• No results found

Diffusion-Informed Spatial Smoothing of fMRI Data in White Matter Using Spectral Graph Filters

N/A
N/A
Protected

Academic year: 2021

Share "Diffusion-Informed Spatial Smoothing of fMRI Data in White Matter Using Spectral Graph Filters"

Copied!
17
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

DiïŹ€usion-informed

spatial

smoothing

of

fMRI

data

in

white

matter

using

spectral

graph

ïŹlters

David

Abramian

a,b,∗

,

Martin

Larsson

c

,

Anders

Eklund

a,b,g

,

Iman

Aganj

d,e

,

Carl-Fredrik

Westin

f

,

Hamid

Behjat

h,f,d,∗

a Department of Biomedical Engineering, Linköping University, Linköping, Sweden

b Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden c Centre of Mathematical Sciences, Lund University, Lund, Sweden

d Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA e Computer Science and ArtiïŹcial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA f Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA g Department of Computer and Information Science, Linköping University, Linköping, Sweden h Department of Biomedical Engineering, Lund University, Lund, Sweden

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Functional MRI DiïŹ€usion MRI White matter Graph signal processing Anisotropy

a

b

s

t

r

a

c

t

Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detectability. However, an accumulating body of studies has provided solid evidence of the functional signiïŹcance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio- temporal correlations and structure-speciïŹc ïŹ‚uctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial ïŹltering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orienta- tion, suggesting that isotropic Gaussian ïŹlters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based descrip- tion of WM that encodes the underlying anisotropy observed across WM, derived from diïŹ€usion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-speciïŹc spatial ïŹlters that adapt to a subject’s unique WM structure at each position in the WM that they are applied at. We use the proposed ïŹlters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian ïŹlters. We test the proposed ïŹltering approach on two sets of simulated phantoms, showcasing its greater sensitivity and speciïŹcity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian ïŹlters. We also present WM activation mapping results on the Human Connectome Project’s 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.

1. Introduction

Todate,reportsontask-basedfunctionalmagneticresonance imag-ing(fMRI)activationmappingandresting-statefunctionalconnectivity havebeenoverwhelminglyrestrictedtothegraymatter(GM),whereas whitematter(WM)functionaldatahavebeenlargelyignoredortreated asanuisanceregressor.SuchunbalancedtreatmentoffMRIdatawithin GMandWM,dueinparttocontroversiesinrelationtothesourceofthe

∗Corresponding author.

E-mail addresses: david.abramian@liu.se(D. Abramian), hamid.behjat@bme.lth.se(H. Behjat).

BOLDsignalinWM,hasledtoasystematicunderreportingof BOLD-relatedactivityinWM(Gawryluketal.,2014;Mazerolleetal.,2019).

Despite past controversies, evidence provided by an increas-ing body of recent studies, see e.g. Grajauskas et al. (2019) and Goreetal.(2019)andreferencestherein,hasledtomorewidespread ac-ceptanceofthedetectabilityandfunctionalrelevanceoftheBOLDsignal inWM.Forexample,Dingetal.(2013)showedthatresting-stateBOLD signalsinWMexhibitstructure-speciïŹctemporalcorrelationsalongWM tracts,whichcoincidewithïŹberpatternsrevealedbydiïŹ€usiontensor imaging(DTI),andwhich,underfunctionalload,becomemore

pro-https://doi.org/10.1016/j.neuroimage.2021.118095.

Received 16 November 2020; Received in revised form 7 March 2021; Accepted 13 April 2021 Available online 14 May 2021.

(2)

nouncedinfunctionallyrelevantstructures(Dingetal., 2016).More speciïŹcally,Mishraetal.(2020)showedthatvaryingexperimentaltask parametersresultsinacoupledmodulationoftheBOLDsignalinthe visualcortexandrelevantWMtracts,corroboratingpastïŹndingsof si-multaneousBOLDactivationsinstructurally-connectedregionsofGM andWM(Mazerolleetal.,2010).Morerecently,ithasbeenshownthat functionalneuroplasticity,asmanifestedbychangesintheBOLDsignal, canbedetectedinWM(Frizzelletal.,2020).Furthermore,agrowing numberofrecentstudieshaveshownthatlowfrequencyBOLD ïŹ‚uctu-ationscanbeusedtoestimatethedynamicfunctioningofïŹbertracts (Goreetal.,2019),inbothhealth(Huangetal.,2018b;Lietal.,2020b; Marussichetal.,2017)anddisease(Gaoetal.,2020;Jietal.,2019; Jiangetal.,2019), providingapowerful meanstostudyhow infor-mationistransferredandintegratedbetween functionallyspecialized cortices.

DuetothesigniïŹcantlylowervascularizationdensityinWM com-paredtothatinGM(Jochimsenetal.,2010;LogothetisandWandell, 2004),theoverallmagnitude of theBOLDsignal inWMis substan-tiallylower thanthatin GM(Yarkoniet al.,2009),which hasbeen reportedtobe aslowas10%ofthatobservedinGMandmodulated asafunctionofdistancefromthecorticallayer(Lietal.,2019b).In additiontobeingweak,theBOLDsignalinWMisaïŹ€ectedbyunique confoundingfactors,suggestingtheneedforWM-tailoredacquisition andprocessingschemes.Broadlyspeaking,theBOLDcontrastandits detectioninWMcanpotentiallybeenhancedinthreeways:i) devel-opmentanduse ofMRI sequencesoptimalforfMRI ofWM(e.g. in-creasedT2-weighting(Gawryluketal.,2009)ortailoredïŹeldstrengths (Mazerolleetal.,2013));ii)designoftemporalmodelsthataccountfor theuniquehemodynamicresponsefunction(HRF)inWM,which sub-stantiallydiïŹ€ersfromthatinGM(Erdoğanetal.,2016;Fraseretal., 2012;Yarkonietal.,2009));andiii)designofspatialmodelsthat ac-countfortheuniquespatialfeaturesoftheBOLDcontrastinWM,which ishighlyanisotropic(Dingetal.,2013;2016).Thispaperfocusesonthe thirdcategory,presentingthecasefortheimportanceofspatialïŹlter designwhenhandlingfMRIdatainWM,particularlyinrelationtothe inherentdiïŹ€erencesbetweenthespatialproïŹlesofBOLDsignalinWM relativetothoseinGM.

1.1. SpatialsmoothingtailoredtofMRIdatainwhitematter

Typical fMRI analysis pipelines rely on the assumption that the BOLDsignalexhibitsisotropicspatialproïŹlesatfocalactivatedregions (Carp, 2012). Isotropic Gaussian kernels applied to functional data, whichisastapleofconventionalfMRIanalysis,isonlyjustiïŹedunder thisassumption,andgenerallytradesspatialspeciïŹcityforincreased sensitivity.Inparticular,byvirtueofthematchedïŹlterargument, spa-tialïŹltersareoptimalonlyfordetectingactivationsthatconformtothe sizeandshapeoftheïŹlterkernel,andcanotherwiseresultinlossof informationregardingthespatialextentandshapeofactivationareas (Geissleretal.,2005;Mikletal.,2008),obliteratingallnon-smooth sin-gularitiesinthedata.

Inordertoimproveonthesensitivity-speciïŹcitytrade-oïŹ€ aïŹ€orded byconventionalisotropicspatialsmoothing,multiplesmoothing meth-ods that adapt to local spatial image features have been proposed. These include steerable ïŹlters (Knutsson et al., 1983), which en-abledirectionally-adaptivespatialsmoothing(Abramianetal.,2020b; Eklund et al., 2011; Friman et al., 2003; Zhuang et al., 2017), wavelettransforms(Bullmoreetal.,2004;Mallat,1989),whichtryto strikeabalancebetweenlocalizationinspaceandfrequencydomain (Breakspear etal.,2006;Ruttimannetal.,1998;VanDeVilleetal., 2004),andnon-linearïŹlters(e.g.bilateralïŹlters)thatlocallyadaptto variousfeaturesofadjacentvoxels(Lohmannetal.,2018;Rydelletal., 2008;SmithandBrady,1997).Whilesuchmethodshavebeen success-fullyappliedtoGM,theiradaptivepropertiesrelyonthespatialfeatures manifestedbytheBOLDcontrast.Giventhatthiscontrastis

substan-tiallyreducedinWM,theeïŹ€ectivenessofthesemethodswouldlikely bereducedwhenappliedtofMRIdatainWM.

Rather thanadaptingthesmoothingoperationtofeaturespresent intheBOLDcontrast,alternativeadaptivesmoothingapproachescan be leveragedthatincorporateinformationfromthedomainonwhich thedatareside,typicallyprovidedbycomplementaryanatomical im-ages.Onecommonapproachiscorticalsurfacesmoothing,whichhas showntoprovideincreasedsensitivityandspeciïŹcity(Coalsonetal., 2018; Joetal., 2007).Suchmethodshavealsobeen usedto formu-latesmoothingapproachesthatrespecttissueboundaries(Behjatetal., 2019),preventingartifactsresulting fromthemixingofsignalsfrom adjacentbutdiïŹ€eringtissuetypesduringïŹltering.Inbothofthese sce-nariostheanatomicalinformationisprovidedbyT1-weightedimages.

Animportantdistinguishingfeature oftheBOLDsignalinWMis thatitexhibitsaspatialcorrelationstructuregrosslyconsistentwiththe directionsofwaterdiïŹ€usion,asmeasuredbyDTI(Dingetal.,2013), whichispresentduringrestandbecomesmorepronouncedunder func-tionalloading(Dingetal.,2018;Wuetal.,2017).Theanatomicalbasis forthisobservationcanbethatuptohalfofthebloodvolumeinWM re-sidesinvesselsthatruninparalleltoWMtracts(Doucetteetal.,2019). Asaconsequence,conventionalisotropicGaussianïŹltersmayprove es-peciallyunsuitedforthetaskofincreasingtheSNRoftheBOLDsignal inthehighlyanisotropicWMdomain.Filteringmethodsadaptiveto fea-turesoftheBOLDsignalmayprovemoreeïŹ€ective,butthelowBOLD contrastmanifestedinWMwillpotentiallylimittheirusefulness.Onthe otherhand,thestronganatomicaldependenceinthecorrelation struc-tureoftheBOLDsignalinWMsuggeststhatdomain-informed smooth-ingmethodscanbeparticularlybeneïŹcial.Suchmethodscanrelyon T1-weightedimagesaswellasdiïŹ€usion-weightedMRI(DW-MRI)toadapt theïŹlteringtothemorphologyandtheaxonalmicrostructureofWM, respectively. Thispaperpresents thedesignandvalidation ofsucha ïŹlteringscheme.

