LUND UNI VERSI TY PO Box 117
System Analysis via Integral Quadratic Constraints Part I
Megretski, Alexander; Rantzer, Anders
1995
Document Version:
Publisher's PDF, also known as Version of record Link to publication
Citation for published version (APA):
Megretski, A., & Rantzer, A. (1995). System Analysis via Integral Quadratic Constraints: Part I. (Technical Reports TFRT-7531). Department of Automatic Control, Lund Institute of Technology (LTH).
Total number of authors:
2
General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal
Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.
ISRN LUTFD2/TFRT--7531--SE
System Analysis via
Integral Quadratic Constraints
Part I
Alexander Megretski
Anders Rantzer
Department of Automatic Control
Lund Institute of Technology
April 1995
Constraints, Part I
A. Megretski
Dept. of ElectricalEngineering
IowaState University
Ames,IA 50011
USA
alexm@iastate.edu
A. Rantzer
Dept. ofAutomaticControl
Lund Instituteof Technology
Box118
S-221 00LUND
SWEDEN
rantzer@control.lth.se
Abstract
This pap er intro duces a unied approach to robustness analysis
with resp ect to nonlinearities, time-variations and uncertain param-
eters. From an original idea by Yakub ovich, the approach has b een
develop ed under a combination of inuences from the western and
russian traditions of control theory. It is shown how a complex sys-
tem can b e describ ed by using certain integral quadratic constraints
(IQC's), derived for its elementarycomp onents. A stabilitytheorem
forsystemsdescrib ed byIQC'sis presented,thatcoversclassicalpas-
sivity/dissipativityarguments,butsimpliestheuseofmultipliersand
thetreatmentofcausality.
The pap er is divided into two parts. Part I presents the basic
ideasforstabilityanalysis,referingtoasimpleexample. Asystematic
computational approach is describ ed and relations to other metho ds
of stability analysis are discussed. Last, but not least, it contains a
summarizinglistof IQC's forimp ortant typ esofsystem comp onents,
that existin various formsintheliterature.
Itiscommonengineeringpracticetoworkwithsimplestp ossible mo d-
els fordesign of controlsystems. In particular,one often uses linear
time-invariant plant mo dels,forwhich there isa well establishedthe-
oryandcommerciallyavailablecomputerto olsthathelpinthedesign.
Toverifythatthedesignalsoworkswellin practiceoneneedsrealex-
p eriments,oftenpreceededbysimulationswithmoreaccuratemo dels.
However, there isalso a strongneed formoreformal ways toanalyse
the systems. Such analysis can help to identify critical exp erimental
circumstances or parameter combinations and estimate the p ower of
themo dels.
Inthe1960-70s,alargeb o dyofresults wasdevelop edin thisdirec-
tion,oftenreferredtoasabsolutestabilitytheory. Thebasicideawas
topartitionthesystemintoafeedbackinterconnectionoftwop ositive
op erators. See[45,78,82,75,39,17,54]andthereferencestherein. To
improvetheexibility oftheapproach,so-called multiplierswereused
to select prop ervariables for the partitioning. The absolute stability
theory is now considered as a fundamental comp onent of the theory
for nonlinear systems. However, the applicability of many of the re-
sults has b een limited by computational problems and by restrictive
causalityconditions usedin themultiplier theory.
Forcomputationofmultipliers,substantialprogresshasb eenmade
inthelastdecade,themostevidentexampleb eingalgorithmsforcom-
putation of structured singular values ( analysis) [19]. As a result,
robustnessanalysiswithresp ecttouncertainparametersand unmo d-
eleddynamics,canb ep erformedwithgreataccuracy.Aprobablyeven
morefundamentalbreakthroughinthisdirectionisthedevelopmentof
p olynomial time algorithmsfor convex optimization with constraints
dened by linear matrix inequalities [40, 7]. Such problems app ear
not only in -analysis, but in almost any analysis metho d based on
passivity-typ econcepts.
The purp ose of this pap er is to adress the second obstacle to ef-
ceint analysis, by proving that multipliers can b e intro duced in a
less restrictive manner, without causality restrictions. Not only do es
this make the theory moreaccessible by simplication of pro ofs, but
also enhances the development of computer to ols, that supp orts the
transformationof assumptionson mo del structureinto a numerically
tractableoptimizationproblem.
The term integral quadratic constraint (IQC) is used for several
To exploit structural informationab out a complex oruncertain
systemcomp onent.
To characterizeprop ertiesof anexternalsignal.
To analyze combinations ofseveral constraintson p erturbations
andsignals in a system.
Implicitly, integral quadraticconstaints have always b een present
in stability theory. For example, p ositivity of an op eratorF, can b e
expressedbytheIQC
Z
1
1 d
(Fv)(j!)
b
v (j!)d!0 8v :
In the 1960s, most of the stability theory was devoted to scalar
feedbacksystems. Thisledtoconvenientlyvisualizable stabilitycrite-
ria based on the Nyquist diagram, which was particularly imp ortant
in times whencomputerswereless accessible.
Inthe70-s,integralquadraticconstaintswereexplicitly used(and
named so) by Yakub ovich to treat the stability problem for systems
withadvancednonlinearities,including amplitudeandfrequencymo d-
ulationsystems. Somenew IQC:s,unrelatedto thepassivityorsmall
gain arguments, were intro duced, and the so-called S-pro cedure was
applied to thecase of multiple constraints[79]. Willems also gavean
energy related interpretationof the stability results, in terms of dis-
sipativity, storage functions and supply rates [75]. Later on,Safonov
interpreted the stability results geometrically, in terms of separation
of thegraphsof thetwo op eratorsinthefeedbacklo op.
Animp ortantstepinthefurtherdevelopment,wastheintro duction
ofanalysismetho dswhichessentiallyrelyontheuseofcomputers. One
exampleisthetheoryforquadraticstabilization[30,22,15],anotheris
themultilo op generalizationof thecircle criterionbasedon D-scaling,
[55,19]. BoththesearchforaLyapunovfunctionandthesearchforD-
scales canb e interpretedasoptimizationofparametersin anintegral
quadratic constaint. Another direction was the intro duction of H 1
optimization for synthesis of robust controllers [83, 61]. Again the
results can b eviewed in termsof integralquadraticconstraints,since
optimal design withresp ect toan IQC leadstoH 1
optimization.
During thelast decade, a variety of metho ds has b een develop ed
within theareaofrobustcontrol. Aswasp ointedoutin [35],manyof
G(s)
c c
-
-
? 6
v f
Figure1: Perturbation inFeedbackForm
themcan b ereformulatedtofallwithintheframeworkof IQC's. This
will b efurtherdemonstratedin thecurrentpap er,whichisdivided in
twoparts.
This rst part presentssome minimal framework forthe stability
analysis of feedback interconnectionsdescrib ed in terms of IQC's. It
is intro duced by an extensive example, illustratingthe main ideas on
a feedback lo op withsaturationand an uncertaindelay. In section 3,
denitions and main theorem are stated in detail. After that follows
sections with discussions and comparisons to well known results. Fi-
nally, we givea summarizinglistof integral quadraticconstraints for
imp ortanttyp esofsystemcomp onents.
The second part of the pap er concerns analysis of robust p erfor-
mance,andgeneralizesthestabilityanalysistocaseswheretheb ound-
edness,causalityanduniquenessassumptionsofpartoneareviolated.
2 Outline of the method
Consider a feedback conguration illustrated in Figure 1, consisting
of a time-invariant linear op erator with transfer matrix G(s), inter-
connected with an op erator , that describ es the "troublemaking"
(nonlinear,time-varyingoruncertain)comp onentsofthesystem. The
notation G will in the sequel either denote a linear op erator ora ra-
tionaltransfermatrix,dep ending on thecontext.
First,wedescrib easaccuratelyasp ossible byintegralquadratic
constraints(IQC's)
Z
1
1
"
b v(j!)
d
(v)(j!)
#
(j!)
"
b v(j!)
d
(v)(j!)
#
d!0 (1)
which should holdforanysquaresummablev withFouriertransform
^
v . The class
of all rational hermitean matrix functions that
dene a valid IQC fora given isconvex,since thesum of two p os-
itive integrals is p ositive, and it is usually innite-dimensional. For
is readilyavailablein thelitterature. Infact,IQC's areimplicitly
present in many results on robust/non-linear/time-varying stability.
A list of such IQC's has b een app ended to this pap er in section 7.
