• No results found

2018-12-03 LeifLönnblad StrongInteractions

N/A
N/A
Protected

Academic year: 2023

Share "2018-12-03 LeifLönnblad StrongInteractions"

Copied!
29
0
0

Loading.... (view fulltext now)

Full text

(1)

QCD Hadrons Heavy quarks ˇ

Strong Interactions

Leif Lönnblad

Institutionen för Astronomi och teoretisk fysik Lunds Universitet

2018-12-03

(2)

QCD Hadrons Heavy quarks ˇ

The potential Jets

Quantum Chromo Dynamics

The Potential in QED:

V(r ) = −αEM

r + k1~L · ~S + k2µeµp

In QCD?

V(r ) = −4 3

αS

r + k1~L · ~S + k2µqµ¯q

(4/3 from group theory) No! QCD is different:

V(r ) = −4αS

+ · · · + κr,

(3)

QCD Hadrons Heavy quarks ˇ

The potential Jets

V(r ) = −4 3

αS

r + κr V(r) 0

r Coulomb

linear total

◮ Comes from gluon self interactions

◮ κ ∼ 1 GeV/fm (15 metric tons per meter)

◮ Acts like a spring-like force between a q and a ¯q

◮ A quark can never be free! Confinement

(4)

QCD Hadrons Heavy quarks ˇ

The potential Jets

The Lund Model

◮ The field is compressed into a flux tube, d≈ 0.7 fm

◮ a (mass less relativistic)string

◮ As q and ¯q flies apart more and more energy is stored in the field.

Virtual q ¯q pairs in the string can come on-shell and break

(5)

QCD Hadrons Heavy quarks ˇ

The potential Jets

Jets

◮ The break-ups are causally disconnected.

◮ The average distance between break-ups is independent of the string length.

◮ length and distance defined in terms ofrapidity y ≡ 1

2lnE+ pz

E− pz = lne+ pz

m ≈ ln|p| + pz p ≡ η

◮ Rapidity differences are invariants under Lorentz transformations along the string.

◮ The mesons formed along the strings will have limited

(6)

QCD Hadrons Heavy quarks ˇ

The potential Jets

Assuming e+e → q¯q with some√

s, the maximum rapidity of a hadron is

ymax∼ ln√ s/m And the number of particles produced is

Ntot∝ ln

√s

hmi + const

(7)

QCD Hadrons Heavy quarks ˇ

Light hadrons Classification

ˇMasses

Light hadrons

Hadrons are coloursinglets. That requires the q and ¯q in a meson to have opposite colour, but that’s not enough.

S = 1,

Sz = 1: | ↑↑i

= 0: 1

2(| ↑↓i + | ↓↑i)

= −1 : | ↓↓i or a spin 0 system

S= 0, Sz = 0 : 1

√2(| ↑↓i − | ↓↑i)

(8)

QCD Hadrons Heavy quarks ˇ

Light hadrons Classification ˇMasses

Mesons:

q ¯q= 1

√3(|r¯ri+|g¯gi+|b¯bi) Baryons:

qqq = 1

√6(|rgbi−|rbgi+|brgi−|bgri+|gbri−|grbi) = 1

√6εijk|qiqjqki

(9)

QCD Hadrons Heavy quarks ˇ

Light hadrons Classification ˇMasses

◮ QCD is SU(3). For a general SU(N) we would get baryons with N quarks.

◮ In principle we can in QCD also have tetraquark hadrons (q ¯qq ¯q)

◮ . . . or pentaquarks (q ¯qqqq)

◮ . . . or even glue balls (gg or ggg)

◮ . . . or maybe hermaphrodites (q ¯qg)

The first exotic state to be found was a pentaquark (uudd ¯s) which decayed into n+ K+.

(10)

QCD Hadrons Heavy quarks ˇ

Light hadrons Classification

ˇMasses

Classification of hadrons

◮ flavour contents (gives charge, decay patterns etc.)

◮ mass

◮ internal spin S. Mesons S= 0, 1. Baryons S = 12,32.

◮ internal angular momentum L= 0, 1, 2, . . .

◮ total spin J, ¯J = ¯S+ ¯L. (Often also simply called spin.)

◮ Radial excitation n.

◮ Relativistic corrections and mixing (quite messy).

