• No results found

Shocks to fish production: Identification, trends, and consequences

N/A
N/A
Protected

Academic year: 2022

Share "Shocks to fish production: Identification, trends, and consequences"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

http://www.diva-portal.org

This is the published version of a paper published in Global Environmental Change.

Citation for the original published paper (version of record):

Gepharta, J A., Deutsch, L., Pacea, M L., Troell, M., Seekell, D. (2017) Shocks to fish production: Identification, trends, and consequences.

Global Environmental Change, 42: 24-32 https://doi.org/10.1016/j.gloenvcha.2016.11.003

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:

http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-132511

(2)

Shocks to fish production: Identi fication, trends, and consequences

Jessica A. Gephart

a,

*, Lisa Deutsch

b

, Michael L. Pace

a

, Max Troell

b,c

, David A. Seekell

d,e,f

aDepartmentofEnvironmentalSciences,UniversityofVirginia,Charlottesville,VA,UnitedStates

bStockholmResilienceCentre,StockholmUniversity,Stockholm,Sweden

cBeijerInstituteforEcologicalEconomics,RoyalSwedishAcademyofSciences,Stockholm,Sweden

dDepartmentofEcologyandEnvironmentalScience,UmeåUniversity,Umeå,Sweden

eClimateImpactsResearchCentre,UmeåUniversity,Abisko,Sweden

fArcticResearchCentre,UmeåUniversity,Umeå,Sweden

ARTICLE INFO

Articlehistory:

Received22July2016

Receivedinrevisedform28October2016 Accepted14November2016

Availableonline25November2016

Keywords:

Fisheries Foodsecurity Foodsystem Resilience Shocks Trade

ABSTRACT

Suddendisruptions,orshocks,tofoodproductioncanadverselyimpactaccesstoandtradeoffood commodities.Seafoodisthemosttradedfoodcommodityandisgloballyimportanttohumannutrition.

The seafoodproduction andtrade system is exposed toavarietyof disruptionsincluding fishery collapses, natural disasters,oil spills, policychanges, andaquaculture diseaseoutbreaks, aquafeed resourceaccessandpricespikes.Thepatternsandtrendsoftheseshockstofisheriesandaquacultureare poorlycharacterizedandthislimitstheabilitytogeneralizeorpredictresponsestopolitical,economic, andenvironmentalchanges.Weappliedastatisticalshockdetectionapproachtohistoricfisheriesand aquaculturedatatoidentifyshocksovertheperiod1976–2011.Acomplementarycasestudyapproach wasusedtoidentifypossiblekeysocialandpoliticaldynamicsrelatedtotheseshocks.Thelackofatrend inthefrequencyormagnitudeoftheidentifiedshocksandtherangeofidentifiedcausessuggestshocks are a common feature of these systems which occur due to a variety, and often multiple and simultaneous,causes.ShocksoccurredmostfrequentlyintheCaribbeanandCentralAmerica,theMiddle EastandNorthAfrica,andSouthAmerica,whilethelargestmagnitudeshocksoccurredinAsia,Europe, and Africa.Shocksalso occurredmorefrequently inaquaculture systemsthanincapture systems, particularlyinrecentyears.Inresponsetoshocks,countriestendtoincreaseimportsandexperience decreasesinsupply.Thespecificcombinationofchangesintradeandsupplyarecontextspecific,whichis highlightedthroughfourcasestudies.Historicalexamplesofshocksconsideredinthisstudycaninform policyforrespondingtoshocksandidentifypotentialrisksandopportunitiestobuildresilienceinthe globalfoodsystem.

ã2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Suddenandunexpectedchanges,orshocks,infoodproduction anddistributionsystemscanlimitaccesstofoodand adversely impactlocalnutritionandfoodsecurity.Sucheventscaninitiatea cascadeofeffects throughtheinterlinkedsocial-ecologicalfood system.Theabilitytorespondandadapttosuchdisruptionswhile undergoing change so as to still retain essentially the same function,structure,identity,andfeedbacksdescribesthesystem’s resilience(Walkeretal.,2004).Foodsystemswithlowresilience havelimitedresponsesandcapacityforadaptationtodisruptions throughmechanismsliketrade,alternativefoodsources,backup

distribution, or emergency supplies, causing food shortages of varyingdegreesofintensityandduration(Schipanskietal.,2016).

Even when food production shortages are temporary, periods where essential nutrientsare lacking canadverselyimpact the health of vulnerable populations such as pregnant women, children,andtheill(Blocketal.,2004).Forexample,thedrought intheHornofAfricain2011contributedtothefoodinsecurityand malnutritionofover11millionpeople,withoneinthreechildren sufferingfromfoodshortages,widespreaddecreasesinfarmerand agribusiness worker incomes, and increased unemployment (UNEP,2011).Incomeandassetlossandunemploymentthrough- out the food production chain have lasting impacts for poor families and perpetuate poverty traps (Cuny and Hill, 1999).

Therefore,characterizingthenatureandfrequencyofdisruptions, or shocks, to food systems is important to understanding the factorscontributingtoglobalfoodsecurity.Ideally,thisinsightcan

*Correspondenceto:NationalSocio-EnvironmentalSynthesisCenter,1ParkPl Suite300,Annapolis,MD21401,UnitedStates.

E-mailaddress:jgephart@sesync.org(J.A. Gephart).

http://dx.doi.org/10.1016/j.gloenvcha.2016.11.003

0959-3780/ã2016TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Global Environmental Change

j o u r n a lh o m e p ag e :w w w . e l s e vi e r . c o m / l o c a t e / g l o en v c h a

(3)

beleveragedtopreventormitigatetheeffectsoffutureshocksand buildfoodsystemresilience.

Shockstofoodproductioncanlimitlocalaccesstofood,butcan alsopropagatethroughtheinternationaltradenetwork,impacting pricesandavailabilityglobally.Thedynamicsofthistypeofshock propagationhaverecentlybeenexploredthroughnetworkmodels (Gephartetal.,2016;Tameaetal.,2016;Marchandetal.,2016).The 2008graincrisisprovidesanexampleofashockspreadingthrough thetradenetwork(Pumaetal.,2015;Brend’Amouretal.,2016).