Whenconsistsofacombinationofseveral simpleblo cks,IQC'scan
b e generated by convex combinations of constraints for the simpler
comp onents.
Next, we search for a matrix function 2
, that satises the
criterion
G(j!)
I
(j!)
G(j!)
I
<0 8 !2R[f1g: (2)
In combinationwith (1),this essentially provesstability of the inter-
connection. Thesearch fora suitable canb ecarried outbynumer-
ical optimization, restricted tosome nite-dimensional subset of
.
Roughly sp eaking, is exp ected tob eof theform
(j!)= q =q0
X
q =1 x
q
q (j!);
wherex
q
arereal parameters. and G areprop er rationalfunctions
withno p oleson the imaginaryaxis, sothere existsn>0,a Hurwitz
matrixAofsizenn,amatrixBofsizenm,andasetofsymmetric
real matricesM
q
of size(n+m)(n+m),such that
G(j!)
I
q (j!)
G(j!)
I
=
(j!I A) 1
B
I
M
q
(j!I A) 1
B
I
forallq. ByapplicationoftheKalman-Yakub ovich-Pop ovLemma,as
statedbyWillems[74],itfollowsthattheinequalityin(2)isequivalent
totheexistenceof asymmetricnn matrixP =P T
suchthat
PA+A T
P PB
B T
P 0
+ q =q
0
X
q =1 x
q M
q
<0: (3)
Hence the search for x
q
that pro duce a weight satisfying (2) (i.e.
provingthestability)takestheformofaconvexoptimizationproblem
denedbyalinearmatrixinequality(LMI)inthevariablesx
q
;P. Such
problems can b e solved very eciently using the recently develop ed
numerical algorithmsbased oninterior p oint metho ds [40,7].
k sat
P(s)
e
s
- - - -
Figure2: Systemwith Saturation and Delay
2.1 Example with Saturation and Delay
Considerthefollowingfeedbacksystemwithcontrolsaturationandan
uncertain delay.
_
x(t) = Ax(t)+Bsat(w (t))
w (t) = k Cx(t )
(4)
whereris thereferencesignal, 2[0;
0
]isan unknownconstant,
P(s)=C(sI A) 1
B=
s 2
s 3
+2s 2
+2s+1
is the transfer function of the controlled plant (see the Nyquist plot
on Figure3), and
sat(w ) =
w ; jw j1;
w =jw j ; jw j1;
isthefunction thatrepresentsthesaturation. Thesetup isillustrated
in Figure2.
Letusrstconsiderstabilityanalysisforthecaseofnodelay. Then
letb ethesaturation,whileG(s)= k P(s). Applicationofthecircle
criterion
k 1
< min
!
ReP(j!) (5)
givesstabilityfor
k < k
circ
8:12
(see dashed line in Figure 3). This corresp onds to a
containing
only thematrix
0 1
1 2
:
−0.5 0 0.5 1
−0.5 0 0.5 1
Re P(j!)
Figure 3: Nyquist plot for P(j!) (solid line)
InthePop ovcriterion,
consistsof alllinear combinations
0 1
1 2
+
0 j!
j! 0
;
and theresultinginequality(2)givesthe minorimprovement
k 1
< max
min
!
Re[(1+j!)P(j!)] (6)
k < k
Pop ov
8:90
A Pop ovplotis shownin Figure4.
Furthermore, b ecause the saturation is monotone and o dd, it is
p ossible toapplyamuchstrongerresult,obtainedbyZamesandFalb,
[84]. By their statement, a sucient condition for stability is the
existenceof afunction H 2RL
1
suchthat
0 < min
!
Re[(1+H(j!)
)(P(j!)+k 1
)]
H(j!) = Z
1
1 e
j! t
h(t)dt
1 Z
1
1
jh(t)jdt
This extends the class of valid IQC's further, by allowing all matrix
functionsof theform
(j!) =
0 1+H(j!)
1+H( j!) 2(1+ReH(j!))
whereH hasanimpulseresp onseofL
1
normnogreaterthanone. For
ourproblem,thechoiceH(j!)= (1+j!) 1
givesfor!2R that
Re[(1+H( j!))P(j!)] = j1+H( j!)j 2
Re
j!
! 2
+j!+1
0
−0.5 0 0.5 1
−1
−0.5 0 0.5
1
k
Re Im
Figure 4: Pop ov plot for P(j!) with stabilizing gain k
Thisshowsthatthefeedbacksystemisindeedstableforallk>0and
concludesthestabilityanalysisin theundelayedcase.
Considering also the delay uncertainty, the problem is to nd a
b ound on the maximal stabilizing feedback gain for a given delay
b ound. A crude b ound can b e received directly from the small gain
theorem, stating that, b ecause of the gain b ound ke
s
sat()k < 1,
the feedback interconnection of e
s
sat() and k P(s) is stable pro-
vided that
k < kPk
1 1
1:37:
Not surprisingly, this condition is conservative. For example, it do es
not utilize any b ound on the delay. In order to do that, it is useful
togeneratemoreIQC's forthedelaycomp onent. However,letusrst
step back and formulate the stability criterion more carefully. The
example will b econtinued in section6.
Notation
LetRL
1
b ethesetofprop er(b oundedatinnity)rationalfunctions
withrealco ecients. Thesubsetconsistingoffunctionswithoutp oles
intheclosedrighthalfplaneisdenotedRH
1
. Thesetofmnmatri-
ceswithelementsinRL
1 (RH
1
)willb edenotedRL mn
1
(RH mn
1 ).
L l
2
[0;1)can b e thought of as thespace of R l
-valued signals (i.e.
functionsf : [0;1)!R l
) of niteenergy
kf()k= Z
1
0
jf(t)j 2
dt:
This is a subset of the space L l
2e
[0;1), whose memb ers only need
to b e square integrable on nite intervals. By an operator we mean
a function F : L
2e
[0;1) ! L
2e
[0;1) from one L
2e
[0;1) space to
another. The gainof an op eratorF :L a
2e
[0;1)!L b
2e
[0;1)is given
by
kFk=sup fkF(f)k=kfk: f 2L a
2
[0;1); f 6=0g
(samenotationforthegainasfortheenergy). An imp ortantexample
of an op erator is given by the past projection (truncation) P
T
, which
leavesa function unchangedon theinterval[0;T]and givesthe value
zeroon(T;1].Causalityofanop eratorF meansthatP
T F =P
T FP
T
foranyT >0.
3 A Basic Stability Theorem
The following feedback conguration, illustrated in Figure 1, is the
basic objectof thetheoreticalstudyin this pap er.
v = Gu+f
u = (v)+e;
(7)
Heref 2L l
2e
[0;1);e2L m
2e
[0;1)representtheinterconnectionnoise,
G andare thetwo causalop eratorsonL m
2e
[0;1)and L l
2e
[0;1)re-
sp ectively. It is assumed that G is a linear time-invariant op erator
withthetransferfunctionG(s)inRH lm
1
,andisb ounded(butnot
necessarilylinear ortime-invariant).
Animp ortantassumptionab outsystem(7)willb eitswell-p osedness.
Denition The feedback system (7) is said to b e well-posed, if the
op erator
I G: L l
2e
[0;1)!L l
2e [0;1);
whichmapsv tov G(v),iscausallyinvertible,i.e. ifthere existsa
causalop erator suchthatI =(I G)Æ = Æ(I G):
Inmostapplications,thisdenitionofwell-p osedness(amoregen-
eral denition will b e intro duced in the second part of the pap er) is
equivalent totheexistence,uniqueness and continuabilityof solutions
oftheunderlyingdierential equations,andisthereforeeasytoverify.
Thefollowing kindofinput/outputstabilityin theL
2
-setting,will
b econvenient.
Denition Thefeedbacksystem(7)issaidtob estableifthereexists
a C>0 such that
Z
T
0 (jvj
2
+juj 2
)dt C Z
T
0 (jfj
2
+jej 2
)dt (8)
Indeed,awell-p osedsystem(7)isstableifand onlyif (I G) 1
is a b ounded causal op erator. In many cases, it is also desirable to
verifysomekind of exponential stability. One might exp ect that this
requires separate analysis. However, for general classes of ordinary
dierential equations,exp onential stability turnsouttob eequivalent
totheinput/output stability intro ducedab ove(compare[67],section
6.3).
Prop osition 1 Let besuch that
sup
x;t
j(x;t)j=jx(t)j<1:
Assume that for any g2L n
2
[0;1),x
0 2R
n
,t
0
0 the system
_
x(t) = (x(t);t)+g(t); tt
0
(9)
has a solution x(). Then the following two conditions areequivalent.
