• No results found

The Impact of a Teracom Group Product From a Life Cycle Perspective

N/A
N/A
Protected

Academic year: 2021

Share "The Impact of a Teracom Group Product From a Life Cycle Perspective"

Copied!
45
0
0

Loading.... (view fulltext now)

Full text

(1)

The Impact of a Teracom Group

Product From a Life Cycle

Perspective

Jacob Södergren

(2)
(3)

Master of Science Thesis

STOCKHOLM 2013

The Impact of a Teracom Group Product

From a Life Cycle Perspective

PRESENTED AT

INDUSTRIAL ECOLOGY

ROYAL INSTITUTE OF TECHNOLOGY

Supervisor:

Anna Björklund,

Environmental Strategies Research, KTH

Sofiia Miliutenko, Environmental Strategies Research, KTH

Stefan Nyberg, Teracom Group

Examiner:

(4)

TRITA-IM 2013:01

Industrial Ecology,

(5)

Acknowledgements  

This   thesis   would   have   been   difficult   to   conduct   without   the   help   and   encouragement   from   many  people  along  the  course  of  the  study.    

 

First  of  all,  I  would  like  to  thank  Teracom  Group  for  making  this  master  thesis  possible,  and  in   particular   my   supervisor   Stefan   Nyberg   and   the   project   team   Maria   Åstrand,   Per   Alksten   and   Cristina  Klasson.  By  listening,  giving  valuable  feedback  and  suggesting  ideas  and  solutions,  they   have  been  a  tremendous  support.    

 

In  addition,  I  would  like  to  thank  the  group  of  very  helpful  co-­‐workers  at  Teracom  Group  who  in   one  way  or  another  have  helped  me  to  obtain  necessary  knowledge  and  information.  I  would   also  like  to  thank  Florian  Tremblay  at  Sagemcom  for  providing  crucial  data.  

 

I  am  also  very  grateful  to  my  supervisors  at  The  Royal  Institute  of  Technology,  Anna  Björklund   and  Sofiia  Miliutenko,  for  their  invaluable  support,  inspirational  discussions  and  patience.  A  final   thank  you  to  my  fellow  students  Gustav  Bramberg,  Anders  Nilsson  and  Viktor  Rasmanis  for  input   and  guidance  during  this  study.    

 

Stockholm,  January  2013    

Jacob  Södergren  

(6)

Abstract  

All  kinds  of  products  have  economic,  social  and  environmental  impact  throughout  their  entire   life   cycle.   Today’s   growing   need   for   electronic   devices   contributes   to   the   increasing   problem   within  these  fields.    The  aim  of  this  study  is  to  investigate  and  determine  the  impact  of  a  chosen   Teracom   Group   product   from   a   sustainability   perspective   and   to   develop   recommendations   regarding   how   to   proceed,   in   order   to   reduce   the   impact   of   products.   This   study   is   mainly   focusing  on  the  environmental  aspect  of  the  concept  of  sustainability.  A  life  cycle  assessment   (LCA)   of   a   set-­‐top   box   (STB)   is   conducted   based   on   chosen   indicators   by   using   the   software   SimaPro.  The  goal  of  the  assessment  is  to  identify  the  phases  within  the  life  cycle  with  largest   environmental  impact  and  contribute  to  Teracom  Group’s  further  sustainable  work.  

 

18  impact  categories  are  included  to  express  emissions  and  use  of  natural  resources.  The  result   clearly  shows  that  the  production  phase  has  the  largest  environmental  impact  within  categories   such   as   terrestrial   acidification,   human   toxicity,   freshwater   ecotoxicity,   marine   ecotoxicity,   urban   land   occupation   and   metal   resource   depletion.   The   use   phase   affects   the   environment   foremost   within   climate   change,   ozone   depletion,   terrestrial   ecotoxicity,   ionising   radiation,   agricultural   land   use,   natural   land   transformation   and   water   depletion.   Transports   and   the   waste  scenario  only  have  a  small  effect  on  certain  categories.  

 

The  experiences  of  this  study  are  discussed,  demonstrating  the  difficulty  in  making  an  LCA  in  the   position  of  being  at  the  company  purchasing  products,  not  at  the  company  manufacturing  them.   The  company  has  previously  not  focused  enough  on  sustainability  regarding  products.  An  LCA   performed   by   the   supplier   would   be   more   reliable   due   to   a   better   possibility   of   collecting   accurate  data.  Communication  and  cooperation  between  the  company  and  its  suppliers  are  key   solutions.   Higher   requirements   during   procurement   should   be   put   on   the   products,   including   demands  on  performed  LCAs  with  clearly  described  references  and  methods,  critically  review  by   a  third  party.  

 

Key  words:  Sustainability,  life  cycle  assessment,  set-­‐top  box    

 

(7)

Sammanfattning  

Alla  typer  av  produkter  har  under  sin  livscykel  en  inverkan  på  såväl  ekonomi  och  samhälle,  som   på   de   ekologiska   system   som   finns   omkring   oss.   Dagens   växande   behov   av   teknik   och   elektroniska  produkter  leder  till  ökade  problem  såsom  utsläpp  av  växthusgaser,  utnyttjande  av   markområden   och   konsumtion   av   energi.   En   global   förändring   av   TV-­‐teknologi   och   en   ökad   efterfrågan  på  bild-­‐  och  ljudkvalité  i  kombination  med  fler  TV-­‐kanaler,  har  lett  till  ett  behov  av   digitalboxar   världen   över.   Företaget   Teracom   Group   sänder   TV   och   radio   via   marknätet   och   erbjuder  relaterade  tjänster  och  konsumentprodukter.  

 

Målet   med   detta   arbete   är   att   undersöka   och   kartlägga   en   av   Teracom   Groups   produkters   påverkan   ur   ett   hållbarhetsperspektiv,   för   att   utifrån   denna   skapa   rekommendationer   för   hur   företaget   i   framtiden   kan   minska   sina   produkters   påverkan.   Konceptet   hållbarhet   saknar   en   vedertagen   definition   men   beskrivs   ofta   som   “utveckling   som   möter   dagens   behov   utan   att   äventyra  framtida  generationers  förmåga  att  möta  sina  behov”.  Denna  studie  fokuserar  dock  på   att  undersöka  miljöaspekten  av  hållbarhetskonceptets  tre  perspektiv.  Målet  uppnås  genom  att   utföra  en  livscykelanalys  (LCA)  av  en  specifik  produkt,  utifrån  valda  indikatorer,  med  hjälp  av  en   datorbaserad  mjukvara.  Faserna  i  livscykeln  med  störst  miljöpåverkan  identifieras  och  ligger  som   grund  för  diskussion  kring  framtida  hållbarhetsarbete  gällande  företagets  produkter.    

