• No results found

cDNA  synthesis  and  analysis  in  microfluidic  droplets

N/A
N/A
Protected

Academic year: 2021

Share "cDNA  synthesis  and  analysis  in  microfluidic  droplets"

Copied!
40
0
0

Loading.... (view fulltext now)

Full text

(1)

     

Master  Thesis  in  Nanobiotechnology

 

cDNA  synthesis  and  analysis  in  microfluidic  

droplets  

 

Lovisa  Söderberg  

 

Royal  institute  of  Technology  (KTH)  

Division  of  Nanobiotechnology  

 

Examiner:  Helene  Andersson-­‐Svahn  

Supervisor:  Håkan  Jönsson  

 

(2)

 

Abstract  

In  this  master  thesis  a  technique  is  developed  to  perform  thousands  of  parallel  cDNA   synthesis  reactions  compartmentalized  in  picoliter  reaction  vessels.  The  approach  of   using  droplet  microfluidics  will  enable  a  high  throughput  technique  for  gene  expression   analysis  of  isolated  single  cells.  High  throughput  is  required  to  perform  gene  expression   analysis  on  a  large  number  of  cells,  which  is  needed  to  be  able  to  identify  heterogeneity   within  a  cell  population.  

Significant  cDNA  yields  were  achieved  from  picoliter  samples  of  extracted  RNA  at   concentrations  corresponding  to  the  RNA  content  of  one  cell  per  droplet.  cDNA  

syntheses  were  also  performed  from  whole  lung  cancer  cells,  lysed  with  a  temperature   step,  with  added  extracted  RNA.  This  approach  gave  a  higher  cDNA  yield  then  samples   only  containing  extracted  RNA  in  the  microfluidic  droplets,  which  indicate  that  the   approach  will  work  also  from  whole  cells  in  microfluidic  droplets.  To  perform  the  cDNA   synthesis  in  microfluidic  droplets  the  reverse  transcription  enzyme  was  mixed  with  RNA   sample  before  encapsulation  in  droplets.  The  droplets  were  incubated  for  cDNA  

(3)

Contents  

1.  Introduction  ...  3   1.1  Project  background  ...  3   1.2  Aim  ...  4   2.  Theoretical  background  ...  5   2.1  Microfluidics  ...  5   2.1.1  Chip  manufacturing  ...  5   2.2  Droplet  Microfluidics  ...  6  

2.2.1  Oils  and  Surfactants  ...  7  

2.2.2  Droplet  manipulation  ...  8  

2.2.3  Encapsulation  of  biological  molecules  in  droplets  ...  9  

2.3  Droplets  as  a  reaction  vessel  ...  10  

2.4  qPCR  ...  11  

2.5  Cell  lysis  technique  ...  11  

2.6  cDNA  synthesis  ...  12  

3.  Material  and  Methods  ...  13  

3.1  Cell  cultivation  ...  13  

3.2  RNA  extraction  ...  13  

3.2.1  RNA  Quality  control  ...  14  

3.3  cDNA  synthesis  in  bulk  ...  14  

3.4  cDNA  synthesis  in  droplets  ...  14  

3.5  qPCR  ...  16  

3.5.1  Selection  of  primer  sequences  ...  17  

3.5.2  qPCR  program  optimization  ...  17  

3.5.3  Gel  electrophoresis  to  control  purity  ...  18  

3.6  Cell  lysis  ...  18  

3.7  cDNA  synthesis  from  cells  ...  18  

4.  Results  ...  20  

4.1  Extraction  of  RNA  from  A549  lung  cancer  cell  line  ...  20  

4.2  qPCR  serial  dilution  ...  21  

4.2.1  Gel  electrophoresis  ...  21  

4.3  cDNA  synthesis  in  bulk  from  RNA  ...  22  

4.4  cDNA  synthesis  in  droplets  from  RNA  ...  23  

4.4.1  Reproducibility  of  droplet  experiment  ...  24  

4.5  Cell  lysis  ...  25  

4.6  cDNA  synthesis  from  whole  cells  ...  26  

4.7  Droplets  with  RNA  and  lysed  cells  ...  28  

4.8  cDNA  synthesis  from  whole  cells  at  different  cell  concentrations.  ...  29  

5.  Discussion  ...  30  

5.1  Outlook  ...  32  

6.  Conclusions  ...  34  

References  ...  35  

(4)

1.  Introduction  

1.1  Project  background    

Miniaturization  of  analysis  and  reactions  to  microscale  have  been  more  and  more   applied  in  biology  during  recent  years  due  to  advantages  such  as;  smaller  sample  sizes,   less  reagents  needed,  faster  reaction  times,  and  better  process  control  compared  to   reactions  in  macroscale  (Lindström  et  al,  2011).  Droplet  microfluidics  is  a  high  

throughput  technique  (>1000reactions/second)  used  to  miniaturize  reaction  volumes   and  generate  droplets  that  contains  all  the  components  needed  for  a  reaction.  Each   individual  droplet  functions  as  a  microreactor  divided  from  each  other  by  an  oil  barrier.   (Taly  et  al,  2007)    

To  analyze  gene  expression,  the  most  common  way  is  to  study  transcribed  mRNA.  This   since  the  gene  corresponding  to  a  protein  often  includes  exons  of  non-­‐coding  areas,   which  need  to  be  removed  by  splicing  to  get  the  final  sequence  (Black,  2003).  RNA  is   single  stranded  and  easily  degraded  a  more  efficient  and  reproducible  technique,  then  to   study  the  RNA  content  directly,  is  to  do  a  reverse  transcription  of  RNA  to  cDNA.  cDNA  is   more  stable  and  can  be  amplified  in  a  PCR  reaction.  This  has  long  been  a  standard   procedure  to  study  gene  expression  in  bulk  samples  and  this  gives  a  good  image  of  the   average  state  in  a  population  of  cells.  (Nolan  et  al,  2006)    

However  the  gene  expression  have  been  shown  to  vary  within  a  cell  population  (Elowitz   et  al  2002).  Heterogeneity  in  gene  expression  between  cells  leads  to  differences  in   phenotype,  variation  in  cell  division  and  expression  of  receptors,  and  efficiency  of  drugs   towards  the  cell  (Spudich  et  al,  1976)(Raser  et  al,  2005).  It  is  therefore  interesting  to  be   able  to  study  gene  expression  on  a  single-­‐cell  level.  

(5)

To  look  at  the  gene  expression  of  a  single  cell  and  still  get  a  complete  image  of  the   expression  in  a  larger  population  a  lot  of  cells  has  to  be  analyzed  so  that  the  distribution   of  subpopulations  can  be  determined  and  so  that  wrong  conclusions  are  not  drawn   because  only  rare  cell  are  studied  that  does  not  correspond  to  the  average  cell  

population  (Lindström  et  al,  2010).  Also  to  be  able  to  sort  out  a  rare  cell  type  in  a  cell   sample  requires  that  many  cells  can  be  discarded  in  an  effective  manner.  An  extreme   example  would  be  circulating  tumor  cells  in  a  blood  sample  where  only  one  or  a  few   tumor  cells  will  be  present  per  109  blood  cells  (Nagrath  et  al,  2007).  Therefore  a  high-­‐ throughput  analysis  technique  is  needed  so  that  many  reactions  can  be  performed  in   parallel  under  a  short  period  of  time.  