(i) Thereexists a c>0 such that
Z
T
0
jx(t)j 2
dt c Z
T
0 jg(t)j
2
dt 8 T >0 (10)
for any solution of (9) withx(0)=0.
(ii) There exist;d>0 suchthat
jx(t
1 )j
2
de
(t
0 t
1 )
jx(t
0 )j
2
+d Z
t1
t
0 jg(t)j
2
dt (11)
for any solution x of (9).
Proof. Parts, if notall, of this result can b e found in standardref-
erencesonnonlinear systems. However,foreasyreference,acomplete
pro of isgivenin section 8. 2
Next,weneed aformaldenition ofthetermIQC.
Denition Supp ose:jR!C
(l+m)(l+m)
isab oundedmeasurable
functiontakingHermiteanvalues. Let b ethequadraticformdened
on L l
2
[0;1)L m
2
[0;1)by
(v;u) = Z
1
1
b v(j!)
b u(j!)
(j!)
b v(j!)
b u(j!)
d!
A b ounded op erator :L
2e
[0;1)!L
2e
[0;1) is said to satisfy the
IQC dened by if
(v;v) 0 8 v2L l
2
[0;1): (12)
Theorem 2 Assume that
(i) forany 2[0;1],system(7) withreplacedby is well-posed.
(ii) for any 2[0;1],the IQC dened by issatised by .
(iii) thereexists >0such that
G(j!)
I
(j!)
G(j!)
I
I 8 !2R: (13)
Then the feedback system (7) is stable.
Remark 1 Note that (j!) =
I 0
0 I
gives a version of the
small gaintheorem,while (j!)=
I
I =kk 2
givesapassivity
theorem.
Remark 2 In manyapplications, (see, forexample, Remark 1), the
upp erleftcornerof(j!)isp ositivesemi-denite andthelowerright
corneris negativesemi-denite, so satisestheIQC dened by
for 2[0;1]if and onlyif do es so. This simpliesassumption(ii).
Remark 3 It isimp ortanttonotethatif with 2[0;1]satises
several IQC:s, dened by
1
;:::;
n
, then a sucient condition for
stability is existence of x
1
;:::;x
n
0 such that (13)holds for =
x
1
1
++x
n
n
. Hence,themoreIQC:sthatcan b everiedfor,
theb etter. Moreover,it canb e proved alongthelines of[60,36]that
if nosuchx
1
;:::;x
n
0 exist,thenthereisa b oundedop eratorthat
destabilizes (7),but satisesall theIQC:s. Inthis sense,thestability
condition ofTheorem2is non-conservative.
Proof of Theorem2.
Step 1. Show that there existsc
0
>0 such that
kvkc
0
kv G(v)k 8 v2L l
2
[0;1): (14)
Intro duce m
11
;m
12
;m
22
as the normsm
ij
= sup
! k
ij
(j!)kfor the
matrixblo cksof
(j!)=
11
(j!)
12 (j!)
12 (j!)
22 (j!)
:
For >0,letc()=m
11 +m
11
=+m
12
=. Then
j(v;u) (v+Æ;u)j m
11 kÆk
2
+2kÆk(m
11
kvk+m
12 kuk)
c()kÆk 2
+(kuk 2
+kvk 2
)
forall v;Æ2L l
2
[0;1),u2L m
2
[0;1). Notethat(13)implies that
(Gu;u) kuk 2
8u2L m
2 [0;1)
Let 2[0;1],u=(v),v2L l
2
[0;1),
1
==(2+2kk 2
). Since
satisestheIQC dened by,we have
0 (v;u)=(Gu;u)+(v;u) (Gu;u)
kuk 2
+c(
1
)kv Guk 2
+
1 (kuk
2
+kvk 2
)
2 kuk
2
+c(
1
)kv Guk 2
Hencekuk p
2c=kv Gukand
kvk kGuk+kv Guk
(1+kGk p
2c=)kv G(v)k:
Step 2. Show that if(I G) 1
isbounded for some 2[0;1]then
(I G) 1
isboundedforany 2[0;1]withj j<(c
0
kGkkk) 1
.
By the well-p osedness assumption, the inverse (I G) 1
is well
dened on L l
2e
[0;1). Boundednessof theinverse meansthat
kP
T
vkconstkP
T
(v G(v))k 8v2L l
2e [0;1)
Furthermore, whenthis inequalityholds for someconstant,it follows
from (14)thatitholds withtheconstant c
0 . Then
kP
T
vk c
0 kP
T
(v G(v))k
c
0 kP
T
(v G(v))+( )P
T
G(v)k
c
0 kP
T
(v G(v))k+c
0
kGkkkj jkP
T vk:
Boundednessof (I G) 1
follows,since c
0
kGkkkj j<1.
Step 3. Now,since (I G) 1
isb ounded for =0, step2 shows
that (I G) 1
is b ounded for < (c
0
kGkkk) 1
, then for <
2(c
0
kGkkk) 1
, etc. Byinduction, (I G) 1
isb ounded aswell.
2
-
-
- -
-
? e
6
0 -
C(s)
jj 2
dt
R
jj 2
dt v
v u
+
Figure 5: Testing ablo ck for an IQC.
4 Hard and soft IQC's
Asa rule, an integralquadraticconstraintis an inequality describing
correlation b etweentheinput andoutputsignals of acausalblo ck.
VerifyinganIQCcanb eviewedasavirtualexp erimentwiththesetup
shownon Fig.5,whereistheblo cktestedforanIQC,f isthetest
signalof niteenergyand C(s)is astable lineartransfermatrixwith
twovectorinputs,twovectoroutputsandzeroinitialdata. Theblo cks
with R
jj 2
dt indicate calculationof theenergyintegral ofthe signal.
We say that satises the IQC describ ed by the test setup, if the
energy of the second output of C is always at least as large as the
energy of the rst output. Then the IQC can b e representedin the
form (1),where
(j!)=C(j!)
I 0
0 I
C(j!): (15)
The most commonly used IQC is the one that expresses a gain
b ound on the op erator. For example C(s)= I corresp onds to the
b oundkk1. Theenergyb oundshavetheparticularprop ertythat
theenergydierenceuntiltimeT willb enon-negativeatanymoment
T,notjustT =1. SuchIQC'sarecalledhardIQC's,incontrasttothe
moregeneralsoftIQC's,which need nothold fornite timeintervals.
Some of the most simple IQC's are hard, but the generic ones are
not. In the theory of absolute stability, the use of soft IQC's was
oftenreferredtoasallowing non-causalmultipliers. While forscalar
systems thiswasusuallynota seriousproblem,theknownconditions
for applicability of non-causal multipliers were far to o restrictive for
multivariablesystems. TheformulationofTheorem2makesitp ossible
(andeasy)tousesoftIQC'sin a verygeneralsituation. Forexample,
consider thefollowingcorollary.
Corollary 3 (Non-causal multipliers) Assume that condition (i)
of Theorem 2 is satised. If thereexist some M 2RL lm
1
and >0
R
1
1 Re(bv
M c
v)d! 0 for v2L
l
2 [0;1)
M
G+G
M G
G on jR
then the system isinput/output stable.
Proof. This isTheorem2 with
(j!) =
M(j!)
M(j!)
=kk 2
2
For multivariable systems, the ab ove conditions on M are much
weakerthanfactorizabilityasM =M M
+
,withM
+
;M
+ 1
;M
;(M
) 1
all b eing stable, which is required forexample in [84] and [17]. The
price paidforthis in Theorem2isthe verymild assumptionthat the
feedbacklo op is well-p osed notonly for =1,but forall 2[0;1].
Anotherexample isprovidedbytheclassicalPop ovcriterion.
Corollary 4 (Pop ov criterion) Assume that : R ! R is such
that 0 () const 2
for 2 R. Let H(s)= C(sI A) 1
B,
whereA is Hurwitz. Assume that the system
_
x(t)=Ax(t)+B(Cx(t))+f(t) (16)
has unique solution on [0;1) for any 2 [0;1] and for any square
summable f. If for someq2R
inf
! >0
Re[(1+j!q)H(j!)] > 0 (17)
then the system (16)with =1 is exponentially stable.
Remark5 Infact,theconditionofexistenceanduniqueness,usedto
deneasanop erator,isnotreallyimp ortantinthestabilityanalysis.
In the second part of this pap er, a stronger version of Theorem 2 is
given,which allowsus todroptheuniqueness assumption.