 

LCA:n   genomförs,   enligt   Teracom   Groups   rekommendation,   på   företagets   mest   prioriterade   digitalbox   ur   försäljningssynpunkt.   Målet   med   LCA:n   är   att   titta   på   produktens   totala   miljöpåverkan   för   att   kunna   bidra   till   Teracom   Groups   fortsatta   hållbarhetsarbete.   Mjukvaran   SimaPro  som  används  för  denna  studie  är  framtagen  av  ett  schweiziskt  företag  och  inkluderar   den  omfattande  databasen  Ecoinvent.  Med  denna  metod  skapas  en  modell  av  livscykeln  på  ett   objektivt  och  systematisk  sätt.  Denna  LCA  inkluderar  18  olika  kategorier  av  miljöpåverkan  som   beskriver  utsläpp  och  användning  av  naturresurser.    

 

Resultatet   av   LCA:n   visar   fördelningen   av   miljöpåverkan   mellan   de   olika   faserna   i   livscykeln.   Produktionsfasen   har   störst   miljöpåverkan   inom   kategorier   som   markförsurning,   humantoxicitet,   sötvatten-­‐   och   havstoxicitet,   urban   markanvändning   och   utarmning   av   metallresurser.   Användarfasen   däremot   har   stor   påverkan   på   miljön   inom   kategorier   som   klimatförändring,   ozonuttunning,   marktoxicitet,   joniserande   strålning,   jordbruksmarksanvändning,  förändring  av  naturlig  mark  och  vattenutarmning.  Transporter  och   avfallsscenariot  påverkar  emellertid  minimalt.  

 

Denna   studie   indikerar   att   Teracom   Group   tidigare   inte   har   fokuserat   tillräckligt   på   hållbarhetsfrågor  angående  företagets  produkter.  Brister  i  detta  projekt  visar  svårigheten  i  att   genomföra   en   LCA   på   ett   företag   där   tillverkning   av   produkter   inte   sker.   Resultatet   av   denna   studie  bör  enbart  användas  som  indikation  av  produktens  miljöpåverkan,  men  är  dock  ett  bra   första   steg   för   hur   produkter   i   framtiden   ska   hanteras   inom   Teracom   Group.   Högre   krav   bör   ställas  på  leverantörer,  där  genomförd  LCA,  med  tydligt  beskriven  metod  inklusive  referenser,   samt   granskad   av   extern   part,   ska   ingå.   Teracom   Group   har   dessutom   ett   ansvar   att   sammanställa  den  nödvändiga  information  angående  företagets  egen  verksamhet,  som  krävs  för   att  en  LCA  ska  kunna  genomföras  av  leverantör.    

(8)

Table  of  Contents  

1  Introduction  ...  1

 

1.1  Aim  and  objectives  ...  2

 

1.2  Scope  ...  2

 

1.3  Limitations  ...  2

 

2  Theoretical  background  ...  3

 

2.1  The  concept  of  sustainability  ...  3

 

2.1.1  Environmental  system  analysis  tools  ...  3

 

2.1.2  Environmental  product  declaration  ...  3

 

2.1.3  Social  life  cycle  assessment  ...  4

 

2.2  Introduction  of  Teracom  Group  ...  5

 

2.3  Investigated  supplier:  Sagemcom  ...  6

 

2.4  Chosen  product  for  the  life  cycle  assessment  ...  6

 

3  Methodology  ...  8

 

3.1  Literature  study  ...  8

 

3.2  Interviews  ...  8

 

3.3  The  process  of  a  life  cycle  assessment  ...  8

 

3.4  SimaPro  and  Ecoinvent  ...  9

 

3.5  Impact  categories  ...  10

 

3.6  Classification  and  characterisation  ...  10

 

3.7  Normalisation  ...  10

 

3.8  Life  cycle  interpretation  ...  11

 

4  Life  cycle  assessment  of  the  chosen  product  ...  12

 

4.1  Goal  and  scope  ...  12

 

4.1.1  Functional  unit  ...  12

 

4.1.2  System  boundaries  ...  12

 

4.1.3  Data  quality  ...  13

 

4.1.4  Assumptions  and  limitations  ...  14

 

4.2  Life  cycle  inventory  analysis  of  the  chosen  product  ...  14

 

4.2.1  Data  collection  ...  14

 

4.2.2  Flowchart  of  the  life  cycle  ...  16

 

4.3  Life  cycle  impact  assessment  of  the  chosen  product  ...  17

 

4.3.1  Impacts  by  characterisation  ...  17

 

4.3.2  Impacts  by  normalisation  ...  18

 

4.3.3  Climate  change  ...  20

 

4.3.4  Freshwater  eutrophication  ...  21

 

(9)

4.3.6  Metal  depletion  ...  24

 

5  Discussion  ...  25

 

5.1  Methodology  ...  25

 

5.2  Result  of  the  life  cycle  assessment  ...  26

 

5.3  Lack  of  the  social  perspective  ...  27

 

5.4  Further  recommendations  ...  27

 

6  Conclusions  ...  29

 

References  ...  30

 

Appendix  I  –  Data  regarding  Sagemcom  RTI90  320HD  ...  i

 

 

(10)

Abbreviations  

CBA   Cost-­‐Benefit  Analysis   CFC   Chlorofluorocarbon  

CO2  eq   Carbon  dioxide  equivalents  

GHG   Greenhouse  gas  

GWP   Global  warming  potential  

IPCC   Intergovernmental  Panel  on  Climate  Change     ISO   International  Standard  Organisation  

EIA   Environmental  Impact  Assessment   EIME     Environmental  Improvement  Made  Easy   EPD   Environmental  Product  Declaration   ERA   Ecological  Risk  Assessment  

ESAT   Environmental  System  Analysis  Tools   EU   European  Union  

FE  eq   Iron  equivalents  

GEDnet   Global  Type  III  Environmental  Product  Declarations  Network  

LCA   Life  Cycle  Assessment   LCI   Life  Cycle  Inventory  

LCIA   Life  Cycle  Impact  Assessment   MFA   Material  Flow  Analysis   MMS   Mediamätning  i  Skandinavien   P  eq   Phosphorus  equivalents  

ROHS   Restriction  of  Hazardous  Substances   SLCA   Social  life  cycle  assessment  

(11)

1  Introduction  

Today’s   growing   need   for   electronic   devices   contributes   to   the   increasing   problem   of   environmental   impact   due   to   factors   such   as   greenhouse   gas   (GHG)   emission,   use   of   natural   resources  and  a  higher  demand  for  energy,  just  to  mention  a  few.  The  life  cycle  of  a  product   often   consists   of   very   complex   systems   and   the   overall   impact   can   therefore   be   difficult   to   evaluate.  All  kinds  of  products  have  economic,  social  and  environmental  impact  throughout  the   entire  life  cycle,  from  cradle  to  grave.  The  sustainability  of  products  are  therefore  of  greatest   importance.    