1.2. Structure-informedprocessingoffMRIdatathroughGSP

InthepastïŹveyears,anincreasingnumberofstudieshave show-casedtheuseofprinciplesfromtherecentlyemergedïŹeldofgraph sig-nalprocessing(GSP)withinneuroimaging,inparticular,inproposing intuitivemethodologiesforstructure-informedprocessingoffMRIdata. ThefundamentalideainGSPistoanalyzedatarecordedatadiscreteset ofpositionsinsuchwaythattheunderlyingstructuralrelationship be-tweenthosepositionsisaccountedfor,whereinthisunderlyingstructure canberepresentedintheformofagraph,i.e.,astructureconsistingofa setofverticesandedges.WereferthereadertoShumanetal.(2013)for anintroductiontoGSPandtoOrtegaetal.(2018) andStanković etal., 2020 foranoverviewofrecentdevelopments,challenges,and applica-tions.

Anincreasingnumberofstudieshaveproposedtheuseofregionof interest(ROI)basedstructuralconnectomes(Spornsetal.,2005), de-rived fromtractographydata, asunderlyingbackbones for interpret-ing fMRI data (Abdelnour et al., 2018; Atasoy et al., 2016; Huang etal.,2018).Whenstructuralconnectomesareinterpretedasgraphs, anumberoftheirLaplacianeigenvectorsmanifestspatialpatternsthat arereminiscentofwell-establishedfunctionalnetworks,asshownby Atasoyetal.(2016).Underthisframework,methodshavebeen pro-posedfor spatio-temporaldeconvolutionof fMRIdata(Boltonetal., 2019),quantiïŹcationofthecouplingstrengthofresting-statefMRIdata withunderlyingstructure(Medagliaetal.,2018;PretiandVanDeVille, 2019),implementationofneuralïŹeldmodels(Aqiletal.,2021), predic-tionofbraindisorders(ItaniandThanou,2020)orbehaviorallyrelevant scores(BoltonandvanDeVille,2020),andforcharacterizationof func-tionalconnectivitydynamicsinhealth(Huangetal.,2018b),andits changes,forinstance,duetoconcussion(Sihagetal.,2020),andunder hallucinogenicdrugs(Atasoyetal.,2017).

Asalternativestomacro-scaleROI-basedgraphs,anumberof voxel-wisebraingraphdesignshavebeenproposedforanalysisoffMRIdata.

(3)

GraphsencodingGMmorphologyhavebeenproposedforenhanced ac-tivationmappinginGM,forbothgroup-level(Behjatetal.,2015)and subject-level(Behjatetal., 2014;2013)analyses,andfor discrimina-tivecharacterizationoffMRIdataacrossfunctionaltasks(Behjatand Larsson, 2020).A closely related work tothat presented here is by Tarunetal.(2020),inwhichDW-MRIdatawereusedtoencodethe WMïŹberstructure,forthetaskofvisualizingWMïŹberpathwaysbased onthefunctionalactivityobservedatthecorticallayer.

1.3. Aimandoverview

Tothebestofourknowledge,nomethodhastodatebeenpresented tospeciïŹcallyaccountforthespatialfeaturesoftheBOLDcontrastin WMwhenitcomestospatialprocessingoffMRIdata.Themain objec-tiveofthisworkistopresentthecasefortheimportanceofspatialïŹlter designwhenhandlingfMRIdatainWM,particularly,inrelationtothe inherentdiïŹ€erencebetweenthespatialproïŹlesofBOLDsignalinWM relativetothoseinGM.

Inthispaper,wedevelopanadaptivespatialsmoothingmethod tai-loredtotheprocessingoffMRIdatainWM.UsingdiïŹ€usionorientation distributionfunctions(ODF)obtainedfromhighangularresolution dif-fusionimaging(HARDI)data,weconstructsubject-speciïŹcvoxel-wise WMgraphs.AspectralheatkernelïŹlteristhendeïŹnedonthespectrum oftheresultinggraphs,andimplementedinacomputationallyeïŹƒcient wayforthetaskoffMRIdataïŹltering,usingprinciplesfromGSP.When instantiatedatanypositionwithintheWM,theproposedïŹltersadaptto thelocalaxonalorientation,becomingconsistentwiththespatial cor-relationstructureoftheBOLDsignalinWM.

Theremainderofthispaperisorganizedasfollows:inSection2, wereviewrelevantGSPprinciplesanddescribeourproposedgraphand ïŹlterdesigns,aswell astheconstructionof phantoms.InSection3, weexaminethesmoothingïŹltersproducedbytheproposeddesignand evaluatetheirperformanceonphantomsoftwotypesandonrealtask fMRIdata.Weconclude thepaperinSection4 withadiscussionon designconsiderations,limitationsandfuturework.

2. Materialsandmethods 2.1. Dataandpreprocessing

Datausedinthepreparationof thisworkwereobtainedfromthe WU-MinnHumanConnectomeProject(HCP)(VanEssenetal.,2013) database1.Weusethe100unrelatedadultsubjectsub-group(54%

fe-male,meanage=29.11±3.67,agerange=22–36),whichwedenote astheHCP100subjectset.Fiveofthesubjectswereexcludeddueto incompleteWMcoverageof theDW-MRI data,leavingatotal of95 subjects.TheHCPdataacquisitionstudywasapprovedbythe Wash-ingtonUniversityInstitutionalReviewBoardandinformedconsentwas obtainedfromallsubjects.Weusedtheminimallypreprocessed struc-tural,taskfMRI,andDW-MRIdata.TaskfMRIdataforeachsubject con-sistof1940timeframesacrosssevenfunctionaltasks:Emotion, Gam-bling,Language,Motor,Relational,Social,andWorkingMemory, com-prising23experimentalconditionsintotal.Themethodproposedinthis paperheavilyreliesontheaccurateco-registrationbetweenthe struc-turalandfunctionaldata,asprovidedbytheminimallyprocessedHCP data.Theimagingparametersandimagepreprocessingstepshavebeen thoroughlydescribed byGlasseretal.(2013). Alldataprocessing in thisworkwasdoneusingtheMATLABsoftwareandtheSPM12 tool-box2.DiïŹ€usionODFs weregenerated usingthemethod presentedby Yehetal.(2010) andimplementedin theDSIStudiosoftware pack-agee3.

1 https://ida.loni.usc.edu/login.jsp

2 https://www.ïŹl.ion.ucl.ac.uk/spm/software/spm12/ 3 http://dsi-studio.labsolver.org

TheHCPpreprocesseddataareprovidedinamixtureofthreespatial resolutionswithintwoneurologicalspaces(ACPC,i.e.,nativesubject space,andMNI):0.7mmisotropicACPCforthestructuraldata,1.25mm isotropicACPCfortheDW-MRIdata,and2mmisotropicMNIforthe fMRIdata. Afundamentalnecessityfortheproposed methodologyis toreconcilethethreedatasetsintoasinglesetofworkingparameters. However,theresamplingprocessandthenonlinearconversionbetween ACPCandMNIspaceshavethepotentialofnegativelyaïŹ€ectingthedata quality.Thenumberofvoxelsisalsoarelevantparameter,asit deter-minestoagreatextentthememoryusageandcomputationtimeofthe variousprocessing steps. Giventheimportanceofaxonal orientation informationtotheproposedmethod,weprioritizedminimizingthe ma-nipulationsappliedtotheDW-MRIdata.

Basedontheseconsiderations,wechosetheACPCspaceatthe reso-lutionofthediïŹ€usiondata,i.e.,1.25mmisotropic,astheworkingspace. Assuch,theHCP preprocessedfMRIvolumeswerewarpedbackinto ACPCspaceandupsampledtothevoxelresolutionofthediïŹ€usiondata. Thismappingwasdonebyleveragingthe

mni2acpc.nii

displace-mentmapsprovidedwiththeHCPpreprocesseddata,usingïŹrstorder splinesasthebasisforinterpolation.Inaddition,thesegmentation

vol-ume

aparc+aseg.nii

,computedviaFreeSurfer(Fischl,2012)and

providedwiththeHCPdata,wasdownsampledtotheworking resolu-tion,fromwhichvoxelsassociatedtoWMwereextracted.

2.2. GSPpreliminaries

ThefundamentalideainGSPistheapplicationofsignalprocessing procedurestodataresidingontheverticesofagraph,whereinthegraph deïŹnestheunderlyingirregulardomainofthedata.Let =(,,𝐀) denoteanundirected,connected,weightedgraph,deïŹnedbyavertex set ofsize𝑁𝑔,denotingthesizeofthegraph,anedgeset consisting ofconnectingpairs(𝑖,𝑗)ofvertices,andasymmetricadjacencymatrix

𝐀whosenonzeroelements𝑎𝑖,𝑗representtheweightofedges(𝑖,𝑗)∈. Let𝓁2()denotetheHilbertspaceofallsquare-integrablegraphsignals

đŸâˆ¶î‰‚â†’ ℝ deïŹnedonthevertexset.Agraphsignal𝐟∈𝓁2()isin

essencean𝑁𝑔× 1vector,whose𝑛-thcomponentrepresentsthesignal valueatthe𝑛-thvertexof.

Thegraphspectraldomain,analogoustotheEuclideanFourier do-main,can bedeïŹnedusing agraph’sLaplacianmatrix.Inparticular, thenormalizedLaplacianmatrixofisdeïŹnedas𝐋=𝐈−𝐃−1∕2𝐀𝐃−1∕2,

where 𝐃denotesthe graph’s degreematrix, which is diagonalwith elementsdeïŹnedas𝑑𝑖,𝑖=∑𝑗𝑎𝑖,𝑗.Giventhat𝐋isreal,symmetric, di-agonallydominant,andwithnon-negativediagonalentries,itis posi-tivesemi-deïŹnite;i.e.,allits𝑁𝑔eigenvaluesarerealandnon-negative, andtheyarealsono largerthan2duetothenormalizationusedin thedeïŹnitionof𝐋. ThissetofeigenvaluesdeïŹnesthespectrumof  (Chung,1997),denotedasđšČ ={0=𝜆1â‰€đœ†2â€Šâ‰€đœ†đ‘đ‘”

def

=𝜆max≀2}.The

associatedeigenvectors,denoted{𝐼𝑙}𝑙=1,
,𝑁𝑔,formanorthonormal ba-sisspanningthe𝓁2()space.

