• No results found

New Techniques for Sample Preparation in Analytical Chemistry

N/A
N/A
Protected

Academic year: 2021

Share "New Techniques for Sample Preparation in Analytical Chemistry"

Copied!
36
0
0

Loading.... (view fulltext now)

Full text

(1)Division for Chemistry Department of Analytical Chemistry. Zeki Altun. New Techniques for Sample Preparation in Analytical Chemistry. Karlstad University Studies 2005:24.

(2) ฀. ฀. ฀ ฀. ฀ ฀. ฀. ฀.

(3) ฀. ฀. ฀. ฀. ฀. ฀. ฀ ฀. ฀ ฀. ฀. ฀. ฀ ฀ ฀. ฀. ฀ ฀ ฀. ฀ ฀ ฀ ฀. ฀. ฀ ฀. ฀. ฀. ฀. ฀. ฀. ฀. ฀.

(4) $EVWUDFW  06 6 6 +  +. -+   0.+ 0   *   0+. 4+4+

(5)  7  

(6) +6 4  8 +  +0 +. ++0 7+. 06 6 6 + 0 +* 7+ - +6+

(7)  .+0 + + # +6 7+   +  0+ 06 6 6 +  0   7#+76   4  8 .+06 6 6 +  - +.  + # + 8  +0+769/: 7+0+769;/:- 

(8) +6   + < +  6  7 915:  4+ #6  < +  951:  8  0  =   - .+0  15 66+< 0 !07+.+- 0       +7 7 7 9!# >:6706 6 6 +  6 +  6 -  1

(9)  + +.   8 4+ -   0  + +.+    . 0 6006  715+ # 4 /   00 6 +0 9#:15+.  + +06 4. +0    #6+. 06 +++ 0     +     +.6006  0 67+.+- +-  .+-+! < + - .+  4    .  0+. 4+4+   06 6 6 + +76*+ + 6+- 6 6   64  6 4 67+.6++6+0  0+ + 06 +-  4     +.  + 4 %'#4  6  /##2 ++

(10)   0 60 4 06  4 0+ -  %'#6 4   4+0                      . 3.

(11) 

(12)      /  &  *5 & / /$ /!$ / /1/ ,  1;, 1 ;/ ; ,  @ / 1 15  ?C  # 5, A  A5#/ &1 5,1 51 51 A   D        . 4.  +    =+-  +-+     + * 6+6  &   1   ?   ?    / , 6     /6 1 ++0+76 , +< -+    1 ;+, 0   1 +6+ = +  ;/+0+76 ;    . , 0        A   + B+  8 /+0+76  8 # 8 1< +   +1< +  5  7    + 6 +0  *  06 +0  5+ 0  +<  A -+    A

(13)  #5  8 /+0+76  &+-

(14) 1< +  + #5 , 0 1< +  + #5 1< +  + #5  + < +     A  + + + 7 A   + * 0       A   + * 0 A     D + . .

(15) /LVWRI3DSHUV 3DSHU,  0LFURH[WUDFWLRQLQ3DFNHG6\ULQJH 0(36

(16) IRU/LTXLGDQG*DV &KURPDWRJUDSK\$SSOLFDWLRQV3DUW,,'HWHUPLQDWLRQRI5RSLYDFDLQH DQGLWV0HWDEROLWHVLQ+XPDQ3ODVPD6DPSOHV8VLQJ0(36ZLWK/LTXLG &KURPDWRJUDSK\7DQGHP0DVV6SHFWURPHWU\ +0 - #A  0    ;&+0- 7

(17)

