• No results found

Publicerad internationell forskning Denna sammanställning av noteringar är en bilaga till slutrapporten från projektet Förstudie kring Roaming för elbilsladdning.

N/A
N/A
Protected

Academic year: 2021

Share "Publicerad internationell forskning Denna sammanställning av noteringar är en bilaga till slutrapporten från projektet Förstudie kring Roaming för elbilsladdning."

Copied!
19
0
0

Loading.... (view fulltext now)

Full text

(1)

2017-06-30 1

Publicerad internationell forskning

Denna sammanställning av noteringar är en bilaga till slutrapporten från projektet Förstudie kring Roaming för elbilsladdning.

Syfte

Syftet med den här studien var att titta på vad som framkommit i tidigare genomförda

laddinfrastrukturinriktade forskningsprojekt med bredare frågeställningar än enbart teknik för att dels kunna jämföra med våra intervjuresultat i Sverige och dels se om några/vilka

frågeställningar som eventuellt finns kvar olösta.

Metod

Studien har genomförts som en litteraturstudie med en omfattning som begränsats/ anpassats till projektets budget och omfattning. Ett huvudsakligt fokus har lagts på Europa. Vidare har antalet genomgångna artiklar/rapporter begränsats till totalt elva stycken, primärt av tidsskäl. De har identifierats genom en kombination av sökord och “snowballing” (dvs. att

studier/artiklar/rapporter omnämns i andra studier/artiklar/rapporter).

Initiala sökord på Google Scholar var “EV charging interoperability payment” vilket gav cirka 3 170 träffar. Nästa filtrering har skett på titel- och abstract-nivå med början från toppen av resultatlistan från Google Scholar-sökningen. Titlar som indikerat enbart teknikfokus har strukits. För övriga har abstract lästs. Om abstract indikerat att affärsmässiga aspekter,

interoperabilitetsaspekter eller användar-behov/önskemål och totalvolymen artiklar var under nio så har artikeln/rapporten lästs. Under läsningens gång visade sig fyra artiklar mindre relevanta medan några gav tips om ytterligare artiklar/rapporter. Detta gav en total på sju lästa och relevanta artiklar/rapporter. Det finns säkert många fler relevanta artiklar/rapporter, särskilt på global nivå. Vi tror dock att de mest relevanta inom EU har fångats upp.

Resultat

Här redovisas en kort summering från varje genomgången artikel/rapport. Illustrativa bilder och texter har kopierats direkt ur artiklarna/rapporterna, så här blandas engelska (kopierat) och svenska. Kopierad text återges i kursiv stil. Innehållet nedan finns Detta Syftet med detta avsnitt Detta avsnitt har huvudsakligen

1. ITS for electric vehicles - an electromobility roadmap (Hübner, Blythe, Hill, Neaimeh,

& Higgins, 2012)

Published in: Road Transport Information and Control (RTIC 2012), IET and ITS Conference on

Date of Conference: 25-26 Sept. 2012

Artikeln tar upp olika barriärer för spridning av elfordon (EVs) och hur de kan överkommas genom ITS. De föreslår en roadmap och action-plan som tagits fram i samarbete med ERTICO och smartCEM (Smart Connected Electro Mobility).

Man grupperade ITS-servicen i fyra grupper: 1) Vehicle operation and usage;

(2)

2017-06-30 2 3) Safety;

4) Integration with traffic system

För varje grupp skapades en lista av tjänster. Sedan prioriterades dessa, och den prioriteringen blev sedan roadmappen.

Inom grupp 1 finns några tjänster (services) värda att nämna eftersom de spelar stor roll för elbilsladdningen och de samtidigt har fått hög prioritet i artikeln. Hela listan ser ut så här:

Som synes ges hög prioritet till “Accurate range prediction” och “EV route guidance and EV navigation”.

Inom grupp 2 finns kärnan i vårt projektområde - betalningssystem. Det konstaterades att många länder redan då (rapporten är från 2012) har skapat test-och-demo regioner, laddteknologier och back-office strukturer. Som en konsekvens av det är få av dem

interoperabla. Till exempel har Tyskland finansierat nästan 2000 laddstolpar i 8 regioner. De är olika i de olika regionerna, har åtkomst på olika sätt (RFID, nycklar, SMS, PIN-koder) och kräver ofta medlemskap. Betalsystemen är också olika och kan vara flatrate,

energianvändning, eller inkopplad tid.