Proof. For q2Rand adierentiable w2L l
2
[0;1),wehavethesoft
IQC
Z
1
0
(w+qw)(w )dt_ q
"
Z
w (t)
0
()d
#
1
0
=0
-
-
-
?
i
6
0 - f(t)
C(s)
jj 2
dt
R
jj 2
dt
+
Figure 6: Testing a signal f for an IQC.
Application of Corollary3with
G(s) = (s+1)H(s)
(v)(t) =
Z
t
0 e
v()d
M(s) = (1+qs)=(s+1)
shows that the conditions of Prop osition 1 hold, which ensures the
exp onentialstability. 2
Integral quadraticconstraints can b eusedto describ e an external
signal (noise ora reference) entering thesystem. The virtual exp er-
iment setup for a signal f is shown on Fig. 6. The setup clearly
shows the sp ectral analysis nature of IQC's describing the signals.
Mathematically,theresultingIQC hastheform
Z
1
1t
^
f(j!)
(j!)
^
f(j!)d!0;
whereisgivenby(15). Inthesecondpartofthispap er,p erformance
analysis of systemswith b oth interior blo cks and externalsignals de-
scrib ed in termsof IQC'sis considered.
5 IQC's and Quadratic Stability
Thereis a close relationship b etween quadraticstabilityand stability
analysisbasedon IQC's. Asarule, ifa systemisquadraticallystable
thenitsstabilitycanalsob eprovedbyusingasimpleIQC.Conversely,
insomegeneralizedsense,asystemthatcanb eprovedtob establevia
IQC'salwayshasaquadraticLyapunovfunction. However,toactually
present this Lyapunovfunction, one has toextend thestate space of
the system(by addingthe statesof C(s)from Figure 5). Even then,
sign-denite, and may not decrease monotonically along the system
trajectories. Inanycase,useofIQC'sreplacestheblind searchfora
quadraticLyapunovfunction,whichistypicalforthequadraticstabil-
ity,byamoreintelligentsearch. Ingeneral,forexampleinthecaseof
so-called parameter-dep endent Lyapunovfunctions, therelationship
withtheIQC typ eanalysis isyettob eclaried.
Belowweformulateandprovearesultontherelationshipb etweena
simpleversionofquadraticstabilityandIQC's. LetDb eap olytop eof
mlmatrices,containingthezeromatrix=0. Let
1
;:::;
N b e
theextremalp ointsofD . Considerthesystemofdierential equations
_
x(t)=(A+B(t)C)x(t); (t)2D ; (18)
whereA;B;Caregivenmatricesofappropriatesize,AisaHurwitzn
nmatrix. (Themostoftenconsidered caseof system(18)is obtained
when m =l and D is the set of all diagonal matrices withthe norm
notexceeding1. ThenN =2 m
,and
i
arethediagonalmatriceswith
1 on the diagonal). The system iscalled stable if x(t)!0 for any
solutionof(18)where()isameasureablefunctionand(t)2Dfor
allt. Therearenoecientgeneralconditions,thatareb othnecessary
andsucientforstabilityofsystem(18). Instead,wewillb econcerned
withstabilityconditionsthat areonlysucient.
Thesystem(18)iscalledquadraticallystableifthereexistsamatrix
P =P T
such that
P(A+B
i
C)+(A+B
i C)
T
P <0 8i: (19)
Note that, since 0 2 D and A is a Hurwitz matrix, this condition
implies that P > 0. It follows that V(x) = x T
Px is a Lyapunov
function forthe system (18), in thesense that V is p ositive denite,
and dV(x(t))=dt is negative denite on the trajectories. Quadratic
stability is a sucient condition for stability of the system and (19)
can b esolved eciently withresp ect toP =P T
as asystemoflinear
matrixineqalities.
An IQC-based approach to stability analysis of system (18) can
b e formulated as follows. Note that stabilityof (18)is equivalent to
stability of the feedback interconnection (7), where G is the linear
timeinvariantop eratorwithtransferfunction G(s)=C(sI A) 1
B,
and is theop eratorof multiplication by (t)2D . Onecan apply
Theorem 2, using the fact that satises the IQC's given by the
(j!)=
Q S
S T
R
;
whereQ=Q T
;R=R T
;S are realmatricessuchthat
Q+S+ T
S T
+ T
R>0 82D : (20)
Fora xed matrixsatisfying (20),a sucient condition ofstability
given byTheorem2is
G(j!)
I
G(j!)
I
<0 8 !2R[f1g;
whichisequivalent(bytheKalman-Yakub ovich-Pop ovLemma)tothe
existenceof amatrixP =P T
such that
PA+A T
P +C T
QC PB+C T
S
B T
P +S T
C R
<0: (21)
For an indenite matrix R, condition (20)may b e dicult toverify.
However(21)yields R<0. In thatcase, itis sucient tocheck(20)
atthevertices =
i
ofD only, i.e. (20)can b ereplacedby
Q+S
i +
T
i S
T
+ T
i R
i
>0 8i: (22)
ItiseasytoseethattheexistenceofthematricesP =P T
,Q=Q T
,S,
R=R T
, suchthat (21),(22)hold,is a sucient condition ofstability
of system(18).
Nowwe have thetwo seemingly dierent conditions of stabilityof
system (18), b oth expressed in terms of systemsof LMI's: quadratic
stability(19), and IQC-stability (21),(22). Condition (19)hasn(n+
1)=2 free variables (the comp onents of the matrix P = P T
), while
conditions (21),(22) have n(n +1)=2+(n+m)(n+m +1)=2 free
variables. However,theadvantageofusing(21),(22)isthattheoverall
size ofthe corresp ondingLMIisn+m+Nlwhilethesize of(19)
is Nn. IfN is alargenumb er and nissignicantly largerthanl and
m, mo dest (ab out 2 times) increase of the numb er of free variables
in (21),(22)results in a signicant (ab outn=l times) decrease in the
sizeofthecorresp ondingLMI.Thefollowingresultshowsthatthetwo
sucientconditionsofstability(21),(22)and(19)areequivalentfrom
thetheoretical p oint of view.
to the convex hull of matrices
1
;:::;
N
. Then a given symmetric
matrix P solves the system of LMI's (19), if and only if P together
with the matrices Q=Q T
, R=R T
, S solves(21) and(22).
Apro of isgiven in section8.
6 Example Revisited
Inordertoapplytheresultstosystem(4),werewriteitasafeedback
interconnectionon Fig. 1,with
G(s) =
k P(s) k
P(s) 0
;
and
(v)(t) =
sat(v
1 (t))
v
2
(t ) v
2 (t)
The equationsfortheinterconnection arethen
_
x(t) = Ax(t)+Bu
1 (t)
u
1
(t) = sat[v
1
(t)]+e
1 (t)
u
2
(t) = v
2
(t ) v
2 (t)+e
2 (t)
v
1
(t) = k Cx(t) k u
2 (t)+f
1 (t)
v
2
(t) = Cx(t)+f
2 (t)
(23)
where x(0)=0 and v
2
(t ) =0for t< . One can see that (23)is
equivalenttotheequationsfrom(4),disturb edbytheinterconnection
noise e;f.
For the uncertain time delay, several typ es of IQC's are given in
the list. Here we shall use a simple (and notcomplete) set of IQC's
fortheuncertain delay
^ u
2
(j!)=(e j !
1)^v
2
(j!); 2[0;
0 ];
based ontheb ounds
j^v
2 (j!)j
2
j^v
2
(j!) u^
2 (j!)j
2
0
0 (
0
!)j^v
2 (j!)j
2
j^u
2 (j!)j
2
0
(24)
where
0 (!)=
! 2
+0:08!
4
1+0:13!
2
+0:02!
4
0 5 10 15 20 0
1 2 3 4 5
0 0
(!)
(j!)
Figure 7: Comparison of
0
(!) and
(j!)
ischosen asa rational upp erb ound(see Figure7)of
(j!)= max
2[0;
0 ]
je j! =
0
1j 2
=
4sin 2
(!=2); !<
4 !
By integratingthep ointwiseinequalities(24)withsomenonnegative
rational functions, one can obtain a huge set of IQC's valid for the
uncertain delay. Using these in combination with some set of IQC's
forthesaturationnonlinearity,onecanestimatetheregionofstability
forthesystemgiven in(4). InFigure8,we haveplottedtheresulting
stabilityb oundforthe casewhen onlyone IQC
Z
1
1
^ v
1
^ u
1
0 1+H
1+H
2(1+Re H)
^ v
1
^ u
1
d!0;
with H(s)= (s+1) 1
,describ es the saturation,while (24)utilizes
the information ab out the delay. The guaranteed instability region
wasobtainedanalyticallybyconsideringtheb ehaviorofthesystemin
thelinearunsaturated regionaroundtheorigin.
