DIS Running coupling
Parton Distributions and the running coupling
Leif Lönnblad
Institutionen för Astronomi och teoretisk fysik Lunds Universitet
2018-12-05
DIS Running coupling
Kinematics Cross section ˇPartons
Deeply inelastic scattering
e−
p
e− k′
X q
k
P
P′ γ⋆
e−(k)p(P) → e−(k′)X (P′)
Q2 = −q2= −(k − k′)2= 2kk′− 2m2e
≈ 2EE′(1 − cos θ) = 4EE′sin2θ/2 W2 = (P + q)2= mp2+ 2Pq − Q2.
PDFs & α(Q2) 2 Leif Lönnblad Lund University
DIS Running coupling
Kinematics Cross section ˇPartons
W2is the invariant mass squared of X
◮ W = mp: Elastic scattering
◮ W > mp: Inelastic, the proton is excited
◮ W ≫ mp: Deeply inelastic scattering
DIS Running coupling
Kinematics Cross section ˇPartons
Can we write down the matrix element without knowing X ? If it had been an elastic scattering we could have written
M ∼ e(¯k′γµk)ǫµν
q2e( ¯P′γνP)
Let’s try that, but introduce a form factor F(Q2). We expect that F(0) = 1. If F (Q2) < 1 it means that the proton is not point-like.
PDFs & α(Q2) 4 Leif Lönnblad Lund University
DIS Running coupling
ˆ Cross section Partons ˇParton Densities
Partons
Assume that the proton is a bound state of point-like constituents (a.k.a. partons) and look at
e−(k)q( ˆP) → e−(k′)q( ˆP′), where we have ˆP= xP.
Assuming that the constituents are (nearly) massless Pˆ′2= (xP + q)2= x2P2+ 2xPq + q2≈ 2xPq − Q2≈ 0
⇒ x = 2PqQ2 ≡ xBj
DIS Running coupling
ˆ Cross section Partons ˇParton Densities
Mi ≈ e(¯k′γµk)ǫµν
q2eQi(P¯ˆ′γµPˆ) ≈ e2Qi
ˆs
−Q2 where ˆs= (k − xP)2≈ x(k + P)2= xs
dσˆi = Mi
2
√ˆs/2
32π2ˆs3/2d ˆΩ = e4Qi2ˆs2 Q4
d ˆΩ 64π2ˆs
= (4π)2α2Q2iˆs2 Q4
d ˆΩ 64π2ˆs
= α2Qi2ˆs 4Q4 d ˆΩ, In the collision rest frame.
PDFs & α(Q2) 6 Leif Lönnblad Lund University
DIS Running coupling
ˆ Cross section Partons ˇParton Densities
Q2= −(k − k′)2≈ 2
√ˆs 2
√ˆs
2 (1 − cos ˆθ) so
dQ2= ˆs
2d(cos ˆθ) and
d ˆΩ = dφd(cos ˆθ) = 2dφdQ2 integrating overφ gives the cross section
dσˆ
dQ2 = πα2 Q4 Q2i.
DIS Running coupling
ˆ Cross section Partons ˇParton Densities
Compare this with standard Rutherford scattering using Q2= ˆs(1 − cos ˆθ2)/2 = ˆs sin2θ/2 = ˆˆ s sin2θ/2 We get
dσ
dΩ ∝ 1
sin4θ/2.
PDFs & α(Q2) 8 Leif Lönnblad Lund University
DIS Running coupling
ˆ Partons Parton Densities Evolution
Parton Densities
dσi
dQ2dx ≈ πα2
Q4 Qi2fi(x).
If we now define the structure function F2(x) =X
i
Q2ixfi(x)
we can write the cross section dσ
dQ2dx = πα2 Q4
F2(x)
x 2(1 + (1 − y)2)
(they-dependencecomes from proper spin treatment, with y = P · q/P · k)
DIS Running coupling
ˆ Partons Parton Densities Evolution
From this we can actually measure the density of quarks species. But not the individual ones.
