• No results found

Introduction to Event Generators 2

N/A
N/A
Protected

Academic year: 2022

Share "Introduction to Event Generators 2"

Copied!
41
0
0

Loading.... (view fulltext now)

Full text

(1)

Introduction to Event Generators 2

Torbj¨ orn Sj¨ ostrand

Theoretical Particle Physics

Department of Astronomy and Theoretical Physics Lund University

olvegatan 14A, SE-223 62 Lund, Sweden

CTEQ/MCnet School, DESY, 10 July 2016

(2)

The Parton-Shower Approach

2 → n = (2 → 2) ⊕ ISR ⊕ FSR

FSR = Final-State Radiation = timelike shower Qi2∼ m2 > 0 decreasing

ISR = Initial-State Radiation = spacelike showers Qi2∼ −m2> 0 increasing

(3)

Why “time”like and “space”like?

Consider four-momentum conservation in a branching a → b c p⊥a= 0 ⇒ p⊥c = −p⊥b

p+= E + pL ⇒ p+a= p+b+ p+c

p= E − pL ⇒ p−a= p−b+ p−c

Define p+b = z p+a, p+c = (1 − z) p+a Use p+p= E2− pL2 = m2+ p2

m2a+ p2⊥a p+a

= m2b+ p⊥b2 z p+a

+ m2c+ p2⊥c (1 − z) p+a

⇒ ma2= mb2+ p2

z +m2c+ p2 1 − z = m2b

z + m2c

1 − z + p2 z(1 − z) Final-state shower: mb= mc = 0 ⇒ ma2= p

2

z(1−z) > 0 ⇒ timelike Initial-state shower: ma = mc = 0 ⇒ m2b= −1−zp2 < 0 ⇒ spacelike

Torbj¨orn Sj¨ostrand Event Generators 2 slide 3/33

(4)

Showers and cross sections

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability:

the cross section is not directly affected

However, more complicated than that

PDF evolution ≈ showers ⇒ enters in convoluted cross section, e.g. for 2 → 2 processes

σ = Z Z Z

dx1dx2dˆt fi(x1, Q2) fj(x2, Q2)dˆσij

dˆt Shower affects event shape

E.g. start from 2-jet event with p⊥1= p⊥2= 100 GeV. ISR gives third jet, plus recoil to existing two, so p⊥1 = 110 GeV, p⊥2 = 90 GeV, p⊥1 = 20 GeV:

inclusive p⊥jet spectrum goes up hardest p⊥jet spectrum goes up

two-jets with both jets above some p⊥min comes down three-jet rate goes up

(5)

Showers and cross sections

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability:

the cross section is not directly affected However, more complicated than that

PDF evolution ≈ showers ⇒ enters in convoluted cross section, e.g. for 2 → 2 processes

σ = Z Z Z

dx1dx2dˆt fi(x1, Q2) fj(x2, Q2)dˆσij

dˆt Shower affects event shape

E.g. start from 2-jet event with p⊥1= p⊥2= 100 GeV.

ISR gives third jet, plus recoil to existing two, so p⊥1 = 110 GeV, p⊥2 = 90 GeV, p⊥1 = 20 GeV:

inclusive p⊥jet spectrum goes up hardest p⊥jet spectrum goes up

two-jets with both jets above some p⊥min comes down three-jet rate goes up

Torbj¨orn Sj¨ostrand Event Generators 2 slide 4/33

(6)

Doublecounting

Do not doublecount: 2 → 2 = most virtual = shortest distance (detailed handling of borders ⇒ match & merge)

(7)

Final-state radiation

Standard process e+e→ qqg by two Feynman diagrams:

xi = 2Ei

Ecm x1+x2+x3= 2

ME

σ0

=

αs 43 (1−xx12+x22

1)(1−x2)

dx

1

dx

2

Convenient (but arbitrary) subdivision to “split” radiation: 1

(1 − x1)(1 − x2)