7 A List of IQC's
The collection of IQC:s presented in this section is far from b eing
complete. However, the authors hop e it will supp ort the idea that
many imp ortant prop erties of basic system interconnections used in
stabilityanalysiscan b echaracterized byIQC:s.
0 0.5 1 0
5 10 15 20 25
0 stable
unstable
Figure 8: Bound on stabilizing gain k versus delay uncertainty
0
7.1 Uncertain LTI Dynamics
Letb eanylineartime-invariantop eratorwithgain(H
1
norm)less
thanone. Then satisesallIQC's of theform
x(j!)I 0
0 x(j!)I
wherex(j!)0is ab oundedmeasurablefunction.
7.2 Constant Real Scalar
If isdened bymultiplication withareal numb erofabsolute value
1,thenitsatisesall IQC:sdened bymatrixfunctionsoftheform
X(j!) Y(j!)
Y(j!)
X(j!)
(25)
whereX(j!)=X(j!)
0 and Y(j!)= Y(j!)
areb ounded and
measurablematrixfunctions.
This IQC and the previous one are the basis for standard upp er
b ounds forstructuredsingular values[20,80].
7.3 Time-varying Real Scalar
Let b e dened by multiplication in the time-domainwith a scalar
function Æ 2L
1
withkÆk
1
1. Then satisesIQC:s dened bya
matrixof theform
X Y
Y T
X
whereX=X T
0and Y = Y T
arereal matrices.
Letb edenedbymultiplication inthetime-domainwithameasur-
ablematrix(),suchthat(t)2Dforanyt,whereDisap olytop e
of matriceswiththeextremal p oints(vertices)
1
;:::;
N
. satises
theIQC's givenbytheconstant weight matrices
(j!)=
Q F
F T
R
;
whereQ=Q T
;F ;R=R T
are realmatricessuchthatR0,and
Q+F
i +
T
i F
T
+ T
i R
i
>0 8 i:
This IQC corresp onds to quadratic stability and wasstudied in sec-
tion 5.
7.5 Periodic Real Scalar
Letb edened bymultiplicationin thetime-domainwithap erio dic
scalarfunctionÆ 2L
1
withkÆk
1
1andp erio dT. Thensatises
IQC:sdenedby(25)whereXandY areb ounded,measurablematrix
functionssatisfying
X(j!) = X(j(!+2=T))=X(j!)
0
Y(j!) = Y(j(!+2=T))= Y(j!)
:
This set of IQC:s gives theresult by Willems on stability of systems
withuncertain p erio dicgains [74].
7.6 Multiplication by a Harmonic Oscillation
If(v)(t)=v(t)cos(!
0
t) thensatisestheIQC's dened by
(j!)=
X(j! j!
0
)+X(j!+j!
0
) 0
0 2X(j!)
;
where X(j!) = X(j!)
0 is any b ounded matrix-valued rational
function. Multiplicationbyamorecomplicated(almostp erio dic)func-
tion can b erepresentedas a sum of several multiplications bya har-
monic oscillation,with theIQC'sderivedforeach of themseparately.
Forexample,
v(t)fa
1 cos(!
1 t)+a
2 cos(!
2
t)g=a
1 (
1
v)(t)+a
2 (
2 v)(t);
where(
1
v)(t)=v(t)cos(!
1
t),and (
2
v)(t)=v(t)cos(!
2 t).
Here is the op erator of multiplication by a slowly time-varying
scalar, v = Æ(t)v(t), where jÆ(t)j 1, j _
Æ (t)j d. Since the 60-s,
variousIQC:shaveb eendiscoveredthatholdforsuchtime-variations.
See, forexample,[21, 34,24].
Here we describ e a simple but representative family of IQC:s de-
scribingtheredistributionofenergyamongfrequencies,caused bythe
multiplication by a slowly time-varying co ecient. For any transfer
matrix
H(s)=H
0 +
Z
+1
1 e
ts
h(t)dt;
where h() 2 L nm
1
( 1;+1) and H
0
is a constant, let (H ;d) b e
an upp er b ound of the norm of the commutatorÆH HÆ, for
example
(H ;d)= Z
+1
1
kh(t)kminf2;djtjgdt:
Thefollowing weightingmatricesthendene valid IQC:s:
=
"
(1+)fH
H+
(H ;d) 2
I
m
g 0
0 H
H
#
(26)
where>0isaparameter,andHisacausaltransferfunction(h(t)=
0 fort<0). Anotherset ofIQC:s isgiven by
=
(H ;d)I H
H
0
(27)
where H is skew-Hermitean along the imaginary axis (i.e. H(j!) =
H(j!)
),but notnecessarilycausal. Since
(H ;d)=O (d) as d!0
whenever kh(t)k = O (t 2
), the constraints used in the case
(multiplication by aconstantgain Æ 2 [ 1;1])can b e recoveredfrom
(26)and(27)asd!0. Similarly,thetime-varyingrealscalar IQC's
willb erecoveredasd!1byusingconstanttransfermatricesH(s)=
H
0 .
In [49, 50], IQC's are instead derived for uncertain time-varying
parameters with b ounds on the supp ort of the Fourier transform
^
Æ.
Slow variation then means that
^
Æ(j!) is zero except for ! in some
small interval[ a;a].
The uncertain b ounded delay op erator (v)(t) = v(t ) = u(t),
where2[0;
0
], satisesthep ointwise quadraticconstraintsin the
frequency domain:
j^u(j!)j 2
=j^v (j!)j 2
; (28)
1 (!
)(jj!
^
u(j!)+v(j!)j^ 2
(1+! 2
)j^v (j!)j 2
)
2 (j!
)j^v (j!) u(j!)j^ 2
;
(29)
where!
=!
0
=2,and
1;2
arethefunctionsdened by
1 (!)=
sin!
!
;j!j
0 ;j!j>:
;
2 (!)=
cos! ;j!j
0 ;j!j>:
:
Note that (29) is just a sector inequality for the relation b etween
^
v (j!) u(j!)^ andj(v (j!)^ +u(j!)):^
j(^v (j!)+u(j!))^ =
cos(! =2)
sin(! =2)
(^v (j!) u(j!)):^
Multiplying (28) by any rational function and integrating over the
imaginary axis yields a set of IQC's for the delay. Unfortunately,
theseIQC'sdonotutilizetheb oundonthedelay. ToimprovetheIQC-
description,onecanmultiply(29)byanynon-negativeweightfunction
and integrate overtheimaginary axis. The resultingIQC's, however,
will have non-rational weight matrices (). To x the problem, one
shouldusearationalupp erb ound
1+
of
1
andrationallowerb ounds
1 and
2 of
1 and
2
resp ectively. Forexample,areasonablygo o d
approximationisgiven by
1+
=
(1 0:0646!
2
) 2
1+0:038!
2
+0:0001!
4
+0:00085!
6
;
1
=
1 !
2
=
2
1+(1=6 1=
2
)!
2
+(2=
4
1=6
2
)!
4
;
2
=
1 0:4073!
2
1+0:0927!
2
+0:0085!
4 :
2 2
and with
1
replaced by
1
(the upp er b ound for the jj!
^ u+w j^
2
multiplier, the lower b ound for the j^v j 2
multiplier) resp ectively, and
can b eintegrated witha non-negative rational weightfunction to get
rational IQC's utilizing theupp erb oundon thedelay.
Asimpler,butlessinformative,setofIQC:sisdenedfor(v)(t)=
v(t ) v(t),
0 ,by
(j!)
0 (!
0
=2) 0
0 (j!)
;
where()is anynon-negativerationalweightingfunction, and
0 (!)
isanyrational upp erb ound of
(j!)= max
2[0;
0 ]
je j! =
0
1j 2
=
4sin 2
(!=2); !<
4 !
;
forexample,
0 (!)=
! 2
+0:08!
4
1+0:13!
2
+0:02!
4 :
7.9 Memoryless nonlinearity in a sector
If(v)(t)=(v(t);t),where :RR!R isa function,suchthat
v 2
(v;t)vv 2
8v2R;t0;
thenobviouslytheIQC with
(j!)=
2 +
+ 2
holds.