F2(x) = 4
9(xfu(x) + xf¯u(x) + xfc(x) + xfc¯(x)) + 1
9 xfd(x) + xf¯d(x) + xfs(x) + xf¯s(x)
PDFs & α(Q2) 10 Leif Lönnblad Lund University
DIS Running coupling
ˆ Partons Parton Densities Evolution
We can also do “charged current” DIS, where the electron exchanges a W±with the target: e−+ p → νe+ X . This is of course a bit tricky, since we cannot detect the neutrino. But we can infer its momentum by measuring all particles in the X system.
1
Q4 ⇒ 1
(mW2 − q2)2 ≈ 1 m4W We can then measure
X
i
Qi2xfi(x) ⇒ xfu(x) + xfd¯(x) + xfc(x) + xf¯s(x).
With e++ p → ¯νe+ X we can also measure xfd(x) + xf¯u(x) + xfs(x) + xf¯c(x).
DIS Running coupling
ˆ Partons Parton Densities Evolution
Eight unknown PDFs, only three measurements. But:
◮ fs≈ f¯s
◮ fc ≈ f¯c
◮ f¯u≈ fd¯
◮ assume valens is similar, fu− fu¯ ≈ 2(fd− fd¯)
◮ look for D-mesons in the final state
PDFs & α(Q2) 12 Leif Lönnblad Lund University
DIS Running coupling
ˆ Partons Parton Densities Evolution
Evolution of parton densities
In reality the parton densities also depends on Q2.
◮ 1/Q2corresponds to resolution power.
◮ For very small Q2we only see the whole proton.
◮ when 1/Q . rpwe start to see quarks.
◮ For even larger Q2we can resolve fluctuations q → qg → q.
◮ The larger Q2the more parton fluctuations can be
resolved, the more partons we see, the smaller x they will have.
DIS Running coupling
ˆ Partons Parton Densities Evolution
PDFs & α(Q2) 14 Leif Lönnblad Lund University
DIS Running coupling
ˆ Partons Parton Densities Evolution
Small Q2
DIS Running coupling
ˆ Partons Parton Densities Evolution
Large Q2
PDFs & α(Q2) 14 Leif Lönnblad Lund University
DIS Running coupling
ˆ Partons Parton Densities Evolution
DGLAP evolution
δfi(x, Q2) δ ln Q2 ∝ αs
2π
−Pifi(x, Q2) +X
j
Z 1 x
dz
z fj(z, Q2)Pj→i(x z)
The Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equation (enables indirect measurement of gluon density)
DIS Running coupling
The QED case The QCD case
Running couplings
What is a coupling constant and how do we measure it?
αEM= e2/4π, but an electric charge is always surrounded by an EM field where there are virtual fluctuations that will screen the charge.
e−
−+
− +
+− +−
PDFs & α(Q2) 16 Leif Lönnblad Lund University
DIS Running coupling
The QED case The QCD case
So far we have only calculated “leading order” Feynman diagrams. Higher order typically can get messy:
M ∝ α
⇒
M ∝ α4 Every vertex comes with a factor√
α. But there can be many and there are loops.
DIS Running coupling
The QED case The QCD case
We can never measure the bare coupling. Any observable will depend on higher orders:
R= αn
R0+ R1α + R2α2+ . . . and the sum is in general divergent.
The trick to renormalise the coupling, which makes it scale dependent, so that the sum in
R= αn(Q2)
R0+ R1′(Q2)α + R2′α2(Q2) + . . . becomes convergent (with R0αn(Q2) a good approximation).
PDFs & α(Q2) 18 Leif Lönnblad Lund University
DIS Running coupling
The QED case The QCD case
+ k kk′′
q
+ p
+ · · ·
M = e¯u(k′)γµu(k)εµ
−
Z d4p
(2π)4[e¯u(k′)γµu(k)] 1 q2 ×
×[e¯u(p)γµu(p − q)][e¯u(p − q)γλu(p)]
(p2− m2e)((p − q)2− me2) ελ + . . .