(1 − x1) + (1 − x2)

x3 = 1

(1 − x2)x3 + 1 (1 − x1)x3

Torbj¨orn Sj¨ostrand Event Generators 2 slide 6/33

(8)

Final-state radiation

Standard process e+e→ qqg by two Feynman diagrams:

xi = 2Ei

Ecm x1+x2+x3= 2

ME

σ0

=

αs 43 (1−xx12+x22

1)(1−x2)

dx

1

dx

2

Convenient (but arbitrary) subdivision to “split” radiation:

1

(1 − x1)(1 − x2)

(1 − x1) + (1 − x2)

x3 = 1

(1 − x2)x3 + 1 (1 − x1)x3

(9)

From matrix elements to parton showers

Rewrite for x2 → 1, i.e. q–g collinear limit:

1 − x2 = m213 Ecm2 = Q2

Ecm2 ⇒ dx2= dQ2 Ecm2 define z as fraction q retains

in branching q → qg

x1 ≈ z ⇒ dx1 ≈ dz x3 ≈ 1 − z

⇒ dP =dσ σ0

= αs

dx2 (1 − x2)

4 3

x22+ x12

(1 − x1) dx1 ≈ αs

dQ2 Q2

4 3

1 + z2 1 − z dz In limit x1 → 1 same result, but for q → qg.

dQ2/Q2 = dm2/m2: “mass (or collinear) singularity”

dz/(1 − z) = dω/ω “soft singularity”

Torbj¨orn Sj¨ostrand Event Generators 2 slide 7/33

(10)

The DGLAP equations

Generalizes to

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc = αs

dQ2

Q2 Pa→bc(z) dz Pq→qg = 4

3 1 + z2

1 − z

Pg→gg = 3(1 − z(1 − z))2 z(1 − z) Pg→qq = nf

2 (z2+ (1 − z)2) (nf = no. of quark flavours)

Universality: any matrix element reduces to DGLAP in collinear limit. e.g. dσ(H0 → qqg)

dσ(H0 → qq) = dσ(Z0→ qqg)

dσ(Z0 → qq) in collinear limit

(11)

The DGLAP equations

Generalizes to

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi)

dPa→bc = αs

dQ2

Q2 Pa→bc(z) dz Pq→qg = 4

3 1 + z2

1 − z

Pg→gg = 3(1 − z(1 − z))2 z(1 − z) Pg→qq = nf

2 (z2+ (1 − z)2) (nf = no. of quark flavours) Universality: any matrix element reduces to DGLAP in collinear limit.

e.g. dσ(H0 → qqg)

dσ(H0 → qq) = dσ(Z0→ qqg)

dσ(Z0→ qq) in collinear limit

Torbj¨orn Sj¨ostrand Event Generators 2 slide 8/33

(12)

The iterative structure

Generalizes to many consecutive emissions if strongly ordered, Q12 Q22 Q32. . . (≈ time-ordered).

To cover “all” of phase space use DGLAP in whole region Q12> Q22 > Q32. . ..

Iteration gives final-state parton showers:

Need soft/collinear cuts to stay away from nonperturbative physics.

Details model-dependent, but around 1 GeV scale.

(13)

The Sudakov form factor – 1

Time evolution, conservation of total probability:

P(no emission) = 1 − P(emission).

Multiplicativeness, with Ti = (i /n)T , 0 ≤ i ≤ n:

Pno(0 ≤ t < T ) = lim

n→∞

n−1

Y

i =0

Pno(Ti ≤ t < Ti +1)

= lim

n→∞

n−1

Y

i =0

(1 − Pem(Ti ≤ t < Ti +1))

= exp − lim

n→∞

n−1

X

i =0

Pem(Ti ≤ t < Ti +1)

!

= exp



− Z T

0

dPem(t) dt dt



=⇒ dPfirst(T ) = dPem(T )exp



− Z T

0

dPem(t) dt dt



cf. radioactive decay in lecture 1.