Duringthisevent,grainpricesspikedduetoincreaseddemandfor biofuels, higher oil prices, decreasing grain stocks, and the weakenedUSdollar(Headey,2011).RisingwheatpricesledIndia, thesecondlargestriceproducer,tobanexportsofnon-Basmati rice in 2007, which subsequently led other rice exporting countries, including China, Vietnam, and Egypt, to introduce exportbans(Christiaensen,2009).Somemajorimporters,includ- ingthe Philippines,responded by purchasing additionalrice at increasingprices.Hoardingthenfurtherdroveuptheglobalprice ofrice(Christiaensen,2009).Bytheendofthecrisis,theWorld Bankreportedover130millionpeopleweredrivenintopoverty andtheFAOestimatedthatanadditional75millionpeoplebecame malnourished(Headey,2011).Thiscaseillustratesthepotentialfor multiplestressors(e.g.increasingbiofueldemandandoilprices, changesingrainstockpolicies,andfinancialcrises)tocauseshocks whichpropagateonlargespatialscales,andalsoillustrateshow different sectors are increasingly interconnected (Homer-Dixon et al., 2015). A greater proportion of food is being traded internationally between more countries than ever before, and this increasesthepotential forshocks tolocalfoodsystems to propagateintoglobalcrises(D’Odoricoetal.,2014;Brend’Amour etal.,2016).

While droughts and the 2008 grain crisis illustrate the consequencesofshockstoagriculturalproductionsystems,shocks in fisheries systems are poorlycharacterized becausetemporal analyses havetendedtofocus onlong-termtrendsrather than suddendropsandtheirresultingimpacts.However,theeffectof shocksisrelevanttoseafoodproductionbecauseseafoodisamong the most highly traded food commodities and is impacted by multiple potential shocks including fishery collapses, natural disasters, oil spills, policy changes, and aquaculture disease outbreaks(GephartandPace,2015).Further,seafoodisthesource of almost 20% of animal protein consumed globally and an essential source of micronutrients in many coastal developing nations (FAO, 2014; Beveridge et al., 2013). As a result, it is importanttoidentifyhistoricalcasesofshockstoseafoodsystems toassesstheircausesandimpactsontradeanddomesticseafood supply.

Thereareavarietyfactorsthatcouldcontributetoeithermore or fewer shocks over time or in particular regions or systems (Table1).Increasingexploitation,intensificationandconnectivity of aquaculture, and natural or environmental disasters could contribute to more shocks while improved capture fishery managementorinfrastructure,proactiveavoidancemeasures,or stocks collapsing prior tothe study period couldcontribute to fewershocks(Table 1).Otherfactorscouldcontributetoeither

moreorfewershocksdependingontheparticularcase,suchasthe increasingconnectivityoftheglobalmarket(whichcouldincrease pressureonfisheriesorprovideabuffer)orincreasedstockdata availability (which could allow for increased intensification or improvedmanagement).Climatechangealsoservesasabackdrop to these factors, by potentially making fishery systems more susceptibletoshocks,bydrivingaredistributionofmarinecatches, and by causing more frequent extreme weather disruptions (Cheungetal.,2013;IPCC,2014;Gattusoetal.,2015).Apattern inhistoricalshockswouldidentifypotentialvulnerabilitiesinthe seafoodproductionsystem.Thiscreatesopportunitiestomanage measurablerisksandsupportstheneedtocreatebufferstohedge against shocks arising from true uncertainty in these complex systems—i.e.fromunknowneventsimpossibletopredict(Sumaila, 1998;Laucketal.,1998).Further,patternsintheimpactofshocks ontradeandsupplyinformwhetherandwhenaregionalshock will have distant impacts through international trade or may impactlocalhumannutrition.

While shocks have been defined and identified in specific systemswithknowncausesorbasedonlongtimeseries,these methods cannotbeappliedingeneral whentheshockcause is unknown and long time series data are unavailable. This is particularly problematic for foodproduction systems,including fisheries,whichareexposedtomultipleenvironmental,policy,and economicshocks.Oneapproachistouseexpertorlocalknowledge toidentifyeventsconsideredshockstoparticularsystems.While this approach is valuable for studying individualsystems, it is difficulttostandardizethedefinitionofashockacrosssystemsand maybebiasedagainstshocksthatarenotwidelyreportedonor thosewhichoccurredindistantmemory.Asaresult,adata-driven approachcancomplementsystemknowledgetoidentifyshocks acrosssystemsandovertime.

Here we apply a statistical shock identification approach to nationalfisheriesproductiontimeseriestoanswerthefollowing questions:1)havethefrequencyorintensityofshocksincreased;

2)doregionsorproductionsystems(captureversusaquaculture) havemore,larger,orlongershocks;and3)howareshocksdivided among decreased exports, increased imports, and changes in domesticsupply?Wediscussfourcasestudiesindetailtoillustrate thespecifictradeandseafoodsupplyimpactsofshockswhicharise fromdifferentcausesandoccurwithindifferentcontexts.

2.Methods

Shockscanbeidentifiedthroughqualitativeapproachesbased on literature, news reports, and expert knowledge, or through quantitative approaches based on outliers or system-specific definitions.Forexample,bothheatwavesandfloodsaredefined asextremesrelativetothehistoricaldistributionofevents,while droughtsareidentifiedbyindicescomparingsupplyanddemand forsoilmoisture(e.g.thePalmerdroughtindex).However,these methodstypicallyrequirelongtimeseriestogenerateadistribu- tion orareonlyrelevantfor specifictypesof shocksina given system. While qualitative approaches are useful for studying individual systems, potential reporting biases, such as less

Table1

Possiblereasonstoexpectanincreaseordecreaseinthefrequencyorintensityofshocksinfisheriesandaquaculturetimeseries.

Reasonsformoreshocks Reasonsforfewershocks

Increasingexploitation Stocksalreadycollapsed

Increasingintensificationandconnectivityofaquaculture Proactiveavoidancemeasures

Increasingnaturalorenvironmentaldisasters Improvedinfrastructure

Restrictionstoimprovecapturefisherymanagement Improvedcapturefisherymanagementinthepast

Increasingconnectivityoftheglobalmarket Increasingconnectivityoftheglobalmarket

Increasedstockdataconnectionandavailability Increasedstockdataconnectionandavailability

(4)

reportinginsomeregionsorovertime,canlimittheuseformaking spatialortemporalcomparisons.Inordertoreducesuchabias,we useaquantitativeapproachtoidentifyshocksandcomplimentthis identification with a search of news, literature, and reports to matchshockswithpotentialcauses.Combiningquantitativeand qualitativeapproachesbalancestheseadvantagesanddisadvan- tagesby integrating differentstrengthsand limitations.Such a complementary approach has previously been used to detect shocksinmacroeconomictimeseries(BalkeandFomby,1994).

WeanalyzedshocksinproductiontimeseriesfromFAOFishStat foreachcountry(FAOFishStat,2014).The“GlobalCommodities Production and Trade” quantity data was used for the total productionshockanalysisandthe“GlobalProductionbyProduc- tionSource” quantity datawas usedfor theproduction system analysis. While this data is known to be incomplete and underestimatecatchfromsmall-scalefisheries(PaulyandZeller, 2016),thisanalysisisbasedonthetimeseriespatternsratherthan theexactproductionestimates.Nevertheless,somelimitationsof the FAO statistics inhibit the detection of certain shocks.