 

Sustainability  is  normally  described  as  a  way  to  fulfil  today’s  needs,  without  compromising  the   needs   of   future   generations   (WWF,   2008).   Due   to   the   fact   that   companies   are   some   of   the   largest  consumers  of  the  world’s  resources,  and  competition  between  companies  is  constantly   growing,  efficient  use  of  these  resources  has  become  an  important  driving  force  (WWF,  2012).   Since   the   concept   of   sustainability   was   introduced   and   widely   spread   in   the   late   eighties,   business  strategies  have  developed  towards  not  being  limited  to  only  financial  objectives  (WWF,   2008).  

 

Due   to   global   change   of   TV-­‐technology   such   as   increased   resolution   and   sound   quality,   in   combination  with  public  demand  of  additional  TV-­‐channels,  there  was  a  need  for  the  Swedish   analogue  terrestrial  network  to  be  transformed  into  a  digital  one,  a  process  that  started  in  2005   (SVT,  2006).  To  be  able  to  convert  today’s  digital  signals  and  make  those  understandable  for  a   TV-­‐set,   a   digital   receiver   is   needed   (Boxer,   2012a).   The   countries   within   the   European   Union   (EU)   have   agreed   on   a   completed   transition   to   digital   networks   by   no   later   than   2015.   This   means  that  the  amount  of  digital  receivers  have  strongly  increased  and  will  continue  to  do  so,   adding   to   higher   energy   consumption,   among   other   sustainability   related   consequences   (Energimyndigheten,  2012).    

 

The  business  idea  of  Teracom  Group  is  to  “offer  TV  and  radio  via  terrestrial  networks  along  with  

supporting   Telecom   services”.   The   company   broadcasts   TV   and   sells   customer   product  

equipment  in  three  markets  in  the  Nordic  region.  The  sustainability  of  the  products  and  services   is  of  great  importance  since  they  symbolise  what  the  company  stands  for.  The  owner  demands   of  the  company  to  “be  at  the  forefront  regarding  financial,  social  and  environmental  impact”.  A   critical   challenge   is   to   understand   how   future   development   of   products   and   services   can   minimize  negative  effects  in  terms  of  sustainability,  and  furthermore  how  to  communicate  this   profile   to   employees,   customers,   suppliers   etc.   in   order   to   achieve   a   “sustainable”   image.   (Åstrand,  2012)  

 

(12)

1.1  Aim  and  objectives  

The  aim  of  this  study  is  to  investigate  and  determine  the  potential  effect  of  a  chosen  Teracom   Group   product   from   a   sustainability   perspective   and   to   develop   recommendations   to   the   company  regarding   how   to  proceed  in  order  to  reduce  the  impact  of  the  products  purchased   and  sold.  

 

The  following  objectives  are  created  to  fulfil  the  aim  and  form  the  base  for  the  discussion:   -­‐ Explain   the   concept   of   sustainability,   including   environmental   system   analysis   tools  

(ESAT)  and  a  standardised  product  declaration  

-­‐ Perform  a  life  cycle  assessment  (LCA)  of  a  specific  product  based  on  chosen  indicators  by   using  an  LCA  software  

-­‐ Identify  the  phases  within  the  life  cycle  that  contribute  the  most  (according  to  chosen   impact  categories)  to  the  environmental  impact  

-­‐ Discuss  how  to  proceed  with  the  products’  future  sustainability  work    

1.2  Scope  

This  report  highlights  the  most  significant,  overall  environmental  impact  during  each  phase  of  a   product’s  life  cycle,  rather  than  point  out  detailed  issues.  To  be  able  to  perform  the  LCA  itself,   several  boundaries  have  been  set,  which  can  be  found  under  chapter  4  Life  cycle  assessment  of   chosen  product.    

 

1.3  Limitations  

The  main  limitation  for  this  project  is  the  relatively  short  period  of  time  in  which  to  conduct  the   study.   Since   only   20   weeks   are   available   to   plan,   perform,   compile   and   present   this   investigation,  not  all  of  the  aspects  regarding  the  aim  are  taken  into  account.    

 

This  study  is  mainly  focusing  on,  but  not  totally  limited  to  the  environmental  aspect  of  the  three   sustainability   perspectives;   financial,   social   and   environmental.   Studies   of   the   social   impact   would  require  specific  information  such  as  working  conditions  etc.,  which  would  be  difficult  to   obtain   from   the   Teracom   Group   external   suppliers   and   their   sub   suppliers.   Previous   studies   regarding  social  sustainability  have  only  been  made  to  a  small  extent,  leading  to  lack  of  scientific   research   in   the   area   (Ekener-­‐Petersen   &   Finnveden,   2012).   The   fact   that   the   concept   of   sustainable   development   is   very   complex   (and   therefore   contains   some   uncertainties),   in   combination   with   lack   of   previous   studies   (which   means   absence   of   data),   might   affect   the   result  of  this  study  and  not  give  complete  answers.  This  issue  is  handled  in  the  discussion.      

Some  information  is  difficult  to  obtain  due  to  the  fact  that  Teracom  Group  buys  products  from   suppliers   (with   their   own   sub   suppliers),   have   a   fairly   new   distribution   partner,   works   with   different  retailers  etc.  In  addition  to  this,  the  needed  information  is  often  confidential,  making  it   even   more   difficult   to   collect   and   use.   In   cases   where   reliable   data   cannot   be   obtained,   assumptions  and  official  statistics  are  used.  Some  of  the  obtained  information  is  however  still  of   confidential   nature   and   cannot   be   presented   in   this   report.   This   data   is   put   in   a   confidential   document,  which  will  not  be  attached  to  this  report.    

 

Another  limiting  factor  is  the  lack  of  a  specific  budget  for  this  study.  This  means  that  for  instance   customer   surveys   giving   information   on   for   instance   customer   TV   habits   cannot   be   done.   An   additional  limiting  factor  is  the  lack  of  knowledge  on  how  customers  handle  their  products  and   what  the  actual  disposal  scenario  looks  like.      

(13)

2  Theoretical  background    

This   chapter   gives   the   necessary   background   information   regarding   the   expression   “sustainability”,  the  investigated  company,  its  supplier  and  the  chosen  product.  