Torbj¨orn Sj¨ostrand Event Generators 2 slide 10/33

(14)

The Sudakov form factor – 2

Expanded, with Q ∼ 1/t (Heisenberg) dPa→bc = αs

2π dQ2

Q2 Pa→bc(z) dz

× exp

−X

b,c

Z Qmax2 Q2

dQ02 Q02

Z αs

2πPa→bc(z0) dz0

where the exponent is (one definition of) the Sudakov form factor A given parton can only branch once, i.e. if it did not already do so Note thatP

b,c

R R dPa→bc ≡ 1 ⇒ convenient for Monte Carlo (≡ 1 if extended over whole phase space, else possibly nothing happens before you reach Q0 ≈ 1 GeV).

(15)

The Sudakov form factor – 3

Sudakov regulates singularity for first emission . . .

. . . but in limit of repeated soft emissions q → qg (but no g → gg) one obtains the same inclusive Q emission spectrum as for ME, i.e. divergent ME spectrum

⇐⇒ infinite number of PS emissions

More complicated in reality:

energy-momentum conservation effects big since αs big, so hard emissions frequent

g → gg branchings leads to accelerated multiplication of partons

Torbj¨orn Sj¨ostrand Event Generators 2 slide 12/33

(16)

The ordering variable

In the evolution with

dPa→bc = αs

2π dQ2

Q2 Pa→bc(z) dz

Q2 orders the emissions (memory).

If Q2= m2 is one possible evolution variable then Q02= f (z)Q2 is also allowed, since

d(Q02, z) d(Q2, z)

=

∂Q02

∂Q2

∂Q02

∂z ∂z

∂Q2

∂z

∂z

=

f (z) f0(z)Q2

0 1

= f (z)

⇒ dPa→bc = αs

f (z)dQ2

f (z)Q2 Pa→bc(z) dz = αs

2π dQ02

Q02 Pa→bc(z) dz Q02= Ea2θa→bc2 ≈ m2/(z(1 − z)); angular-ordered shower Q02= p2 ≈ m2z(1 − z); transverse-momentum-ordered

(17)

Coherence

QED: Chudakov effect (mid-fifties)

QCD: colour coherence for soft gluon emission

solved by • requiringemission angles to be decreasing or • requiringtransverse momenta to be decreasing

Torbj¨orn Sj¨ostrand Event Generators 2 slide 14/33

(18)

Coherence

QED: Chudakov effect (mid-fifties)

QCD: colour coherence for soft gluon emission

solved by • requiringemission angles to be decreasing or • requiringtransverse momenta to be decreasing

(19)

Ordering variables in the LEP/Tevatron era

Torbj¨orn Sj¨ostrand Event Generators 2 slide 15/33

(20)

Quark vs. gluon jets

Pg→gg

Pq→qg ≈ Nc

CF = 3 4/3 = 9

4 ≈ 2

⇒ gluon jets are softer and broader than quark ones (also helped by hadronization models, lecture 4).

(GeV/c) Jet PT

50 100 200 300 1000

chN〈

5 10 15 20 25

= 7 TeV s pp

Data |y| < 1 Data 1 < |y| < 2 Gluon Jets (Pythia Tune Z2) Quark Jets (Pythia Tune Z2)

L dt = 36 pb-1

CMS

(GeV/c) Jet PT

50 100 200 300 1000

2Rδ〈

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

= 7 TeV s pp

Data |y| < 1 Data 1 < |y| < 2 Gluon Jets (Pythia Tune Z2) Quark Jets (Pythia Tune Z2)

L dt = 36 pb-1

CMS

Note transition g jets → q jets for increasing p .

(21)

Heavy flavours: the dead cone

Matrix element for e+e→ qqg for small θ13qqg

σqq

∝ x12+ x22

(1 − x1) (1 − x2) ≈ dω ω

213 θ132 is modified for heavy quark Q:

qqg

σqq

∝ dω ω

132 θ213

 θ132 θ213+ m21/E12

2

= dω ω

θ213213132 + m21/E12)2 so “dead cone” for θ13< m1/E1

For charm and bottom lagely filled in by their decay products.