Specifically,inaccuratenationalreportingwhich masksdropsin productionwouldpreventthedetectionofshocksinthesetime series. As a result, shocks occurring in countries known to inaccuratelyreport fishery data tothe FAO,such as China,are notexpectedtobedetected inouranalysis(Watsonand Pauly, 2001).Changesinnationalreportingpracticescouldappearasa shock, but concerns of such false positives are minimized by pairingthestatisticalshockdetectionwithaliterature,report,and newssearchforpotentialcauses.Anidentifiedshockdueonlytoa reporting change would then likely have an ‘unknown’ cause.

Additionally,theunderestimationofsmall-scalefisheriesproduc- tionintheFAOdatameansthatshocksprimarilyaffectingsmall- scale fisheries may not be detected, while shocks primarily affectingindustrialfisheriesdonotnecessarilytranslatetoimpacts onsmall-scalefisheries.Shockeventswhichimpactbothfisheries, suchasanaturaldisaster,wouldbedetected,althoughthesectors maybedisproportionatelyimpactedbytheevent.Despitethese limitations, the FAO data provides global coverage of national productiontime serieswhich enablesasystematic detectionof shocks.

An existing method commonly used to identify outliers in exploratoryspatialstatisticswasmodifiedtodetectshocksbased ondeviations in the autocorrelation (Anselin,1995, 1996).The approachisadaptablefromspatialtotemporalanalysisbecauseof theequivalenceof thetheoreticalformofsomeautocorrelation coefficients between these types of data. The autocorrelation coefficient is an empirical representation of the relationship betweentemporal measures of production. Deviations identify localizedinstabilitiesintheautocorrelationwhich,conceptually, representsuddendisruptionsoftheseafoodproduction.Specifi- cally,shockswereidentifiedasoutlierdeviations,orpointswith highCook’sDvalues(>0.35),inaregressionoftheresidualsand lag-1residualsfromalowessfitofthetimeserieswithasmoother spanof 2/3(see Fig.1). Thethreshold of 0.35 was selectedby comparingthetotalnumberofshocksidentifiedtothethreshold and selectingthe point where the curvebecame relatively flat (SupplementaryFig.1).

Shockscanbecharacterized bythefrequencyatwhich they occurinasystem,themagnitudeorintensityoftheshock,andthe durationortime torecovery.Thefrequency wasdefinedasthe intervalatwhichashockoccursandthemagnitudewasdefinedas thedifferencebetweenapointandtheprevious5-yearaverage.

Forthisanalysis,onlyshocksrepresentingadecreasewereselected becausethesearethemostlikelytoadverselyimpactfoodsecurity andeconomiclivelihoods.Thismeansthemagnitudeisnegative forallshocks,butwedisplaytheabsolutevalueofthemagnitude inallfigures.Recoveryofproductionfromashockwasdefinedas

thepointwhereproductionreturnedtowithinatleast5%ofthe pre-shock production level. This measure of recoverydoes not howeverimplysustainableharvest.Forexample,asystemmaybe operatingbeyondasustainablelevelandreducecatchdowntoa sustainablelevel(atwhichpointashockwouldbedetected)and never return to the elevated, unsustainable level (i.e. never recover). Both temporary and lasting drops in production are consideredshocksinthisanalysisbecausewhenashockoccursitis not generallyknownif orwhen catchwill return topre-shock levels.Consequently,someshocksappearasapointchange,while othersappearasastepchange.

Since shocks represent sudden drops in production, the detection method does not identify long-term, more gradual reductions in fisheries, which are often of concern for the sustainability of a particular stock. Further, this method does notidentifyshocksinsystemswithhighvariability(thedetection limit under different levels of variability is described in the Supplementary information). In systems with high variability, largedeviations are frequent and are therefore not considered shocksforthisanalysis.Forexample,althoughthedropinPeruvian anchovetacatchduringElNiñoiswellknown,thereportedcatch datahashighvariability anda shock isnot detected usingour methodforthestrongElNiñoeventin1997–1998,despitethedrop in catchthat year(Supplementary Fig.2).Sincesuchdropsare commonandlikelymoreexpectedinthesesystems,theyarenota shockinthesamesense.Infact,regularfluctuationsinanchoveta catcharewelldocumentedinindustryreportsandasaresultPeru has implemented coping strategies, including simultaneous ownership of fishing fleet and processing factories, low cost intensivemonitoring,and rapidflexiblemanagement(Schreiber et al., 2001; FAO, 2016). Nevertheless, the high variability in productionwillhaveconsequencesfortradeandseafoodsupply.

Forexample,lowcatchperiodsinthisfisherieswillhaverippling effects withintheaquaculturesectorsince thisis auniqueand critical component for aquafeed production. However, such Fig.1.Stepsidentifyingshocksintimeseries.(a)Alowessregressionwasfittothe timeseriesdata;(b)residualswereplottedagainstthetime-laggedresiduals;(c) Cook’sDwasusedtoidentifyextremepointsintheregressionofresidualsversus time-laggedresiduals.PointswithCook’sDgreaterthan0.35wereidentifiedas shocks.

(5)

impactswithinsystemswithhighvariabilityarebeyondthescope ofthisanalysis.

We compliment the analysis by searching the literature, reports, and news sources to identify the potential or likely cause(s) of each shock which occurred in the total seafood productiontime series(Fig.2,SupplementaryTable 2).Positive identificationofhistoricaldisruptionstofisheryproductionthat co-occurwiththesetofidentifiedshocksstrengthensthedata- drivenshockdetectionapproach.However,theidentifiedcauses arenotintendedtobeanexhaustivelistoffactorscontributingto the observed shock. Instead, they only represent the events identifiedaspotentialfactorsinthesourceswewereabletolocate or major disruptions occurring in the country (identified with asteriskinSupplementaryTable2).Shockcausesareclassifiedas oneormoreofthefollowing:political(i.e.countrybreakingup, war, financialcrisis,etc.), overfishing,policychange (relatedto fisheries),aquaculturedisease,naturaldisaster,orunknown.The tradeandsupplyresponsewasquantifiedbasedonthevalueof imports,exports, and supply at theshock point relative tothe previousfive-yearreferenceperiod.FAOSTAT(2014)supplydatais calculatedastheproductionandimportsminusexports,domestic useasanimalfeedandwaste,plusanychangeinstocks,dividedby thepopulation.Supplythereforerepresentsaproxyofpercapita seafoodavailableforconsumption,butisnotadirectmeasurement ofactualconsumption.Wefocusontheresponsetoashockwithin theseafoodsystemandthereforebufferingmechanisms,suchas useof grainstocksorimportsofnon-seafood commodities,are beyondthescopeofthisanalysis.