1.2  Aim  

The  aim  of  the  project  is  to  perform  a  reverse  transcription  and  synthesize  cDNA  from   single  cells.  To  be  able  to  separate  single  cells  in  individual  reaction  chambers  the   platform  of  droplet  microfluidics  will  be  applied.  The  droplet  microfluidic  approach   gives  a  sensitive  analysis  under  high-­‐throughput  conditions  where  a  single  cell  can  be   encapsulated  in  a  30µm  droplet  that  will  function  as  a  reaction  vessel.  The  cDNA   syntheses  will  initially  by  performed  from  extracted  RNA,  from  a  lung  cancer  cell  line.   When  this  approach  gives  a  significant  yield  of  cDNA  in  droplets  the  project  will  move   on  to  its  next  stage,  which  will  be  to  synthesis  cDNA  directly  from  whole  lung  cancer   cells.  The  produced  cDNA  will  be  analyzed  in  qPCR.  

(6)

2.  Theoretical  background    

2.1  Microfluidics  

In  microfluidics  micro-­‐channel-­‐systems  are  constructed  on  chips  with  patterns  in  micro-­‐ scale.  External  pumps  are  used  to  actuate  pressure  driven  flows  inside  the  channels.   These  systems  are  used  to  perform  experiments  with  small  reagent  volumes,  precise   control  and  the  possibility  of  parallel  reactions.  Laminar  flows  are  achieved  inside  the   channels,  which  gives  a  controlled  flow  without  turbulence.  (Beebe  et  al,  2002)  The   reduction  in  sample  volumes  allows  for  more  reactions  to  be  performed  when  only   small  amounts  of  sample  can  be  obtained  or  is  expensive.    Reduction  in  regent  volumes   also  reduces  the  cost  per  reaction.  And  by  doing  the  reactions  on  a  micro-­‐scale  instead  of   macro-­‐scale  the  diffusion  distances  becomes  shorter  which  increase  the  reaction  rates   (Ahmed  et  al,  2006).    

2.1.1  Chip  manufacturing  

The  microfluidic  channel  system  are  constructed  on  chips  and  are  often  made  out  of   PDMS  (poly(dimethylsiloxane)).  PDMS  is  a  polymeric  material  with  many  advantages   compared  to  other  materials  used  in  microfluidic  chips,  such  as  glass  and  silicon.  PDMS   is  cheaper,  less  fragile  and  the  devices  are  faster  to  manufacture.  (Duffy  et.  al,  1998)   Other  properties  of  PDMS  are  that  it  is;  optically  transparent,  nontoxic  for  mammalian   cells,  it  can  be  irreversibly  sealed  after  oxygen  plasma  treatment  to,  for  example  glass.   PDMS  is  an  elastomer  which  means  that  it  can  be  shaped  after  a  non  planar  pattern  and   after  curing  it  will  release  from  the  structure  without  damaging  the  mold  or  change  the   formed  shape.  This  property  makes  it  possible  to  produced  micro-­‐sized  pattern  in  a  fast   and  reproducible  manner  for  prototyping.  (McDonald  et.  al,  2000)    

(7)

procedure  a  master  is  formed  with  the  negative  pattern  of  the  wanted  channel  system.   This  master  will  be  used  as  a  mold  for  the  PDMS  devices  and  can  be  used  multiple  times.   (McDonald  et  al,  2000)  

The  PDMS  molding  is  performed  by  mixing  the  polymer  and  cross-­‐linking  agent,  which   is  then  pored  onto  the  silcon  wafer  and  cured  in  an  oven.  After  curing,  the  PDMS  

structure  can  be  peeled  of  the  wafer.  (Fiorini  et  al,  2005)  To  get  complete  channels,  the   PDMS  device  is  sealed  by  binding  it  to  a  glass  surface.  The  PDMS  device  and  a  glass  slide   are  exposed  to  oxygen  plasma  and  afterwards  they  are  pressed  together.  This  will  form   an  irreversible  waterproof  bound.  (McDonald  et  al,  2000)  

2.2  Droplet  Microfluidics  

In  droplet  microfluidics  two  liquid  phases  are  utilized  to  form  an  emulsion,  oil  droplets   in  water  or  more  common  water  droplets  in  oil.  The  droplets  can  be  varied  in  size  from   several  nanoliters  down  to  femtoliters.  The  droplets  can  be  generated  at  a  frequency  of   1-­‐10kHz  which  makes  it  possible  perform  many  reactions  in  small  volumes  at  a  very   short  time.  (Therberge  et  al,  2010)    

In  chemical  reactions  the  droplet  platform  minimizes  the  volume  of  reagents  needed.   Compartmentalization  to  small  reaction  volumes  also  gives  shorter  diffusion  distances   and  faster  mass  transfer.  Reactions  in  micro  volumes  have  been  proven  to  increase   reaction  rates  (Ahmed  et  al,  2006).    

The  phase  inside  the  droplets  are  called  the  dispersed  phase  and  the  continuous  phase  is   the  liquid  outside  the  droplets.  The  droplet  dynamics  in  a  two-­‐phase  device  is  

determined  by  the  dimensionless  capillary  number,  Ca  which  depends  on  the  viscosity,   η,  and  velocity  of  the  disperse  phase,  ν,  and  the  interfacial  tension,  γ,  between  the   continuous  and  the  discrete  phase,  in  the  following  relation:  Ca  =    ην/γ.  When  the  Ca   number  increases,  droplets  are  generated.  (The  et  al,  2007)  

(8)

phase  travels  through  a  narrow  part  of  the  channel.  The  sheer  stress  between  the   continuous  and  disperse  phase  will  elongate  the  flow  of  disperse  phase  into  a  thin  line   and  the  reduction  of  surface  tension  by  lowering  the  surface  to  volume  ratio  will  make   the  disperse  phase  break  up  into  droplets  (Thorsen  et  al,  2001).  The  droplet  size  is   determined  by  the  nozzle  width  and  increasing  the  flow  rate  of  the  continuous  phase  can   generate  a  decreased  droplet  size.  (Anna  et  al,  2003)  

 

Figure  1:  a)  Droplet  generation  in  a  flow-­‐focusing  device.  The  water  phase  is  in  the  middle  channel  and  the  oil   phase  in  the  two  side  channels.  The  water  phase  will  break  up  into  droplets  after  the  channel  crossing.  b)   Generated  monodisperse  droplets  stabilized  with  a  surfactant  to  prevent  coalescence.    