Torbj¨orn Sj¨ostrand Event Generators 2 slide 17/33

(22)

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

fi(x , Q2) = number density of partons i at momentum fraction x and probing scale Q2.

Linguistics (example):

F2(x , Q2) = X

i

ei2xfi(x , Q2) structure function parton distributions

(23)

PDF evolution

Initial conditions at small Q02 unknown: nonperturbative.

Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) dfb(x , Q2)

d(ln Q2) =X

a

Z 1 x

dz

z fa(y , Q2) αs

2πPa→bc

 z = x

y



DGLAP already introduced for (final-state) showers:

dPa→bc = αs

2π dQ2

Q2 Pa→bc(z) dz Same equation, but different context:

dPa→bc is probability for the individual parton to branch; while dfb(x , Q2) describes how the ensemble of partons evolve by the branchings of individual partons as above.

Torbj¨orn Sj¨ostrand Event Generators 2 slide 19/33

(24)

PDF evolution

Initial conditions at small Q02 unknown: nonperturbative.

Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) dfb(x , Q2)

d(ln Q2) =X

a

Z 1 x

dz

z fa(y , Q2) αs

2πPa→bc

 z = x

y



DGLAP already introduced for (final-state) showers:

dPa→bc = αs

2π dQ2

Q2 Pa→bc(z) dz Same equation, but different context:

dPa→bc is probability for the individual parton to branch; while dfb(x , Q2) describes how the ensemble of partons evolve by the branchings of individual partons as above.

(25)

Initial-State Shower Basics

• Parton cascades in p are continuously born and recombined.

• Structure at Q is resolved at a time t ∼ 1/Q before collision.

• A hard scattering at Q2 probes fluctuations up to that scale.

• A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:

Torbj¨orn Sj¨ostrand Event Generators 2 slide 20/33

(26)

Initial-State Shower Basics

• Parton cascades in p are continuously born and recombined.

• Structure at Q is resolved at a time t ∼ 1/Q before collision.

• A hard scattering at Q2 probes fluctuations up to that scale.

• A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:

(27)

Forwards vs. backwards evolution

Event generation could be addressed by forwards evolution:

pick a complete partonic set at low Q0 and evolve, consider collisions at different Q2 and pick by σ of those.

Inefficient:

1 have to evolve and check for all potential collisions, but 99.9. . . % inert

2 impossible (or at least very complicated) to steer the production, e.g. of a narrow resonance (Higgs)

Backwards evolution is viable and ∼equivalent alternative:

start at hard interaction and trace what happened “before”

Torbj¨orn Sj¨ostrand Event Generators 2 slide 21/33

(28)

Backwards evolution master formula

Monte Carlo approach, based on conditional probability : recast dfb(x , Q2)

dt =X

a

Z 1

x

dz

z fa(x0, Q2) αs

2πPa→bc(z) with t = ln(Q22) andz = x /x0 to

dPb= dfb

fb = |dt|X

a

Z

dz x0fa(x0, t) xfb(x , t)

αs

2πPa→bc(z) then solve for decreasing t, i.e. backwards in time,

starting at high Q2 and moving towards lower, with Sudakov form factor exp(−R dPb).

Extra factor x0fa/xfb relative to final-state equations.

(29)

Coherence in spacelike showers

with Q2= −m2= spacelike virtuality kinematics only:

Q32> z1Q12, Q52> z3Q32, . . . i.e. Qi2 need not even be ordered

coherence of leading collinear singularities:

Q52> Q32> Q12, i.e. Q2 ordered

coherence of leading soft singularities (more messy):

E3θ4> E1θ2, i.e. z1θ4> θ2

z  1: E1θ2≈ p⊥22 ≈ Q32, E3θ4≈ p⊥42 ≈ Q52 i.e. reduces to Q2 ordering as above z ≈ 1: θ4> θ2, i.e. angular ordering of soft gluons

=⇒ reduced phase space

Torbj¨orn Sj¨ostrand Event Generators 2 slide 23/33

(30)

Evolution procedures

DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

evolution towards larger Q2and (implicitly) towards smaller x BFKL: Balitsky–Fadin–Kuraev–Lipatov

evolution towards smaller x (with small, unordered Q2) CCFM: Ciafaloni–Catani–Fiorani–Marchesini

interpolation of DGLAP and BFKL GLR: Gribov–Levin–Ryskin

nonlinear equation in dense-packing (saturation) region,

(31)

Did we reach BFKL regime?