3.Resultsanddiscussion

3.1.Patternsandtrendsinshockstonationalseafoodproduction

We detected 48shocks between1976 and 2011 within 127 national time seriesof total seafood production. While regions generallyexperiencedasimilarnumberoftotalshocks,theshock rate(numberofshocksdividedbythenumberoftimeseries)was muchhigherinsomeregions(Fig.3).Forexample,theshockratein

Fig.2. Shockmagnitudeforeachyearintotalfisheriesproductiontimeseriesforeachcountry.ShockswereidentifiedinFAOFishStattotalnationalproductiontimeseries usingtheshockdetectionapproachdescribedinthemethods.Thereisnosignificanttrendinshockmagnitude(p=0.63,r2<0.001)ornumberofshocks(p=0.31,r2=0.005).

Pointsarecoloredaccordingtotheidentifiedshockcause.

Fig.3. Shockrate(numberofshocksdividedbythenumberoftimeseriesinthe region),magnitude,numberofrecoveredandnotrecoveredcases,andrecovery timebyregion.ShockswereidentifiedinFAOFishStattotalnationalproduction timeseriesusingtheshockdetectionapproachdescribedinthemethods.Recovery wasdefinedasreturningtowithin5%oftheprevious5-yearaverage.Notethat Africarefers toSub-SaharanAfrica,CaCArefers totheCaribbeanand Central America,MENAreferstotheMiddleEastandNorthernAfrica,N.AmreferstoNorth America,andS.AmreferstoSouthAmerica.

(6)

theCaribbeanandCentralAmericawastwoandahalftimesthe shockrateinAfricaandabouttwicetherateinAsiaandEurope (Fig.3).AlthoughtheCaribbeanandCentralAmerica,andSouth Americahadamongthehighestshockrates,theyalsohadahigher percentof cases where the production recovered topre-shock levels(80%)andtherecoverytimesfortheseregionswereamong thelowest.Thisiscomparedtoonly30%ofcasesreturningtopre- shocklevelsinEurope,sub-SaharanAfrica,andtheMiddleEastand NorthAfrica. Shock magnitudestendtobefairly similaracross regions,but thehighest mean magnitudesoccurred in Europe, Asia,andsub-SaharanAfrica(Fig.3).Ingeneral,thedistributionsof magnitudesandrecovery timesareasymmetric,suchthatmost shocksaresmallandmostrecoveriesarequick,butwhentheyare notthelargestshocksaremuchlargerorlongerthanthemedians.

Shocksdidnotbecomemorefrequentorlargerinthenational seafoodproduction seriesover time (Fig.2).Thissuggeststhat shocks are a common feature of these production systems.

Similarly,Sartori and Schiavo (2015) found no increase in the numberofshocksinagriculturalsystemsinthepast25years.The shockstoseafoodproductionoccurredduetoavarietyofidentified causes, but were dominated by political factors, fishery policy changes(e.g.newcatchlimits),andoverfishing,oftencoupledwith apolicychangetolimitfishingpressure(Fig.2).Notrendanalysis withinshock-causecategoriescanbereliablyconductedduetothe potentialbiasofthecaseswithunknowncauses.Thelackoftrends and variety of factors supports a mixture of the hypothesized reasonsto expectan increase or decrease in shocks over time (Table1).

Political factors, such as the breakup of a country, war, or financialcrises,werefrequentlyidentifiedasapotentialcauseofa seafoodproductionshock.Infact,thelargestshockidentified,the breakup of the USSR (described in more detail below) was a political shock. However, such political disruptions occur at irregularintervalsandthereforewouldnotbeexpectedtodrive atrendoverthisperiod.Weexpectedthatoverexploitationcould beleadingtomoreshocksorthatimprovedmanagementcouldbe reducingshocks.Whileoverfishingandpolicymeasurestoavoid overfishing are frequently identified as causes of drops in production,thereisnotacleartrendovertheperiodconsidered.

Since the policy changes are typically aimed at reducing overfishing,onewouldexpectthatthesesystemswillexperience fewershocksdue tooverfishingin thelong run.Thesecasesof shocksmay be examples of the short term cost of improving management(i.e.reducedharvests)forlongtermsustainability.

Countries are likely able to anticipate or prevent shocks to varying degrees in different cases. Slow developing situations leading to shocks, such as overfishing, can be monitored and expected if action is not taken. Such slow drivers offer the possibilityofstatisticalearlywarningindicatorsthroughmonitor- ingthatwouldallowaresponseorpreparationspriortoadramatic change(Litzowetal.,2008;Carpenteretal.,2011;Seekelletal., 2012;Clineetal.,2014).Policychangeswhichareslowlyphasedin orhavedelayedimplementationdatesalsoallowtheproduction dropstobeexpected.Anticipateddecreasesinseafoodproduction mayallowstakeholderstoprepareinadvanceoftheshock,which wouldmitigatetheshock’simpacts.Othershockcauses,suchasa diseaseoutbreakornaturaldisaster,aregenerallylesspredictable.

Thismeansthereislesstimeforanymanagementinterventionor preparation.Asaresult,theresilienceofthefoodsystemcouldbe diversified with additional food sources (Troell et al., 2014), maintaining backup distribution mechanisms, or emergency supplies, and building capital to cope with crises in order to reducethesocietalimpactsofashock.

Whendisaggregatedintoaquacultureandcapturefisherytime series,theshockmagnitudeandrecoverytendedtobesimilarfor capture and aquaculture production systems (Supplementary

Fig.3).However,theshockratetendedtobehigherforaquaculture thancapturefisheriesfromthelate1980stothepresent,aperiod ofrapidaquaculturedevelopment(SupplementaryFig.4).While thecauseofthisdifferenceisunknown,aquacultureisvulnerable toshocks fromdisease outbreaksand possibly alsofrom rapid growth over-shooting environmental carrying capacity. The propensityforshockstoaquacultureaddscautiontosuggestions thataquaculturealonewillbeabletoreliablymeetfutureseafood demands(LiuandSumaila,2008;Troelletal.,2014).However,the aquaculturesectorishighlydiversewithamultitudeofspeciesand systemsunderdifferentgovernanceregimesandtheydiffergreatly fromaresilienceperspective.Further,bydiversifyingfoodsources andenabling greatercontrolthroughouttheproductionsystem, aquaculturehasthepotentialtoaddresiliencetotheoverallfood system,particularlywhenthepotentialsourcesofshocksaretaken intoconsideration(Troelletal.,2014).