With  these  techniques  droplets  with  high  monodispersity  are  formed.  Reports  have   been  made  with  generated  droplets  with  a  coefficient  of  variance  less  then  2%  (Nisisako   et  al,  2006).  This  property  is  required  for  the  droplet  microfluidic  platform  to  be  used  in   high-­‐throughput  analysis.  To  be  able  to  have  a  high  degree  of  parallelization  the  droplets   need  to  be  the  same  size  so  that  all  chemical  regents  will  be  at  the  same  concentration  in   each  droplet.  It  is  important  for  chemical  reactions  and  biological  applications  that  all   chemical  reagents  inside  the  droplet  are  at  the  same  concentration  so  that  each  droplet   can  be  seen  as  a  single  experiment  to  be  compared  to  the  rest  of  the  droplet  population.  

2.2.1  Oils  and  Surfactants  

(9)

with  tightly  packed  emulsion  without  coalescing  with  neighboring  droplets.  (Baret,   2012)    

Some  oils  that  are  used  in  droplet  microfluidics,  as  the  continuous  phase,  are  

fluorocarbon  oils  such  as  FC-­‐40,  FC-­‐77,  hydrocarbon  oils  and  mineral  oils.  In  this  project   a  hydrofluoroether  oil,  HFE  was  used  which  is  a  fluorocarbon  oil.  (3M)  Different  oils  and   surfactants  are  combined,  depending  on  the  molecules  inside  the  droplets  to  avoid   interaction  with  the  droplet  interface  and  leakage  into  the  continuous  phase.  

The  surfactant  used  in  this  project  is  a  block  copolymer  consisting  of  a  PEG  and  two   PFPE  chains.  The  PFPE  part  is  soluble  in  the  HFE  oil  and  the  PEG  is  soluble  in  the  water   phase  and  prevents  interaction  with  biological  molecules  inside  the  droplet  and  the   interface.  This  surfactant  stabilizes  droplets  almost  directly  after  generation  and  while   they  are  closely  packed.  Cell  proliferation  is  possible  inside  the  droplets,  which  shows  a   good  biocompatibility  of  the  droplets.  (Holtze  et  al.  2008)      

2.2.2  Droplet  manipulation  

In  order  to  use  this  platform  for  applications  with  high  parallelization  the  droplets  need   to  be  individually  controlled  and  manipulated.  For  manipulation  of  droplets  there  are   two  types  of  modules,  passive  and  active.  A  passive  manipulation  is  controlled  by  the   channel  geometry  and  affects  all  droplets.  Active  manipulations  are  controlled  by  for   example  electrodes  or  valves,  that  often  require  external  power,  and  individual  droplets   can  be  selected  for  the  manipulation  while  others  are  not  affected.  (The  et  al,  2007)   Splitting  of  droplets  is  accomplished  by  introducing  a  T-­‐junction  on  the  chip.  Droplets  in   a  compressed  state  will  split  into  two  daughter  droplets  when  the  channel  divides  in  a  T-­‐ junction.  (Links  et  al,  2004)    

(10)

liquid  can  be  added  to  the  droplet.  When  the  droplet  moves  out  of  the  electric  field  the   droplets  becomes  stable  again.  The  volume  injected  depends  on  the  injection  pressure   and  flow  rate  of  the  continuous  phase.  (Abate  et.  al,  2010)    

Droplets  can  also  be  actively  sorted  to  select  specific  droplets  out  of  a  larger  population.   In  one  technique  dielectrophoretic  forces  are  applied  on  droplets  that  will  pull  them  in   different  directions  and  go  into  selected  channels.  The  dielectrophoretic  force  is  applied   by  an  electric  field  generated  by  electrodes  on  the  chip.  For  this  technique  the  droplets   does  not  need  to  be  charged.  (Ahn  et.  al,  2006)    

By  incorporating  a  fluorescent  microscope  in  the  experimental  setup  and  adding  a   fluorescent  molecule  inside  the  droplets  one  can  do  on-­‐chip  detection.  Quantification  of   the  molecules  binding  to  the  fluorescent  molecules  is  an  often-­‐used  approach  for  

analysis.  (Therberge  et.  al,  2010)  Very  sensitive  detections  have  been  made  down  to  a   few  proteins  expressed  on  a  cell  surface  encapsulated  in  a  droplet  using  enzymatic   amplification  (Joensson  et.  al,  2009)  or  a  single  DNA  molecule  (Srisa-­‐Art  et  al,  2009).   Each  of  these  operations  can  be  seen  as  a  module  in  the  workflow  and  a  separate   experimental  step.  So  by  placing  these  modules  after  each  other  an  entire  experiment   can  be  built  on  a  single  chip  or  be  divided  over  several  different  chips.  The  emulsion  can   also  be  collected  and  stored  off  chip  before  being  reinjected  on  chip.  (Kintses  et.  al,   2010)  

2.2.3  Encapsulation  of  biological  molecules  in  droplets  

(11)

For  single  cell  analysis  the  encapsulation  of  a  single  cell  in  each  droplets  enables  a   linkage  between  genotype  and  phenotype.  Even  after  the  cell  is  lysed  the  cell  content   will  be  contained  in  an  individual  reaction  vessel.  (Taly  et  al,  2007)  The  interest  in   individually  studying  a  large  number  of  single  cells  at  a  time  comes  from  the   heterogeneity  between  cells  in  the  same  population  (Lindström  et  al,  2010).  By  

gathering  information  from  each  individual  cell,  instead  of  measuring  an  average  value   for  a  large  population  of  cells,  a  better  understanding  of  the  function  of  a  cell  can  be   achieved  and  smaller  subpopulation  can  be  detected.    

2.3  Droplets  as  a  reaction  vessel  

In  previous  work  in  droplets  microfluidics  several  applications  have  been  developed.  In   this  project  I  will  mainly  focus  on  applications  where  the  generated  droplets  are  used  as   reaction  vessel.    

Directed  evolution  is  a  selection  of  nucleotides  or  protein  with  some  wanted  properties   generated  by  induced  mutations.  Agresti  et  al  shows  the  possibility  of  droplet  based   directed  evolution  that  reduces  both  the  analysis  time  and  cost.  In  this  study  a  mutant  of   horseradish  peroxidase  enzyme  was  selected  that  has  a  10  times  higher  activity  then  the   initial  population.    A  library  was  created  that  were  transformed  into  yeast  cells  and  then   encapsulated  in  droplets.  Droplets  sorting  with  fluorescent  detection  were  used  to  select   the  best  mutants  with  the  highest  activity.  A  screen  of  a  107  variants  take  only  a  few   hours  effectively  with  this  technique  and  the  reactions  require  only  a  fraction  of  the   reagents  needed  for  an  equivalent  screen  with  traditional  techniques.  (Agresti  et  al,   2010)    