InclassicalFourieranalysis,complex exponentialsof varying fre-quencies areused toobtainspectral representations of signals,with largerfrequenciescorrespondingtogreatervariability—perregionor unitoftime.Itcanbeshownthat,inthegraphsetting,the eigenval-ues andeigenvectorsof𝐋fulïŹllacorrespondingroletothe frequen-ciesandcomplexexponentialsoftheclassicaldomain,respectively.In particular,largereigenvaluesof𝐋aresimilarlyassociatedto eigenvec-torswithgreaterspatialvariability;werefertheinterestedreaderto AppendixA foramoredetailedpresentationofthispoint.Giventhis analogybetweentheclassicalandgraphsettings,theeigenvectorsof𝐋

canbeusedtoobtainspectralrepresentationsofgraphsignals. SpeciïŹ-cally,agraphsignal𝐟 canbetransformedintoaspectralrepresentation throughtheuseoftheLaplacianeigenvectorsas

Ì‚đŸ[𝑙]= 𝑁𝑔 ∑ 𝑛=1

(4)

=𝐼𝑙𝑇𝐟, 𝑙=1,
,𝑁𝑔. (2) Thisspectralrepresentationpossessesaperfectreconstruction,thatis, thesignalcanberecoveredas𝐟=∑𝑙=1đ‘đ‘”Ì‚đŸ[𝑙]𝐼𝑙.

IncontrasttoïŹltersinclassicalsignalprocessing,graphïŹltersare

shift-variant, adapting their shape to theunderlying graph structure whenlocalizedatanygivenvertex.Consequently,individualïŹlters de-ïŹnedinthespectraldomainofagraphwillbecomespatially-adaptive bythenature ofGSP.Thisvaluablepropertyof graphïŹltersenables theproposedmethodology,butitalsopreventstheimplementationof ïŹlteringoperationsasstraightforwardconvolutions.Instead,inanalogy tofrequency-domainïŹlteringinclassicalsignalprocessing,graph sig-nalïŹlteringcanbeconvenientlydeïŹnedinthegraphspectraldomain. GiventhespectralproïŹleofadesiredïŹlter,𝑘(𝜆)∶[0,2]→ ℝ,agraph signal𝐟 canbeïŹlteredwith𝑘(𝜆)as

ÌƒđŸ= 𝑁𝑔 ∑ 𝑙=1𝑘 (𝜆𝑙)Ì‚đŸ[𝑙]𝐼𝑙 (3) (2) = 𝑁𝑔 ∑ 𝑙=1 𝑘(𝜆𝑙)𝐼𝑙𝑇𝐟𝐼𝑙. (4)

However,implementing (4) requirestheLaplacianeigenvectors, i.e., a full diagonalization of 𝐋, which is impractical for large graphs, such as those presented in this work. An eïŹƒcient alternative ap-proach is toimplement theïŹltering using a polynomial approxima-tionof𝑘(𝜆)(Hammondetal.,2011).Werefertheinterestedreaderto AppendixB fordetailsontheimplementation.

2.3. WMgraphdesign

Inordertotake advantageof GSPtools,itis necessarytodeïŹne graphsthatencode relevantinformationintheirvertices,edges,and weights.ForthepurposeofallowingdiïŹ€usion-informedsmoothingof theBOLDsignalinWM,werequiregraphscapableofencodingthe sub-ject’saxonalmicrostructure.FiltersdeïŹnedonthespectraldomainof suchgraphswillbecomelocallyadaptedtothismicrostructuredueto theshift-variantnatureofgraphïŹlters.

WedeïŹneaWMgraphasagraphwhosevertexset consistsofall WMvoxels,resultingingraphswith240k±60kverticesontheHCP100 subjectset.Thegraph’sedgeset isdeïŹnedonthebasisofvoxel ad-jacency,with pairsof verticesbeing connectedtoeach other when-evertheirassociatedvoxelsarespatiallyneighboring.Two neighbor-hooddeïŹnitionsareconsidered,correspondingtocubiclatticesofsizes 3× 3× 3(henceforth3-conn)and5× 5× 5(henceforth5-conn),where thefocalvoxelislocatedinthecenterofthelattice.The3-connlattice speciïŹes26voxelsintheneighborhoodofthefocalvoxel,whereasfor the5-connlattice,voxelsintheouterlayerthatfallinparalleltothe voxelswithintheinnerlayerareexcluded,resultingin98voxelsinthe neighborhood;seeFig.1.

Theencodingofaxonalmicrostructurebythegraphisprincipally achievedthroughtheedge-weightingscheme,inspiredbytheworkof Iturria-Medinaetal.(2007).Theweightsprovideadiscretizationofthe diïŹ€usionODFateachpoint,andincludeinformationonthecoherence ofdiïŹ€usionorientationamongneighboringvoxels.Let𝑂𝑖(Ì‚đ‘Ÿ)denotethe ODFassociatedtovoxel𝑣𝑖,withitscoordinateoriginatthevoxel’s cen-ter,andwithÌ‚đ‘Ÿdenotingtheunitdirectionvector.LetÌ‚đ‘Ÿđ‘–,𝑗denotetheunit vectorpointingfromthecenterofvoxel𝑣𝑖tothecenterofneighboring voxel𝑣𝑗.AdiscretizationoftheODFalongdirectionÌ‚đ‘Ÿđ‘–,𝑗canbeobtained as

𝑝(𝑖,Ì‚đ‘Ÿđ‘–,𝑗)= âˆ«Î©đ‘–,𝑗𝑂𝑖

(Ì‚đ‘Ÿ)đ‘‘Î©, (5)

whereÎ©đ‘–,𝑗denotesthesolidangleof4𝜋∕26(for3-conn)or4𝜋∕98(for 5-conn)aroundÌ‚đ‘Ÿđ‘–,𝑗andđ‘‘Î© denotestheinïŹnitesimalsolidangleelement.

Fig.1. (a) 26 voxels within the 3 × 3 × 3 neighborhood (gray) used to deïŹne edges to the focal voxel (red). (b) 98 voxels within the 5 × 5 × 5 neighborhood (gray), used to deïŹne edges to the focal voxel (red). (c) Scattered dots on the unit sphere specify the 98 neighborhood directions encoded by the 5 × 5 × 5 voxel neighborhood. Circled dots represent the subset of 26 directions encoded by the 3 × 3 × 3 voxel neighborhood. (For interpretation of the references to colour in this ïŹgure legend, the reader is referred to the web version of this article.)

This measurecanbeapproximated bytaking 𝑁𝑡samplesoftheODF withinthesolidangleÎ©đ‘–,𝑗as

𝑝(𝑖,Ì‚đ‘Ÿđ‘–,𝑗)â‰ˆÌƒđ‘(𝑖,Ì‚đ‘Ÿđ‘–,𝑗)= 1 𝑁𝑡 𝑁𝑡 ∑ 𝑘=1 𝑂𝑖(Ì‚đ‘Ÿđ‘˜đ‘–,𝑗), (6) whereÌ‚đ‘Ÿđ‘˜

𝑖,𝑗denotesthe𝑘-thsamplingdirectionwithinÎ©đ‘–,𝑗.Detailsofthe samplingprocessaregiveninAppendixC.Furthermore,wenormalize thismetricas

𝑞𝑖,𝑗= Ìƒđ‘ (𝑖,Ì‚đ‘Ÿđ‘–,𝑗)

2max𝑗{Ìƒđ‘(𝑖,Ì‚đ‘Ÿđ‘–,𝑗)| (𝑖,𝑗)∈}, (7) which bounds itin the [0,0.5] range.The maximumvalue of 0.5is reachediftheODFat𝑣𝑖showsitsmaximaldiïŹ€usionalongÌ‚đ‘Ÿđ‘–,𝑗,whereas otherwise𝑞𝑖,𝑗<0.5.

ThemeasuredeïŹnedin(7)constitutesanormalizeddiscretizationof thediïŹ€usionODFatvoxel𝑣𝑖.However,itdoesnotguaranteesymmetry, i.e.,generally𝑞𝑖,𝑗≠ 𝑞𝑗,𝑖,whichmakesitunsuitablefortheedgeweights inanundirectedgraph.Nevertheless,wecanobtainasymmetricweight byconsideringabidirectionalmeasureofdiïŹ€usiongivenby

đ‘€đ‘–,𝑗=đ‘€đ‘—,𝑖=𝑞𝑖,𝑗+𝑞𝑗,𝑖, (8) whichis constrainedtothe[0,1]range.Consequently,wedeïŹnethe graph’sedgeweightsas

𝑎𝑖,𝑗=𝑎𝑗,𝑖=ℎ(đ‘€đ‘–,𝑗), (9) whereℎ(⋅)∶[0,1]→ [0,1]isatunablesigmoidfunction(Granlundand Knutsson,1994)deïŹnedas

ℎ(đ‘„)= ((1âˆ’đ›Œ)đ‘„) đ›œ

((1âˆ’đ›Œ)đ‘„)đ›œ+((1âˆ’đ‘„)đ›Œ)đ›œ ∈ [0,1], (10) whereparametersđ›Œ ∈ (0,1)andđ›œ >0controlthethresholdlevelandthe steepnessofthetransitionfrom0to1,respectively;seeFig.2.Giventhat diïŹ€usionODFsgenerallymanifestnon-zeromagnitudesinalldirections, withlittlecontrastbetweendirectionsofstrongandweakdiïŹ€usion,the thresholdingstepenablesassociatingweightsonlytothemain direc-tionsofdiïŹ€usion,withouttheneedtousesharpenedODFsaspresented in ourpreliminarywork(Abramianetal., 2020a).Thechoiceof the sigmoidfunctionoveraHeavisidestepensuresretainingasingle con-nectedstructure inthegraph;thatis,anynon-zero valueismapped toanon-zerovalue.InthisworkweuseaïŹxedvalueofđ›œ =50,but studytheeïŹ€ectofvaryingthethresholdpoint,inparticular,forvalues

(5)

Fig.2. Sigmoid function used for thresholding edge weights, for three diïŹ€erent values of đ›Œ and a ïŹxed value đ›œ = 50 .

Fig.3. Spectral graph heat kernels, deïŹned within the bounds of the spectrum of a normalized graph Laplacian matrix, i.e., [0,2].

Theexpressionfortheedgeweightbetweenapairofvoxels(9) in-tegratesinformationabouttheextentofdiïŹ€usionalongÌ‚đ‘Ÿđ‘–,𝑗fromboth

𝑣𝑖and𝑣𝑗,amountingtoameasureoforientationalcoherenceofthe dif-fusionODFsatthesevoxels.Inaddition,theđ›Œ parameterofthe thresh-oldingfunctionprovidesaddedïŹ‚exibilitytothisrepresentation.