(3)

2017-06-30 3 Artikeln summerar roadmap och action plan så här:

(4)

2017-06-30 4 Som framgår av punkterna (främst punkt 1, dvs. mest angeläget) ser man behov av att kunna navigera till lämplig laddningspunkt, dynamiskt baserat på t.ex. kvarvarande körsträcka (givet topologi, körsätt, klimat etc.), tillgänglighet till laddningspunkten (man vill boka en slot-tid), och ens destination (inte ladda i onödan). Man skall enkelt kunna boka slot-tid.

2. An analysis of the standardization process of electric vehicle recharging systems

(Bakker & Trip, 2015)

(i boken “E-Mobility in Europe” 2015 som ingår i serien Green Energy and Technology utgiven av Springer Verlag)

Författarna konstaterar:

Throughout Europe, different charging protocols, plug designs and billing systems have been developed and introduced. In this chapter, the authors describe these standards and analyse the current situation in north-western Europe regarding the installed equipment and

initiatives to realize national and international interoperability between currently isolated networks of chargers. The authors conclude that there is a problematic tension between early attempts to define national standards and the eventual need for international interoperability to enable cross-border travel with electric vehicles.

(5)

2017-06-30 5 Besides the practical value of interoperability to EV drivers throughout Europe, one could also argue that standardization would be beneficial to equipment manufacturers and

charging network operators as it would provide much needed clarity and bring about positive scale effects (Brown et al. 2010).

Dessutom sägs:

In fact, even within many (European) countries, multiple networks of chargers have emerged that do not (yet) allow EV drivers to roam between these networks. The variety and

incompatibility among these networks mean that EV drivers cannot use their EVs to their full potential and that cross-border trips are virtually impossible. The EU has called for

standardization of EV charging systems on several occasions, but only in January 2013 has it published a clear draft Directive, agreed in amended form in March 2014, that provides clarity on the charging systems and plug designs that are to become the new European standard (European Commission 2013).

One could however argue that this Directive is issued too late and that the new EU standard will have to compete with incompatible standards already installed in many regions and nations. To make matters worse, the now agreed Directive only deals with harmonization of the hardware, e.g. the plugs and sockets used, but it does not address the interoperability between recharging networks in terms of customer identification and payment systems (Knox 2013).

Artikeln går igenom läget land för land för UK, Belgien, Holland (som verkar kommit längst avseende både laddhandske och interoperabilitet), Tyskland, Danmark, Sverige, och Norge. Om Sverige skrivs det:

Sweden is one of the countries where the recharging infrastructure emerges relatively slowly, possibly due to the fact that the Swedish national government is still defining its position in relation to electric mobility. The resulting lack of direction and coordination between the various initiatives has probably also caused the wide variety of plug and socket types that are in use. Sweden is one of the few countries in Europe where Type 1 plugs are in use (often next to Type 2 sockets) and continued installation of Type 1 plugs (on fixed cables) is being

considered despite the likelihood of Type 2 becoming a European standard. This is especially the case in the Jämtland region (in the centre of Sweden) where the local utility Jämtkraft has installed a small network of chargers. In the city of Gothenburg, most chargers still offer Schuko sockets.

Identification and billing is not an issue in Sweden and chargers in public space are by and large not equipped for this. Since most electricity in Sweden is generated by hydropower and nuclear power plants, electricity is relatively cheap and elaborate billing systems are

therefore not worthwhile. In Gothenburg for instance, the price of electricity is simply part of the regular parking tariffs (and for long-term parking the parking tariffs are a bit higher for EVs).

In addition to the ‘real’ EV chargers, there are hundreds of thousands of engine preheater sockets in Sweden that can be used to charge an EV. In some instances these have been upgraded with additional safety features to make EV charging safer from these sockets. I artikeln får man också en kort historisk beskrivning av två viktiga protokoll:

(6)

2017-06-30 6 The E-Laad network [i Nederländerna] developed the OCCP (open charging point protocol) for communication between individual charging stations and the network’s central system that is now in use in several countries. And it is also involved in the development of the OCHP (open clearing house protocol) for communication between multiple networks to allow

roaming of customers and billing across networks. The OCHP forms the basis for the international roaming initiative e-clearing.net.

Det omnämns fyra initiativ att realisera interoperabilitet:

Ladenetz: Är sprunget ur ett samarbete mellan lokala “utilities” (energibolag) i Aachen,

Duisburg och Osnabruch 2010. Ytterligare 18 “utilities” har anslutit sig. Fokus har varit på att möjliggöra roaming [inte energiroaming, vår kommentar] mellan laddnätverken så EV-förare kan ladda var som helst med ett och samma RFID-kort. Protokollet som möjliggör detta kallas alltså OCHP (Open Clearing House Protocol). Det används mellan nätverken för att utbyta användardata och ta om hand den finansiella transaktionen.