 

2.1  The  concept  of  sustainability  

The  concept  of  sustainable  development  has  been  widely  spread  since  the  middle  of  the  1980’s.   The   definition   is   constantly   being   discussed   and   there   is   still   not   an   accepted,   concrete   definition.   Sustainability   was   early   described   as   “development   that   meets   the   needs   of   the   present   without   compromising   the   ability   of   future   generations   to   meet   their   own   needs”   according  to  the  report  “Our  Common  Future”  by  the  World  Commission  on  Environment  and   Development   (1987).   This   means   that   sustainable   development   is   a   way   to   reach   human   wellbeing,  including  a  positive  economic  development  without  affecting  ecological  systems.  For   products,   sustainability   is   all   about   minimizing   environmental   impacts   during   their   total   life   cycle,  and  simultaneously  decreasing  cost  and  impact  on  human  health  and  other  social  related   issues.  (Hållbarhetsguiden,  2012)    

 

Today  several  labels  for  environmental  friendly  products  exist.  The  Ecolabel  Index  is  according  to   the  organisation  itself,  the  world’s  largest  directory  of  Eco  labels,  keeping  an  eye  on  over  400   different  environmental  related  labels  in  almost  200  countries.  (Ecolabel  Index,  2012)    

2.1.1  Environmental  system  analysis  tools  

When   investigating   and   evaluating   a   product’s   total   environmental   impact,   a   variety   of   tools   with   diverse   characteristics,   can   be   used.   A   few   worth   mentioning,   with   focus   on   physical   factors,   are   Environmental   Impact   Assessment   (EIA),   Ecological   Risk   Assessment   (ERA)   and   Material   Flow   Analysis   (MFA).   To   investigate   financial   related   impacts,   a   Cost-­‐Benefit   Analysis   (CBA)   focusing   on   the   economic   aspects   is   an   option.   An   LCA   on   the   other   hand   aims   at   investigating   the   environmental   impact   related   to   every   phase   within   the   life   of   a   product   –   from   cradle   to   grave.   The   assessment   normally   includes   aspects   such   as   resource   extraction,   development,   production,   use   and   eventually   disposal   of   the   product.   Transports   needed   between  different  stages  should  also  be  included  to  give  a  comprehensive  picture.  (Baumann  &   Tillman,  2004)  Further  information  regarding  LCAs  can  be  found  in  chapter  3  Methodology.      

2.1.2  Environmental  product  declaration  

The  international  Environmental  Product  Declaration  (EPD)  system  uses  LCA  as  a  tool  in  order  to   allow  companies  to  present  product  and  service  information  regarding  environmental  impact,  in   an  objective  way.  Thanks  to  standardised  methods,  EPDs  are  comparable  for  similar  products  in   terms   of   environmental   impact.   When   finalised,   the   EPD   is   viewed   and   approved   by   external   certifying  organisation,  and  then  published  into  the  international  system.  This  gives  EPDs  high   quality   and   credibility   making   them   useful   for   sustainable   procurement   of   products.   The   features  within  the  declaration  include  the  following  areas;  objectivity,  neutrality,  comparability,   summary,  quality  assurance  and  environmental  impact.  (Miljöstyrningsrådet,  2012)  

 

The   Swedish   Environmental   Management   Council   is   responsible   for   the   system   to   work   according   to   the   International   Standard   Organisation   (ISO)   standard   14025   (EPD,   2012).   The   information  presented  in  the  declaration  includes  all  relevant  environmental  impact  categories.   There  are  also  single-­‐issue  EPDs  focusing  on  a  certain  impact  category  in  hope  of  simplifying  the   result  and  better  fit  a  certain  situation.  A  good  example  of  this  is  a  climate  change  EPD  with  the   purpose   to   express   the   environmental   impact   as   carbon   dioxide   equivalents   (CO2   eq).   (EPD,  

(14)

An   EPD   is   an   effective   tool   for   communication   of   sustainable   development   and   is   created   by   carrying  out  several  steps  (EPD,  2012c):  

-­‐ Product   category   rules   must   be   generated   to   facilitate   global   communication   and   comparability.    

-­‐ Collection  of  data  is  needed  to  perform  an  LCA  according  to  the  ISO  standard  14040.     -­‐ Compilation  of  other  important  environmental  information,  which  also  can  be  a  part  of  

the  EPD.    

-­‐ Verification   of   the   collection   and   handling   of   information   and   the   EPD   itself,   leading   towards  reliability  and  trustworthiness.    

-­‐ The  approved  EPD  is  registered  and  published  in  the  system.      

The   approved   EPD   should   include   the   following   compiled   information   (Baumann   &   Tillman,   2004):  

-­‐ A  description  of  the  company  and  the  declared  product  

-­‐ Environmental  performance  declaration  including  the  result  of  the  LCA,  which  should  be   divided  into  production  phase  (cradle-­‐to-­‐gate)  and  use  phase  (gate-­‐to-­‐grave)  

-­‐ Additional  information  such  as  recycling  scenario  and  if  environmental,  health  or  safety   requirements  are  fulfilled  

-­‐ Approved  certificate  including  validity  time  and  registration  number    

The   International   EPD   system   is   a   member   of   the   Global   Type   III   Environmental   Product   Declarations   Network   (GEDnet),   an   international   non-­‐profit   organisation   aiming   at   simplifying   the  ability  to  exchange  environmental  information  worldwide.  (GEDnet,  2012)  

2.1.3  Social  life  cycle  assessment  

Even  if  the  social  aspect  of  the  sustainability  concept  is  as  important  as  the  other  perspectives,  a   social   life   cycle   assessment   (SLCA)   is   for   fairly   obvious   reasons   more   difficult   to   conduct.   Quantitative   indicators   within   an   environmental   based   LCA,   such   as   emissions,   can   easily   be   calculated  with  the  right  kind  of  input  data.  The  way  a  factory  might  affect  its  workers  or  the   near   society   is   far   more   challenging   to   examine.   A   subjective   analysis   becomes   necessary   in   most  cases  to  understand  the  meaning  of  a  certain  impact  indicator.  Salary  is  a  good  example,   which  can  even  be  measured;  but  the  social  impact  depends  on  that  specific  salary  in  relation  to   the   particular   situation   of   the   company,   society   or   location.   (Ekener-­‐Petersen   &   Finnveden,   2012)  

 

Due   to   aforementioned   factors,   an   SLCA   is   often   even   more   time   consuming,   and   therefore   more  expensive  to  conduct  than  a  normal  LCA.  In  addition,  the  assessment  is  normally  far  more   subjective.  The  fact  that  boundaries  to  other  systems  are  harder  to  differentiate  makes  an  SLCA   dependent   on   expert   knowledge   within   the   field.   However,   when   the   SLCA   is   performed,   the   result   will   hopefully   give   a   good   indication   on   social   aspects   such   as   if   the   life   cycle   follows   human  rights,  have  deficiencies  in  health  and  safety  for  employees  and  the  work  conditions,  at   any  phase  include  child  labour  etc.  (United  Nations  Environmental  Programme,  2009)  

 

(15)

future  SCLA  would  benefit  from  accurate  data  from  the  correct  sector,  or  even  more  preferable   from  the  precise  site.  (Ekener-­‐Petersen  &  Finnveden,  2012)  With  this  in  mind,  it  would  not  make   sense  to  spend  time  and  effort  on  including  social  aspects  in  this  LCA.      