3.2.Shockimpactsontradeandseafoodsupply

Countries are expected to respond to a shock to seafood productionintheshort-runthroughacombinationofincreased imports,decreasedexports,anddecreasedsupply.Inthedetected shocks,importsincreasedinoveroneandahalftimesasmany cases as it decreased. Exports increased and decreased equally commonly, while supply decreased nearly twice as often as it increased (Table 2). The most common combinations were: 1) importsandsupplydecreaseswithexportincreases;2)increases in all three, and; 3) import increases with export and supply decreases.Counterintuitiveincreasesinexportssuggestthatsome componentoftheseafoodindustryisunaffectedbytheshock.The specificimpactontradeandsupply iscontextdependent, with trends in the trade balance and the fishery or fisheries being affectedplayingalargeroleinhowtheshockimpactstradeand supply.Toillustratethispoint,fourshockcasesandtheimpacton tradeandsupplyaredescribedbelow.

3.2.1.FormerUSSR:acaseofpoliticalandpolicychanges

Theshockwiththelargestmagnitudeoccurredin1992inthe formerUSSRcountriesandcanbeattributedtothebreakupofthe SovietUnionin1991.Fromthe1970supto1991theSovietUnion supported a large coastaland distant fishing industry with an estimated$30billioninsubsidies(Milazzo,1998;Österblomand Folke,2015).ThisledtoanovercapitalizationoftheRussianfleet andsupportedhighlevelsoftotalcatch(Fig.4).Thesubsidiesalso

Table2

Frequencyofcombinationsofincreases(+),decreases( ),andnochange(o)in imports,exports,andsupplyatashockpointandtotalincreases,decreases,andno changeobservedforimports,exports,andsupply.

Frequency Imports Exports Supply

10 +

9 + + +

7 +

5 + +

5

4 + +

4 + o

2 o

1 + +

1 +

1 + + o

1 o

TotalIncreases 30 25 16

TotalNoChanges 1 0 7

TotalDecreases 19 25 27

(7)

resultedinaninefficientfleet,withSovietshipslanding1/5ofthe catchpertonoffishingfleetcomparedtotheEUorJapanattheend oftheSovietEra(KravanjaandShapiro, 1993).Financialsupportfor thefisheriesrapidlydisappearedafterthedissolutionoftheSoviet Union and the aging ships were divided among the newly independentstates(Milazzo,1998).Fishcatchdroppedprecipi- touslyduringthistransition(Fig.4).Withoutthesubsidiesmost fishingoperationswerenolongerprofitable and80–85%of the assessedfishingenterpriseswerefilingornearfilingbankruptcy (Milazzo,1998).

Exportsincreasedgraduallyduringthe1980saftertheUSSR openedtradetosocialistcountries,butdecreasedduringtheearly 1990sduring the dissolution of theUSSR (Fig.4).The exports reboundedbythemid-1990sandcontinuedtoincreasethereafter, coincidingwiththeformerSovietcountriesopeningtotradewith theWest.Intheperiodimmediatelyfollowingthedissolutionof the Soviet Union the exports as a percent of catch increased dramatically. This situation is exemplified by Estonia, where foreigntradeopeningwithinthecountrycausedthepriceoffishto growtonearlythelevelofWesternEuropeandforfishexportsto increase rapidly (Vetemaa et al., 2006). Further, Estonia’s independence allowed access to fishing grounds that were previouslytightlyregulatedbySoviet bordercontrols(Vetemaa etal.,2006).TheEstoniangovernmentpassedpoliciesaimedat increasingaccesstofisheriesforhouseholdconsumption,buthigh pricesforfishresultedincatchesbeingsoldtotradersforexport (Vetemaaetal.,2006).Thedecreasedcatchinconjunctionwiththe increasedexportscanexplaintheinitialdropinpercapitaseafood supplyin1992andthefurtherdeclinethrough1994(Fig.4).The reboundinsupplycorrespondstothegradualincreaseinimports andcatch.Nevertheless,thesupplyandcatchdonotreturntopre- shock levels by the end of the time series (Fig. 4). This case illustratesalargepoliticalshockwithlastingimpactsthroughout thefishingindustry.Clearly,thebreakupoftheUSSRhadimpacts farbeyondfisherycatch,includingthedramaticchangesintrade policieswhichcanhelpexplaintheincreasesinbothimportsand exportswhichmaynototherwisebeexpectedatashockpoint.

3.2.2.Ghana:acaseofoverfishing

Ghanahas historically been a major fishing nation in West Africa,withahighrelianceonseafoodfornutrition,employment,

and the national economy (Atta-Mills et al., 2004). Ghana’s productivecoastalwatersintheGulfof Guinearesultfromthe Central West African upwelling system. There is seasonal variabilityin thefishery’sproductivity duetoannualupwelling cycles, while interannual variability is driven by large-scale atmosphericpressuresystemsintheSouthAtlanticandElNiño eventsinthetropicalPacific(Perryetal.,2011).Despitethisnatural variability,theyear2000representsashockthatfallsoutsidethe normalvariabilityofthesystemandover-exploitationisthemost likelyexplanationforthisdropincatch(Fig.4;Atta-Millsetal., 2004).Bythemid-1990slandingsofpelagicfishhadleveledoff andinshoremarineresourceswerefully-orover-exploited(Perry etal.,2011;Atta-Millsetal.,2004).Further,catchperuniteffortfor demersalspeciesdeclinedthroughthe1980sand1990s(Koran- teng,2002).Totalcatchesweremaintainedthroughthe1990sby fishingfartheroffshoreorswitchinggeartotargetdifferentornew species.Historically,Ghanaianfishermenhadadaptedtoperiodsof lowcatchbymigratingtonewfishingareas,butenforcementofthe EconomicExclusiveZonesandotherpolicyactionsbyneighboring countrieslimitedmigrationopportunities(Atta-Millsetal.,2004).

Despitethedropintotalproductionin2000,seafoodexports remainedrelativelyconstant,therebyrepresentinganincreasein thepercentof seafood exported(Fig.4).During the mid-1990s whencatchperuniteffortwasdeclining,importsincreasedand Ghanabecameanetimporterofseafood.Now,Ghanaprimarily exports high value species (e.g. shrimp, tuna, cuttlefish) while importing lower value,frozen seafood(Atta-Mills et al., 2004).

Aroundthistimepercapitasupplyofseafoodbegantotrackthe patterninimports(Fig.4).Althoughthecatchandsupplynumbers for Ghanalikelyunderestimate therole ofsubsistence fisheries (Nunooetal.,2006;PaulyandZeller,2016),thedatacapturethe dominant patterns in production, trade, and supply. This case illustrates historical overfishing, possibly in combination with limitationsonfishinginneighboringwaters,leadingtoadropin productionandalong-termtrendofincreasingimportscompen- satingforstagnatingcatches.