Ladenetz arbetar för att expandera användningen av protokollet. Vattenfall har anslutit sig, och Ladenetz har initierat e-clearing.net plattformen på vilken OCHP används för att

möjliggöra roaming över landsgränserna. 2012 tecknades överenskommelse mellan Ladenetz (Tyskland), E-Laad (Holland), och BlueCorner & Becharget (Belgien), Estonteco

(Luxemburg), Vlotte (Österrike), ESBeCars (Irland), och Inteli (Portugal) vilket innebär att dessa operatörer använder OCHP för nationell och internationell roaming. Eftersom New Motion (Holland) tidigare anslutit sig så är Holland idag helt interoperabel för EV-laddning för alla som har ett e-clearing.net kompatibelt RFID-kort. Ladenetz är non-profit.

Hubject: Är ett joint-venture mellan BMW, Bosch, Daimler, EnBW, RWE och Siemens. Det

är en kommersiell variant av Ladenetz. Hubject bygger på en QR-kod och en smartphone-app som läser den. Appen sköter användaridentifiering och den finansiella transaktionen mellan användarens leverantör och den lokala värden (tillfälliga leverantören).

Hubject och Ladenetz är väldigt lika men inte direkt kompatibla.

Crome: Står för Cross-border Mobility for EVs och är ett tysk-franskt samarbete för att

möjliggöra användning av elfordon för gränsöverskridande mobilitet.

Green eMotion: Green eMotion verkar vara det initiativ som genomförts nyligast och bl.a

har de gjort tester som inkluderar Crome.

3. Från Green eMotion slutrapport (Green eMotion, 2015):

After four years Green eMotion comes to an end in February 2015. The project has defined and demonstrated a European framework that connects all stakeholders for a seamless and cost-efficient electromobility ecosystem.

Den kort-korta summeringen lyder:

Since defining Europe-wide standards for electromobility was a primary objective of the project, the test of their practical usability was a major goal for Green eMotion.

In the Green eMotion demonstrations all 12 demo regions were connected to the marketplace and the feasibility of this solution, especially for roaming between all the demo regions, was successfully demonstrated. Due to the multitude of local electromobility projects the

(7)

2017-06-30 7 enhancement of driver’s convenience, such as easy location of suitable charging stations or easy access to public chargers, was very positive. Technical issues like integration of renewable energy sources and power quality aspects were analysed by the technical experts under real-life conditions.

The standards developed and tested by Green eMotion have become de facto standards for electromobility in Europe. [vår fetstil]

Nedanstående delar från Green eMotion rapporten berör bara interoperabilitet och ICT så det är inte heltäckande för det projektets totala slutsatser.

Erfarenheter från den österrikiska delen av projektet:

• Although the Green eMotion roaming solution works fine, EVSP will have to integrate other European roaming solutions, too.

• Parking and energy infrastructure intelligently planned simplify EV integration (garages & buildings)

• Fast-charges were increasingly used in afterwork hours (way home)

• Supermarkets will install fast chargers only in sites with sufficient space left for ICE parkers

• For multi-storey carpark applications, business integration is crucial, and a legal framework is required

Erfarenheter från den Tyska delen - Berlin:

• The Rally to Brussels has shown that roaming between several nations can work. • Electromobility service providers should be encouraged to connect to roaming

platforms

• Europe-wide harmonisation of customer ID’s is still lacking which hinders cost-efficient operation.

... och från Stuttgart/Karlsruhe:

• Roaming is an essential and requested feature of EV users in the region

• Technical and business (financial and contractual) constraints have a strong influence on the success of future roaming

• Standardisation is key for all ICT related services Från Strasbourg i Frankrike:

• The successful coupling of different electromobility information systems has been proven, but requires defined interfaces

• The standardisation of identification means should be promoted

• The accessibility of charging stations and their capabilities need to be improved Från Ungern, Budapest:

(8)

2017-06-30 8 • Roaming between several European countries without problems

Fler slutsatser - på total projektnivå:

• The provision of household and workplace charge points should be considered a priority

• Provision of fast charging facilities will increase user confidence in the range of their vehicles

• The provision of real-time information to users regarding their available range and the location of the nearest charging infrastructure would increase user confidence and change user behaviour positively

• Battery cost = economic barrier, range and charging rate– = acceptance barriers • Key commercial and regulatory barriers are interoperability, roaming, and inefficient

electricity pricing

Projektet konstaterar “Freedom of movement - An international approach is required” och skriver:

To allow convenient EV traffic throughout Europe, a standardised, interoperable electromobility system is required, creating new business cases and making investments future-proof. Green eMotion has defined the European ICT architecture that is needed to ensure a proper connection of all market participants. It will allow open and convenient access by EV drivers to public charging infrastructure.