(12)

exposed  to  thermo  cycling  as  in  a  traditional  PCR.  At  specific  locations  a  fluorescent   measurement  is  performed  to  get  a  real-­‐time  quantification  of  the  amplification  process   for  each  droplet.  (Kiss,  2008).  It  is  also  possible  to  simplify  the  reaction  by  performing   an  isotherm  DNA  amplification  (Mazutis  et  al,  2009).  Beer  et  al,  2008,  has  performed   reverse  transcription-­‐PCR  in  droplets  where  RNA  is  first  transcribed  to  DNA  before   amplification.  Instruments  that  perform  PCR  in  microfluidic  droplets  are  commercially   available  by  companies  such  as  Bio-­‐Rad  and  RainDance  Technologies.  (Baker,  2012)   Mary  et  al  performed  a  study  of  cell-­‐to-­‐cell  gene  expression  variations  in  droplets  by   performing  a  reverse  transcription  PCR,  RT-­‐PCR.  Droplets  were  immobilized  on  chip   containing  0-­‐3  cells  and  RT-­‐PCR  reaction  mixture  and  exposed  to  thermal  cycling.  In  the   study  30  droplets  were  analyzed  containing  MDCK  cells  and  it  was  possible  to  detect   differences  in  gene  expression  in  the  different  cells.  (Mary  et  al,  2011)  However  by   immobilizing  the  droplets  on  chip  the  ability  to  perform  high-­‐throughput  analysis  is  lost.     Detection  of  DNA  in  droplets  without  PCR  has  also  been  performed  down  to  a  single   molecule  per  droplet.  By  binding  several  fluorescent  dye  molecule  to  a  DNA  molecule  a   single  molecule  could  be  detected.  (Srisa-­‐Art  et  al,  2009)  

2.4  qPCR  

To  quantify  cDNA  one  of  the  most  sensitive  techniques  is  quantitative  polymerase-­‐ chain-­‐reactions,  qPCR.  The  difference  between  a  traditional  PCR  that  amplifies  DNA   fragments  is  that  the  qPCR  reaction  mixture  contains  a  fluorescent  dye  that  binds  to   double  stranded  DNA.  After  each  thermo  cycle  a  plate  read  is  performed  that  reports  the   increase  in  fluorescent  molecules  that  have  bound  to  amplified  DNA.  Each  reactions   target  molecule  quantity  is  determined  by  at  which  cycle  the  fluorescent  signal  increases   above  a  specific  threshold,  Ct.  The  higher  quantity  of  target  molecules  in  the  starting   reaction  the  lower  the  Ct  value.  All  Ct  values  are  then  compared  to  a  series  of  standard   samples  with  know  target  molecule  concentration.  (Nolan  et  al,  2006)  

2.5  Cell  lysis  technique  

A  big  challenge  that  is  always  present  in  droplet  microfluidics  is  the  fact  that  the  

(13)

droplet  approach  once  a  reagent  is  added  it  cannot  be  removed.  In  this  project  it  has   affected  the  choice  of  cell  lysis  technique.  To  be  able  to  perform  a  reverse  transcription   from  whole  cells  requires  that  the  cell  membrane  is  permeable  so  that  the  reverse   transcription  enzyme  can  reach  its  target.    

Traditional  chemical  lysis  agents  at  high  concentration  are  difficult  to  use  since  some   inhibits  the  reverse  transcription  in  later  steps  (Bengtsson,  2008).  Electric  fields  can   also  be  used  to  lyse  cells  (Lee  et  al,  1999)  but  this  requires  that  electrodes  be  introduced   on  the  chip.  That  would  give  a  more  expensive  and  complicated  chip  manufacturing.  Cell   lysis  induced  by  elevated  temperatures  is  a  technique  that  has  previously  been  used  by   Liu  et  al,  2004,  to  lyse  cell  on-­‐chip  before  PCR.  A  temperature  lysis  leaves  no  chemical   traces  behind  and  no  extra  components  are  needed  on  chip,  which  makes  it  the  choice   for  this  application.  

2.6  cDNA  synthesis  

The  reverse  transcription  enzyme  was  first  discovered  by  Baltimore,  1970.  The  enzyme   was  able  to  synthesis  DNA  from  an  RNA  template.  This  technique  can  be  used  to  study   the  expressed  genes  in  cells  by  studying  the  already  transcribed  RNA.  

When  performing  cDNA  synthesis  in  bulk  the  RNA  content  from  all  cells,  in  the  sample,   are  mixed  when  the  cells  are  lysed.  By  encapsulating  the  cells  in  microfluidic  droplets   before  cell  lysis  the  RNA  content  from  different  cells  will  be  kept  separate,  see  figure  2.          

 

(14)

3.  Material  and  Methods  

3.1  Cell  cultivation  

The  A549  adherent  lung  cancer  cell  were  incubated  in  DMEM  (Dulbecco's  Modified   Eagle's  Medium  D6429,  Sigma)  cell  medium  containing  10%  FBS  (fetal  bovine  serum,   Sigma)  and  1%  antibiotics  (Antibiotic,  Antimycotic  solution,  Sigma).  The  cells  were   incubated  in  petri  dishes  at  37°C.    

The  cultures  were  split  approximately  every  60-­‐80  hours.  The  cells  were  first  washed   with  PBS  and  detached  from  the  petri  dish  using  1000µl  1xTrypsine.  The  cells  were  then   collected  in  a  15  ml  centrifuge  tube  and  diluted  in  culture  medium  to  inactivate  the   trypsin.  The  cell  culture  was  centrifuge  to  a  pellet  at  160  rcf  for  3  min.  The  supernatant   containing  trypsin  was  removed  and  replaced  with  1000µl  fresh  cell  culture  medium.   The  cell  culture  was  transferred  to  a  new  petri  dish  with  warm  cell  culture  medium  and   incubated  at  37°C.    

3.2  RNA  extraction  

To  extract  RNA  from  the  cultivated  cell  the  RNeasy  Midi  columns  kit  for  RNA  extraction   from  Qiagen  were  used.  The  cells  were  prepared  from  their  cultivation  in  petri  dishes.   The  cells  were  Trypsinated  to  detach  from  the  surface  and  then  collected  in  a  15ml   centrifuge  tube  and  centrifuged  for  3  min  at  160  rcf.  The  supernatant  was  removed  and   the  cells  were  washed  with  PBS.  

RNA  was  extracted  at  two  different  occasions.  The  first  time  a  starting  material  of  5.1  x   106  cells  were  used  and  the  second  time  1.65  x  107  cells.    

To  start  the  RNA  extraction  the  cells  were  lysed  with  2,0  ml  of  RLT  buffer  containing   0,1%  β-­‐Mercaptoethanol.  The  cell  lysate  was  homogenized  by  vortex  for  10  s  and  then   passed  through  a  20-­‐gauge  needle  fitted  to  an  RNase  free  syringe  10  times.  

2  ml  of  70%  ethanol  were  added  to  the  homogenized  lysate.  The  sample  was  transferred   to  the  RNeasy  Midi  column  placed  in  a  15  ml  centrifuge  tube  and  centrifuged  for  5  min  at   3500  rcf.  After  each  centrifugation  step  the  flow-­‐through  from  the  column  was  

(15)

ml  RPE  buffer  and  centrifuged  for  5min  to  dry  the  column  to  avoid  any  residuals  of   ethanol  that  could  interfere  with  the  results.    

To  elute  the  RNA  from  the  column  150  µl  of  RNase  free  water  were  added  and  the  tube   was  centrifuged  for  5min  at  3500  rcf.  This  step  was  then  repeated  with  another  150  µl   RNase  free  water.  