2.4. SpectralgraphheatkernelïŹlters

WedesignspatialsmoothingïŹlterswithaheatkernelproïŹleinthe graphspectraldomain,deïŹnedby

𝑘(𝜆)=𝑒−𝜏𝜆, ∀𝜆 ∈ [0,𝜆max], (11) where𝜏 isafreeparameterdeterminingthespatialextentoftheïŹlter. Fig.3 showsseveralrealizationsoftheheatkerneloverarangeof𝜏.

Wheninstantiatedinthevertexdomain,suchïŹltersareroughlysimilar inshapetotheGaussianïŹlterstypicallyusedforfMRIanalysis;however, giventheirregulardomainrepresentedbythegraph,thereisnodirect equivalencebetweenthetwoïŹlters.

TheïŹlteringis implemented usingthepolynomialapproximation schemedescribedinAppendixB.Thepolynomialorderrequiredto ob-tainasuitableapproximationoftheheatkernelvariesdependingonthe choiceof𝜏.Fortherangeof𝜏 investigatedinthisstudy,weused polyno-mialapproximationsoforder15,resultinginnegligibleapproximation errorinrepresentingtheïŹlters.

2.5. Circularphantomconstruction

Duetothediscretenatureofgraphs,thesetoforientationsthatcan beperfectlycapturedbyedgesbetweenvoxelsislimitedbythe neigh-borhooddeïŹnitionused.ToevaluatetheinïŹ‚uenceofangularresolution ondenoisingperformance,wetestedthe3-connand5-conn neighbor-hooddeïŹnitionsonasetofsimulatedcircularphantomsofvarious ori-entationsandradii.Thesephantomsaimtosimulateawiderangeof streamlineorientationsandcurvatures,whichcouldbeencounteredin practice.

EachphantomconsistedofanactivationproïŹleintheshapeofa circularstreamline,accompanied byanODF maporiented alongits tangent,representingstrongdiïŹ€usionalongthecircle.Thephantoms

wereconstructedin93diïŹ€erentorientationsin3Dspace,selectedina roughlyuniformwaybysubdividingthefacesofanicosahedronthree times,andfromtheresultingpolyhedron,selecting itssubsetof ver-ticesthatfallinthesphericalsectorof0â‰€đœƒ,𝜙 â‰€đœ‹âˆ•2;seeFig.4(a).Due tosymmetriesinthephantomsandtheneighborhooddeïŹnitions,this setofphantomorientationsprovidesarelativelyexhaustivesampling oftheeïŹ€ectsofstreamlineorientationonsmoothingperformance. Ad-ditionally,tostudytheeïŹ€ectsofcurvature,wecreatedthephantoms withthreediïŹ€erentradiiforeachorientation:10,20,and30voxelsat 1.25mmisotropicresolution.

2.6. Streamline-basedphantomconstruction

Given that the correlation structure of the BOLD signal in WM is highly anisotropic and resemblant of the diïŹ€usion tensor (see Section1.1),activationpatternsinthistissuearelikelytohave elon-gatedshapeswhichlocallyfollowthedirectionofdiïŹ€usion.Tovalidate theperformanceoftheproposedïŹlteringschemeatdetectingsuch acti-vationpatterns,weperformedtestsonasetofsimulatedsemi-synthetic phantomsthatsimulatestreamline-shapedactivations.Wedenotethe phantomsassemi-synthetic,asthespatialactivationpatternswere de-rivedfromrealdiïŹ€usiondatafromtheHCP100dataset.Eachphantom consistedofasetofnon-uniformlyspreadactivationpatternsdiïŹ€using alongWMstreamlinesobtainedthroughdeterministictractographyof theHCP100subjectset;seeFigs.4(b)and(c).Detailsoftheconstruction ofthephantomsaregiveninAppendixD.

Time-series versions of the streamline-based phantoms werealso generatedinordertoevaluatetheperformanceoftheproposedmethod inthecontextofatypicalfMRIgenerallinearmodel(GLM)analysis. Thesewerecreatedbyusingeachstreamline-basedphantomasthe un-derlyingground-truthactivityina100-volumefMRItimeseries,witha blockdesignalternating20volumestretchesofrestandactivityinan oïŹ€-on-oïŹ€-on-oïŹ€ paradigm.

3. Results

Wevalidatedtheperformanceoftheproposed diïŹ€usion-informed spatial smoothing (DSS) method relative to isotropic Gaussian spa-tial smoothing (GSS) through a series of tests on synthetic phan-toms—circularandstreamline-based—andproducedproof-of-concept resultsonrealdatafromtheHCP100subjectset.

3.1. DiïŹ€usion-informedïŹlters

4TheadaptivepropertiesofDSSïŹltersareillustratedinFig.5.The

threeïŹltersshownweregeneratedusingidenticalparameters(đ›Œ =0.9,

𝜏 =7),anddiïŹ€eronlyinthelocationwithintheWMwheretheywere instantiated.TheïŹlterscloselyfollowthelocaldiïŹ€usionorientationin WMdescribed bythediïŹ€usionODFs.ForhighlyanisotropicWM re-gionsthisresultsinslenderandstronglyorientedïŹlters—seeïŹrsttwo columns,whereasforregionsoflowanisotropyitresultsinïŹltersthat aremoreisotropicinshape.Particularly,atcrossingïŹberregions,DSS ïŹltersarenotconstrainedtofollowanysingleaxonalpathway,and in-steadspatiallyextendalongalldirectionsofhighdiïŹ€usion—seethird column.Thisavoidstheuncertaintyinherentinresolvingthe orienta-tionofindividualcrossingïŹbers,whilestillresultinginmore spatially-constrainedïŹltersthanwouldbeachievedwithisotropicGaussian ïŹl-tering

TheshapeofDSSïŹlterscanbecontrolledbysettingthe𝜏

parame-terofthegraphspectralïŹlterkernel(see(11))andtheđ›Œ parameterof theweightthresholdingfunction(see(10)).Whiletheformercontrols thespatialextentoftheïŹlterinamannerakintothefullwidthathalf maximum(FWHM)ofisotropicGaussianïŹlters,thelattercontrolsthe

(6)

Fig. 4. Phantom construction. (a) Circular phantom construction. Left: A subset of vertices of a 3-level subdivided icosahedron, 93 out of 642, were selected. Vectors pointing from the center of the sphere to these vertices consti- tute the normal vectors of the planes within which circular phantoms were realized. Right: Five representative unit circles with orienta- tions corresponding to the vertices on the left of matching color. For example, the red circle falls within a plane that passes through the center of the sphere and has its normal vector point- ing from the center of the sphere to the red point shown on the left. (b) Streamline-based phantom construction. A WM streamline con- structed using tractography (shown in yellow) is randomly selected, a focal point along the streamline is randomly selected, and a diïŹ€used non-binary activation pattern is created around the focal point (shown in red). (c) Axial, coronal, and sagittal view of a representative streamline-based phantom with 100 streamline activations, overlaid on subject’s T1-weighted image.

minimumedgeweightsretainedbythegraph,whichinturn,constrains ïŹlterstofollowmaindirectionsofdiïŹ€usion.Fig.6presentsarangeof diïŹ€erentïŹltershapesthatcanbeachievedbyvaryingthesetwo param-eters.Highvaluesofđ›Œ resultinverynarrow,streamline-likeïŹltersthat arehighlyconstrainedrelativetotheunderlyingdiïŹ€usionmap,whereas lowervaluesresultinlessconstrainedïŹlters.Inparticular,lowenough valuesofđ›Œ negatethediïŹ€usion-adaptivepropertiesofDSS,withthe re-sultingïŹltersadaptingsolelytothemorphologyoftheWMdomain(see SupplementaryFigureS1).

ThechoiceofneighborhooddeïŹnitionplaysasigniïŹcantroleinthe shapeoftheresultingïŹlters.Incombinationwiththe5-conn neighbor-hooddeïŹnition,higherđ›Œ valuescanresultinnon-localaveragingïŹlters whentheODFsareorientedalonganeighborhooddirectionintheouter shelloftheneighborhood(seeFig.5 middleleft,Fig.6 bottomrow). ThiseïŹ€ectisnotpresentinïŹlterscreatedusingthe3-conn neighbor-hooddeïŹnition(seeFigureS2),whichadditionallyshowamorelimited capacitytorepresentorientationduetothereducedangularresolution oftheneighborhooddeïŹnition.Moreexhaustiveresultsforboth5-conn and3-connïŹltersarepresentedinSupplementaryFiguresS1-S6.

3.2. Validationsoncircularphantoms

Circularphantomsof93diïŹ€erentorientationsand3diïŹ€erentradii werecreatedasdescribedinSection2.5.Eachphantomwascorrupted with10realizationsofadditivewhiteGaussiannoiseofstandard devia-tion1,andsubsequentlydenoisedbyspatialïŹlteringwithGSSandDSS overarangeofparameters.TheFWHMofGSSandthe𝜏 parameterof DSSwerevariedoverarangefrom1to8inunitsteps.Boththe3-conn and5-connneighborhooddeïŹnitionsweretestedforDSS,whichwewill refertoasDSS3andDSS5,respectively.Theđ›Œ parameterofDSSwasset to0.9throughout.

Toassessthedenoisingperformanceof GSS,DSS3 andDSS5,we performedreceiveroperatingcharacteristic(ROC)analyses.TheïŹltered phantomvolumeswereeachthresholdedat300uniformly-spaced con-secutivelevelsspanningtheminimumandmaximumvalueineach ïŹl-teredvolume.Theresulting detectionsforeach thresholdlevelwere comparedwiththegroundtruthofthephantom,yieldingtruepositive rates(TPR)andfalsepositiverates(FPR)thatwerecollectedinROC curves.Theareaunderthecurve(AUC)oftheROCcurveswasthen computed,resultinginanoverallmeasureofperformance.

Figs.7 (a)and(b)showtheoverallperformanceofDSS3,DSS5and GSSascharacterizedbytheAUCs.Duetothelackofequivalence be-tweenDSSandGSSïŹlters,thereisnodirectcorrespondencebetween individualvaluesof FWHMand𝜏. However,itcanbenotedthatthe performanceofGSSpeaksat2mmFWHM,anddiminishesforlarger

ïŹltersizes.Ontheotherhand,bothDSS3 andDSS5achieve substan-tiallyhighermaximumperformances,whicharenotnegativelyaïŹ€ected byincreasedïŹltersizeintherangeof𝜏 tested.