Study events with ≥ 2 jets as a function of their y separation;

cos(π − ∆φ) = 1 is back-to-back jets, i.e. little extra radiation.

9

y

0 2 4 6 8

〉)φ - πcos(〈

0 0.2 0.4 0.6 0.8 1

DATA PYTHIA 6 Z2 PYTHIA 8 4C HERWIG++ 2.5 POWHEG+PYTHIA 6 POWHEG+PYTHIA 8

CMS 41 pb-1 (7 TeV)

> 35 GeV, |y| < 4.7 PT

Mueller-Navelet dijets

y

0 2 4 6 8

〉)φ - πcos(〈

0 0.2 0.4 0.6 0.8 1

DATA SHERPA 1.4 NLL BFKL HEJ+ARIADNE

CMS 41 pb-1 (7 TeV)

> 35 GeV, |y| < 4.7 PT

Mueller-Navelet dijets

y

0 2 4 6 8

))φ - πcos(2(〈

0 0.2 0.4 0.6 0.8 1

DATA PYTHIA 6 Z2 PYTHIA 8 4C HERWIG++ 2.5 POWHEG+PYTHIA 6 POWHEG+PYTHIA 8

CMS 41 pb-1 (7 TeV)

> 35 GeV, |y| < 4.7 PT

Mueller-Navelet dijets

y

0 2 4 6 8

))φ - πcos(2(〈

0 0.2 0.4 0.6 0.8 1

DATA SHERPA 1.4 NLL BFKL HEJ+ARIADNE

CMS 41 pb-1 (7 TeV)

> 35 GeV, |y| < 4.7 PT

Mueller-Navelet dijets

y

0 2 4 6 8

))φ - πcos(3(〈

0 0.2 0.4 0.6 0.8

1 DATA

PYTHIA 6 Z2 PYTHIA 8 4C HERWIG++ 2.5 POWHEG+PYTHIA 6 POWHEG+PYTHIA 8

CMS 41 pb-1 (7 TeV)

> 35 GeV, |y| < 4.7 PT

Mueller-Navelet dijets

y

0 2 4 6 8

))φ - πcos(3(〈

0 0.2 0.4 0.6 0.8

1 DATA

SHERPA 1.4 NLL BFKL HEJ+ARIADNE

CMS 41 pb-1 (7 TeV)

> 35 GeV, |y| < 4.7 PT

Mueller-Navelet dijets

Figure 2: Left: Average hcos(n(p Df))i(n = 1, 2, 3) as a function of Dy compared to LL DGLAP MC generators. In addition, the predictions of the NLO generatorPOWHEGinterfaced with the LL DGLAP generatorsPYTHIA6 andPYTHIA8 are shown. Right: Comparison of the data to the MC generatorSHERPAwith parton matrix elements matched to a LL DGLAP parton shower, to the LL BFKL inspired generatorHEJwith hadronisation byARIADNE, and to analytical NLL BFKL calculations at the parton level (4.0 < Dy < 9.4).

Analytic BFKL calculations describe data for ∆y > 4, but HEJ BFKL-inspired generator overshoots effect, and standard DGLAP Herwig++ almost spot on.

No strong indications for BFKL/CCFM behaviour onset so far!