7.10 The Popov IQC
Ifu(t)=(v)(t)=(v(t)),where:R!Risacontinuousfunction,
v(0)=0, andb oth u()andv()_ aresquaresummable,then
Z
1
0 _
v(t)u(t)dt=0:
Inthefrequency domain, thislo oks like an IQCwith
(j!)=
0 j!
j! 0
:
theimaginaryaxis. Toxtheproblem,consider
1
=Æ 1
s+1
instead
of , i.e. u(t) = (
1
f)(t) = (v(t)), where v(t)_ = v(t)+f(t),
v(0)=0. Now,
1
satisestheIQC with
(j!)=
"
0
j!
1+j!
j!
1 j!
0
#
:
TogetherwiththeIQC foramemoryless nonlinearityin asector,this
IQC yields thewell-knownPop ovcriterion.
7.11 Monotonic Odd Nonlinearity
Supp ose op erateson scalarsignals accordingto thenonlinear map
(v)(t)=Æ(v(t)),where Æ is an o dd function on R such that _
Æ(x)2
[0;k ]forsomeconstant k . Then satisestheIQC:sdened by
0 1+H(j!)
1+H( j!) (2+2ReH(j!))=k
;
where H 2RL
1
is arbitrary exceptthat the L
1
-normof its impulse
resp onse isno largerthanone [84].
7.12 IQC:s for Signals
Performanceof a linear controlsystem is oftenmeasured in terms of
disturbance attenuation. An imp ortant issue is then the denition
of theset ofexp ected externalsignals. Hereagain, integral quadratic
constraintscanb eusedasaexibleto ol,forexampletosp ecifyb ounds
on autocorrelation, frequency distribution, or even tocharacterize a
given nite set of signals. Then, the informationgiven by the IQC:s
can b e usedin the p erformanceanalysis, along thelines discussed in
[33,44]and furtherin thesecond partof this pap er.
7.13 IQC's from robust performance
Oneofthemostapp ealingfeaturesofIQC'sistheirabilitytowidenthe
eldofapplication ofalreadyexistingresults. Thismeansthatalmost
anyrobustnessresult derived by somemetho d (p ossibly unrelated to
the IQC techniques) for a sp ecial class of systems can b e translated
intoan integralquadraticconstraint.
connection of a particular linear time-invariant system G
0
= G
0 (s)
withan "uncertain"blo ck:
v=G
0
u+f; u=(v); (30)
wheref isthe externaldisturbance. Assumethat stabilityof this in-
terconnection(i.e. theinvertibilityoftheop eratorI G
0
)isalready
proved,and,moreover,anupp erb oundontheinducedL
2
gain"from
f tov ("robustp erformance")isknown: kvk 2
dkfk 2
foranysquare
summable f, v satisfying (30). Then, since foranysquare summable
v thereexistsa squaresummablef =v G
0
(v)satisfying (30),the
blo cksatisestheIQC givenby
(j!)=
d 1 dG
0 (j!)
dG
0
( j!) djG
0 (j!)j
2
: (31)
ThisIQCimplies stabilityof system(30)viaTheorem2,butcan also
b eusedin theanalysis ofsystemswith additionalfeedbackblo cks,as
wellaswithdierent nominal transferfunctions.
Forexample,considertheuncertainblo ckwhichrepresentsmul-
tiplication of a scalar input by a scalar time-varying co ecient k =
k (t),suchthatk (t)2[ 1;1]. ThereisoneobviousIQCforthisblo ck,
stating that the L
2
-induced norm of is not greater than 1. Let
us show how additional non-trivial IQC's can b e derived based on a
particularrobustp erformanceresult. Considerthefeedbackintercon-
nection of with a given LTI blo ck with a stable transfer function
G
0
(s)=C(sI A) 1
B. Thisis thecase ofa systemwithone uncer-
tain fasttime-varyingparameterk=k (t), k (t)2[ 1;1]:
_
x(t)=Ax(t)+Bk (t)(Cx(t)+f(t)); (32)
where A;B;C are given constant matrices, A is a Hurwitz matrix,
f() is the external disturbance. It is known that, for this system,
the norm b ound kvk 2
k(v)k 2
, yields the circle stability criterion
jG
0
(j!)j<1,whichgivesonlysucientcontitionsofstability. Never-
theless,foralargeclassoftrasnsferfunctionsG
0
(s),notsatisfyingthe
circlecriterion,system(32)isrobustlystable. Apro ofofsuchstability
usually involvesusing anon-quadratic Lyapunovfunction V =V(x),
andprovidesanupp erb ounddoftheworst-caseL
2
-inducedgain"from
v to y = Cx+v". Thisupp er b ound, in turn, yields theIQC given
by (31), describing the uncertain blo ck . The fact that stability of
norm b oundkvk 2
k(v)k 2
,shows thatthenew IQC indeed carries
additional informationab out .
8 Proofs
Proof of Proposition1
(i))(ii): Fort
0
1and c
0
>c,dene theLyapunovfunction
V(x
0
;t
0
) = sup
g 2L
2
;x(t
0 )=x
0 Z
1
t
0
fjx(t)j 2
c
0 jg(t)j
2
gdt
wherex;g satisfy(9).
Ourrst objectivesaretoshowconvergenceoftheintegralforany
g2L
2 [t
0
;1)and existenceof; >0 such that
jx
0 j
2
V(x
0
;t
0
) jx
0 j
2
:
Anysolutionx;gof(9)on[t
0
;1)withx(t
0 )=x
0
canb eextendedto
[0;1)with x(0)=0, bysetting
g(t) = x
0
=t
0
(x
0 t=t
0
;t)
x(t) = x
0 t=t
0
0tt
0 :
Letkk=sup
x;t
j(x;t)j=jx(t)jand notethat
Z
t0
0 jgj
2
dt 2jx
0
=t
0 j
2
+2 Z
t0
0
(x
0 t=t
0
;t) 2
dt
2jx
0
=t
0 j
2
(1+kk 2
t
0 3
=3)
= c
2 jx
0 j
2
forsomec
2
>0. Theinequality (10)implies that
Z
1
t
0
jx(t)j 2
dt kxk 2
ckgk 2
c Z
1
t
0 jgj
2
dt+cc
2 jx
0 j
2
Thisprovesconvergenceoftheintegralin thedenitionofV andwith
=c
2
,itshowsthat V(x
0
;t
0
)jx
0 j
2
. To provetheexistenceof ,
let g0 andnotethat
jxj_ kkjxj
d
dt lnjxj
kk
jx(t)j jx
0 je
(t0 t)kk
; tt
0
V(x
0
;t
0
) jx
0 j
2
:
Nowconsideraxed solutionx;g of (9). By denitionofV
V(x(t
0 );t
0
) V(x(t
1 );t
1 )+
Z
t
1
t
0
fjx(t)j 2
c
0 jg(t)j
2
gdt
for anyt
1
t
0
1. Hence, with k (t)= V(x(t);t) 0, the measure
dk (t) isabsolutely continuous, andsatisestheinequalities
dk (t) [c
0 jg(t)j
2
jx(t)j 2
]dt[c
0 jg(t)j
2
k (t)=]dt
d[e t=
k (t)] c
0 e
t=
jg(t)j 2
dt
k (t
1
) e (t
0 t
1 )=
k (t
0 )+c
0 Z
t
1
t
0 jg(t)j
2
dt
e (t
0 t
1 )=
jx(t
0 )j
2
+c
0 Z
t
1
t0 jg(t)j
2
dt
This implies (11) for t
1
t
0
1. The result follows for arbitrary
t
1
t
0
0,since
jxj_ kkjxj+jgj
jx(1)j 2
c
3 jx(t
0 )j
2
+c
3 Z
1
t0 jg(t)j
2
dt;
forsomec
3
>0.
(ii))(i): Let T > 0 b e such that d
1 := de
T
< 1 where d is the
constantfrom(11). Then,by(11)
jx(k T +T)j 2
d
1
jx(k T)j 2
+d Z
k T+T
k T
jg(t)j 2
dt
fork=0;1;2;:::Hence
1
X
k =0
jx(k T)j 2
d
2 1
X
k =0 Z
k T+T
k T
jg(t)j 2
dt=d
2 kgk
2
for some d
2
> 0 if x(0) = 0. Also, the inequality (11) applied for
t
0
=k T,t
1
2[k T;k T+T]yields
jx(t)j 2
d
jx(k T)j 2
+ Z
k T+T
k T
jg(t)j 2
dt
; t2[k T;k T +T]
Z
k T+T
k T
jx(t)j 2
dt dT
jx(k T)j 2
+ Z
k T+T
k T
jg(t)j 2
dt
kxk 2
(d
2
+1)dTkgk 2
;
Proof of Theorem 5 The suciency is straightforward: multiplying
(21) by [I C T
T
i
] from the left, and by [I C T
T
i ]
T
from the right
yields
P(A + B
i
C) + (A + B
i C)
T
P+ C T
(Q + S
i +
T
i S
T
+ T
i R
i
)C<0;
which implies (19)b ecauseof theinequalityin (22).