(11)

QCD Hadrons Heavy quarks ˇ

ˆ Classification Masses

ˇSymmetries

Hadron masses

The atom analogy gives an approximation m=X

i

mi+ kX

i<j

h¯µiµ¯ji =X

i

mi+ kX

i<j

h¯Siji mimj

k ∝ |Ψ(0)|2≈ m2u· 640 MeV (mesons) ≈ m2u· 200 MeV (baryons).

To account for the binding energy we need to consider constituentquark masses.

(12)

QCD Hadrons Heavy quarks ˇ

ˆ Classification Masses

ˇSymmetries

Quark masses

quark current mass constituent mass

(MeV) (MeV)

u 2 330

d 5 330

s 100 500

c 1 250 1 600

b 4 200 5 000

t 173 000 –

(13)

QCD Hadrons Heavy quarks ˇ

ˆ Classification Masses ˇSymmetries

m=X

i

mi+ kX

i<j

h¯µiµ¯ji =X

i

mi+ kX

i<j

h¯Siji mimj

Let’s calculate the mass ofπ+. We have= u ¯d in a spin-0 state:

1·¯S2= 1

2( ¯S2−¯S12−¯S22) = 1

2(S(S+1)−S1(S1+1)−S2(S2+1)) = −3 4 so

mπ = 2 · 330 −3

4 · 640 = 180 MeV The actual mass is mπ± = 140 MeV – close enough?

(14)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

Charge and parity symmetries

The lightest mesons are vectors (S = 1, ρ0±,ω, . . . ) and pseudo-scalars (S= 00±,η, . . . )

Flavour-diagonal states may mix:

u¯u, d ¯d, s¯s ⇒ π0, η, η

(15)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

The parity of two particles in a specific angular momentum eigen state L:

P|ab; Li = |P(a)P(b); Li(−1)L= PaPb(−1)L|ab; Li with PaPb = −1 for a fermion f¯f pair and +1 for a boson pair.

(16)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

For charge conjugation we have for flavour-diagonal mesons C|a¯a; L, Si = |¯aa; L, Si = (−1)(−1)L(−1)S+1|a¯a; L, Si but other mesons are not necessarily eigenstates under C.

C|a¯b; L, Si ∝ |b¯a; L, Si 6= ±|¯ab; L, Si This is due to quark mixing (next week)

(17)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

Hadron Decays

Before quarks were invented, there was iso-spin. It was used to explain why some hadrons had much shorter lifetimes that others.

proton: |12,12i, neutron: |12, −12i, π±: |1, ±1i, π0:|1, 0i.

Leptons have iso-spin zero, so n→ peνe breaks iso-spin and is forbidden (i.e. the neutron has a long life-time)

+:|32,12i so ∆+→ pπ0is allowed and it decays immediately.

Today we identify u = |12,12i and d = |12, −12i.

(18)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

Strong decays: conserves individual quark numbers.

E.g.∆++→ pπ+(uuu→ uud + ¯d u).

EM Decays: also conserves quark numbers (but not iso-spin).

E.g.π0→ γγ (|1, 0i → |0, 0i|0, 0i).

Weak Decays: does not conserve quark numbers. E.g.

π+→ µ+ν¯µ(u ¯d → W+→ µ+ν¯µ).

(19)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

Rules for hadronic decays:

◮ All decays must respect energy conservation.

◮ If a strong decay possible it will dominate: τ ∼ 10−23s (difficult to calculate)

◮ Otherwise, if an EM decay is possible it will dominate:

τ ∼ 10−20− 10−10 s (approximately calculable).

◮ otherwise if weak decay is possible: τ ∼ 10−10− 103s (approximately calculable).

◮ otherwise stable.

(20)

QCD Hadrons Heavy quarks ˇ

ˆ Masses Symmetries Decays

How does a hadron decay

◮ Determine the constituent quarks

◮ Find two or more particles with summed mass below the mass of the decaying hadron.

◮ If decay products have the same net quark contents as the original (e.g.∆+→ nπ+), this can be a strong decay and will dominate.

◮ If there are leptons or photons among the decay products (e.g.∆+→ pe+e) This can be an EM decay.

◮ In weak decays the net quark content may change via q → qW → qf ¯f. (if q and q are from different families

(21)

Hadronsˆ Heavy quarks e+eannihilation

Charm Beauty (bottom) ˇBeauty (Top)

Heavy quarks – the October revolution

(22)

Hadronsˆ Heavy quarks e+eannihilation

Charm Beauty (bottom)

ˇBeauty (Top)

Heavy quarks

In November 1974 a narrow peak was found in e+e→ µ+µ around√

s= 3 GeV. The J particle.