 

2.2  Introduction  of  Teracom  Group  

Teracom  Group  is  a  Swedish  company  owned  by  the  state  with  business  in  Sweden,  Denmark   and  Finland.  The  company  provides  technical  communication  and  network  solutions  within  the   area  of  radio  and  TV  broadcasting,  pay-­‐TV,  transmission  capacity  for  data  connections  as  well  as   co-­‐location   and   service.   Swedish   Teracom   AB   and   Danish   Teracom   A/S   own   and   run   the   terrestrial   network   in   Sweden   and   Denmark.   (Teracom,   2012a)   Teracom   Group   consists   furthermore  of  Boxer  TV-­‐access  AB,  which  operates  and  sells  pay-­‐TV  program  packages  in  the   Swedish  digital  terrestrial  network  along  with  broadband  and  telephone  services,  Boxer  TV  A/S   which   offers   digital   pay-­‐TV   in   Denmark   for   the   terrestrial   network   and   finally   Digi   TV   Plus   Oy   which  runs  similar  activities  in  the  Finnish  digital  terrestrial  network.  (Teracom,  2102b)  

 

The  Teracom  Group  sustainability  work  has  become  very  important  over  recent  years  due  to  a   strong  development  of  the  company  to  be  competitive,  but  also  as  a  consequence  of  pressure   from   the   owner   as   well   as   international   institutions   such   as   the   EU.   The   sustainable   development  has  been  divided  into,  and  communicated  as,  three  areas  –  society,  environment   and   economy.   The   work   was   initiated   2008   by   identification   of   the   company’s   stakeholders   including   owner,   clients,   employees,   suppliers,   partners,   media,   agencies   and   the   public.   All   areas  of  the  company’s  activities,  such  as  plants,  grids  and  offices,  are  continuously  evaluated  to   examine  environmental  impacts  so  that  these  can  be  improved.  The  largest  impact  arises  from   use   of   fuel   and   energy.   GHG   emissions   occurring   from   these   energy   sources   are   officially   presented   as   CO2  eq   to   facilitate   communication   within   and   outside   the   company.   One   of  

Teracom  Group’s  environmental  goals  quantifies  a  reduction  of  GHG  emissions  by  3%  annually.   This   should   be   done   by   efficiency   of   operations,   where   renewable   energy   and   greener   technologies  are  examples.  (Teracom  Group,  2012)  

 

In  the  process  of  purchasing  STBs,  Boxer  puts  great  emphasis  in  choosing  suppliers,  which  have   clear  strategies  regarding  sustainability.  In  addition,  the  suppliers  are  chosen  depending  on  their   ability   to   supply   products   offering   functionalities   according   to   Boxer’s   requirements   and   customers’  demand.  Teracom  Group’s  environmental  manager  conducts  an  investigation  of  the   suppliers   before   purchasing,   to   ensure   that   Teracom   Group’s   sustainability   policy   is   fulfilled.   Boxer  reserves  the  right  to  control  the  suppliers  by  demanding  the  latest  sustainability  report  or   other   document   showing   their   sustainable   development.   In   addition   to   this,   suppliers   must   explain  how  they  work  to  meet  the  ten  principles  regarding  human  rights,  labour,  environment   and   anti-­‐corruption   within   the   United   Nations   (UN)   Global   Compact.   Boxer   furthermore   demands   their   suppliers   to   share   valid   ISO14001   certificate   or   other   description   of   environmental   management   and   valid   ISO9001   certificate   or   other   description   of   quality   management.   Today,   the   STBs   are   purchased   from   three   suppliers   –   Humax,   Pace   and   Sagemcom.  (Jimyr,  2012)  

 

During  the  latest  12  months,  Boxer  sold  more  than  49  000  Set-­‐top  boxes  (STB)  (excluding  ones   sold  by  retailers).  To  illustrate  this  tremendous  amount,  these  would  equal,  if  put  on  each  other,   the  same  height  as  approximately  20  Kaknästornet  (Teracom’s  radio  and  TV  tower  in  Stockholm,   with  a  height  of  155  m).  (Ekman,  2012)  

(16)

2.3  Investigated  supplier:  Sagemcom  

Sagemcom  is  a  French  high  technology  company  producing,  among   many  other  products,  the   STB  investigated  in  this  study.  The  company  claims  having  a  clear  policy  regarding  sustainable   development   including   areas   such   as   sites   environment,   ethical   approach   and   occupational   health  and  safety.  Sagemcom  constantly  tries  to  minimize  the  impact  of  their  products  by  for   instance  using  recyclable  materials.  “Eco  Design”  is  used  when  developing  products  and  means,   according  to  Sagemcom,  to  make  choices  that  minimise  the  effects  on  the  environment  during   products’  life  cycles.  In  other  words,  Sagemcom  puts  great  effort  in  producing  better  products,   focusing   on   minimizing   use   of   raw   materials   and   energy   consumption.   The   company   further   states   that  LCA   is   used   as   a   tool   to   investigate   how   the   products   affect   the   environment.   However,  these  reports  are  not  yet  officially  published  for  other  companies,  such  as  Teracom   Group.  (Sagemcom,  2012a)    

 

When   conducting   LCAs,   Sagemcom   uses   a   simplified   life   cycle   assessment   tool   created   by   companies  within  the  electronics  industry.  The  tool,  called  Environmental  Improvement  Made   Easy  (EIME),  includes  a  database,  which  covers  statistical  data  of  environmental  impact,  such  as   water   pollution,   GHG   emissions   etc.   (Sagemcom,   2012b)   EIME   also   includes   functions   for   Eco   Design  and  Environmental  Labelling.  The  software  is  created  to  simplify  use  for  different  kinds   companies.  (Bureau  Veritas  CODDE,  2012)  

 