3.2.3.SaintPierreandMiquelon:acaseofpoliticaldispute,policy change,andoverfishing

SaintPierreandMiquelonareFrenchterritorialislandsoffthe coast of Newfoundland. The islands’ economy hastraditionally Fig.4.Timeseriesofproduction(black),imports(green),exports(red),andpercapitasupply(blue;rightaxisscale)fortheformerUSSR,Ghana,SaintPierreandMiquelon, andSriLanka.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(8)

beenbasedonfishing and servicingfishingvessels(The World Factbook,2016).Codisthemostimportantfisheryfortheislands andthiscaseillustratesasituationwhereseafoodcatchislargely destinedforexportandtheexportstracetheannualcatchvery closely (Fig. 4). France’s fishing rights in the waters off Newfoundlanddate back tothe Treaty of Utrecht of 1713, but becamea sourceof disputeinthe1977when both Franceand Canadaextendedtheirfishingzonesto200NMfromtheircoasts (McDorman,1990).Thisresultedinoverlappingclaimstowaters with productive fisheries and potential hydrocarbon resources (McDorman,1990).A1972agreementallowingFranceaccessto 17,500tonsof catchkeptthedisputeatbay.But,theterritorial struggleescalatedandpeakedin1987–1988whenCanadaclaimed Francewas exceeding its fishing quota, denied the agreement renewal,andblockedFrenchvesselsfromportsandthefishing grounds(Burns,1988).Canadathenarrestedthecrewofavessel registeredinSaintPierreandMiquelonandFranceretaliatedby expelling the Canadian ambassador to France and denying Canadiancitizens entryat Parisian airports (McDorman,1990).

The1988disputeisidentifiedasthefirstshockpointin Fig.4.

CanadaandFrance reachedanagreementthroughmediationin 1989 and fish catch in Saint Pierre and Miquelon rebounded (McDorman,1990;Fig.4).However,in1993,amuchlargershock occurredwhenthecodstockwasnearcommercialextinctionand theentire fishery was closed torebuild stocks (Hutchings and Myers,1995).Immediatelyfollowingthereductionsincatch,Saint Pierre and Miquelon’s seafood imports increased, before catch increased to a moderate level compared to the pre-shock conditions(Fig.4).FAOseafoodsupplyinformationisunavailable fortheseislands,butthecollapseandclosureofthecodfishery severely impacted the livelihoods of the people in the region (Milich,1999).Thiscaseillustratesapoliticaldisputeandapolicy change,bothwithabackdropofoverfishing.

3.2.4.SriLanka:acaseofanaturaldisaster

Prior to the December 2004 tsunami, Sri Lankan fisheries employed around 163,000 people, with subsistence fishing providingalivelihoodformanyunemployedpeople(Ministryof Fisheriesand AquaticResources,2003).Sri Lanka’s fisheriesare knowntohavebeenstressedpriorto2005,butthetsunamiand resultingdevastationwasdirectlyassociatedwiththe2005shock to production. Ten of the twelve main fishing harbors were severelydamaged,alongwith65%ofthefishingfleet(DeSilvaand Yamoa,2007).Damagetofishingcraftandgearwasparticularly severebecausetheeventoccurredonaholidaywhentheboats wereinshoreandreceivedthefullimpactofthetsunami(Stirrat, 2006). There was also significant damage to the post-harvest sector,includingmarketsandretailstalls,aswellasconcernsabout damagedwastewatersystemsleakingintofishinggrounds(De SilvaandYamao,2007).Immediatelyfollowingthedisaster,avast range of relief organizations became active in Sri Lanka. After naturaldisasters,thereisanincentiveforNGOstospendmoneyon visible aid, including in this case distributing new fishinggear (Stirrat,2006).Suchactionsresultedin thenumberof boatsin someareasofSriLankatoexceedthenumberofboatspriortothe tsunami(FAO,2007).This,alongwiththenewboatshavinghigher catchingpowerthantheoldboats,canlikelyexplainthesharp jumpinseafoodproductiontheyearfollowingthetsunami(FAO, 2007;Fig.4).

ThemajorityofseafoodproducedinSriLankaisthroughsmall- scalefisheriesandisdestinedfordomesticconsumption.Thisis reflectedinFig.4wherethepatternsofpercapitasupplymirror thepatternsofseafoodproduction.SriLankaishighlydependent onseafood,with52%ofanimalproteinderivedfromseafoodand muchhigherlevelsofdependencyincoastalfishingcommunities (DeSilvaandYamoa,2007).Importeddryandcannedfishflooded

theretailmarketsimmediatelyafterthetsunami,buttheaverage pricesweresubstantiallyhigherthantheaveragepricesforlocal fish(Subasinghe,2005).Overall,therewasnotanincreaseinthe importsfor2005,buttherewasasubstantialdropinpercapita seafoodsupplyattheshockpoint(Fig.4).Thiscaseillustratesa shockfromanaturaldisasterandtheimpactsthistypeofshockcan havethroughouttheseafoodsystem.Italsoillustratesacasewhere changesin tradefailtocompensateforthedropin production, resulting ina temporary decrease in localseafood supply with possibleimpactsonthelocalfoodsecurity.

3.3.Impactsbeyondnationalseafoodsupplyandtradebalance

Shocksto seafood production extend beyond theper capita seafood supply and national trade balance. Capture fisheries employed58.3millionpeoplein2012,with37%ofthosepeople employedfulltime(FAO,2014).Employmentinthefisherysector hasgrownatafasterratethantheworldpopulationandtraditional agriculturesector(FAO,2014).Amajorityofpeopleemployedin fisheries livein Asiaand AfricaandtheFAOestimatesthat the fisheries sectorassures thelivelihoods of10–12 percentof the world’spopulation(FAO,2014).Thesefiguresmayunderestimate thenumberofpeopleinthedevelopingworldemployedthrough subsistencefishing(TehandSumaila,2013)aswellasemployment being generated throughout the value chains and associated businesses(Bénéetal.,2016).Asaresult,shockscanimpactGDP and unemployment levels at the national scale and can have lastingimpactsonthoserelyingonfisheriesincome.

Declinesinfisherycatchcanalsocauseshiftsinemployment, crime,andsourcesoffood.Forexample,negativeeconomicshocks tofisheriesarecorrelatedwithanincreaseinpiracyanddeclining fishharvestshavebeenlinkedtoincreasesinhumantrafficking whenfishersattempttominimizeproductioncosts(Flückigerand Ludwig,2014; Brashareset al.,2014).Declines in seafoodcatch havealsobeenlinkedtoincreasedhuntinginnaturepreservesand thesaleofbushmeatinlocalmarketsinWestAfrica(Brashares et al., 2004).Thus, fishery shocks can reachbeyond trade and nutrition, spillovernegativelyintootherresourcesystems,and impact human trafficking, organized crime, and biodiversity conservation.