To prove the necessity, let P = P T
satisfy (19). Let
0 : R
n
R m
!Rb ethequadraticform
0
(x;)= (jxj 2
+jj 2
) 2x T
P(Ax+B);
where>0 is asmall parameter. Dene :R l
R m
!Rby
(y;)=inff
0
(x;): Cx=yg; (33)
wherethe inmum is takenoverall x2R n
such thatCx =y. Since
the zero matrix b elongs to the convex hull of D , (19) implies that
PA+A T
P < 0. Hence, for a suciently small > 0, is strictly
convex in the rst argument, and a nite minimum in (33) exists.
Moreover,since
0
is aquadraticform,thesameistruefor and the
matricesQ;R;S canb e intro ducedby
(y;)=y T
Qy+2y T
S+ T
R:
Letusshowthattheinequalities(21),(22)aresatised. First,by(19),
foranyy we have
y T
(Q+S
i +
T
i S
T
+ T
i R
i )y
=(y;
i y)
=inff
0 (x;
i
Cx): Cx=yg
=inff x T
(P(A+B
i
C)+(A+B
i C)
T
P)x
(jxj 2
+j
i Cxj
2
): Cx=yg
1 jyj
2
;
(providedthatand
1
aresucientlysmall). Hence(22)holds. Sim-
ilarly,foranyx; we have
x T
P(Ax+B)+(Cx;)
=x T
P(Ax+B)+inff
0 (x
1
;): Cx
1
=Cxg
x T
P(Ax+B) (jxj 2
+jj 2
) x T
P(Ax+B)
(jxj 2
+jj 2
);
quadraticformx T
P(Ax+B)+(Cx;). 2
Acknowledgement
The authors are greatful to many p eople, in particular to K.J. As-
tröm,J.C.Doyle,U.JönssonandV.A.Yakub ovich forcommentsand
suggestions ab out this work. The work has b een supp orted by the
NationalScienceFoundation,grantECS9410531,andtheSwedishRe-
searchCouncilforEngineering Sciences, grant94-716.
References
[1] M. A.AizermanandF.R.Gantmacher. Absolute stability ofreg-
ulatorsystems. InformationSystems.Holden-Day,SanFrancisco,
1964.
[2] B. Anderson. Stability of controlsystems with multiple nonlin-
earities. J.FranklinInst., 282,1966.
[3] B.AndersonandR.W.Newcomb.Linearpassivenetworks:Func-
tional theory. Proc.IEEE,pages 7288,1976.
[4] B. D. O. Anderson. A system theory criterion for p ositive real
matrices. SIAM J.Control, 5:171182,1967.
[5] J.P.AubinandA.Cellina. DierentialInclusions,volume264of
ComprehensiveStudies in Mathematics. Springer-Verlag,1984.
[6] N. E. Barabanov. Absolute stability of sample-data controlsys-
tems. Automation andRemoteControl, pages981988,1989.
[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear
Matrix Inequalities in System and Control Theory, volume 15of
Studies in AppliedMathematics. SIAM, Philadelphia, 1994.
[8] R. Bro ckett. On improving the circle criterion. In Proc. IEEE
Conf. on Decisionand Control, pages255257,1977.
[9] R. W. Bro ckett. The statusof stability theory fordeterministic
systems. IEEETrans.Aut. Control, AC-11:596606,1966.
[10] R.W.Bro ckettandH.B.Lee. Frequency domaininstability cri-
teriafortime-varyingandnonlinearsystems.Proc.IEEE,55:604
619,1965.
itycriteria. IEEETrans. Aut.Control, AC-10:255261,401413,
1965.
[12] M. J.Chenand C.A.Deso er. Necessary andsucient condition
forrobuststabilityoflineardistributedfeedbacksystems. Int.J.
Control,35(2):255267,1982.
[13] M. J. Chen and C. A.Deso er. The problem of guaranteeing ro-
bust disturbance rejection in linear multivariable feedback sys-
tems. Int. J. Control,37(2):305313,1983.
[14] R. Y.Chiang and M. G. Safonov. Real K
m
-synthesis via gener-
alized Pop ovmultipliers. In Proc.American Control Conf., vol-
ume3, pages24172418,Chicago,June 1992.
[15] M.CorlessandG.Leitmann.Continuousstate-feedbackguaran-
teeing uniform ultimateb oundedness foruncertain dynamicsys-
tems. IEEE Transactions on Automatic Control, 26(5),1981.
[16] C.A. Deso er. Ontherelation b etweenpseudo-passivity and hy-
p erstability. IEEETrans. Circuits Syst.,CAS-22:897898,1975.
[17] C.A.Deso erandM.Vidyasagar.FeedbackSystems: Input-Output
Properties. Academic Press,New York, 1975.
[18] J. Doyle,J. E. Wall, and G. Stein. Performance and robustness
analysis for structured uncertainties. In Proc. IEEE Conf. on
Decisionand Control, pages629636,1982.
[19] J. C. Doyle. Analysis of feedback systems with structured un-
certainties. In IEE Proceedings, volume D-129, pages 242251,
1982.
[20] M.K.H.Fan, A.L.Tits, and J.C. Doyle. Robustness in presence
ofmixedparametricuncertaintyandunmo deleddynamics. IEEE
Transactions on AutomaticControl, 36(1):2538,January1991.
[21] M. Freedman and G. Zames. Logarithmic variation criteria for
the stabilityof systems with time-varying gains. SIAM Journal
of Control,6:487507,1968.
[22] S.Gutman.Uncertaindynamicalsystems-aLyapunovmin-max
approach.IEEETransactionsonAutomaticControl,24(3),1979.
[23] W. Hahn. Theory and Application of Liapunov's Direct Method.
Prentice-Hall,Englewo o d Clis,New Jersey,1963.
Time-variations with b ounded derivatives. In Proceedings of
Conferenceof Decision andControl,1994. Accepted forpublica-
tion in Int. Journalon Robustand Nonlinear Control.
[25] E.I. Jury and B.W. Lee. The absolute stability of systems with
manynonlinearities. Aut. Remote Control,26:943961,1965.
[26] R.E.Kalman,P.L.Falb,andM.A.Arbib. Topicsin Mathemat-
icalSystem Theory. McGraw-Hill, 1969.
[27] V. A. Kamenetskii. Absolute stability and absolute instability
ofcontrolsystemswithseveralnonlinearnonstationaryelements.
Automationand Remote Control, 44(12):15431552,1983.
[28] J.LaSalleandS.Lefschetz.StabilitybyLiapunov'sDirectMethod.
AcademicPress, NewYork,1961.
[29] S.Lefschetz.StabilityofNonlinearControlSystems.Mathematics
in Science and Engineering.AcademicPress, NewYork,1965.
[30] G.Leitmann.Guaranteedasymptoticstabilityforsomelinearsys-
tems with b ounded uncertainties. Journal of Dynamic Systems,
measurement,and Control, 101(3),1979.
[31] A.I.Lur'e. SomeNonlinearProblemsintheTheoryof Automatic
Control. H.M. StationeryO., London,1957. In Russian,1951.
[32] A.M. Lyapunov. Problèmegénéraldelastabilité dumouvement,
volume17ofAnnalsofMathematicsStudies.PrincetonUniversity
Press, Princeton,1947.
[33] A. Megretski. Spro cedure in optimal non-sto chastic ltering.
Technical Rep ort TRITA/MAT-92-0015, Department of Mathe-
matics, RoyalInstitute ofTechnology,S-100 44Sto ckholm,Swe-
den,March1992.
[34] A. Megretski. Frequency domain criteria of robust stability for
slowlytime-varying systems. Submitted for publication in IEEE
Transactionson AutomaticControl,1993.
[35] A. Megretski. Powerdistribution approachin robustcontrol. In
Proceedingsof IFACCongress, 1993.