3.2.1  RNA  Quality  control  

The  quantity  of  RNA  was  first  checked  in  a  NanoDrop  1000  instrument.  The  purity,   degradation  and  quantity  of  the  extracted  RNA  were  then  determined  in  an  Agilent   Bioanalyzer  2100  (Agilent  technologies,  Germany)  using  a  6000  nano  RNA  chip,   following  the  protocol  of  the  manufacturer.    

3.3  cDNA  synthesis  in  bulk  

After  extraction  of  RNA  from  A549  lung  cancer  cells  cDNA  was  synthesized.  To  test  the   protocol  and  to  have  a  reference  yield,  for  the  synthesis  in  droplets,  the  synthesis  were   first  conducted  in  bulk  using  the  SuperScript  III  First-­‐Strand  Synthesis  system  for  RT-­‐ PCR  (Invitrogen).  The  protocol  was  tested  both  with  random  hexamers  and  Oligo(dT)20   as  primers  and  with  different  amounts  of  RNA  as  starting  material  diluted  with  DEPC-­‐ treated  water.  Controls  without  primers  and  SuperScript  III  RT  were  tested.    

8  µl  of  RNA  sample  were  mixed  with  1µl  of  dNTPs  and  1  µl  of  random  hexamers  or   Oligo(dT)20.  The  mixture  was  incubated  at  65°C  for  5  min  and  then  placed  on  ice.  The   cDNA  synthesis  mix  was  prepared  with  2  volumes  5X  RT  buffer,  4  volumes  25  mM  

MgCl2,  2  volumes  0,1  M  DTT,  1  volume  RNaseOUT  (40  U/µl)  and  1  volume  of  SuperScript   III  RT  (200  U/µl).  10  µl  of  cDNA  synthesis  mix  were  added  to  each  sample.  The  samples   were  then  mixed  and  briefly  centrifuged  before  incubation.  The  samples  with  random   hexamers  were  incubated  for  10  min  at  25°C  and  the  50  min  at  50°C.  The  samples  with   Oligo(dT)20  were  incubated  for  50  min  at  50°C.  All  reactions  were  terminated  at  85°C  for   5  min  and  then  placed  on  ice  before  being  stored  at  -­‐20°C.    

3.4  cDNA  synthesis  in  droplets  

(16)

10mM  dNTP  mix.  Nuclease  free  water  was  added  to  a  total  volume  of  20  µl.  The  mixture   was  incubated  at  65°C  for  5  min  and  then  placed  on  ice  for  at  least  1  min.  The  synthesis   mix  consisted  of  4  µl  5X  RT  buffer,  8  µl  25  mM  MgCl2,  4  µl  0.1  M  DTT,  2µl  RNaseOUT  (40   U/µl)  and  2  µl  SuperScript  III  RT  (200  U/µl).  The  synthesis  mixture  where  also  placed   on  ice  before  use.  

The  droplets  experimental  setup  includes  an  inverted  microscope,  Olympus  IX51,  a   Nemesys  pump  system  for  four  syringes  and  a  camera  operated  by  computer  software.     Two  droplet  setups  were  used  during  the  project,  see  figure  3a.  In  the  first  setup,  Mixed,   the  RNA  sample  and  the  synthesis  mix  were  mixed  before  introduced  to  the  chip.  In  the   second  setup,  T-­‐junc,  the  RNA  sample  and  the  synthesis  mix  were  mixed  in  a  T-­‐junction   in  the  tubing  before  entering  the  chip.  When  the  T-­‐junction  setup  is  used  only  the   droplets  containing  both  RNA  sample  and  synthesis  mixture  will  have  a  possible  cDNA   synthesis.  It  is  therefore  important  to  have  synchronized  flows,  see  figure  3b,  with  a   large  effective  volume  where  both  RNA  sample  and  synthesis  mix  is  present  in  each   droplet.  

The  oil  phase  used  was  HFE  oil  (3M)  with  0,5%  surfactant  (Raindance  Technologies).   The  emulsion  was  collected  in  a  syringe  with  HFE  oil  with  0,5%  surfactant.  The  water   phase  inlet;  RNA  sample  and  synthesis  mix,  were  connected  with  syringes  filled  with   HFE  oil  without  surfactant.  The  RNA  sample  and  the  synthesis  mixture  were  loaded   using  a  negative  flow  on  the  syringe  pumps  so  that  the  samples  were  loaded  in  the   tubing  connecting  the  syringe  to  the  chip.    Long  enough  tubings  were  used  so  that  all  of   the  sample  could  fit  inside  the  tubing  without  entering  the  syringe.  In  the  T-­‐junc  setup,   see  figure  3,  the  RNA  sample  and  synthesis  mix  were  loaded  into  the  tubings  before   being  fitted  to  a  T-­‐junction  that  were  then  connected  to  the  chips  water  inlet.    

(17)

 

           

Figure  3:  a)  Experimental  droplet  setup,  microchannels  on  chip  in  black  and  tubings  connected  to  syringes  in   blue.  The  top  setup,  Mixed,  shows  the  setup  where  the  RNA  sample  and  the  synthesis  is  mixed  on  before  hand.   The  bottom  setup,  T-­‐junc,  shows  the  setup  where  the  RNA  sample  and  synthesis  mix  is  mixed  in  a  T-­‐junction   before  entering  the  chip.  b)  Possible  mixing  of  the  flows  A  and  B  in  a  T-­‐junction.  With  a  synchronized  flow  the   maximum  effective  volume  is  achieved  with  both  regent  A  and  B  present  in  each  droplet.  With  an  

unsynchronized  flow  the  effective  volume  is  decreased.  

The  chip  was  first  filled  with  oil  from  the  oil  syringe.  The  collect  syringe  also  had  a  low   flow  to  avoid  that  any  debris  went  into  the  collect.  After  the  chip  was  filled,  the  pumps   connected  to  the  water  phase  syringes  were  turned  on.  When  the  water  phase  reached   the  chip  the  flows  were  adjusted  as  follows:  oil  syringe:  1000  µl/h,  water  phase  syringe:   50  µl/h  each,  or  when  only  one  syringe  were  used  for  the  water  phase:  100  µl/h,  and  the   collect  syringe:  200  µl/h.  When  the  droplet  generation  became  stable,  the  collection  of   emulsion  started  by  applying  a  stepwise  negative  flow  on  the  collect  syringe  until  the   droplets  went  into  the  collect,  usually  around  -­‐800  µl/h.  

After  droplets  were  generated  the  collect  syringe  was  placed  in  the  oven  and  incubated   at  50°C  for  50  min  and  then  placed  on  ice.  The  emulsion  was  stored  at  -­‐20°C.  Before   qPCR  the  sample  were  thawed  and  the  emulsion  was  broken  with  a  droplet  destabilizer   (RainDance  Technologies).    