ThemedianAUCofDSS5consistentlyfallsabovethatofDSS3for

𝜏 ≄2andallthreephantomradii.TheperformancegapbetweenDSS5 andDSS3increasesforlarger𝜏,andslightlyincreasesoncircular phan-tomswithlargerradii,i.e.,smallercurvatures.Theseresultscorroborate theimprovementsindetectionperformancethankstotheincreased an-gularresolutionofthe5-connneighborhooddeïŹnition.Thisisfurther illustratedbyFig.7(c),whichshowstheperformanceimprovementof DSS5overDSS3forindividualphantomsorientations.Thewiderange ofperformancegainsisrepresentativeofthevaryingdiïŹƒcultyof rep-resentingspeciïŹcspatialorientationsinthediscretedomainofgraphs, highlightingtheimportanceofangularresolutionfortheproposed ïŹl-ters.

GiventheoverallsuperiorperformanceofDSS5overDSS3,inthe following,DSSresultsareonlypresentedforgraphsusingthe5-conn neighborhooddeïŹnition.

3.3. Validationsonstreamline-basedphantoms

Asimilaranalysiswasperformedonstreamline-basedphantoms.A singlephantomwith𝑁𝑠=50,100and200streamlineactivationswas createdforeachofthe95subjectsasdescribedinSection2.6.Asinthe analysison circularphantoms, eachphantomwascorruptedwith10 realizationsofadditivewhiteGaussiannoiseofstandarddeviation1, anddenoisedbyspatialïŹlteringwithGSSandDSSoverthesamerange ofparameters.Theđ›Œ parameterofDSSwassetto0.9,whereasvalues of0.85and0.95werealsotestedonthe100-streamlinephantoms.The denoisingperformanceofbothmethodswasassessedbyapplyingthe sameROC/AUCanalysisdescribedinSection3.2.

Figs.8 (a)and(b)showAUCresultsonallthreetypesofphantoms forDSSandGSS,respectively.Duetothesubstantialamountofnoise presentinthephantoms,spatialsmoothingusingeitherGSSorDSS gen-erallyleadstobetterperformancecomparedtonosmoothing.DSS out-performsGSSacrosstherangeof𝜏 andFWHMvaluestested,andacross thediïŹ€erentsettings.Aswiththecircularphantoms,theperformance of GSSpeaksat2mm FWHM,withincreasedsizenegatively aïŹ€ect-ingperformancebeyondthatvalue.DSSshowsasimilarpattern,with peakperformanceachievedfor𝜏 of3and4forđ›Œ =0.9.BothGSSand DSSshowbetterperformanceonphantomswithagreaternumberof streamlines.AdditionalresultsshowthatDSSoutperformsGSSinboth sensitivityandspeciïŹcity(seeSupplementaryFigureS7(a)),andacross arangeofSNRvalues(seeSupplementaryFigureS7(b)).

(7)

Fig.5. Generation of diïŹ€usion-informed smoothing ïŹlters. DiïŹ€usion ODFs (bottom row) serve as the basis for the creation of a WM graph (middle row). Every WM voxel corresponds to a vertex in the graph, with weighted connections to neighboring voxels (middle left). The edge weights are determined on the basis of coherence between the directions of diïŹ€usion and the orientation of the graph edges (bottom left). Using this WM graph deïŹnition, graph ïŹlters from a single spectral proïŹle become adaptive to the local axonal microstructure when instantiated in diïŹ€erent WM regions (top row). Note that both the edges connecting voxels and the graph ïŹlters extend in three dimensions, whereas their 2D axial intersection centered at the focal voxel are shown. Graph parameters: 5-conn neighborhood, đ›Œ = 0 . 9 , đ›œ = 50 ; ïŹlter parameters: 𝜏 = 7 . Filters are shown normalized to the [0,1] range. ODF interpolation and visualization were performed using the public CSA-ODF package 4.

Fig.6. EïŹ€ects of parameters 𝜏 and đ›Œ on the shape of DSS ïŹlters located at red ROI shown in Fig.5. Graph parameters: 5-conn neighborhood, đ›œ = 50 . Filters are shown normalized to the [0,1] range. (For interpreta- tion of the references to colour in this ïŹgure legend, the reader is referred to the web version of this arti- cle.)

ToassesstheperformanceofDSSandGSSincombinationwith tem-poralmodeling,i.e.,asusedwithin fMRIactivationmappingstudies, time-seriesversionof thestreamline-basedphantomsweregenerated asdescribed in Section2.6. Thephantoms werecorrupted with ad-ditivewhiteGaussiannoiseofstandarddeviation1andsubsequently

spatiallyïŹlteredwithGSSandDSSwiththesamerangeofparameters usedpreviously.Thesmoothedphantomsweresubjectedtoastandard single-subjectanalysisinSPM,andtheresultingt-mapswereusedinthe ROC/AUCanalysis.

(8)

Fig.7. Validation of spatial smoothing on circular phantoms. (a)-(b) AUC of ROC curves obtained from volumes spatially smoothed with DSS and GSS, re- spectively. The markers show the median AUC over 930 ROCs (93 orientations ×10 realizations), whereas the whiskers represent 5 − 95% percentiles. (c) Dif- ference between AUC values for DSS5 and DSS3 for phantoms with 25 mm ra- dius. The black curve shows the diïŹ€erence between the median performances shown in (a), whereas the remaining curves show the diïŹ€erence between the 10- realization medians for each of the 93 phantom orientations. The ïŹve colored curves correspond to the phantom orientations shown in Fig.4(a).

Figs.8 (c)and(d)showAUCresultsfromthetime-seriesphantoms. DuetotheincreaseddetectionpoweraïŹ€ordedbytemporalmodeling, AUCsarehigherforallscenariosinthetime-seriesanalysiscompared tothoseinthesingle-volumeanalysis.Similarlytothesingle-volume

phantomresults,GSSachievesitsbestperformancefor2mmïŹlters,and considerablydeterioratesbeyondthatsize.Notably,GSSonlyprovides adistinctimprovementovernosmoothingfor2mmïŹlters.DSSresults alsoshowanegativecorrelationbetweenïŹltersizeandperformancefor

𝜏 >2,buttheoverallperformanceissuperiortoGSSandprovidesa ben-eïŹtovernosmoothinginmosttestedcases,withbestresultsachieved for𝜏 between2and4.Aftersubjectingthet-mapstoactivationmapping withfalsediscoveryrate(FDR)correctionat5%(Genoveseetal.,2002), thedetectionmapsresultingfromDSSshowedsubstantiallyhigher sen-sitivity andspeciïŹcitythanthose fromGSS (seeSupplementary Fig-uresS8-S10). Theseresults alsoillustratethatthediminished perfor-manceofbothmethodsonphantomswithagreaternumberof stream-lineactivationsisaconsequenceofincreasedFPRwhenusinglarge ïŹl-ters.

Figs.8(a)and(c)alsoillustratetheeïŹ€ectsofvaryingtheđ›Œ

parame-terofDSSinsingle-volumeandtime-seriesphantoms,respectively.For bothtypesofphantomshighervaluesofđ›Œ generallyresultedinbetter performance.Inthecaseofsingle-volumephantoms,ïŹlterswithđ›Œ =0.9 outperformedtheothersforsmallïŹltersizes,whileđ›Œ =0.95issuperior forlargerïŹltersizesandacrossallsizesfortime-seriesphantoms.In ad-dition,ïŹlterswithđ›Œ =0.95showminimaldecayinperformanceasïŹlter sizeincreasesforbothversionsofthephantoms.Filterswithđ›Œ =0.85 consistentlyperformedworsethantheothers.

3.4. Single-subjecttaskfMRIresults

InordertoexploretheeïŹ€ectsoftheproposedsmoothingmethod onrealtaskfMRIdata,weusedSPM12toperformactivationmapping ontheHCP100taskfMRIdata,comprising23experimentalconditions across7tasks.EachGLManalysisincluded12motionregressors(raw andtemporalderivative)inadditiontoregressorsfor2to8 experimen-talconditionsassociatedwitheachtask.ThecanonicalHRFmodel, cor-respondingtoadoublegamma,wasused—althoughsuchatemporal modelisnottailoredtotheWMBOLDsignal,itaïŹ€ectsGSSandDSS equally,andshouldhaveno discernibleinïŹ‚uenceonspatialïŹltering comparisons.TemporalnoisemodelingwasdoneusingaglobalAR(1) model.ThefMRIdataweresmoothedusingGSSandDSSwiththesame parametersusedpreviously.ForGSS,eachfMRIvolumewasïŹrst mul-tipliedwiththeWMmask,toavoidintroducingsignalfromGM.This stepisnotrequiredforDSS,asthemethodbyitsnaturefunctionsonly inWM.Theresultingt-mapswerethenthresholdedtodetermine sig-niïŹcant activevoxels afterFDRcorrectionat5%.Ourchoiceof FDR asthecorrectionmethodwasduetoitonlyassumingthe𝑝-valuesto beuniformlydistributedunderthenullhypothesis.Correctionmethods

Fig. 8. Validation of spatial smoothing on streamline-based phantoms. (a)-(b) AUC of ROC curves obtained from volumes spatially smoothed with DSS and GSS, respectively. (c)- (d) AUC of ROC curves obtained from activa- tion mapping t-maps of time-series streamline- based phantoms smoothed with DSS and GSS, respectively. The markers show the median AUC over 950 ROCs (95 subjects ×10 realiza- tions), whereas the whiskers represent 5 − 95% percentiles.

(9)

Fig.9. Comparison of representative single- subject activation mapping results generated with GSS and DSS, with t-maps shown in grayscale and detections overlaid in red (FDR- corrected at 5% ). Full-brain activation maps are also shown for reference, overlaid on the sub- ject’s T1w image.

basedonassumptionsaboutthesmoothnessofthedata,suchasthose basedonGaussianrandomïŹeldtheory,wouldbediïŹƒculttojustifyfor anadaptivesmoothingapproach.

The sheer number of detection maps generated by this anal-ysis—37,145 maps (95 subjects × 23 conditions × 17 ïŹlter set-tings)—rendersexhaustivevisualexaminationofthemimpracticable. Therefore,inourpresentation,wefocusonrepresentativeresultsthat highlightthediïŹ€erencesinmapsgeneratedbyGSSandDSS.Thefull setofunthresholdedt-mapsismadeavailableatNeuroVault5.

Fig.9 showsrepresentativet-mapsanddetectionsfromtwosubjects generatedbyDSSandGSS,withunmasked(i.e.,fullbrain)GSSresults includedforreference.6Visualinspectionofthet-mapsrevealsthatGSS

resultsingenerallyroundfeatureswithlittleorientedstructure,with verylittlevisiblestructureremainingforlargerGaussianïŹlters.In con-trast,t-mapsobtainedusingDSSpresentnotablespatialdetail,with lin-earfeaturesintheshapeofstreamlinesdiscernibleacrossïŹltersizes.