[36] A.MegretskiandS.Treil. Powerdistributioninequalitiesin opti-
mizationand robustness of uncertain systems. Journal of Math-
ematicalSystems, Estimation and Control,3(3):301319,1993.
linear nonstationary systems Pt. I-I I. Automation and Remote
Control,43(1,2):(1320),(147157),1982.
[38] A.P.MolchanovandE.S.Pyatnitskii. Lyapunovfunctionsthat
sp ecify necessaryandsucientconditions ofabsolutestabilityof
nonlinearnonstationarycontrolsystemPt.II I I.Automationand
RemoteControl,46(3,4,5):(344354),(443451),(620630),1986.
[39] K.S. Narendra and J.H.Taylor. Frequency Domain Criteria for
Absolute Stability. AcademicPress, NewYork,1973.
[40] Yu.NesterovandA.Nemirovski.Interiorpointpolynomialmeth-
odsinconvexprogramming,volume13ofStudiesinAppliedMath-
ematics. SIAM,Philadelphia, 1993.
[41] E.Noldus. Ontheinstabilityof nonlinearsystems. IEEETrans.
Aut. Control, AC-18:404405,1973.
[42] A.Packard. Gainschedulingvialinearfractionaltransformations.
Syst. Control Letters,1993.
[43] A.PackardandJ.Doyle. Thecomplex structuredsingularvalue.
Automatica,29(1):71109,1993.
[44] F. Paganini. Set descriptions of white noise and worst case in-
ducednorms.InProceedingsofIEEEConferenceonDecisionand
Control,pages3658 3663,1993.
[45] V.M.Pop ov.Absolutestabilityofnonlinearsystemsofautomatic
control. Automation and Remote Control, 22:857875, March
1962. Russian originalin August 1961.
[46] E.S. Pyatnitskii and L.B.Rap op ort. Perio dic motion andtests
for absolute stability of non-linear nonstationary systems. Au-
tomation and Remote Control,52(10):13791387,Octob er1992.
[47] E. S. Pyatnitskii and V. I. Skoro dinskii. Numerical metho ds of
Lyapunovfunction construction and their application tothe ab-
solutestabilityproblem. Syst.ControlLetters,2(2):130135,Au-
gust 1982.
[48] E. S. Pyatnitskii and V. I. Skoro dinskii. Numerical metho d of
constructionofLyapunovfunctionsandabsolutestabilitycriteria
in the form of numerical pro cedures. Automation and Remote
Control,44(11):14271437,1983.
[49] A. Rantzer. Uncertainties with b ounded rates of variation. In
Proceedingsof American Control Conference,pages 2930,1993.
ation. In K.J. Aström, G.C. Go o dwin, and P.R. Kumar, edi-
tors,AdaptiveControl,Filtering andSignalProcessing.Springer-
Verlag, 1994.
[51] L.B.Rap op ort.Absolutestabilityofcontrolsystemswithseveral
nonlinear stationaryelements. Automation and Remote Control,
pages 623630,1987.
[52] M.G.Safonov.StabilityandRobustnessofMultivariableFeedback
Systems. MIT Press, Cambridge,1980.
[53] M. G. Safonovand G.Wyetzner. Computer-aidedstabilitycrite-
rionrendersPop ovcriterionobsolete. IEEETrans. Aut.Control,
AC-32(12):11281131,Decemb er1987.
[54] M.G.Safonov. StabilityandRobustnessofMultivariableFeedback
Systems. MIT Press, 1980.
[55] M.G.SafonovandM. Athans. Amulti-lo opgeneralizationof the
circle criterion forstability margin analysis. IEEE Transactions
on Automatic Control, 26:415422,1981.
[56] I. W. Sandb erg. A frequency-domain condition forthe stability
of feedback systems containing a single time-varying nonlinear
element. Bell Syst.Tech.J.,43(3):16011608,July 1964.
[57] I. W. Sandb erg. Some results in the theoryof physical systems
governedby nonlinear functional equations. Bell Syst. Tech. J.,
44:871898,1965.
[58] I.W. Sandb erg. On the b oundedness of solutions of non-linear
integralequations. Bell Syst.Tech.J.,44:439453,1965.
[59] F. C. Scwhepp e. Uncertain Dynamic Systems. Prentice-Hall,
Englewo o dClis, 1973.
[60] J. Shamma. Robustness analysis for time-varying systems. In
Proc.of 31st IEEEConference on Decision and Control,1992.
[61] A.Tannenbaum.Mo diedNevanlinna-Pickinterp olationoflinear
plantswithuncertaintyinthegainfactor.Int.JournalofControl,
36:331336,1982.
[62] Ya. A. Tsypkin. Frequency criteria for the absolute stability of
nonlinear sampled data systems. Aut. Remote Control, 25:261
267,1964.
sampled datasystems. Aut. Remote Control, 25:918923,1964.
[64] Ya. Z. Tsypkin. A criterion for absolute stability of automatic
pulse systems withmonotoniccharacteristicsofthe nonlinearel-
ement. Sov.Phys. Doklady,9:263266,1964.
[65] F. Uhlig. A recurring theorem ab out pairs of quadratic forms
and extensions: A survey. Linear AlgebraandAppl.,25:219237,
1979.
[66] M. Vidyasagar. Input/Output Analysis of Large-Scale Intercon-
nected Systems. Numb er 29in Lecture Notesin Controland In-
formationSciences. Springer-Verlag,1981.
[67] M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, En-
glewo o dClis, secondedition, 1992.
[68] J. C. Willems. Stability, instability, invertibility, and causality.
SIAM J.Control,pages 645671,1969.
[69] J. C. Willems. The Analysis of Feedback Systems. MIT Press,
Cambridge,Mass.,1971.
[70] J. C.Willems. The generationof Lyapunov functionsfor input-
output stablesystems. SIAM J.Control,9:105134,1971.
[71] J. C.Willems. Leastsquaresstationaryoptimal controland the
algebraic Riccatiequation. IEEETrans. Aut.Control, AC-16(6),
Decemb er1971.
[72] J. C. Willems. Mechanisms for the stability and instability in
feedbacksystems. Proc.IEEE,64:2435,1976.
[73] J. C. Willems and R. W. Bro ckett. Some new rearrangement
inequalities havingapplication in stabilityanalysis. IEEETrans.
Aut. Control, AC-13:539549,1968.
[74] J.C. Willems. The Analysis of Feedback Systems. MIT Press,
1971.
[75] J.C. Willems. Dissipative dynamical systems, part I: General
theory;partI I:Linearsystemswithquadraticsupplyrates.Arch.
RationalMechanics andAnalysis, 45(5):321393,1972.
[76] V.A.Yakub ovich. Absolutestabilityofnonlinearcontrolsystems
incriticalcases,PartI-I I I.AvtomaikaiTelemechanika.24(3):293-
302, 24(6):717-731,1963,25(25): 601-612,1964, (English trans-
lation inAutom. RemoteControl).
of stabilityof nonlinearcontrolsystems,PartI-I I I. Avtomatikai
Telemechanika,1964.25(7):1017-1029,26(4):577-599,1964,26(5):
753-763,1965,(Englishtranslation in Autom.RemoteControl).
[78] V.A.Yakub ovich. Frequencyconditionsfortheabsolutestability
of controlsystems withseveral nonlinearor linearnonstationary
units. Autom. Telemech.,pages 530,1967.
[79] V.A.Yakub ovich. S-pro cedurein nonlinearcontroltheory. Vest-
nikLeningradUniversity,pages6277,1971.(Englishtranslation
in VestnikLeningrad Univ.4:73-93,1977).
[80] P.M. Young. Robustness with parametric and dynamic uncer-
tainty. Technical rep ort,Caltech,1993. PhDthesis.
[81] I.B.Yunger.Criterionofabsolutestabilityforautomaticsystems
withnonlinearvectorelements. AutomationandRemoteControl,
pages 186197,1989.
[82] G.Zames.Ontheinput-outputstabilityofnonlineartime-varying
feedback systemsPart I: Conditions derived using concepts of
lo op gain, Part I I: Conditions involving circles in the frequency
planeandsectornonlinearities. IEEETransactionson Automatic
Control,11:228238,April 1966.
[83] G. Zames. Feedback and optimal sensitivity: Mo del reference
transformations, multiplicative seminorms and approximate in-
verses. IEEE Transactions on Automatic Control, 26:301320,
1981.
[84] G. Zames and P.L. Falb. Stability conditions for systems with
monotone and slop e-restricted nonlinearities. SIAM Journal of
Control,6(1):89108,1968.