3.5  qPCR  

For  quantification  of  the  cDNA  product  quantitative  chain  reaction,  qPCR,  was  used.   b)  

(18)

3.5.1  Selection  of  primer  sequences  

The  primer  pairs  for  the  qPCR  were  provided  by  Afshin  Ahmadian,  KTH.  The  selected   primer  pairs  are  from  three  housekeeping  genes  (HKG).  The  HKG  are  a  good  choice  for   this  application  since  they  are  expressed  in  all  cells.  The  HKGs  selected  were,  Homo   sapiens  beta-­‐2-­‐microglobulin  (B2M),  Homo  sapiens  hydroxymethylbilane  synthase   (HMBS)  Homo  sapiens  hypoxanthine  phosphoribosyltransferase  1  (HPRT1).  B2M   encodes  for  a  serum  protein  that  is  expressed  on  almost  all  nucleated  cells.  HMBS   encodes  for  a  protein  in  the  heme  biosynthetic  pathway  that  is  a  member  of  the  

hydroxymethylbilane  synthase  super  family.  HPRT1  encodes  for  a  transferase  that  has   an  important  role  in  the  production  of  purine  nucleotides.  The  B2M  primer  pair  gave  the   shortest  amplified  sequences,  amplicon,  of  293  bp.  (NCBI,  2012)  Shorter  fragments  often   gives  better  results  in  the  qPCR  so  this  primer  pair  will  initially  be  used.      

Tabell  1:  Primers  used  in  qPCR  from  three  different  housekeeping  genes;  B2M,  HMBS.  HPRT1.  

Primer   Gene   Forward  primer   Reverse  primer  

1   B2M   CAGCGTACTCCAAAGATTCAG   CATGTCTCGATCCCACTTAAC  

2   HMBS   CAGTTTGAAATCATTGCTATGTC   AAGCCGGGTGTTGAGGTTTC  

3   HPRT1   AGTGATGATGAACCAGGTTATG   GACCATCTTTGGATTATACTG  

3.5.2  qPCR  program  optimization  

For  qPCR  Maxima  SYBR  Green/Fluorescein  qPCR  Master  Mix  (Fermentas)  was  used.  A   qPCR  program  was  optimized  for  the  B2M  primer  pair  as  follows;  95°C  for  10  min,  95°C   for  15  s,  59°C  for  30s  and  72°C  for  30  s.  These  three  steps  were  repeated  60  times.  The   reactions  were  terminated  at  95°C  for  10  s.  After  each  run  a  melt  curve  analysis  was   performed  from  65°C  to  95°C  with  an  increase  of  0,5°C  every  5  s.  This  gave  the  melting   temperature  of  the  product  in  each  well  to  ensure  purity  of  the  product.  

The  total  volume  in  each  well  was  20µl  with  10µl  Maxima  SYBR  Green/Fluorescein   qPCR  Master  Mix  (2X),  0,5  µl  each  of  forward  and  reverse  primer  to  a  total  

(19)

In  each  qPCR  run  a  series  of  samples  with  known  cDNA  concentration  were  added  to   construct  a  standard  curve  to  which  all  samples  were  normalized.  9  different  

concentrations  were  used  in  construction  of  the  standard  curve  from  108  molecules/µl   to  100  molecules/µl  with  a  dilution  of  10  times  between  each  step.  Each  concentration   was  repeated  in  two  wells.  

3.5.3  Gel  electrophoresis  to  control  purity  

Gel  electrophoresis  was  used  to  control  that  only  one  length  of  DNA  fragments  where   amplified  in  the  qPCR  reaction.    In  the  electrophoresis  1%  Agarose  gel  stained  with   etidium  bromide  was  used.  In  each  run  a  GeneRuler  100  bp  ladder  plus  and  MassRuler   loading  dye  x6  from  Fermentas  were  used  to  be  able  to  distinguish  the  length  of  the   fragments  and  to  be  sure  that  the  sample  did  not  travel  out  of  the  chip.  The  

electrophoresis  was  run  for  1,5  h  at  a  voltage  of  3  V/cm.  

3.6  Cell  lysis    

To  determine  at  which  temperature  cells  were  lysed  two  culture  plates  with  

approximately  2x106  adherent  lung  cancer  cells  were  used.  The  cell  culture  medium  was   aspirated  and  2  ml  of  0,5  mM  Calcein  AM  Green  (Invitrogen)  added  as  a  live  stain  and   incubated  for  37°  C.  The  cells  were  trypsinized  as  for  a  cell  passage  and  transferred  to  a   15  ml  Falcon  tube  and  centrifuged  to  a  pellet.  The  pellet  was  washed  with  1xPBS  and   then  diluted  in  3,5  ml  1xPBS  divided  in  seven  eppendorf  tubes.  The  positive  control  was   kept  at  room  temperature  and  the  negative  control  was  placed  in  70%  ethanol  in  -­‐20°  C   for  2  h.  The  other  samples  were  incubated  for  10  min  at  55°  C,  60°  C,  65°  C,  70°  C  and   one  sample  were  incubated  for  50  min  at  50°  C.  After  incubation  each  sample  were   centrifuged  and  the  supernatant  removed.  0.5  ml  of  3  µM  Propidium  Iodide  (Molecular   Probes,  Invitrogen)  were  added  and  the  samples  were  incubated  for  15  min  at  room   temperature.  The  cells  were  then  studied  in  fluorescent  microscope  and  the  live  and   dead  cells  were  counted  using  a  counting  chamber.    

3.7  cDNA  synthesis  from  cells  

 To  see  if  the  cDNA  synthesis  could  be  performed  from  whole  cells,  six  samples  were  

(20)

where  the  cDNA  synthesis  enzyme  was  added  before  cell  lysis  and  one  where  the  

enzyme  was  added  after  cell  lysis.  One  sample  was  diluted  in  1xPBS  and  the  enzyme  was   added  before  cell  lysis.  Three  other  samples  were  prepared  in  the  same  way  but  3,2  µg   RNA  was  added  to  each  sample.  

For  controls  a  sample  with  only  RNA  and  one  sample  with  nuclease-­‐free  water  was   included  in  the  cDNA  synthesis.  In  the  qPCR;  controls  with  only  lysed  cells  and  controls   with  cDNA  diluted  in  lysed  cells  were  added.    

Reactions  with  different  cell  concentrations  were  also  performed.  The  highest   concentration  included  approximately  160  000  cells,  corresponding  to  a  cell  

concentration  of  8000  cells/µl.  For  each  sample  the  cell  concentration  was  diluted  five   times  and  five  samples  were  made.  

The  cDNA  syntheses  mix  contained  2  volumes  10xRT  buffer,  4  volumes  25  mM  MgCl2,  2   volumes  0,1  M  DTP,  1  volume  RNaseOUT  and  1  volume  SuperScript  III  RT  (200  U/µl)   (Invitrogen).  10  µl  cDNA  synthesis  mix  was  added  to  each  sample.  

