

Z d4p (2π)4

1 q2

[e¯u(p)γµu(p − q)][e¯u(p − q)γλu(p)]

(p2− m2e)((p − q)2− m2e)

= · · ·

= α

3π Z

m2e

dp2 p2 −2α

π Z 1

0 dx · x(1 − x) ln



1 − q2x(1 − x) m2e



Where the first term is divergent.

PDFs & α(Q2) 20 Leif Lönnblad Lund University

(23)

DIS Running coupling

The QED case The QCD case

Introducing an ultra-violet cutoffΛ and noting that ln



1 −q2x(1 − x) m2e



≈ lnQ2

me2 for Q2= −q2≫ me2

we get

I(Q2) ≈ α 3πln Λ2

me2− α 3πlnQ2

m2e

= α 3π ln Λ2

Q2.

(24)

DIS Running coupling

The QED case The QCD case

We can now define an observable couplingαobs

M = αM0

"

1 − α 3πln Λ2

Q2 + α 3πln Λ2

Q2

2

− α 3πln Λ2

Q2

3

+ . . .

#

= M0 α

1+ α lnQΛ22 → M0αobs(Q2)

Note that we should take the limit Λ → ∞, in which αobs→ 0, but let’s ignore that for now.

PDFs & α(Q2) 22 Leif Lönnblad Lund University

(25)

DIS Running coupling

The QED case The QCD case

At some reference scaleµ2we measureα(µ2) and define α0 through

α(µ2) = 1

1

α0 +1 lnΛµ22 ⇒ 1 α0

= 1

α(µ2) − 1 3πlnΛ2

µ2 We can now calculateα(Q2) for any other scale:

α(Q2) = 1

1

α0 +1 lnQΛ22 = 1

1

α(µ2)1 lnΛµ22 +1 lnQΛ22

= 1

1

α(µ2)+1 lnQµ22 = α(µ2) 1+α(µ2)lnQµ22 which is finite forΛ → ∞!

(26)

DIS Running coupling

The QED case The QCD case

We can also have other fermions in the loop. However, the loop contribution if m2f > Q2is small, and we get

α(Q2) = α(µ2) 1 − Nα(µ2)lnQµ22 with

N= nl+ 3 2 3

2

nu+ 3 1 3

2

nd

αEM(m2e) ≈ 1/137, αEM(mZ2) ≈ 1/128.

PDFs & α(Q2) 24 Leif Lönnblad Lund University

(27)

DIS Running coupling

The QED case The QCD case

Note that we can have arbitrarily complex bubbles.

α(Q2) = α(µ2)

1 − Nα(µ2)lnQµ22 + β2α22) ln2 Qµ22 + · · ·

(28)

DIS Running coupling

The QED case The QCD case

Running coupling in QCD

The same procedure can be repeated for QCD, looking at a quark–gluon vertex and inserting quark-loops. We then get

αs(Q2) = αs2) 1 − n2f

αs2) lnQµ22

But we can also have gluon loops (with opposite sign) and in the end we get

αs(Q2) = αs2)

1+ αs12π2)(33 − 2nf) lnQµ22 which, contrary to QED, decreases with Q2.

PDFs & α(Q2) 26 Leif Lönnblad Lund University

(29)

DIS Running coupling

The QED case The QCD case

The Landau pole

Not that for small Q2there is actually a divergence when the denominator becomes zero. We define the scale where this happens to beΛQCD

12π

αs2) = −(33 − 2nf) lnΛ2QCD µ2 and we write

αs(Q2) = 12π (33 − 2nf) lnΛQ22

QCD

(30)

DIS Running coupling

The QED case The QCD case

PDFs & α(Q2) 28 Leif Lönnblad Lund University

Figure

Updating...

References

Related subjects :