The ICT systems of all participating companies are networked by means of a so-called marketplace. While users get easy access to charging infrastructure independent of the equipment operator, service providers can offer their services to all market participants. In addition, value-added services like reserving a charging point can make e-driving a more convenient experience.

Standards are the basis for an interoperable electromobility system creating new business cases and making investments future-proof.

Vad gäller roaming konstaterar de att RFID gav problem medan appar funkade bättre: As for identification, RFID proved to have many obstacles for interoperability, whereas the smartphone app worked flawlessly.

... och drar slutsatserna:

• EV drivers need easy-to-use roaming RFID, but several obstacles have to be overcome • A smartphone app is a good choice for roaming

• System response times need to be acceptable for the user

• New standard needed for imprinting and reading the EVCOID on RFID card I projektet kopplade man upp sig mot Crome-installationen (roaming mellan Tyskland och Frankrike) och konstaterade att:

(9)

2017-06-30 9 Project activities also included the connection to other market places, e. g. CROME

eRoaming. The Green eMotion marketplace was operative from May 2013 on and was used by all demo regions and service providers (nearly 40 accounts). It also hosted big EV service demonstrations, such as the Rally to Brussels or EVS27. In total, 72 services were registered, serving 293 contracts at 300,745 transactions.

… och rekommenderar att:

• IT architecture proved workable, and is scalable and extendible • Standardisation has to be continued (eMI3)

• Standardise electromobility identifiers (EVCO-ID, EVSE-ID)

Figur 1: En bild över hur point-to-point och en marknadsplats kan vidareutvecklas till sammankopplade

marknadsplatser och vidare till marknadsplats-plattform (Green eMotion, 2015). I rapporten (Green eMotion) fortsätter de (sid 29 ff) konstatera:

Getting electromobility on the road means giving EV drivers access to interoperable infrastructures and letting them enjoy a seamless driving experience. [vår fetstil] Deras slutsatser och rekommendationer avseende seamless driving experience är:

Conclusions & recommendations:

• Services are a must to make the life of an EV driver more convenient.

• Search functionality has to show all available charging posts (independent of operator; best with access information). At the moment, dynamic data is the cherry on the cake for EV drivers.

• To implement IT services with integration of different IT applications, a wide set of standards (e.g. interfaces, business objects) is an essential prerequisite

För att komma till “seamless driving experience” behövs mer standardiseringsarbete. Rapporten lyfter fram vissa förarbeten som gjorts i projektet:

(10)

2017-06-30 10 Electric vehicle drivers require open access to interoperable charging infrastructures in order to enjoy a seamless driving experience.

To achieve this, Green eMotion defined an ICT architecture, use cases, business objects and protocols that are representative of the needs of the whole ecosystem of electromobility actors. An important part of this was defining EVCO-ID and EVSE-ID, as well as the required interfaces, and smart grid integration. Further to this, New Work Item Proposals were made, such as communication between EVSE and back-end systems, a unique ID for EV driver contract, and SORDS (standardized on-road driving schedule). In addition, eMI3 (as ERTICO working group) was founded together with other electromobility stakeholders to enable follow-up work on standardisation, and a road- map was set up for future standard needs.

Conclusions & recommendations:

• EC directive or standardisation required for identification of EV driver contract and EVSE based on EVCO-ID and EVSE-ID

• Standardisation of the defined interfaces and other topics from the roadmap • Evaluate and define future IT standards to increase value-added services Deras “roadmap” illustreras i Figur 2 nedan.

Figur 2: Activities to promote standards on interoperability (Green eMotion, 2015).

De avslutar med att notera några ekonomiska utmaningar. Den främsta för laddinfrastrukturen anser de vara:

As the first EVs have appeared on the market, it becomes apparent that not only the costs of the car, but also the investments in the required infrastructure hinder a quicker upswing of electromobility. A major result of the Green eMotion project: While economies of scale must substantially lower the price of batteries in the coming years, public charging as a sole business case can only be profitable within such mid-term business scenarios if there are highly frequented charging stations. However, a combination with other services in places of high interest will improve the business case.

Deras rapportering kring elnätsfrågor etc. tas inte med här.

De noterar på sid 37 att det är svårt att få till lönsamhet på laddningspunkter utan kombination med reklamintäkter och/eller annan konsumtion (t.ex restaurang etc.).