(21)

4.  Results  

4.1  Extraction  of  RNA  from  A549  lung  cancer  cell  line  

RNA  was  extracted  from  A549  lung  cancer  cells  on  two  different  occasions.  After  each   extraction  the  quality  and  degradation  of  the  RNA  were  controlled  in  an  Agilent   Bioanalyzer  2100.  The  degradation  was  evaluated  by  calculating  the  RNA  integrity   number,  RIN,  which  is  performed  by  the  Agilent  software.  The  calculation  is  based  on   the  amplitude  ratio  of  the  18s  and  the  28s  peak,  that  is  given  by  the  ribosomal  RNA,  and   the  area  under  these  peaks  compared  to  the  area  under  the  base  line  and  also  the   flatness  of  the  baseline  (Schroeder  et  al,  2006).  

For  the  first  RNA  extraction  a  good  starting  material  with  little  degradation  was  

obtained,  see  figure  4.  For  this  run  I  did  not  get  a  quantity  of  RNA  or  RIN  number  but  by   comparison  to  other  graphs  I  evaluated  the  RIN  to  be  between  9  and  10.  I  also  used  a   NanoDrop  1000  instrument  to  get  the  quantitative  measurement  of  about  400  ng   RNA/µl.  

 

Figure  4:  Quality  control  of  RNA  from  the  first  RNA  extraction  in  Agilent  Bioanalyzer.  RNA  concentration   measured  to  400  ng  RNA/µl.  The  two  distinct  peaks  show  that  the  RNA  has  a  good  quality  without   degradation.  

(22)

 

Figure  5:  Quality  control  of  RNA  from  the  second  RNA  extraction  in  Agilent  Bioanalyzer.  RNA  concentration   measured  to  720  ng  RNA/µl  in  a  5x  dilution  with  RIN  is  determined  to  10.    

4.2  qPCR  serial  dilution  

Quantification  of  the  amount  of  produced  cDNA  was  done  with  qPCR.  In  each  run  a  serial   dilution  with  known  concentrations  of  PCR  fragments,  of  the  specific  gene,  were  

included  to  calculate  a  standard  curve.  The  standard  curve  showed  a  linear  behavior   with  only  small  deviations  between  the  replicates.      

Three  replicates  were  made  of  each  sample  in  the  qPCR.  

4.2.1  Gel  electrophoresis  

For  the  first  qPCR  runs  the  purity  of  the  product  was  controlled  by  gel  electrophoresis.   This  gives  the  length  of  the  amplified  fragments.  When  only  one  band  is  visible  on  the   gel  it  indicates  that  only  fragments  of  the  same  length  has  been  amplified.  In  figure  6  the   visible  band  corresponds  to  the  length  given  by  the  B2M  primers  used.  Since  only  one   band  is  visible  for  each  lane  a  pure  product  is  determined.  

 

(23)

4.3  cDNA  synthesis  in  bulk  from  RNA  

From  the  experiment  in  bulk  with  different  amount  of  RNA  as  starting  material  with   Oligo  (dT)20  as  primers  an  increasing  amount  of  cDNA  were  produced  with  increasing   amount  of  RNA  as  staring  material  see  figure  7.  For  the  samples  with  random  hexamers   as  primers  the  same  relation  could  be  seen  for  the  320  ng  and  32  ng  RNA  as  starting   material  but  the  highest  amount  of  RNA  gave  a  lower  yield.  Overall  the  samples  with   Oligo  (dT)20  as  primers  gave  a  10  times  higher  yield  then  the  samples  with  random   hexamers.  In  the  controls  with  no  primers  for  the  cDNA  synthesis  there  was  a  cDNA   product  but  a  drastic  increase  in  product  could  be  seen  when  primers  were  used.  Also  in   the  control  with  RNA  where  no  cDNA  synthesis  had  been  performed  there  were  DNA   fragments,  but  again  a  significant  difference  can  be  seen  between  this  control  and  the   samples  where  cDNA  synthesis  had  been  performed.      

 

Figure  7:  cDNA  synthesis  with  either  random  hexamers  or  Oligo  (dT)20  as  primers.  The  reactions  also  have  

different  amount  of  RNA  as  starting  material  3,2  µg,  320  ng  or  32  ng.  Controls  without  primers  in  cDNA   synthesis  and  a  RNA  sample  where  no  cDNA  synthesis  has  been  performed.  Oligo  (dT)20  primers  gives  a  

higher  product  then  random  hexamers.  Overall  a  higher  product  yield  is  seen  with  more  RNA  as  starting   material.  

To  try  to  explain  the  lower  yield  with  the  highest  amounts  of  RNA  with  random  

hexamers  the  experiment  was  repeated.  The  reactions  with  the  same  color  on  the  bars   in  figure  8  were  performed  at  the  same  time.  The  samples  with  the  3,2  µg  RNA  gave  a   varied  amount  of  cDNA  between  the  replicates  but  they  all  gave  a  lower  yield  then   expected.  The  limiting  step  in  these  reactions  is  not  the  amount  of  RNA.  Most  likely  is   that  the  reactions  are  limited  either  by  the  availability  of  enzyme  or  primers  in  the  

1,00E+00   1,00E+01   1,00E+02   1,00E+03   1,00E+04   1,00E+05   1,00E+06   1,00E+07   1,00E+08  

Hex  3,2µg   Hex  320ng   Hex  32ng   Oligo  3,2µg   Oligo  320ng   Oligo  32ng   No  primer   RNA  sample  

cDNA  synthesis  with  different  primers  and    

different  amount  of  RNA  

(24)

reaction  mixture.  This  will  be  further  discussed  in  the  discussion  part  of  the  report.  The   reactions  with  lower  amount  of  RNA  gave  a  more  even  cDNA  yield.  

 

Figure  8:  cDNA  synthesis  with  random  hexamers  as  primers  and  different  amount  of  RNA  as  starting  material,   3,2  µg,  320  ng  or  32  ng.  Bars  with  the  same  color  are  reactions  performed  at  the  same  occasion.  Almost  the   same  amount  of  cDNA  is  synthesized  with  3,2  µg  RNA  and  320  ng  RNA  indicates  that  the  reactions  are  not   limited  by  the  amount  of  RNA  for  higher  RNA  concentrations.  32  ng  RNA  as  starting  materials  gives  a  lower   yield  then  the  two  others.  

4.4  cDNA  synthesis  in  droplets  from  RNA  

 In  the  first  droplet  experiment  the  RNA  sample  and  the  cDNA  synthesis  mix  were  mixed   in  a  tube  before  being  introduced  to  the  chip,  (Mixed).  And  in  the  second  droplet  

experiment  the  RNA  sample  and  the  cDNA  synthesis  were  combined  in  a  T-­‐junction   right  before  entering  the  chip,  (T-­‐junc),  see  figure  3a  for  experimental  setup.  There  are   slightly  more  cDNA  produced  in  the  samples  conducted  in  droplets  compared  to  the   average  value  of  the  3,2  µg  RNA  with  random  hexamers  as  primers  which  were  also   used  in  the  droplet  samples,  see  figure  9.    