Regarding   disposal   and   waste   management,   Sagemcom   complies   with   the   European   Directive   2002/96/EC  (Official  Journal  of  the  European  Union,  2003),  which  means  that  the  company  is   responsible  for  the  recycling  of  all  electric  and  electronic  products.  The  company  furthermore   invites   their   customers   to   refurbish   the   products   so   that   they   can   be   reused.   This   means   functional  test,  cosmetic  reparation,  new  packaging  etc.  To  minimize  the  environmental  impact   from   packaging   the   products,   Sagemcom   follows   the   European   Directive   94/62/EC   (Official   Journal  of  the  European  Union,  1994)  demanding  exclusion  of  heavy  metals,  minimizing  use  of   raw  materials  and  clarifying  composition  to  ease  recycling.  (Sagemcom  2012c)  

 

2.4  Chosen  product  for  the  life  cycle  assessment  

Teracom  Group  suggested  performing  an  LCA  of  the  company’s  most  prioritised  STB.  The  chosen   product  for  this  study  is  thus  Sagemcom  RTI90  320HD  (figure  1)  –  a  STB  with  a  hard  drive  and   two   TV   tuners   which   makes   it   possible   to   record   and   save   two   different   programs   while   watching   a   third.   (Boxer,   2012b)   The   box   is   delivered   with   a   power   cable,   remote   control   (including  batteries),  an  HDMI  cable  and  a  manual  (Sagemcom,  2012d).  

 

   

(17)

The   STB   is   manufactured   in   Sagemcom’s   factory   situated   in   Tunisia.   Most   of   the   components   (approximately   95%)   are   imported   from   sub   suppliers   located   in   different   areas   of   China.   (Tremblay,  2012a)  Teracom  Group’s  distribution  partner  Electra,  who  in  turn  uses  the  services  of   the   Swedish   postal   company   Posten,   delivers   the   products   to   the   Swedish   Boxer   customers.   (Ekman,  2012)  

 

CE-­‐labelling   certifies   that   the   product   is   approved   by   EU   directives   regarding   radio   and   telecommunication   (1999/5/EC),   safety   (2006/95/EC),   electromagnetic   compatibility   (2004/108/EC)   and   Eco   design   (ErP   2009/125/EC).   This   means   that   the   STB   is   constructed   to   ensure   the   safety   and   health   of   the   user   as   well   as   minimize   the   environmental   impact.   (Sagemcom,  2012d)  The  product  is  furthermore  manufactured  with  recyclable  materials  such  as   certain   plastics,   making   the   disposal   phase   highly   important.   According   to   the   European   Directive   WEEE   (Official   Journal   of   the   European   Union,   2003),   the   retailer   must   collect   used   boxes  for  disposal  without  additional  charges.  The  STB  including  supplied  batteries  are  free  from   hazardous   materials   such   as   lead,   mercury   and   cadmium,   in   accordance   to   the   Restriction   of   Hazardous  Substances  (ROHS)  directive.  (Sagemcom,  2012d)  

 

After  the  product’s  lifetime,  the  customer  is  expected  to  leave  it  at  one  of  the  many  recycling   centres.   Teracom   Group   pays   a   fee   to   the   electronic   recycling   company   El-­‐Kretsen,   which   is   responsible   for   taking   care   of   the   product,  together   with   other   kind   of   electric   and   electronic   waste.  The  STBs  are  sorted  and  handled  together  as  “various  electronics”  together  with  other   similar   products   such   as   kitchen   equipment,   TVs,   cell   phones,   computers   etc.   This   group   accounts  for  more  than  half  of  all  the  electronics  collected  and  most  of  the  products  are  treated   with  the  same  techniques.  Products  containing  PCB  have  to  be  dismantled  before  metal  parts   can  be  recycled.  The  metals  such  as  copper,  aluminium  and  iron  are  melted  and  can  be  used  as   raw  materials  for  new  products.  Plastics  and  glass  can  be  recycled  as  well,  and  the  rest  of  the   materials  such  as  fabric,  wood  and  non-­‐recyclable  plastics  are  incinerated  where  the  energy  is   used  for  heat  or  electricity.  The  batteries  in  the  remote  control  are  also  recycled,  normally  by   melting  of  the  metals  and  distillation  of  the  chemicals.  (El-­‐Kretsen,  2012)  

(18)

3  Methodology  

This  chapter  describes  the  methodology  used  when  performing  this  project  and  covers  literature   study,  interviews,  and  the  process  of  LCA  and  software  used.  

 

3.1  Literature  study  

To  obtain   deep   background   information   regarding   the   topic,   a   wide   literature   study   has   been   performed   exploring   former   scientific   research   within   the   area   of   electronic   devices   and   sustainability   with   focus   on   environmental   aspects   including   life   cycle   assessment.   This   information  was  in  the  form  of  annual  reports,  Webpages,  articles  etc.  As  far  as  possible,  current   literature  was  used.    

 

3.2  Interviews  

To  understand  activities,  different  processes  and  to  obtain  certain  data,  interviews  have  been   executed   with   various   people   within   the   company.   A   small   group   of   people   including   a   supervisor  has  continuously  discussed  and  evaluated  the  on-­‐going  work.  

 

Information   has   also   been   collected   through   cooperation   with   suppliers   and   other  companies   such   as   Teracom   Group’s  logistics   partner   Electra   and   the   Swedish   postal   office   Posten.   To   collect  the  correct  kind  of  data  regarding  the  chosen  STB,  interviews  have  been  performed  with   Sagemcom’s  Environmental  Expert.  

 

3.3  The  process  of  a  life  cycle  assessment    

The  ISO  has  created  several  standards  and  guidelines  to  perform  an  LCA  where  the  main  one  is   called  ISO14040  and  describes  the  tool  as  follows  (Baumann  &  Tillman,  2004):  

 

“LCA   is   a   technique   for   assessing   the   environmental   aspects   and   potential   impacts   associated   with  a  product  by:  

 

• compiling  an  inventory  of  relevant  inputs  and  outputs  of  a  product  system;  

• evaluating   the   potential   environmental   impacts   associated   with   those   inputs   and  

outputs;  

• interpreting   the   results   of   the   inventory   analysis   and   impact   assessment   phases   in  

relation  to  the  objectives  of  the  study”      

The  standard  further  states  that  use  of  resources,  human  health,  and  ecological  effects  are  the   three  main  impact  areas  that  need  to  be  taken  into  account  when  performing  an  LCA.  (Baumann   &  Tillman,  2004)  

 