(11)

2017-06-30 11

4. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data (Dong, Liu, & Lin, 2014)

Artikeln handlar om hur laddinfrastrukturen behöver designas för att kunna möta laddbehoven så bra som möjligt - så att elbilsanvändarna behöver ändra sig så lite som möjligt relativt att köra med ICE-fordon.

Artikeln har Seattle-regionen, USA, som utgångspunkt och blir därför begränsat användbar. De generella slutsatserna är dock användbara:

This paper examines the impact of different deployment levels of public charging infrastructure on reducing BEV range anxiety using an optimization model that places chargers at candidate locations, considering charging behavior and the budget constraint. GPS tracking data shows that very few trips exceed the typical BEV range; while daily VMT has a higher likelihood of exceeding the range. More public chargers, when optimally located, could effectively reduce range-constrained days and trips for BEV drivers. The optimized public charger planning strategies suggest that, with a small budget, level 1 chargers are preferred, as they can provide the necessary network coverage at a low cost. Due to its high cost, level 3 charging is less attractive. However, installing fast chargers along the interstate corridors is essential in order to facilitate BEV drivers to conduct intercity travel (Nie and Ghamami, 2013).

Det viktiga medtaget vårt projekt gör från studien, givet att användarmönstret gäller även i Sverige, är att laddning på jobbet kan avsevärt minska behovet av publik laddinfrastruktur – dock inte snabbladdare längs E-vägarna. Nedanstående bild från artikeln illustrerar det. Givet att snabbladdning kostar som idag så kan arbetsplatsladdning även påverka milkostnaden signifikant för många elbilsanvändare.

(12)

2017-06-30 12

5. Reducing Range Anxiety by Unifying Networks of Charging Stations (Salah & Kama,

2016)

Artikeln undersöker vad som kan bidra till att få bort range anxiety och konkluderar: This paper reviewed the possible solutions to reduce or overcome range anxiety. Providing sufficient charging stations, displaying the SoC and improving the SoC estimation algorithms, routing, and providing real-time information about the remaining range are among the solutions which are suggested by researchers for overcoming range anxiety. Although availability of networks of fast charging stations may reduce range anxiety, accessibility of these networks by EVO is also an important factor. Therefore providing cross-network charging capability to EVOs will bring user satisfaction. [vår fetstil]

Väl fungerande interoperabilitet bedöms alltså som viktig för att minska räckviddsoro hos elfordonsanvändare.

6. Incentives and infrastructure – crucial elements in the build-up of Norway’s EV fleet

(Nørbech, 2013)

En övergripande slutsats från Norge är:

Still, governmental co-funding seems to be crucial if the charging infrastructure network is to meet the needs of a growing EV fleet. Today normal “slow” charging is free, and the owners of quick charging stations are only in the early phase of introducing payments. The goal is however to establish a market on commercial principles. To be awarded funding for fast charging, the applicants are required to submit a long-term business model describing how they intend to finance and operate the infrastructure. Currently the financial returns from operating a charging station are minimal, but it can be serve to attract customers to businesses along the road or to other shopping destinations.

7. Business and service models for electric vehicles (Madina, Coppola, Schumann, Hartung,

& Zabala, 2012)

En artikel som bygger på ett delprojekt i Green eMotion (se ovan). De noterar att:

EV -related business models are networked business models, in which several actors interrelate with each other. In addition, since electricity is a partially regulated sector, new business models need to take into account their effect on the regulated parties.

De går även igenom alla roller som definierats i ekosystemet och som behövs för att få till laddning med interoperabilitet:

Electric Vehicle Supply Equipment (EVSE) Operator

An EVSE Operator can manage one or some EVSE. ISO_IEC 15118 [Road vehicles - Vehicle to grid communication interface. Part 1: General

information and use-case definition. Current stage: Draft (December 2011)] defines an EVSE as: “conductors, including the phase(s), neutral and protective earth conductors, the EV couplers, attached plugs, and all other accessories, devices, power outlets or apparatuses installed specifically for the purpose of delivering energy from the premises wiring to the EV

(13)

2017-06-30 13 and allowing communication between them as necessary. For this purpose the EVSE may also include communication to secondary actors”.

The EVSE Operator facilitates the access to the EVSE and to the distribution grid. Electric Vehicle Service Provider (EVSP)

Electric Vehicle Service Provider (EVSP), according to the concept of e-mobility Operator, as defined by ISO_IEC 15118, is the “legal entity that the customer has a contract with for all services related to the EV operation”.