A  higher  cDNA  yield  can  also  be  seen  in  Mixed,  the  droplet  experiment  where  the  RNA   sample  and  the  cDNA  synthesis  mix  is  mixed  before  it  is  introduced  on  the  chip  then  the   sample  where  the  mixing  is  done  in  a  T-­‐junction,  T-­‐junc,  see  figure  3a.  This  is  probably   due  to  that  the  two  flows  will  not  be  perfectly  synchronized  in  the  setup  with  the  T-­‐ junction.  Some  droplets  will  only  contain  RNA  samples  and  some  will  only  contain  cDNA   synthesis  mix.  All  experiments  in  microfluidic  droplets  gives  a  comparable  or  slightly   higher  cDNA  yield  than  the  average  yield  in  bulk  with  the  same  RNA  concentration.    

1   10   100   1000   10000   100000   1000000  

Hex  3,2µg   Hex  320ng   Hex  32ng  

cDNA  synthesis  with  random  hexamers    

(25)

 

Figure  9:  cDNA  synthesis  in  droplets  compared  with  bulk  samples  and  controls.  The  reactions  performed  in   droplets  with  random  hexamers  as  primers  gives  a  lower  yield  then  the  reactions  performed  in  bulk  with   Oligo  (dT)20  as  primers.  The  reactions  in  droplets  gives  a  cDNA  yield  comparable  or  slightly  higher  than  the  

average  yield  in  bulk.  Also  a  significant  cDNA  product  compared  to  the  RNA  sample  where  no  cDNA  synthesis   has  been  performed.  

4.4.1  Reproducibility  of  droplet  experiment  

The  cDNA  synthesis  in  droplets,  when  the  mixing  of  the  cDNA  synthesis  mix  and  the  RNA   sample  was  conducted  on  the  chip  in  a  T-­‐junction,  see  figure  3a,  were  repeated  two   more  times  to  control  the  reproducibility  of  the  experiment.  All  experiments  gave  a   significant  product  compared  to  the  negative  control  where  no  cDNA  synthesis  was   conducted,  see  figure  10.    There  is  some  variation  in  the  cDNA  yield  from  the  different   experiments.     1   10   100   1000   10000   100000   1000000   10000000  

Drop  Mixed   Drop  T-­‐junc   Hex  3,2µg  in  

bulk   RNA  sample  

cDNA  synthesis  in  droplets    

(26)

 

Figure  10:  All  three  experiments  have  been  performed  in  the  same  way  in  droplets.  Some  difference  in  the   cDNA  produced  can  be  seen  between  the  samples.  The  controls  are  the  average  value  for  the  reaction  in  bulk   and  an  RNA  sample  where  no  cDNA  synthesis  has  been  performed.  

4.5  Cell  lysis  

When  a  good  cDNA  yield  could  be  seen  in  droplets  from  extracted  RNA  the  next  goal   would  be  to  do  a  cDNA  synthesis  from  whole  cells.    

To  lyse  cells  a  temperature  step  was  introduced.  To  see  at  which  temperature  the  cells   would  lyse.  The  cells  were  stained  with  live  and  dead  stain  green  and  red  fluorescent   respectively.  The  cells  were  stained  with  live  stain  before  the  temperature  step  so  cells   with  only  green  fluorescent  were  considered  to  be  alive.  Cells  with  both  red  and  green   fluorescent  were  considered  dead  and,  this  since  the  dead  stain,  Propidium  Iodide,  will   only  be  able  to  pass  the  cell  membrane  when  the  cell  is  dead  and  then  have  a  more   permeable  cell  membrane.  

Temperature  (°C)   Incubation  time   (min)  

Number  of  cells   Number  of  dead   cells  

Percent  of  dead   cells   25   10   234   0   0%   55   10   139   30   21.6%   60   10   70   39   55.7%   65   10   51   51   100%   70   10   109   109   100%   50   ∼  120   64   59   92.2%   -­‐  20   ∼  120   98   97   99.0%   1   10   100   1000   10000   100000   1000000  

Drop  T-­‐junc   Drop  1   Drop  2   Hex  3,2µg   RNA  sample  

Reproducibility  of  drop  experiment  

(27)

Table  2:  Percentage  of  cells  lysed  at  different  temperature  and  incubation  time.  The  numbers  of  dead  cells  are   calculated  compared  to  the  total  number  of  cells  using  a  fluorescent  microscope.  Cells  incubated  at  65°C  and   70°C  for  10  min  were  all  lysed.  

Cells  that  had  been  incubated  for  10  min  at  65°C  were  all  seen  to  be  dead,  see  table  2,  so   in  the  following  experiments  this  procedure  will  be  used  to  lyse  cells.  

4.6  cDNA  synthesis  from  whole  cells  

To  test  this  setup  the  cDNA  synthesis  was  performed  with  approximately  150  000  cells   (7500  cells/µl)  in  each  sample  instead  of  the  extracted  RNA.  The  cells  were  diluted  in   either  PBS  or  MilliQ  water.  None  of  the  samples  gave  a  response  in  the  qPCR  

quantification.    

To  see  if  the  cDNA  synthesis  was  inhibited  by  the  presence  of  cells,  3,2  µg  extracted  RNA   was  added  to  each  cell  samples.  In  this  setup  different  concentrations  of  cell  were  used   where  the  highest  concentration  was  6000  cells/µl  this  was  then  diluted  5  times  to  1200   cells/µl,  240  cells/µl  and  48  cells/µl.  

For  the  highest  concentration  of  cells  there  was  no  response  in  the  qPCR  but  for  the   samples  with  lower  cell  concentration  there  was  no  significant  inhibition  of  the  cDNA   synthesis,  see  figure  11.    

To  see  if  the  qPCR  was  inhibited  by  the  presence  of  cells  a  cDNA  sample  was  prepared   and  divided  into  different  samples  with  different  cell  concentrations.  The  highest   concentration  was  6000  cells/µl  this  was  then  diluted  5  times  to  1200  cells/µl  and  240   cells/µl.  

Again  for  the  highest  concentration  there  was  no  response  in  the  qPCR  and  for  the   middle  cell  concentration  some  inhibitory  effect  could  be  seen  in  comparisons  to  the   cDNA  sample  without  any  cells.  For  the  sample  with  low  cell  concentration  no  difference   could  be  seen,  see  figure  11.  

References

Related documents

The absorption of a substance into an organism is dependent on the administration/exposure route (via the respiratory tract, gastrointestinal tract or skin) and involves

Scaling down the drops One aspect of the flow-focusing is that the size of the droplets we can produce with a certain microsystem is strongly dependent of the constriction size..

The mean from 100x100 point within the blocks will then be dependent on in which way the geoid height function varies in the block, but the area-mean calculated by the

The plots show the uncorrected velocity fields, where (a) is an evaporating droplet placed on a 60 °C sapphire plate, and (b) shows the velocity distribution inside a freezing

The droplets passed along the acoustic focusing channel where a half wavelength acoustic standing wave field was generated, and the particles were focused to the centre line of

In this thesis, the term perceptual cues refers to the acoustic-phonetic information which the listener is able to use when perceiving a quality in speech, such as speaker age,

Figure 3.16: Flow diagram for measuring overlapping performance, we used the classier output to identify overlapping positions of cells using Dice index method and overlapping

A sample can be concentrated orders or magnitude prior to performing the analysis, leading to higher accuracy and enabling the detection of a target even if its initial