The  LCA  should  preferably  be  divided  into  three  different  phases  (figure  2)  where  the  first  one   consists  of  goal  and  scope  definition.  In  this  step  the  product  is  chosen  and  the  purpose  of  the   study  is  described.  The  first  step  should  also  clarify  how  the  result  will  be  used,  the  reason  for   this  and  to  whom  and  how  the  result  will  be  communicated.  To  be  able  to  perform  the  LCA,  it  is   also   important   to   create   a   more   specific   question.   The   function   of   a   product   system,   the   “functional  unit”,  needs  to  be  determined  in  quantitative  terms,  so  that  it  can  be  connected  to   the  environmental  impact  it  has.  There  are  several  factors  that  need  to  be  set  as  a  first  step;   system   boundaries,   description   of   the   included   processes,   environmental   impacts   (such   as   resource  use,  global  warming,  acidification,  eutrophication  etc.)  and  the  level  of  details  in  the   collected  data.  (Baumann  &  Tillman,  2004)  

(19)

The  second  step  of  an  LCA  consists  of  making  a  life  cycle  inventory  analysis  (LCI),  which  means  a   model   of   the   product   process   showing   the   flows   of   mass   and   energy   that   will   have   environmental  impact.  The  model  can  be  created  as  a  flowchart  showing  all  steps  of  the  system   including  production,  transportation,  use  and  disposal,  and  the  interaction  between  them.  The   inventory   analysis   should   additionally   include   collection   of   data   as   input   and   output   in   the   process,  such  as  raw  materials,  energy  sources,  products,  waste  and  emissions.  The  final  part  in   this  second  step  should  be  a  calculation  of  used  resources  and  created  emission  per  functional   unit.  (Baumann  &  Tillman,  2004)  

 

The  inventory  analysis  is  followed  by  a  life  cycle  impact  assessment  (LCIA)  with  the  purpose  of   describing  the  potential  environmental  impact  as  effects  of  the  emission  and  the  resource  use,   presented  in  the  previous  step.  This  means  to  sort  out  and  classify  the  parameters  related  to   their   environmental   impact.   The   impact   is   then   further   grouped   by   character,   meaning   for   instance  that  all  kinds  of  GHG  emissions  will  contribute  to  global  warming  and  can  therefore  be   seen  as  one  indicator.  Aggregating  impact  is  normally  not  possible  without  adding  values  and   qualitative  perspectives  formed  by  humans.  (Baumann  &  Tillman,  2004)  

 

   

Figure  2.  Relationship  between  the  steps  in  an  LCA  and  interpretation  of  these.  

 

Since  technical  systems  described  in  the  inventory  analysis  do  not  exist  without  involvement  of   human  beings  and  social  systems,  it  is  necessary  to  consider  and  take  those  into  account  as  well.   The   same   applies   for   environmental   systems,   due   to   the   fact   that   natural   resources   are   used   and  emissions  created  and  released  back  to  nature,  within  the  technical  system.  Together,  these   three  systems  form  the  base  of  the  LCA.  (Baumann  &  Tillman,  2004)  

 

3.4  SimaPro  and  Ecoinvent  

The  software  used  for  conducting  this  study  is  a  Swiss,  computer  based  LCA  tool  called  SimaPro,   which  gives  the  opportunity  to  create  models  of  the  life  cycle  in  a  transparent,  systematic  way.   The   software   is   integrated   with   a   comprehensive   database   called   Ecoinvent   including   a   wide   international  scope.  (PRé,  2012)  The  database  with  more  than  4,000  datasets  in  various  market   categories,   such   as   metals   processing,   packaging   materials,   information   and   communication   technology   and   electronics,   is   based   on   real   industrial   data,   created   by   LCA   consultants   in   corporation  with  large  international  research  institutes.  (Swiss  Centre  for  Life  Cycle  Inventories,   2012)  

 

Goal  and  scope   definition

Impact   assessment

Inventory  

(20)

3.5  Impact  categories  

The  impact  categories  for  this  study  were  obtained  by  using  an  LCA  methodology  called  ReCiPe   2008.   The   method   was   chosen   to   express   emissions   and   use   of   natural   resources   as   impact   category   indicators   at   midpoint   level.   This   can   be   described   as   direct   environmental   impacts   such   as   climate   change,   ecotoxicity   and   acidification,   in   contrast   to   endpoint   level   where   damage   to   human   health   and   ecosystems   are   described.   The   method   consists   of   18   impact   categories,  which  can  be  found  in  table  1.  (ReCiPe,  2012)  

 

Table  1.  ReCiPe  2008  Impact  categories.  

 

Impact  category   Unit  

Climate  change   kg  CO2  eq  

Ozone  depletion   kg  CFC-­‐11  eq   Human  toxicity   kg  1,4-­‐DB  eq   Photochemical  oxidant  formation   kg  NMVOC   Particulate  matter  formation   kg  PM10  eq  

Ionising  radiation   kg  U235  eq  

Terrestrial  acidification   kg  SO2  eq  

Freshwater  eutrophication   kg  P  eq   Marine  eutrophication   kg  N  eq   Terrestrial  ecotoxicity   kg  1,4-­‐DB  eq   Freshwater  ecotoxicity   kg  1,4-­‐DB  eq   Marine  ecotoxicity   kg  1,4-­‐DB  eq   Agricultural  land  occupation   m2a  

Urban  land  occupation   m2a  

Natural  land  transformation   m2  

Water  depletion   m3  

Metal  depletion   kg  Fe  eq   Fossil  depletion   kg  oil  eq    

Only  a  few  of  the  impact  categories  are  further  prioritised  for  this  study,  due  to  the  fact  that  the   aim  of  this  LCA  is  to  use  the  result  as  an  indicator  on  potential  environmental  impacts  for  further   discussion,  making  a  complete  analysis  unnecessary.    

 

3.6  Classification  and  characterisation  

Classification  means  that  certain  environmental  loads  within  the  LCI  are  assigned  to  the  relevant   impact  category,  which  requires  knowledge  on  how  different  resources  and  emissions  affect  the   environment.   Characterisation   on   the   other   hand   means   calculating   the   sizes   of   the   environmental   impacts   by   creating   a   characterisation   factor   for   each   of   them.   (Baumann   &   Tillman,   2004)   The   advantage   of   using   ReCiPe   as   methodology   for   impact   assessment   is   that   classification  and  characterisation  are  already  included.    

 

3.7  Normalisation  

(21)

Normalisation   is   used   in   this   study,   in   relation   to   a   European   average   from   2000,   to   obtain   a   picture  of  the  impact  categories  with  the  largest  effects  on  the  environment.      

 

3.8  Life  cycle  interpretation  

Within  the  final  phase  of  the  LCA,  the  goal  and  scope  definition  is  combined  with  the  results  of   the   LCI   and   the   LCIA   to   make   possible   the   interpretation   of   the   results.   Based   on   the   result,   conclusions  regarding  the  investigated  product’s  environmental  impact  can  be  drawn.  The  result   is  normally  illustrated  by  different  kinds  of  diagrams.    