Torbj¨orn Sj¨ostrand Event Generators 2 slide 25/33

(32)

Initial- vs. final-state showers

Both controlled by same evolution equations dPa→bc = αs

2π dQ2

Q2 Pa→bc(z) dz · (Sudakov)

but Final-state showers:

Q2 timelike (∼ m2)

decreasing E , m2, θ both daughters m2 ≥ 0 physics relatively simple

⇒ “minor” variations: Q2, shower vs. dipole, . . .

Initial-state showers: Q2 spacelike (≈ −m2)

decreasing E , increasing Q2, θ one daughter m2 ≥ 0, one m2 < 0 physics more complicated

⇒ more formalisms:

DGLAP, BFKL, CCFM, GLR, . . .

(33)

Initial- vs. final-state showers

Both controlled by same evolution equations dPa→bc = αs

2π dQ2

Q2 Pa→bc(z) dz · (Sudakov) but

Final-state showers:

Q2 timelike (∼ m2)

decreasing E , m2, θ both daughters m2 ≥ 0 physics relatively simple

⇒ “minor” variations:

Q2, shower vs. dipole, . . .

Initial-state showers:

Q2 spacelike (≈ −m2)

decreasing E , increasing Q2, θ one daughter m2 ≥ 0, one m2 < 0 physics more complicated

⇒ more formalisms:

DGLAP, BFKL, CCFM, GLR, . . .

Torbj¨orn Sj¨ostrand Event Generators 2 slide 26/33

(34)

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (∼ colour dipoles)

ISR+FSR add coherently in regions of colour flow and destructively else in “normal” shower by azimuthal anisotropies automatic in dipole (by proper boosts)

(35)

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (∼ colour dipoles)

ISR+FSR add coherently in regions of colour flow and destructively else in “normal” shower by azimuthal anisotropies automatic in dipole (by proper boosts)

Torbj¨orn Sj¨ostrand Event Generators 2 slide 27/33

(36)

Coherence tests

Current-day generators for pseudorapidity of third jet:

and past incoherent:

Coherence tests – 1

old normal showers with/without ' reweighting:

3

: pseudorapidity of third jet

↵: angle of third jet around second jet

Torbj¨orn Sj¨ostrand Event Generators 2 slide 28/33

(37)

The dipole picture – 1

1 → 2 branching = replace m = 0 parton by pair with m > 0.

Breaks energy–momentum conservation.

Herwig angular-ordered shower: post-facto rescaling machinery.

Alternative: dipole picture (first Ariadne, now everybody else).

2 → 3 parton branching, or 1 → 2 colour dipole branching.

Can be viewed as radiator a → bc with recoiler r .

Torbj¨orn Sj¨ostrand Event Generators 2 slide 29/33

(38)

The dipole picture – 2

Ariadne main splitting expressions for final-state radiation:

dPqq→qqg = αs

4 3

x12+ x22

(1 − x1)(1 − x2)dx1dx2 dPqg→qgg = αs

2π 3 2

x12+ x23

(1 − x1)(1 − x2)dx1dx2 dPgg→ggg = αs

2π 3 2

x13+ x23

(1 − x1)(1 − x2)dx1dx2

does not define angular orientation.

The Catani–Seymour dipole is primarily a kinematics recipe how to map 2 partons ar ↔ 3 partons bcr0 for both initial and final state:

pa = pb+ pc− y 1 − ypr0

pr = 1

1 − ypr0

y = pbpc

pbpc+ pbpr0+ pcpr0

(39)

Some shower programs

Herwig angular-ordered shower (QTilde) p-ordered CS dipoles (Dipoles)

PYTHIA p-ordered dipoles (TimeShower, SpaceShower) VINCIAantennae (plugin)

DIREdipoles (plugin)

Sherpa p-ordered CS dipoles (CSSHOWER++) DIRE dipoles

Ariadne first dipole parton shower program

DIPSY evolution and collision of dipoles in transverse space Deductor improved handling of colour, partitioned dipoles,

all final partons share recoil, q2/E evolution variable HEJ (High Energy Jets) BFKL-inspired description of

well-separated multijets, with approximate matrix elements and virtual corrections . . .