Whilethisstudyfocusedonthetradebalanceimpactsatthe nationalscale,changesinimportsandexportsimplyshiftsinthe trade partners’ trade balances. A series of recent studies have exploredthedistantimpactsofshockstoprimarycommoditiesin theglobaltradenetworkduringthe2008graincrisisandthrough networkmodels(Pumaetal., 2015;Gephartetal.2016;Tamea etal.,2016;Brend’Amouretal.,2016;Marchandetal.,2016).These studieshave foundimport-dependentcountries, countrieswith lowproductiondiversity,andregionswithlowwillingnesstopay as being more vulnerable to external shocks in the network.

Marchandetal.(2016)foundthatnationalreservesdampenthe propagationofashock.Thissuggeststhatsinceseafoodisnotheld in reserves in the way grains are, the propagation of a shock originatingfromthefisherysystem couldbemorefar-reaching.

Therearelikelyotherknock-oneffectsofshocksinsubstitutefood commodity systems which were not studied here, but are important to the overall food security impacts of shocks.

Evaluating these distant and knock-on impacts of shocks in historicalexamples,suchasthoseidentifiedhereisanimportant nextstepinunderstandinghowshocksmayaltertheglobaltrade networkandimpactfoodsecurityandhumanwell-being.

In addition to adapting to changes in domestic seafood productionthroughtrade,countriescanreplaceseafoodconsump- tion by increasing the production of agriculture and livestock substitutefoods.Suchchangesoperateonalongertimescalethana singleyearshockandarelikelyimportantforstep-changesinthe

(9)

level of seafood production. However, countries’ abilities to producesubstitute foods is limited bytheir available land and waterresources.Forexample,Gephartetal.(2014)evaluatesthe watercostandabilityofcountriestoreplacemarineproteinwith terrestrialfoodsbasedoncurrentconsumptionpatternsandwater resources.DevelopingcoastalAfricanandislandnationswerethe mostlimited in theirabilityto replacemarineproteinthrough domestic agriculture and livestock production. Projections of changes in consumption of seafood and its substitutes under seafoodproductiondeclinesrequiressupplyanddemandmodel- ing. For example, both the International Food Policy Research Institute’sInternationalModelforPolicyAnalysisofAgricultural CommoditiesandTradeandWorldFish’sAsiaFishModelprovide tools for projecting changes in consumption patterns under scenarios of seafood production declines(Delgadoet al., 2003;

Brionesetal.,2004).However,suchprojectionsfocusongradual change and do not fully capture the short-run changes that immediatelyfollowashock.

Sudden decreases in seafood production propagate shocks through multiple components of the food production system.

Immediate responses are that countries may import more or exportlessseafood,ordomesticseafoodsupplymaydrop.Those employedinfishingorfishprocessingmaybecomeunemployedor seek work elsewhere, resulting in potentially unexpected con- sequences.Decreasesinseafoodsupplylikelyresultinincreased consumptionofsubstitutefoods,butmayalsoresultinrestricted nutritionalaccessforthosewithlimitedaccesstosubstitutefoods.

Inthelonger-run,countrieswhichdonotrecoverfromtheshock mayincrease theproduction of substitute foods. However, the ability to do so is limited by available natural resources. The capacityofcountriesandcommunitiestorespondand adaptto shockstoseafoodproductionspeakstotheirresilience.Learning fromhistoricalexamplesofshockcauses,impacts,andresponses provideopportunitiestobuildresilience.

4.Conclusion

Shocksareacommonfeatureofseafoodproductionsystems whichoccurduetoavariety,andoftenmultipleandsimultaneous, causes.Shocksoccurredthemostfrequentlyin CentralAmerica andtheCaribbean,theMiddleEastandNorthAfrica,andSouth America, but the largest magnitude shocks occurred in Asia, Europe, and Africa. Shocks also occurred more frequently in aquaculturethanincapturesystems.Thecomplementaryquanti- tativeandqualitativemethodsemployedhereprovideasystem- aticapproachtolookbackintimetoidentifyshocksandevaluate theirimpactsinanincreasinglyglobalizedsystem.Whilethetrade balanceand foodsupplyresponse toshocksiscontextspecific, thereisatendencyfortheimportstoincreaseandthesupplyto decrease. Historical examples of shocks can inform policy considerationsforrespondingtoshocksandlearningfromthese examples helps identify potential risks and opportunities to buildingresilienceintheglobalfoodsystem.

Acknowledgements

We would like to thankthe volunteers at the Stockholm Resilience Centrewhogavevaluablefeedbackduringthedevelopmentofthis project.ThisresearchwassupportedinpartbytheDepartmentof EnvironmentalSciencesattheUniversityofVirginia,theNational Science Foundation Graduate Research Fellowship, theNational ScienceFoundation GraduateResearchOpportunitiesWorldwide program,theSwedishResearch Council,and theNationalSocio- EnvironmentalSynthesisCenterunderfundingreceivedfromthe NationalScienceFoundationDBI-1052875.

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in the online version, at http://dx.doi.org/10.1016/j.

gloenvcha.2016.11.003.

References

Österblom,H.,Folke,C.,2015.Globalization,marineregimeshiftsandtheSoviet Union.Philos.Trans.R.Soc.BBiol.Sci.370,20130278.

Anselin,L.,1995.Localindicatorsofspatialassociation––LISA.Geog.Anal.27(2), 93–115.

Anselin,L.,1996.TheMoranscatterplotasanESDAtooltoassesslocalinstabilityin spatialassociation.SpatialAnalyticalPerspectivesonGIS,,pp.111–125.

Atta-Mills,J.,Alder,J.,Sumaila,U.R.,2004.Thedeclineofaregionalfishingnation:

thecaseofGhanaandWestAfrica.Nat.Resour.Forum28,13–21.

Béné,C.,Arthur,R.,Norbury,H.,Allison,E.H.,Beveridge,M.C.M.,Bush,S.,Campling, L.,Leschen,W.,Little,D.,Squires,D.,Thilsted,S.,Troell,M.,Williams,M.,2016.

Contributionoffisheriesandaquaculturetofoodsecurityandpoverty reduction:assessingthecurrentevidence.WorldDev.79,177–196.

Balke,N.S.,Fomby,T.B.,1994.Largeshocks,smallshocks,andeconomic fluctuations:outliersinmacroeconomictimeseries.J.Appl.Econometrics9(2), 181–200.