5 https://identiïŹers.org/neurovault.collection:9494

6 In our default analysis setting, regions outside the WM are masked out of fMRI volumes prior to GSS smoothing. This prevents the introduction of spurious signal, particularly from gray matter, while ensuring an unbiased comparison with DSS. Such considerations are not adhered to when implementing full brain GSS, and these results are therefore provided only for reference. Furthermore, due to the diïŹ€erences in FDR thresholding, there is no expectation of WM de- tections of either GSS method being a subset of those of the other.

ThesediïŹ€erencesarealsopresentinthedetectionmapsfromboth meth-ods.WhileGSSdetectionsaregenerallylargeandrounded—withvery fewdetectionspresentforsmallerïŹlters—DSSmanifestsdetectionmaps with pronouncedsubtlespatialdetails—withconsiderabledetections evenforsmallïŹltersizes.ThedetectionspresentedinFig.9(a)highlight thecapabilityofDSSinidentifyingseparatestreamline-shaped activa-tionsintwocontiguousparallelaxonalbundles(orangearrow),which remaindistinctacrossthetestedïŹltersizes.Ontheotherhand,withGSS, theseactivationsarecombinedintoasingleactiveregionwhenlarge ïŹl-tersareused,andarenotpresentwhensmallïŹltersareused.Notably, thecaseofFWHM=3mmshowsactivationfocibeingcombinedacross

ratherthanalongaxonalbundles,suggestingthattheseactivationsmay notbeseparablewithGSS.InFig.9(b),DSSactivationmapsmanifest anelongated,clearlyresolvedstreamline-shapedactivationthatspans thecorpuscallosum(orangearrow),whichismostlyundetectedinGSS activationmaps.Inaddition,theactivationsseenaroundtheedgesof theWMmask deservenotice.Althoughthese activationsmaybe at-tributedtointerpolationartifactsorpartialvolumeeïŹ€ect,duetothem consistentlybeingfoundinpositionsadjacenttoactiveGMregions,it isimportanttonotethatbothGSSandDSSproducetheseactivations solelyonthebasisofsignalfromWM.DSSgenerallymanifestsmore suchactivations,especiallyforsmallïŹltersizes.Additionalactivation mappingresultsarepresentedinSupplementaryFiguresS11andS12.

In order to quantitatively investigate the degree to which spa-tial structure is present in t-maps obtained using the two

(10)

smooth-Fig.10. Structural analysis of task fMRI t-maps, obtained using local structure tensor analysis ( Knutsson,1989) where the eigenvalues of the structure ten- sor denote the amount of spatial structure. (a) QuantiïŹcation of the amount of anisotropic structure observed in t-maps, speciïŹed by the mean structure map value, averaged across the task’s experimental conditions. (b) Correlation be- tween subjects’ QA maps and structure maps, averaged across each task’s exper- imental conditions. Markers shows the median value across the 95 subjects.

ingmethods, we analyzed thet-mapsusing structuretensor methods (Knutsson,1989).Whileathoroughintroductiontosuchmethodsfalls outsidethescopeofthiswork,itissuïŹƒcientforourpurposestopoint outthattheeigenvaluesandeigenvectorsofthestructuretensorprovide informationonthepresenceandorientationofspatialstructure,inthe formoflinesandedges,atagivenpointinanimageorvolume.

Foreacht-map,weconstructedaquantitativestructuremapby com-putingthesumofthestructuretensoreigenvaluesateveryvoxel(a mea-sureoftheamountofspatialstructureineachvoxel).Themeanvalueof eachstructuremapprovidesaglobalmeasureofthepresenceofspatial structureinthecorrespondingt-map.Fig.10(a)showsacomparisonof thisglobalstructuremeasureforDSSandGSS.Forbothmethodsthe amountofstructurepresentinthet-mapsdiminishesastheïŹltersize increases,which isconsistentwiththelossof spatialdetailresulting fromsmoothingthedata.ThiseïŹ€ectisverypronouncedforGSS,while t-mapsgeneratedusingDSSexhibitamoreconsistentamountofspatial structureacrossthetestedïŹltersizes.

Todeterminetheextenttowhichthestructurepresentinthet-maps isinïŹ‚uencedbythediïŹ€usioninformationintroducedbyDSS,we com-putedPearson’scorrelationcoeïŹƒcientbetweenthequantitative struc-turemapsandthequantitativeanisotropy(QA)map(Yehetal.,2013) oftheassociatedsubject;seeFig.10(b).ForDSS,thiscorrelationisclose tozeroat𝜏 =1,andsteadilyincreasesforincreasedïŹltersizes.In con-trast,thestructuremanifestedint-mapsobtainedthroughGSSshowsa slightlynegativecorrelationwithQA,whichstaysnearlyconstantacross allïŹltersizes.TheseresultssuggestthatDSSissuccessfulatinforming thesmoothingprocesswiththelocaldiïŹ€usionpropertiesofthe underly-ingWM,withlargervaluesof𝜏 resultinginstrongerdiïŹ€usionencoding. Fig.11 comparesthenumberofdetectionsobtainedfromDSSand GSS.Toprevent biasdue todiïŹ€erences inbrainsize,wepresentthe fractionofeachsubject’sWMmaskbeingdeclaredasactive.Overall, thedetectionratesforbothmethodsincreaseasafunctionofïŹltersize, withDSSexhibitingamorelinearincreasethanGSS.Whilethenumber ofdetectionsont-mapsobtainedfromvolumessmoothedwithDSSand GSSiscomparableforlargeïŹlters,DSSgenerallyproducessubstantially moredetectionswithsmallerïŹltersizes,asmanifestedbycomparingthe mediandetectionnumbersofcorrespondingtasks.

Intheabsenceofgroundtruth,itisnotpossibletomakedeïŹnitive statements ontherelationshipbetween diïŹ€erences inthenumberof voxelsdeemedactivebyeachmethodandpotentialdiïŹ€erencesintheir sensitivityandspeciïŹcity.However,itcanbeinsightfultoquantifythe diïŹ€erencebetweenthedetectionmapsgeneratedwithDSSandGSS.To quantifythesimilaritybetweenapairofdetectionmapswecomputed

theDicecoeïŹƒcientbetweenthem,deïŹnedas

𝑑𝜏,fwhm=

2|đ‘€đœâˆ©đ‘€fwhm| |𝑀𝜏| +|𝑀fwhm|,

(12) where𝑀𝜏denotesthesetofdetectedvoxelsusingDSSwithagiven𝜏,

𝑀fwhmdenotesthesetofdetectedvoxelsusingGSSwithagivenFWHM,

and| ⋅ | denotessetcardinality.TheDicecoeïŹƒcientisconstrainedto the[0,1]range,whereavalueof1signiïŹesperfectoverlapbetween thedetectionmapsandavalueof0representsnooverlap.

ForeverysubjectandexperimentalconditionwecalculatedDice co-eïŹƒcientsbetweendetectionmapsobtainedwithGSSandDSSofallïŹlter sizes,andarrangedtheminto8× 8Dicematrices.Additionally,we cal-culatedthemaximumDicecoeïŹƒcientbetweeneachDSSïŹltersizeand everyGSSïŹltersizeforeachsubjectandcondition.Fig.12showsDice resultsforseveralrepresentativeexperimentalconditions.Theoverall similaritybetweenthedetectionmapsobtainedwithDSSandGSSis relatively low.The highest ensemble Dice is achievedfor 𝜏 =7 and FWHM=8mm,whereitreachesavalueof0.65,withother combina-tionsachievingvaluesclosetothisone(seeensembleDicematrix).The relationshipbetweenthe𝜏 andFWHMvaluesthatresultinthehighest similarityinthedetectionmapsisalsoshowntobenonlinear,tracinga particularcurveacrosstheDicematricesthatisgenerallysimilaracross experimentalconditions.Thesimilaritybetweenthedetectionmapsalso showsconsiderablevariationacrosstasksandindividualexperimental conditions(seeresultsforallexperimentalconditionsinSupplementary FigureS13),withbelow-averagesimilarityintheLanguageandMotor tasksandabove-averageintheGamblingandRelationaltasks.

Inorder todeterminewhetherthedetectionsgeneratedbyeither methodareasubsetofthedetectionsfromtheother,weexaminedthe numberofcommonanduniquedetectionsproducedbyDSSandGSS. Forallsubjectsandexperimentalconditions,thedetectionmaps pro-ducedbyDSSwerecomparedwiththemostsimilarmapsproducedby GSS.Fig.12,bottomright,showstheaveragenumberofvoxel detec-tionscommontobothmethods,aswellasthoseuniquetoeachmethod, forthetestedvaluesof𝜏. Theseresultsshow that,acrossïŹltersizes, bothDSSandGSSproduceaconsiderablenumberofdetectionsthat arenotproducedbytheothermethod.Thisobservation,togetherwith thegenerallylowDicesimilarities,suggeststhepresenceofsubstantial diïŹ€erencesinthelocalizationandspatialextentofactivationsdetected usingDSSandGSS.

3.5. GrouptaskfMRIresults

Weperformedrandom-eïŹ€ectsgroupanalysisbasedon the single-subject resultsfor eachof the23experimental conditionsacross the seventasks.Theestimatedregressorweightsofeachexperimental con-ditionweretakentoMNIspaceusingthedisplacementmapsprovided withtheHCPdata—theinverseofthoseusedtomapthepreprocessed fMRIdatatoACPCspace—andaGLMwasïŹttedtothemtocreategroup t-maps.Thesegroupmapswerethenthresholdedtodetermine signiïŹ-cantactivevoxelsafterBonferronicorrectionat5%.

Fig.13 showsrepresentativeresultsforoneconditionofthe Gam-blingtask.Overall,spatialpatternsinthet-mapsaremoreclearlyvisible thaninthesingle-subjectanalysis,remainingmoredeïŹnedintheDSS resultsthaninthoseofGSS.Interestingly,bothmethodsshowlargeWM regionsintheshapeofaxonalbundlesthatarestronglyanticorrelated withtheexperimentalconditions.

TheactivationmapsinFig.13 showsimilarpatternstothe single-subjectactivationmaps.WhileDSSiscapableofproducingelongated, streamline-likedetections,thoseofGSSaregenerallyround.In addi-tion, DSSreveals considerabledetectionsforsmall ïŹltersizes. Addi-tionalgroupactivationmappingresults areshownin Supplementary FiguresS14-S16.