Therefore, an EVSP offers e-mobility services to EV customers, so that they can recharge their EVs (either at home, at work or at any other public parking location), including the roaming service (even at any EVSE across Europe), or benefit from additional services while driving/charging. This provision of services, including EV charging, is the feature that characterizes the EVSP.

EV Customers

Three different types of EV Customers are defined: • Institutional: Re-sells services to EV Users. • Assigned user: Signs a contract with the EVSP. • Driver: The actual car driver.

The ISO_IEC 15118 defines EV User similarly to the concept of Driver: “Person or legal entity using the vehicle and providing information about driving needs and consequently influences charging patterns”.

In the analysis presented here, EV Customers are always be the assigned users. EV Fleet Operator

A Fleet Operator is defined by the ISO_IEC 15118 as: “A person or legal entity operating several EVs and may have the contracts with electricity provider”.

In this case, companies or government agencies may own or lease a fleet of EVs. Energy Market Aggregator

An Energy Market Aggregator uses small volume inputs and creates saleable portfolios to be sold on different electricity markets (e.g. reserve power markets). The power load of a single EV is very limited, but with a pool of EVs it is possible to reach tradable product sizes. With aggregation, customers become active parties in the electricity markets and can gain cost savings for electricity.

EVSPs, retailers and other stakeholders could act as energy market aggregator. Retailers, in fact, have much information about their customers, and then a relevant knowledge of

customer behaviour and market. EVSPs have access to several aggregated EVs, which can function as storage units when plugged in the network during office hours or the time spent in a shopping mall, airport, public parking, etc.

(14)

2017-06-30 14 Clearing House

The ISO_IEC 15118 defines Financial Clearing House as the “Entity mediating between two clearing partners to provide validation services for roaming regarding contracts of different electricity providers with the purpose to:

• Collect all necessary contract information from all participating electricity providers. Example: contact ID, electricity provider communication path to electricity provider, sales tariffs, begin end date of contract.

• Provide the EVSE communication part with confirmation that an electricity provider will pay for a given Contract ID (authentication of valid contract).

• Transfer a Charge Detail Record after each charging session to the electricity provider of the identified contract.

Meter Operator

A Meter Operator is defined as the “Body having the legal responsibility for installation and maintenance of electricity meter”.

This function is often carried out by the DSO itself and as such is considered here. Distribution System Operator (DSO)

The Distribution System Operator (DSO) is a natural or legal person responsible for

operating, ensuring the maintenance of and, if necessary, developing the distribution system in a given area and, where applicable, its interconnections with other systems and for ensuring the long-term ability of the system to meet reasonable demands for the distribution of electricity.

Transmission System Operator (TSO)

The Transmission System Operator (TSO) is a natural or legal person responsible for

operating, ensuring the maintenance of and, if necessary, developing the transmission system in a given area and, where applicable, its interconnections with other systems, and for ensuring the long term ability of the system to meet reasonable demands for the transmission of electricity [5].

In addition, the TSO shall be responsible for managing electricity flows on the transmission system, taking into account the electricity exchanges with other interconnected systems. Electricity Retailer

Electricity Retailers purchase electricity in the wholesale market and resell it within the system. For private customers, the retailer usually supplies electricity and grid access. In this case, the retailer is the only interface with the customer and therefore responsible for

invoicing.

For larger customers, retailers only sell electricity while grid access and usage may be charged directly by the DSO.

(15)

2017-06-30 15 Original Equipment Manufacturer (OEM)

An OEM is the “Company which builds a new product that is different to all other products made by other companies”.

For the purpose of Green eMotion, OEMs are car manufacturers. Service Providers

The Service Provider offers several useful value added services optionally available via the Marketplace. This may include the current location of the driver, average amount of energy charged while parking, timetables of public traffic, tourist information or weather forecast, etc.

Telecommunication Provider

The electric mobility system needs to be able to communicate in order to exchange information. This is often carried out wirelessly, e.g. over GSM or 3G. Therefore, infrastructure to enable the communication between the EV, the EVSE infrastructure (Charging Stations, Battery Switch Stations, etc) and backend services need to be provided. Herewith, it becomes obvious that communication standards are crucial for a fully functional system, which enables access to any company that adopts the standard.

Market Operator

The Market Operator is responsible for wholesale electricity market trade and it is the sole counterparty for all market transactions. Therefore, market participants do not trade with each other, but through the Market Operator, so, somehow, it is as if the Market Operator “sells” electricity to retailers and “buys” it from producers. Market Operator activities might be paid by the producers, by the retailers or by both, and according to the amount of energy traded in the market.