       

(22)

4  Life  cycle  assessment  of  the  chosen  product    

This   chapter   contains   the   usual   steps   within   an   LCA   according   to   the   aforementioned   methodology  of  the  tool,  including  goal  and  scope  definition,  life  cycle  inventory  analysis  and   life  cycle  impact  assessment  including  interpretation.      

 

4.1  Goal  and  scope  

The  goal  of  this  LCA  is  to  explore  the  STB’s  overall  potential  environmental  impact  in  order  to   contribute   to   Teracom   Group’s   further   sustainable   work.   The   result   will   be   used   to   communicate   this   development   within   the   company   and   form   a   base   for   further   recommendations  regarding  future  purchase  of  products.    

4.1.1  Functional  unit  

The   chosen   product,   which   also   represents   the   functional   unit   for   the   LCA,   is   as   previously   mentioned   one   (1)   STB   from   Sagemcom   with   model   number   RTI90   320HD.   The   product   itself   including  supplied  accessories  such  as  cables,  remote  control  with  batteries,  the  manual  and  the   package  are  all  included.  The  total  weight  of  the  packages  delivered  to  final  customers  is  1.776   kg.   The   lifetime   of   the   product   is   assumed   to   be   5   years.   Additional   information   regarding   functionalities  and  power  consumption  can  be  found  in  chapter  2.4  Chosen  product  for  the  life   cycle  assessment,  and  in  appendix  I  –  Data  regarding  Sagemcom  RTI90  320HD.  

4.1.2  System  boundaries  

The  life  cycle  of  the  chosen  products  begins  with  resource  extraction  from  nature,  to  obtain  all   materials  needed  for  the  production.  The  resource  extraction  can  be  described  as  the  cradle  of   the  product  and  will  only  occur  at  the  very  beginning.  The  life  cycle  ends  when  the  materials  are   returned   to   nature   as   emissions   or   end   up   at   landfills.   Since   emissions   will   occur   during   the   whole  life  cycle,  it  is  harder  to  specify  the  grave.  The  system  boundaries  are  further  illustrated  in   a  flowchart  (figure  6)  under  4.2.2  Flowchart  of  the  life  cycle.  

 

Different  geographical  system  boundaries  will  affect  different  phases  of  the  product’s  life  cycle.   The   resource   extraction   will   most   likely   occur   all   over   the   world   making   boundaries   hard   to   predict.   Most   of   the   components   manufacturer   are   however   limited   to   China.   The   assembly   process  of  those  components  takes  place  in  Tunisia  and  the  products  are  sold  only  within  the   Swedish  market.  The  transports  between  these  locations  affect  globally.  

 

The   time   horizon   stretches   from   use   of   raw   materials   (involving   resource   extraction)   to   the   waste  scenario,  including  production  and  use.  The  data  and  the  situation  will  represent  current   time  meaning  that  future  development  and  changes  will  not  be  considered.  

 

The   technical   system   consists   of   all   the   human   processes,   from   when   natural   resources   are   extracted  until  these  are  released  back  as  emissions  to  nature  or  as  waste  to  landfill.  The  LCA  is   limited   by   investigating   only   the   resource   extraction   and   assembly   process   of   the   production   phase.  This  involves  imported  components  including  all  materials  and  energy  (electricity),  water   and  nitrogen  used  during  the  assembly  of  these.  Due  to  difficulties  in  examining  sub  suppliers,   the  processes  of  components  manufacturing  and  systems  linked  with  these  are  not  included.    

(23)

factory  in  Tunisia.  The  final  products  are  then  transported  to  France  by  ship  (blue  line  in  figure   3)   over   the   Mediterranean   Sea.     Trucks   are   used   to   transport   the   products   through   Europe   (green  line  in  figure  3)  to  Boxer’s  Swedish  warehouse  located  in  Kalmar.  (Tremblay,  2012b)  The   products  are  distributed  to  the  local  postal  offices  by  truck  (left  hand  green  circle  in  figure  3).   Additional  transports  such  as  from  the  postal  offices  to  final  customer  and  to  recycling  centres   etc.  will  not  be  included  due  to  the  relative  short  distances  and  lack  of  statistics  regarding  these   kinds   of   transports.   Furthermore,   transports   of   disposed   products   to   recycling   plants,   landfills   etc.  was  excluded  for  the  same  reason.  Distances  used  for  the  LCA  can  be  found  in  appendix  I.      

 

   

Figure  3.  Transport  chain  of  the  STB.      

The  study  is  further  limited  to  the  Swedish  market,  including  statistics  and  other  data  regarding   households,  energy  mix,  waste  scenario  etc.  The  examined  STB  is  sold  not  only  by  Boxer,  but   also  by  other  retailers,  both  in  shops  and  online.  These  will  not  be  included  in  the  LCA.  Capital   goods  such  as  factory,  office  buildings  and  machinery  used  to  produce  the  product  will  not  be   included  in  this  LCA  since  these  types  of  tools  last  for,  and  produce  far  more  than  1  STB.  The   personnel  and  their  potential  impact  on  the  life  cycle  for  all  involved  companies  and  factories   will  not  be  taken  into  account.  Other  related  services  such  as  maintenance  and  reparation  of  the   products  will  also  be  excluded.  

4.1.3  Data  quality  

References

Related documents

The purpose of LCIA is to assess a product system’s 1  life cycle inventory analysis (LCI) results to better understand their environmental significance.. The LCIA phase

Teracom Boxer Group 4 (17) Delårsrapport januari –mars 2014 Resultatutveckling –.. Teracom Boxer Group

Moderbolagets intäkter för de första nio månaderna 2015 uppgick till 116 (81) MSEK, avseende försäljning till koncernbolag.. Rörelseresultatet uppgick till -83 (-124) MSEK,

Rörelseresultatet förbättrades med 5 MSEK, jämfört med första kvartalet föregående år, och uppgick till 148 (143) MSEK.. Det ökade resultatet kom

Det justerade rörelseresultatet (kvarvarande verksamhet exklusive jämförelsestörande poster, för vidare information se not 2, sid 15) försämrades med 2 MSEK, jämfört med

Under perioden har avtal tecknats med TV4, gällande ett flerårigt avtal för utsändning av Fri-tv och ett för regionalisering av betal-tv under 2020. Även ett avtal gällande fortsatt

Under perioden har avtal tecknats med TV4, gällande ett flerårigt avtal för utsändning av Fri-tv och ett för regionalisering av betal-tv under 2020. Även ett avtal gällande fortsatt

As earlier mentioned the goal of this thesis has been to investigate the possibility of using a clustering algorithm to find a structure of collaboration groups, which is simply