In another experiment colliding protons also found a peak in the µ+µand called it theΨ particle.

It is now called the J/Ψ particle.

Enter the charm quark.

(23)

Hadronsˆ Heavy quarks e+eannihilation

Charm Beauty (bottom)

ˇBeauty (Top)

Charmed mesons

The lightest charm mesons are D+(c ¯d) and D0(c ¯u).

But mJ/Ψ < 2mDso J/Ψ cannot decay strongly, hence the narrow peak.

If the J/Ψ is a atomically bound state of c and ¯c, there should be excited charmonium states:

3S1(1s) = J/ψ,3S1(2s) = ψ,3S1(3s) = ψ′′,3PJ = χc, . . . As soon as the mass of these becomes larger than 2mD we have strong decays and the peaks broadens.

(24)

Hadronsˆ Heavy quarks e+eannihilation

Charm Beauty (bottom) ˇBeauty (Top)

They lightest DC-mesons can only decay weakly, so we can calculate the decay width in the same way as for the muon. The weak processes are c → sW+with W+→ µ+ν¯µ, e+ν¯e, u ¯d so

Γc ∼ G2Fmc5

192π3(1 + 1 + 3)

(25)

Hadronsˆ Heavy quarks e+eannihilation

Charm Beauty (bottom)

ˇBeauty (Top)

The Bottom quark

In 1978, history repeated itself when the E288 experiment at Fermilab discovered the Upsilon and the bottom quark.

The lightest B-mesons can only decay weakly through b → Wc and b→ Wu. (b→ Wt is forbidden).

Very long lifetimes; cτ ∼ 0.4 mm.

(26)

Hadronsˆ Heavy quarks e+eannihilation

ˆ Beauty (bottom) Beauty (Top)

The top quark

◮ Predicted since the b-quark was found.

◮ Finally discovered at the Tevatron at Fermilab in 1995.

u¯u→ g → t¯t → bW+bW¯

◮ Very short-lived and decays immediately through t → bW+.

◮ There are no top hadrons.

(27)

Hadronsˆ Heavy quarks e+eannihilation

The hadronic ratio The gluon

e

+

e

physics

e+e→ γ/Z0→ f¯f For low√

s we can ignore Z0exchange and get M = ee(¯eγµe)1

sef(¯fγµf) and

σ = 4π 3

Qf2α2 s .

(28)

Hadronsˆ Heavy quarks e+eannihilation

The hadronic ratio The gluon

Rhad = σ(e+e→ hadrons)

σ(e+e→ µ+µ) = 3X

q;2mq< s

Q2q

Allows us to measure the number of quarks with 2mq<√ s and their charge and number of colour states.

(29)

Hadronsˆ Heavy quarks e+eannihilation

The hadronic ratio The gluon

The gluon

The PETRA accelerator at DESY 1978

The gluon gives an extra jet: e+e→ q¯qg

References

Related documents

Skolförlagd yrkesutbildning i förhållande till arbetsmarknaden. • Kort men bred skolförlagd yrkesutbildning komplementärt

Gör klart för er vilka aktiviteter som är beroende av varandra (gärna innan ni skriver ned dem), för att få dem i rätt ordningsföljd?. Skriv ned de fasta tidpunkter som ni

•  Att utvärdera och reflektera över dagen klinikvis?. • 

Region Skånes strategi för gestaltad livsmiljö används och omsätts i Regional kulturplan för Skåne 2021–2024 och har en central roll i förverkligandet av

Institutionen bedriver utbildning inom det naturvetenskapliga kandidatpro- grammet, ing˚ angarna Teoretisk fysik och Astronomi, samt inom master pro- grammen f¨ or astrofysik och

Under  den  aktuella  perioden  Maj  2007­Maj  2008  har  institutionen  anställt  två  kvinnliga  medarbetare  (en  forskare  och  en  forskningsingenjör)  och 

Mats säger att urvalet av uppgifter till övningen redan är gjord och Griffiths är så bra att han tycker att det är nödvändigt för att man ska lära sig kursen

Alla som är verksamma inom universitetet har ett ansvar för att missförhållanden eller risker uppmärksammas.. Instruktioner, föreskrifter och rutiner skall följas och brister eller