(minus sign due to fermion loop – a boson loop gives +)
DIS Running coupling
The QED case The QCD case
e¯u(k′)γµu(k)εµ(1 − I(q2) + I2(q2) − I3(q2) + . . .) with
I(q2) =
Z d4p (2π)4
1 q2
[e¯u(p)γµu(p − q)][e¯u(p − q)γλu(p)]
(p2− m2e)((p − q)2− m2e)
= · · ·
= α
3π Z ∞
m2e
dp2 p2 −2α
π Z 1
0 dx · x(1 − x) ln
1 − q2x(1 − x) m2e
Where the first term is divergent.
PDFs & α(Q2) 20 Leif Lönnblad Lund University
DIS Running coupling
The QED case The QCD case
Introducing an ultra-violet cutoffΛ and noting that ln
1 −q2x(1 − x) m2e
≈ lnQ2
me2 for Q2= −q2≫ me2
we get
I(Q2) ≈ α 3πln Λ2
me2− α 3πlnQ2
m2e
= α 3π ln Λ2
Q2.
DIS Running coupling
The QED case The QCD case
We can now define an observable couplingαobs
M = αM0
"
1 − α 3πln Λ2
Q2 + α 3πln Λ2
Q2
2
− α 3πln Λ2
Q2
3
+ . . .
#
= M0 α
1+ 3πα lnQΛ22 → M0αobs(Q2)
Note that we should take the limit Λ → ∞, in which αobs→ 0, but let’s ignore that for now.
PDFs & α(Q2) 22 Leif Lönnblad Lund University
DIS Running coupling
The QED case The QCD case
At some reference scaleµ2we measureα(µ2) and define α0 through
α(µ2) = 1
1
α0 +3π1 lnΛµ22 ⇒ 1 α0
= 1
α(µ2) − 1 3πlnΛ2
µ2 We can now calculateα(Q2) for any other scale:
α(Q2) = 1
1
α0 +3π1 lnQΛ22 = 1
1
α(µ2)− 3π1 lnΛµ22 +3π1 lnQΛ22
= 1
1
α(µ2)+3π1 lnQµ22 = α(µ2) 1+α(µ3π2)lnQµ22 which is finite forΛ → ∞!
DIS Running coupling
The QED case The QCD case
We can also have other fermions in the loop. However, the loop contribution if m2f > Q2is small, and we get
α(Q2) = α(µ2) 1 − Nα(µ3π2)lnQµ22 with
N= nl+ 3 2 3
2
nu+ 3 1 3
2
nd
αEM(m2e) ≈ 1/137, αEM(mZ2) ≈ 1/128.
PDFs & α(Q2) 24 Leif Lönnblad Lund University
DIS Running coupling
The QED case The QCD case
Note that we can have arbitrarily complex bubbles.
α(Q2) = α(µ2)
1 − Nα(µ3π2)lnQµ22 + β2α2(µ2) ln2 Qµ22 + · · ·
DIS Running coupling
The QED case The QCD case
Running coupling in QCD
The same procedure can be repeated for QCD, looking at a quark–gluon vertex and inserting quark-loops. We then get
αs(Q2) = αs(µ2) 1 − n2f
αs(µ2) 3π lnQµ22
But we can also have gluon loops (with opposite sign) and in the end we get
αs(Q2) = αs(µ2)
1+ αs12π(µ2)(33 − 2nf) lnQµ22 which, contrary to QED, decreases with Q2.
PDFs & α(Q2) 26 Leif Lönnblad Lund University
DIS Running coupling
The QED case The QCD case
The Landau pole
Not that for small Q2there is actually a divergence when the denominator becomes zero. We define the scale where this happens to beΛQCD
12π
αs(µ2) = −(33 − 2nf) lnΛ2QCD µ2 and we write
αs(Q2) = 12π (33 − 2nf) lnΛQ22
QCD
DIS Running coupling
The QED case The QCD case
PDFs & α(Q2) 28 Leif Lönnblad Lund University