Torbj¨orn Sj¨ostrand Event Generators 2 slide 31/33

(40)

VINCIA: an Interleaved Antennae shower

Markovian process: no memory of path to reach current state.

Based on antenna factorization of amplitudes and phase space.

Smooth ordering fills whole phase space.

Step-by-step reweighting to new matrix elements:

Z → Zj → Zjj → Zjjj (also Sudakov), e.g.

W = |MZj|2 P

iai|MZ|2i Replaces PYTHIA normal showers;

recent release.

A Result

Predictions made with publicly available VINCIA2.0.01 (vincia.hepforge.org) + PYTHIA8

+ MADGRAPH4 CMS data

Phys. Lett. B 722 (2013) 238 no MECs

MECsO(a1s) MECsO(a2s) MECsO(a3s)

10 2 10 1 1

CMS, Df(Z, J1),ps=7 TeV 1 sds df

0 0.5 1 1.5 2 2.5 3

0.6 0.8 1 1.2 1.4

Df(Z, J1)[rad]

MC/Data

Shower only

$&

% c c

(41)

DIRE: a Dipole Resummation shower

Joint Sherpa/PYTHIA development, but separate implementations, means technically well tested.

“Midpoint between dipole and parton shower”,

dipole with emitter & spectator, but not quite CS ones:

unified initial–initial, initial–final, final–initial, final–final.

Soft term of kernels in all dipole types is less singular

1

1 − z → 1 − z (1 − z)2+ p2/M2

The midpoint between dipole and parton showers

SherpaMC

101

102

103

104

105

106

107

108 ATLAS data

Phys.Rev.Lett. 106 (2011) 172002 Dire

0.4 0.5 0.6 0.7 0.8 0.9 1.0

109 108 107 106 105 104 103 102 101 1

101Dijet azimuthal decorrelations

Df [rad/p]

1/sds/dDf[p/rad]

110<pmax?/GeV<160 0.6

0.81 1.2 1.4

?

MC/Data

160<pmax?/GeV<210 0.6

0.81 1.21.4

?

MC/Data

210<pmax?/GeV<260 0.60.81

1.2

1.4 ?

MC/Data

260<pmax?/GeV<310 0.6

0.81 1.2 1.4

?

MC/Data

310<pmax?/GeV<400 0.60.81

1.2

1.4 ?

MC/Data

400<pmax?/GeV<500 0.6

0.81 1.2 1.4

?

MC/Data

500<pmax?/GeV<600 0.6

0.81 1.21.4

?

MC/Data

600<pmax?/GeV<800 0.6

0.81 1.2 1.4

?

MC/Data

pmax?/GeV>800

0.5 0.6 0.7 0.8 0.9 1.0

0.6 0.81 1.21.4

?

Df [rad/p]

MC/Data

Torbj¨orn Sj¨ostrand Event Generators 2 slide 33/33 14

References

Related documents

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

Av tabellen framgår att det behövs utförlig information om de projekt som genomförs vid instituten. Då Tillväxtanalys ska föreslå en metod som kan visa hur institutens verksamhet

While firms that receive Almi loans often are extremely small, they have borrowed money with the intent to grow the firm, which should ensure that these firm have growth ambitions even

Effekter av statliga lån: en kunskapslucka Målet med studien som presenteras i Tillväxtanalys WP 2018:02 Take it to the (Public) Bank: The Efficiency of Public Bank Loans to

6 In order to apply for research infrastructure grants, this infrastructure should be included in the A1 thematic area “Infrastructure for research based on individual level

This chapter covers related work in the topics of linguistic diversity, processes of language change, computational model- ing of language change, units of genealogical

United Nations, Convention on the Rights of Persons with Disabilities, 13 December 2006 United Nations, International Covenant on Civil and Political Rights, 16 December 1966

Pursuant to Article 4(1) of the General Data Protection Regulation (“GDPR”) machines have no right to data protection as it establishes that “personal data means any