Inorder tostudytheconsistencyoftheresults obtained byeach method, we investigated the test-retest reliability of GSS and DSS through aMonteCarloexperiment. The95subjects wererepeatedly

(11)

Fig.11. Fraction of voxels within WM mask detected as being signiïŹcant using DSS (top left) and GSS (bottom left) across 7 functional tasks, over 95 subjects. SigniïŹcant voxels were determined after FDR correction at 5%. In the plots on the left, each dot corresponds to one subject, whereas ■ shows the median value across the 95 subjects. The plots on the right show the trend of the average value as a func- tion of ïŹlter parameters 𝜏 and FWHM for GSS and DSS respectively.

Fig. 12. Dice similarity between detection maps generated with DSS and GSS. For each subject and condition, an 8 × 8 Dice matrix was computed, where each element represented 𝑑 𝜏,fwhm, see (12). For a given subject, if neither DSS nor GSS led to any detections for a given combination of 𝜏 and FWHM, the correspond- ing element was excluded from further analy- sis. The schematic on top explains how the re- sults were ensembled across subjects, resulting in two plots for each experimental condition; in the plots on the right, the mean of the scattered values is indicated by ■. Results are presented for a representative experimental condition in each task —see results across the 23 conditions in Supplementary Figure S13, as well as ensem- bled across 23 conditions; the ensemble plot on the left shows the average across conditions, whereas the one on the right shows the me- dian and range of the mean maximum Dice val- ues across conditions. The plot on the bottom right shows the average number of common and unique detections generated by DSS and GSS across all subjects and conditions, wherein every value of 𝜏 was compared with the FWHM that resulted in the maximum Dice coeïŹƒcient.

Fig.13. Comparison of representative group activation mapping results generated with GSS and DSS, with t-maps shown in grayscale and detections overlaid in red (Bonferroni- corrected at 5% ). Full-brain activation maps are also shown for reference, overlaid on the MNI152 T1w template image.

(12)

Fig.14. Results of Monte Carlo test-retest analysis for one representative ex- perimental condition from each task. Subjects were repeatedly divided into two groups and subjected to group analysis, and the resulting statistical maps were compared. (a) Correlation between t-maps of both groups. (b) Dice similarity between activation maps of both groups. The markers show the median value across 30 experiments, whereas the whiskers represent 5 − 95% percentiles.

splitintotwogroups,afterwhicharandom-eïŹ€ectsmodelwas ïŹtted toeachgroup,andtheresultingt-mapsanddetectionmapswere com-pared.Thisprocesswasrepeated30times,andthesimilaritiesofthe resultingt-mapsanddetectionmapswerequantiïŹedusingPearson cor-relationandDicesimilarity,respectively.Fig.14 showsresultsofthis analysisforarepresentativesubsetofexperimentalconditions. Correla-tionandDicescoresshowanincreasingtrendwithrespecttotheïŹlter size,forbothGSSandDSS.Thevaluesproducedbybothmethodsare roughlycomparable,beingslightlyhigheroverallforDSS,particularly forsmallïŹltersizes.Fullcomparisonsforallexperimentalconditions arepresentedinSupplemetaryFigureS17.

3.6. Processingtime

AlthoughtheproposedmethodologyrequiresadditionalMRI scan-ningtimefortheacquisitionofDW-MRIdata,itdoesnotimposea dra-maticincreaseinprocessingtimeoverconventionalapproaches.Using aworkstationwithanIntelCorei7-7700Kprocessorand64GBofRAM, thegenerationofdiïŹ€usionODFsfromDW-MRIdatarequired approx-imately90seconds.ThegraphanditsLaplacianmatrixcouldthenbe calculatedfromtheODFsinunder15seconds.Bothoftheseoperations needonlybeperformedoncepersubject.

Inourimplementation,theaverageïŹlteringtimeofasinglevolume withGSSwas10.3msusingthe

imgaussfilt3

MATLABfunction (thesameoperationrequiredabout450mswhenusingthesmoothing implementedinSPM).Ontheotherhand,DSSïŹlteringscaleseïŹƒciently withthenumberofïŹlterkernelsused.Averagesingle-volumeDSS ïŹl-teringtimesforasinglekernelwere115msforthe5-conn neighbor-hoodand56msfor3-conn,andbecamereducedto17.7msand11.0 ms,respectively,whenusing8ïŹlterkernelsatonce.Withworstcase performance,theproposedmethodgaveïŹlteringtimesof around45 secondsfora405-volumeseries(thelongestofthoseavailableinHCP data,correspondingtotheWorkingMemorytask).

4. Discussion

4.1. Interpretationofresultsfromsimulateddata

Previousimplementationsofvoxel-wisegraphsonGM(Behjatand Larsson,2020;Behjatetal.,2015;Maghsadhaghetal.,2019)haveused the3-connneighborhoodindeïŹninggraphedges.However,giventhe diïŹ€erentnatureoftheproposedencodingforWMgraphs—representing axonalorientationsratherthanGMmorphology,weconsideredthe po-tentialadvantagesof usingalarger neighborhooddeïŹnition.Tothis

end,wecomparedthedenoisingperformanceobtainedwithgraphs us-ingthe3-connand5-connneighborhooddeïŹnitionsoncircular phan-tomsofmultipleorientationsandradii.Suchphantomswereused be-cause,barringdiscretizationartifacts,theyoïŹ€eranexhaustivesampling ofallpossibleorientationsinwhichdatacanappearinthreedimensions. Theresultsshowaclearimprovementfromusingthelarger neighbor-hooddeïŹnition(seeFigs.7(a)and(c)),whichcanbeattributedtoits superiorangularresolutionof98neighborhooddirections,againstthe 26ofthe3-conndeïŹnition.Furthermore,comparingperformances ob-tainedonphantomsofdiïŹ€erentradiishowsthatthelarger neighbor-hooddeïŹnitionprovidesmorestableperformanceacrossspatial curva-turesthanthesmallerneighborhood,whichperformsworseforsmaller curvatures,particularlyforlargerïŹlters.Comparedtoisotropic Gaus-siansmoothing(seeFig.7(b)),boththe3-connand5-conn neighbor-hooddeïŹnitionsusedinDSSshowedenhanceddenoisingperformance oncircularphantoms.Inparticular,whiletheperformanceofGSS dete-rioratesforlargerïŹltersizes,theperformanceofDSSreachesaplateau instead,suggestingthatthediïŹ€usion-informednatureofDSSïŹltersis capableofminimizingtheintroductionofspurioussignalevenforlarger ïŹltersizes.

TobettermimicspatialactivationpatternsmanifestedasBOLD con-trastinWM,wedesignedandstudiedsemi-syntheticstreamline-based phantoms,whosediïŹ€useactivationpatternsarerepresentativeofWM ïŹberstructures,alongwhichcorrelatedBOLDactivityisexpected(Ding etal.,2013;2016).Thephantomswerestudiedintwosettings.Inthe ïŹrstsetting,thedenoisingperformancewasstudiedintheabsenceof temporalmodeling,whereinbothmethodsprovidedanimprovement overnosmoothing,butDSSoutperformedGSSforalltestedïŹltersizes (Fig.8(a)).Inthesecond setting,thephantomswerestudiedwithin thecontextofGLMactivationmapping,i.e.withtemporalmodeling, whereinGSSprovidedonlyminimalimprovementsovernosmoothing, whereasDSSprovidedanotableimprovement(Fig.8(b)).Inaddition, whenthetime-seriesphantomsweresubjectedtoactivationmapping withFDRcorrection,activationmapsfromGSSshowedreduced sensi-tivityandspeciïŹcitywhencomparedtothoseofDSS(seeSupplementary FiguresS8-S10).ThephantomswerealsousedtostudytheinïŹ‚uenceof theđ›Œ parameterof DSS,which setsa lowerboundon theweightof connectionsallowedintheWMgraph.Duetothenarrowerandmore directional ïŹltersresulting fromhigher đ›Œ values(Fig.5, Supplemen-taryFiguresS1-S6),theincreasedperformanceonthestreamline-based phantomswouldbeexpected(Figs.8(a)and(c)).However,thisresult maynotbereadilyextensibletorealfMRIdata,asthespreadofreal activationpatternsisnotknown.

4.2. Interpretationofresultsfromrealdata

We compared single-subjectactivationmapping results fromDSS andGSSontaskfMRIdatafromtheHCP100subjectset.Structure ten-soranalysisoftheresultingt-mapsrevealedthattheoverallamountof structurepresentdiminishedforlargerïŹltersizes,aneïŹ€ectthatismore pronouncedforGSS(Fig.10(a)).SuchresultsreïŹ‚ectthelossofspatial detailsthathappensasaresultoflowpassïŹltering.However,duetothe highlyanisotropicshapesthatDSSïŹlterstakewithintheWM(Fig.5), featuresintheshapeoflinesandedgescanbepresentint-mapseven forlargerïŹltersizes(Fig.9).Inaddition,thespatialstructurepresent inthet-mapsobtainedwithDSSiscorrelatedwithregionsofhigh diïŹ€u-sionanisotropy(Fig.10(b)),indicatingthatDSSsuccessfullyadaptsits smoothingtotheunderlyingWMmicrostructure.

DuetothediïŹ€erencesintheirdeïŹnitions,aswellastheadaptive natureofDSS,thereisnodirectcorrespondencebetweenGSSandDSS ïŹlters.ThisiscorroboratedbytherelativelylowDicecoeïŹƒcients be-tweendetectionmapsresultingfrombothmethods(seeDicematrices inFig.12).TheoverallnumberofdetectionsiscomparableforGSSand DSS,withaconsiderableandroughlyequalnumberofactivations be-inguniquetoeachmethod(seebarchartinFig.12,bottomright).On theotherhand,exampledetectionmapscorroboratethatDSSiscapable

(13)

ofresolvingsubtle,slenderactivationpatternsalongaxonalpathways acrossmultipleïŹltersizesbyleveraginginformationaboutthespatial correlationstructureoftheBOLDsignalinWM.Fig.9(a)exempliïŹes theincreasedresolutionfromDSS,presentingacasewhereitiscapable ofresolving twoparallelstreamline-likeactivationsthat GSSis inca-pableofidentifyingasseparate.Fig.9(b)illustratesasimilarcase,with DSSdetectingahighlyresolvedstreamline-likeactivationthroughthe corpuscallosumthatisleftlargelyundetectedbyGSS.Supplementary FiguresS11andS12presentadditionaldetectionmapcomparisons high-lightingtheincreasedsensitivityandspeciïŹcityoftheproposed method-ologyoverconventionalGSS.