Marketplace Operator

Operates the platform and communications and manages access to and working of the marketplace.

Balancing Responsible Party

Balancing Responsible Parties (BRP) are requested to pay for the imbalances created by the parties they represent. The difference between the energy amount that a market participant has traded in the market and the energy amount that such participant has produced or consumed is that participant’s imbalance. BRPs consolidate the imbalances of the parties they represent and are charged for the imbalance in their portfolio by the TSO. It

subsequently compensates financially the TSO for negative imbalances observed in real time, or it receives financial compensation from the TSO in case of positive imbalances.

(16)

2017-06-30 16 Example of Business Model analysis: Basic charging with Marketplace and Clearing House

Figur 3: e3value model for the basic charging business model (Marketplace and Clearing House).

The e3value model for this service is presented [i Figur 3 ovan]:

• EV Customers 1 and 2 want their EVs to be charged (dark green start stimulus), so they pay for that to their respective EVSP.

• In order to be able to satisfy such request, the EVSP needs to get access to the EVSE (pink lines), to obtain the right to receive electricity from the Electricity retailer (light green lines), and to pay for using its communications (yellow lines). In addition, when EVSP 1 needs to get access from an EVSE Operator different from EVSE Operator 1 (which it has a bilateral contract with), it has to use the Clearing House service, and hence, it must pay for it (orange lines). Besides, if the EVSP needs to use the

(17)

2017-06-30 17 For every charge that EV Customers request, the EVSP uses communications once, pays for one access to the EVSE and for one use of both the Clearing House and the marketplace, but the payment to the Electricity retailer depends on the number of kWh actually recharged, as shown by the implosion in the light green line.

• The EVSE Operator pays for communication (yellow), for grid access to the DSO (brown lines) and, in the case of providing access to an EVSP it has no contract with, for using the Clearing House (orange lines). In addition, when it offers itself in the marketplace, it has to pay for the marketplace access fee. As T&D fee depends on electricity consumption and not on the number of charges, there is another implosion in the brown path.

• In order to be able to provide their services (clearing and access to the marketplace), the Clearing House and the Marketplace Operator must pay for communications. • Part of all the money received by the DSO is transferred to the TSO, according to

each country’s particular requirements (brown lines).

• The Electricity retailer buys electricity in the wholesale market (blue lines) and the difference between the purchased amount and the actual electricity consumption is paid to the BRP (purple lines).

• The BRP pays for imbalances to the TSO.

• The TSO uses the payment for imbalances to pay for system balancing to Electricity producers.

• Likewise, all electricity traded in the market is provided by these Electricity producers.

Some preliminary rough results from the Cost-Benefit Analysis

The basic assumptions, which can be easily modified, just to be able to make conclusions according to sensible round particular figures, are as follows:

• The EVSP has 2000 customers.

• Each EV Customer charges once a day in public EVSEs. • In each charge, EV Customers demand 10 kWh.

• The price to be paid for the electricity to the Electricity Retailer is 78.18 €/MWh. • The yearly administrative and operational cost for the EVSP is 30 k€.

• The yearly commercial and customer management-support cost for the EVSP is 100 k€.

• The cost related to the EVSP publicity and advertising amounts 100 k€. • Other costs related to the EVSP business start up of 5 k€ averaged every year. • The EVSE Operator needs to have 1000 EVSEs for supplying the 2000 customers by

the EVSP.

(18)

2017-06-30 18 • The price to be paid for T&D access to the DSO is 64.139 €/MWh.

• The yearly administrative cost for the EVSE Operator is 30 k€.

• The yearly operational and maintenance cost for the EVSE Operator is 20 k€. • Other costs related to the EVSE Operator business start up of 5 k€ averaged every

year.

• Every transaction through the marketplace amounts 1 c€. • Every transaction through the clearinghouse amounts 1 c€.

• Every connection to the Telecommunication Provider amounts 1 c€.

In order for the EVSE Operator and the EVSP to get significant annual benefits (around 100 k€):

• The EVSE Operator needs to get a profit of about 0.4 €/charge. It main cost per charge is the T&D fee, which is about 64 c€ (64.139 €/MWh * 0.01 MWh/charge). As a result, the EVSE Operator needs to charge a minimum access fee of 1.04€/charge. • The EVSP needs to get a profit of about 0.5 €/charge. EVSP main costs per charge

include the electricity from the retailer and the access to the EVSE. Electricity price is about 78 c€ (78.18 €/MWh * 0.01 MWh/charge).