Beveridge,M.C.M.,Thilsted,S.H.,Phillips,M.,Metian,M.,Troell,M.,Hall,S.J.,2013.

Meetingthefoodandnutritionneedsofthepoor:theroleoffishandthe opportunitiesandchallengesemergingfromtheriseofaquaculture.J.FishBiol.

83(4),1067–1084.

Block,S.A.,Kiess,L.,Webb,P.,Kosen,S.,Moench-Pfanner,R.,Bloem,M.W.,Timmer, C.P.,2004.Macroshocksandmicrooutcomes:childnutritionduringIndonesia’s crisis.Econ.Hum.Biol.2,21–44.

Brashares,J.S.,Arcese,P.,Sam,M.K.,Coppolillo,P.B.,Sinclair,A.R.E.,Balmford,A., 2004.Bushmeathunting,wildlifedeclines,andfishsupplyinWestAfrica.

Science306(5699),1180–1183.

Brashares,J.S.,Abrahms,B.,Fiorella,K.J.,Golden,C.D.,Hojnowski,C.E.,Marsh,R.A., McCauley,D.J.,Nuñez,T.A.,Seto,K.,Withey,L.,2014.Wildlifedeclineandsocial conflict.Science345(6195),376–378.

Brend’Amour,C.,Wenz,L.,Kalkuhl,M.,Steckel1,J.C.,Creutzig,F.,2016.

Teleconnectedfoodsupplyshocks.Environ.Res.Lett.11,035007. Briones,M.,Dey,M.M.,Ahmed,M.,2004.Thefutureforfishinthefoodand

livelihoodsofthepoorinAsia,NAGA.WorldFishCenterQ.27(3–4),48–50.

Burns,J.F.,1988.Canada-FranceFishingDisputeRunsDeep.TheNewYorkTimes(8 May1988).

Carpenter,S.R.,Cole,J.J.,Pace,M.L.,Batt,R.,Brock,W.A.,Cline,T.,Coloso,J.,Hodgson, J.R.,Kitchell,J.F.,Seekell,D.A.,Smith,L.,Weidel,B.,2011.Earlywarningsof regimeshifts:awhole-ecosystemexperiment.Science332,1079–1082.

Cheung,W.L.W.,Watson,R.,Pauly,D.,2013.Signatureofoceanwarminginglobal fisheriescatch.Nature497,365–386.

Christiaensen,L.,2009.RevisitingtheGlobalFoodArchitecture:Lessonsfromthe 2008FoodCrisis.WorldInstituteforDevelopmentEconomicsResearch (DiscussionPaperNo.2009/04).

Cline,T.J.,Seekell,D.A.,Carpenter,S.R.,Pace,M.L.,Hodgson,J.R.,Kitchell,J.F.,Weidel, B.C.,2014.Earlywarningsofregimeshifts:evaluationofspatialindicatorsfrom awhole-ecosystemexperiment.Ecosphere5(8) (article10213pages).

Cuny,F.C.,Hill,R.B.,1999.Famine,Conflict,andResponse:ABasicGuide.Kumarian Press,WestHartfordCT.

D’Odorico,P.,Carr,J.,Francesco,L.,Ridolfi,L.,Vandoni,S.,2014.Feedinghumanity throughglobalfoodtrade.Earth’sFut.2(9),458–469.

DeSilva,D.A.M.,Yamao,M.,2007.Effectsofthetsunamionfisheriesandcoastal livelihood:Aacasestudyoftsunami-ravagedsouthernSriLanka.Disasters31 (4),386–404.

Delgado,C.L.,Wada,N.,Rosegrant,M.W.,Meijer,S.,Ahmed,M.,2003.Fishto2020:

Supplyanddemandinchangingglobalmarkets.WorldFishCenterTech.Rep.

62.

FoodandAgricultureOrganization,FishStatdatabase.(2014).Availableat:http://

www.fao.org/fishery/topic/166235/en.

FoodandAgricultureOrganizationoftheUnitedNations(FAO)RegionalOfficefor AsiaandthePacific.(2007).Anoverviewoftheimpactofthetsunamion selectedcoastalfisheriesresourcesinSriLankaandIndonesia,Bangkok.

FoodandAgricultureOrganizationoftheUnitedNations(FAO).(2014).TheStateof WorldFisheriesandAquaculture2014.Rome,223pp.

FoodandAgricultureOrganization.(2016).GLOBEFISH—Analysisandinformation onworldfishtrade:Fishoilandfishmealmarketreports.Availableat:http://

www.fao.org/in-action/globefish/market-reports/fish-oil-and-fishmeal/en/.

FoodandAgricultureOrganization.(2014).FAOSTATdatabase,Availableat:http://

faostat3.fao.org/faostat-gateway/go/to/home/E.

Flückiger,M.,Ludwig,M.,2014.Economicshocksinthefisheriessectorand maritimepiracy.J.Dev.Econ.114,107–125.

Gattuso,J.-P.,Magnan,A.,Billé,R.,Cheung,W.W.L.,Howes,E.L.,Joos,F.,Allemand,D., Bopp,L.,Cooley,S.R.,Eakin,C.M.,Hoegh-Guldberg,O.,Kelly,R.P.,Pörtner,H.-O., Rogers,A.D.,Baxter,J.M.,Laffoley,D.,Osborn,D.,Rankovic,A.,Rouchtte,J., Sumaila,U.R.,Treyer,S.,Turley,C.,2015.Contrastingfuturesforoceanand societyfromdifferentanthropogenicCO2emissionsscenarios.Science349 (6243) doi:http://dx.doi.org/10.1126/science.aac4722.

References

Related documents

In this thesis we investigated the Internet and social media usage for the truck drivers and owners in Bulgaria, Romania, Turkey and Ukraine, with a special focus on

Overall, our main results show that: (i) the responses of employment and labour flows are much stronger to permanent demand shocks than to permanent technology shocks; (ii) most

For frequency domain data it becomes very simple: It just corresponds to assigning dierent weights to dierent fre- quencies, which in turn is the same as using a fre- quency

This letter of recommendation must be written by a professor or teacher under whom the applicant has studied or pursued research.. The letter must be written

Type II Errors in the Economics of Crime A Model of Income Insurance and Social norms Job Security and Work Absence: Evidence from a Natural Experiment Income Shocks and Gender Gaps

Some Aspects of Immigrant Residential Concentration in Oslo: Time Trends and the Trends and the Importance of Economic Causes.. In: Lars-Göran Tedebrand and Peter Sköld (ed.),

The impact of exposure time was analysed by using different exposure periods (1, 5 and 10 years) (study III) and by analysing the impact of changes regarding work and/or

We consider latent class probit models which allow for three components that generate serial persistence in poverty: a permanent household specific effect to control for