WealsocomparedgroupactivationmappingresultsfromDSSand GSS.Similarlytothesingle-subjectresults,groupt-mapsobtainedwith DSSmanifestedintricate spatialstructuresacrossïŹltersizes,while t-maps generated with GSS presented mostly smooth, round features (Fig.13).Thesamepatternsextendedtotheactivationmapsproduced bybothmethods,whereDSShasshowngreaterspeciïŹcityandan in-creasednumberofdetectionsinmultipleinstances(Supplementary Fig-uresS14-S16).AlthoughgroupWMactivationsobtainedwithGSSand DSSareoftencontainedwithinthoseobtainedwithfullbrainGSS,itis importanttonotethatwhilethelatterrelymostlyonsignalfromthe GM,theformerrelysolelyonsignalfromtheWM,andresultinmuch greaterspeciïŹcityinthedetectedactivations.

Inordertoevaluatetheconsistencyofthestatisticalmapsgenerated bybothmethods,weperformedatest-retestanalysisofgroupactivation mapping.WhiletheperformancesofDSSandGSSwerecomparablefor theupperrangeofïŹltersizestested,DSSshowedamarkedimprovement forsmallïŹltersizes(Fig.14),altogethersuggestingthatDSSiscapable ofyieldingequallyormoreconsistentresultsthanGSSis.

4.3. Limitations

Weusedasigmoidfunction,see(10),asameansofboosting orienta-tionencoding,allowingdiïŹ€usiononlyalongmaindirectionsofdiïŹ€usion coherence.Westudiedthreethresholdvalues,đ›Œ =0.85,0.9and0.95,all ofwhichyieldedbetterperformancethanGSSonphantomdata,with noticeablevariationsinperformanceamongthethreevalues.However, thegeneralchoiceofthethresholdingfunctionandits associated pa-rametersisratherad-hoc,whichisacomplicationofsimilarnatureas thatencounteredinconnectomicstudies(RubinovandSporns,2010). Futureworkshouldconsideramorerigorousvalidationofthe threshold-ingschemeforobtainingoptimalperformance,especiallyonrealfMRI data.

Accurateco-registrationoffunctional,structural,anddiïŹ€usionMRI dataisacornerstoneoftheproposedmethodology.Withinthisstudy, weusedpreprocessedHCPdata,which havebeendiligently motion-corrected,distortion-corrected,andco-registered(Glasseretal.,2013). However,conductingsolidpreprocessingstepsmaynotbepossiblein somedatasets,andifso,resultsobtainedusingtheproposedmethodon suchdatasetsshouldbeinterpretedwithcare.

AnumberofrecentstudieshavehighlightedsubstantialdiïŹ€erences betweentheHRFinWMandthatinGM(Choietal.,2020;Lietal., 2019b;Wangetal.,2020b),whichcorroboratesimilarsporadic obser-vationsfromearlierstudiesthatshowedevidencefordelayedand sub-duedhemodynamicresponsescomparedtothatinGM(Fraseretal., 2012;Yarkonietal.,2009),andinparticular,inthecorpuscallosum (Courtemancheetal.,2018;Taeetal.,2014).Therecentevidencefor theuniquefeaturesofHRFinWMisindeedinsightful,butgiventhe on-goingnatureofthisresearch,wedecidedtousethestandardHRFmodel thatisconventionallyusedinfMRIactivationmappinginthepresent work.Giventhatourworkiscomparative,thechoiceoftheHRFmodel aïŹ€ectsbothDSSandGSSequally,andassuch,wedonotbelievethatour conclusionswouldbesubstantiallyaïŹ€ectedbytheuseofamoreprecise model.Nevertheless,futureworkaimedatinvestigatingtheBOLD sig-nalinWMcanmostlikelybeneïŹtfromcombiningamoreappropriate HRFmodelwithadaptivesmoothingoftheBOLDsignalbyDSS.

4.4. Outlook;potentialextensionsandotherapplications

Duetothelimiteddegreetowhich diïŹ€usionODFscan diïŹ€erenti-ateïŹberorientation(Jonesetal.,2013),weboostorientation encod-ingbymeansofaweightthresholdingscheme.Alternatively,the pro-poseddesign can be extendedtoleverage standard ïŹberorientation distribution(FOD)functionsestimatedfromeitherthediïŹ€usionODFs (Descoteauxet al., 2008)or theraw diïŹ€usiondata (Tournier etal., 2007),orasymmetricFODs(Bastianietal.,2017),toobviatetheneed forthresholding.IntheabsenceofHARDIdatabutpresenceofDTIdata, theproposedmethodcanbereadilyextendedtoleveragediïŹ€usion ten-sorsinsteadofdiïŹ€usionODFs,e.g.asinTarunetal.(2019),whichcan beofparticularinterestforreanalyzingthevastextentofcurrently avail-ablefMRIdatasetsthatareaccompaniedbyDTIdata.Itisalsoworth notingthatDSScanbeextendedtoworkonagraphthatrepresentsa dis-cretizedversionofatractogram,enablingspatialïŹlteringinamanner thatwouldresembleleveragingprinciplesfromsuper-resolution track-weightedimaging(Calamanteetal.,2012).

In the absence of any DW-MRI data, it would be possible to adapt theproposed method to use a structure tensorrepresentation (Knutsson,1989) derivedfromT1-weighted MRIimagesasthe com-plementary contrast(Abramianetal., 2020b),whereintheproposed ïŹlteringschemecouldbeextendedtofunctionacrosstheentirebrain mask.Theresultingmorphology-basedspatialsmoothingcouldthenbe seenasaGSP-basedalternativetonon-linearïŹlteringalgorithmswhich enablespatialsmoothingwithinsimilaranatomicalcompartments(Ding etal.,2005;Lohmannetal.,2018;Rydelletal.,2008;SmithandBrady, 1997;WeickertandScharr,2002),butwillnotprovideadaptationto WMïŹberorientations.

Inaddition toperformingdenoising throughheatkernel smooth-ing(i.e.,lowpassïŹltering), theproposed WMgraphscan be usedto implement graph-waveletdenoising, similar tothat implemented by Behjatetal.(2015) forGMgraphs,usingnoveldata-drivenGSP de-noisingschemes(deLoynesetal.,2021)incombinationwith computa-tionallyeïŹƒcientmulti-scalespectralgraphdecompositionmethods(Li etal.,2019c;Shuman,2020)thatcanbetractablyimplementedonlarge graphs.

Inthepresentstudy,weonlyexploredspatialsmoothingof task-basedfMRIdatawithinthecontextofactivationmapping,whereasDSS can be readily applied toWMresting-statefMRI data,where recent studieshaveusedGaussiansmoothingofthedataasapre-processing step. Such research appears particularly promising in light of stud-iesreportingtheexistenceofBOLD-likeresponseinresting-statedata (KarahanoğluandVanDeVille,2015;Lietal.,2021;LiuandDuyn, 2013;Petridouetal.,2013),andthecurrentgrowinginterestin explor-ingfunctionaldynamicsofWMatrest(Dingetal.,2018;Lietal.,2020a; 2019a;Peeretal.,2017;Wangetal.,2020a).

It is worth noting that DSS may prove beneïŹcial for enhancing the detection of functional pathways through theuse of functional-correlationaltensors(FCT)(Dingetal.,2013)orhighangularresolution functionalimaging(HARFI)(Schillingetal.,2019).FCTandHARFI pro-videthemeanstoderivefunctionalWMpathwaysbycharacterizingthe spatialanisotropyobservedinthetemporalcorrelationintheBOLD sig-nalatadjacentWMvoxels.GiventhelackofspatialadaptivenessofGSS, itsuseislikelytodistortthespatialanisotropyinthesignal,onwhich thesemethodsrely.Ontheotherhand,ïŹlteringthefMRIdatawithDSS mayhelpboostthisspatialanisotropy,thusenhancingthedetectionof spatiotemporalcorrelationinthelocalBOLDsignal.Furthermore,FCTs havebeenleveragedforimprovinginter-subjectregistrationof resting-statedatabasedonfunctionalfeatures(Zhouetal.,2018),whichmight alsobeenhancedifthedataareinitiallyïŹlteredwithDSS.

DSSmayalsobeusedasamethodtoïŹltertractographystreamlines inamannersimilartoSIFT(Smithetal.,2013).Inparticular,by apply-ingDSStovoxelizedrepresentationsofstreamlines,theresultingïŹltered mapscanbequantiïŹedtoobtainavalidityscorefortracts—tractsthat

Figure

Fig. 2. Sigmoid function used for thresholding edge weights, for three diïŹ€erent values of
Fig. 4. Phantom construction. (a) Circular phantom construction. Left: A subset of vertices of a 3-level subdivided icosahedron, 93 out of 642, were selected
Fig. 5. Generation of diïŹ€usion-informed smoothing ïŹlters. DiïŹ€usion ODFs (bottom row) serve as the basis for the creation of a WM graph (middle row)
Fig. 8. Validation of spatial smoothing on streamline-based phantoms. (a)-(b) AUC of ROC curves obtained from volumes spatially smoothed with DSS and GSS, respectively
+6

References

Related documents

För att uppskatta den totala effekten av reformerna mÄste dock hÀnsyn tas till sÄvÀl samt- liga priseffekter som sammansÀttningseffekter, till följd av ökad försÀljningsandel

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Syftet eller förvĂ€ntan med denna rapport Ă€r inte heller att kunna ”mĂ€ta” effekter kvantita- tivt, utan att med huvudsakligt fokus pĂ„ output och resultat i eller frĂ„n

I regleringsbrevet för 2014 uppdrog Regeringen Ă„t TillvĂ€xtanalys att ”föreslĂ„ mĂ€tmetoder och indikatorer som kan anvĂ€ndas vid utvĂ€rdering av de samhĂ€llsekonomiska effekterna av

a) Inom den regionala utvecklingen betonas allt oftare betydelsen av de kvalitativa faktorerna och kunnandet. En kvalitativ faktor Àr samarbetet mellan de olika

NÀrmare 90 procent av de statliga medlen (intÀkter och utgifter) för nÀringslivets klimatomstÀllning gÄr till generella styrmedel, det vill sÀga styrmedel som pÄverkar

‱ UtbildningsnivĂ„erna i Sveriges FA-regioner varierar kraftigt. I Stockholm har 46 procent av de sysselsatta eftergymnasial utbildning, medan samma andel i Dorotea endast

Denna förenkling innebÀr att den nuvarande statistiken över nystartade företag inom ramen för den internationella rapporteringen till Eurostat Àven kan bilda underlag för