• Therefore, the minimum price to be collected from EV Customers per charge is about 2.35 €(104 c€+ 78 c€+ 50 c€).

This implies a “fuel cost” for consumers of about 850 €/year, which is about 500 €/year less than the petrol cost for an ICV. If the difference of purchase price between an EV and an ICV is considered to be about 10 k€, the fuel cost difference would require about 20 years to pay for the purchase price difference, assuming that the EV runs about 18,000 kilometres per year, which is far longer than the usual car lifetime. [vår fetstil]

Huvudsakliga noteringar

1. Interoperabilitet nämns genomgående som angeläget – mycket angeläget.

a. Funktionalitet som vägvisning och möjlighet att förboka laddning står också högt på agendan (Hübner, Blythe, Hill, Neaimeh, & Higgins, 2012)

b. Det räcker inte med många laddare om EV-föraren inte kan använda dem alla 2. För interoperabilitet krävs standardisering, men det ger positiva skaleffekter på

utrustning samt mer framtidssäkra investeringar (Bakker & Trip, 2015)

3. Lönsamheten för publik laddning beskrivs som svår i flera rapporter (Green eMotion, 2015), (Nørbech, 2013), (Madina, Coppola, Schumann, Hartung, & Zabala, 2012). Många roller/aktörer som skall finna lönsamhet i sin del av laddningstransaktionen. Affärsekosystemet för interoperabilitet involverar 16 roller (!) och dessutom en delvis reglerad sektor (elektricitet) (Madina, Coppola, Schumann, Hartung, & Zabala, 2012).

(19)

2017-06-30 19 b. För lönsamhet kan prisnivån (2,35 € minimipris per laddning) bli utmanande

stor för EV-ägaren (> 20 år återbetalning på det högre fordonspriset genom lägre bränslekostnad) (Madina, Coppola, Schumann, Hartung, & Zabala, 2012) 4. RFID funkar inte oproblematiskt vid interoperabilitet medan däremot

smartphone-appar kan fås att fungera (Green eMotion, 2015)

5. Väl utbyggd arbetsplatsladdning minskar behovet av publik laddning, men inte utefter Europavägarna (Dong, Liu, & Lin, 2014)

6. Nederländerna har kommit längst. Sverige är enligt en rapport en bit efter många andra EU-länder (Bakker & Trip, 2015)

Referenser

Bakker, S., & Trip, J. J. (2015). An Analysis of the Standardization Process of Electric Vehicle Recharging Systems. i E-Mobility in Europe (ss. 55-71). Springer.

Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data.

Transportation Research Part C, 38.

Green eMotion. (2015). The Green eMotion project – preparing the future of European

electromobility. European Commission.

Hübner, Y., Blythe, P. T., Hill, G. A., Neaimeh, M., & Higgins, C. (2012). ITS for electric vehicles – an electromobility roadmap. Road Transport Information and Control

(RTIC) Conference 2012. IET.

Madina, C., Coppola, G., Schumann, D., Hartung, P., & Zabala, E. (2012). Business and services models for electric vehicles. European Electric Vehicle Congress (EEVC)

2012. Tecnalia.

Nørbech, T. E. (2013). Incentives and infrastructure – crucial elements in the build-up on Norway's EV fleet. Electric Vehicle Symposium and Exhibition (EVS27). IEEE. Salah, K., & Kama, N. (2016). Reducing Range Anxiety by Unifying Networks of Charging

Stations. The 3rd International Conference on Manufacturing and Industrial

References

Related documents

Key words: Control Area Network, Electric Drive Train, In-Wheel Motor, Permanent Magnet Synchronous Machine;... Forskningen kring elfordon har ¨okat under senaste ˙aren och

You suspect that the icosaeder is not fair - not uniform probability for the different outcomes in a roll - and therefore want to investigate the probability p of having 9 come up in

To answer the second research question: “What is the interplay between the EV-fleet and the grid, regarding availability for grid services?”, the number of EV:s needed to match

Based on primary and secondary data this thesis elaborates the environmental factors that influence the battery electric vehicle industry and the business models of

The HQ Sales manager took initiative and created an evaluation form that could be sent around to the different subsidiaries where people could add information about the insights

Here, a literature study of the current situation surrounding electric vehicle charging and the ISO 15118 standard is presented.. In addition to this, a risk analysis of

- ability to demonstrate experience as lead designer/engineer on a minimum of three  office  and/or  retail  mixed  use  projects  in  Europe  (description/name 

The current level for each harmonic distortion was used to calculate two different loss factors, eddy current and stray losses, due to the harmonic currents in the transformer..