(18) "% 9:!$$#!%"   3DSHU,,  1HZ7UHQGVLQ6DPSOH3UHSDUDWLRQ2QOLQH0LFURH[WUDFWLRQLQ3DFNHG 6\ULQJH 0(36

(19) IRU/&DQG*&$SSOLFDWLRQV3DUW,,,'HWHUPLQDWLRQ DQG9DOLGDWLRQRI/RFDO$QDHVWKHWLFVLQ+XPDQ3ODVPD6DPSOHV8VLQJD &DWLRQH[FKDQJH6RUEHQWDQG0(36/&0606    +0 - #A  0 ;&+0- 7 $!"9:!%#!"   3DSHU,,,  ,QFUHDVLQJ6DPSOH3UHSDUDWLRQ7KURXJKSXW8VLQJ0RQROLWKLF 0HWKDFU\ODWH3RO\PHUDV3DFNLQJ0DWHULDOIRU7LSV0LQXWHVSHU :HOO3ODWH    ;&+0- 7 +0 - #A  0-0  + 9:               . 5.

(20) ,# 

(21)    ! + + ( !!06 5 6 + ( !!!+ #5 1< + 951:  ( !!!!06 5+  7 51$ !!!/+06+ A   +  51 % !*  06 5 6 + ! !" + < +  5  7 915: !! !  & 5++5+0 + + ! ! 8 /+0+769/: ! !'6 +0 9:!" !(06 ! !(!+     ! !(A++

(22)   ?+0+ !' *  0+.* 2+!( "A  ,  +  !$ "!15/+    +  !$ " +,

(23) +60 956  :!$ "!* +-  !% "* 2 7+

(24)   ""* 1 + +

(25)  " ""/#+

(26)   "C 706 *+76  7+ +  5 * 6956 :  "!* 5 6 + +.5++5+0 + +   "   +.5+9;#1;,#&:+ + .+5 6  * 6  "06 7 ' "'  

(27)  ( /+  + %  +4 7 0 " A .   "! . 6.

(28) ,QWURGXFWLRQ   6DPSOH3UHSDUDWLRQ    4    +.    6   +06 <0  +..+ <06 

(29) + 0 +- ++7 + 7  06   + -  .+   + +  +    0 * 06 6 6 +  - +0   06+  6    6+ 06 6 6 +      +. 6 8  + .+006 +.+0 - .+   * .  6+   - +  0+ 8    4 -  +06  * 6+  0-  7 6+ -  4 + 66  - ++.        06 6 6 + 0 ++

(30) +

(31) 0 00 0- +. 4+ 7 6-  +  - 

(32) + 0 .  -  + +0  E!FB   0- +.06 7+4 7#+76 . +0     8 - +0  8  /+00+  06  6 6 + 0 +   8 # 8  < + 91:+ #6  < + 951: + #6 0 + < + 951:   6ROLG3KDVH([WUDFWLRQ 63(

(33)    8 #+  < + +  +.  + #6  < + 951:   0 + .++   +   + + +.7    7+  66+51 + 0++00+  06 6 6 + 0 +  0  +. 0   7 

(34) + 0  60   66  + EF514  

(35) +6 +06 0 + 6 0 .+ 1+0 6+- 0  +1   -+  

(36)  .. + +0  + 0  

(37) 7 

(38) +0 +. 7#6 +

(39) E#F  * .   66  + +.51 + - +.0 +4 7     !%EF  7  +   6 4 !#!7+.7  

(40)  -+ &  + +7 0  06   <4  6 +  ? +A

(41) E'F* 46 .+0 .+   0  + +.  +  ++   4         

(42) +60 +.51+ 4  4.+0  46 4   ..   0  E"F*  7 .+0 + 0+6+6 .+0EF6 +  + +.  7 

(43)   +4  B 7 !  . 7.

(44)  Figure 1. Schematic diagram showing a typical SPE cartridge..  * 

(45)  +  +. +6  7 - + . 7+- 6  - 4 . 51 7  

(46)  -   = + . 7.+0"07+! 7+.+- 4  !07+07+-  7 0+4    * 0++00+  6 70     #- 4  0  -+  0    7+#  6+0  # 

(47) - =  6+0   B +  0   +.0 0+ ..  51 7   +  +    .+  +- +-  6 +. 

(48) +48    6$6$6$6"#       6 + #6  < + 

(49) +

(50) .+6+  7 6B 7    .  6 +-  +   + 4 "#- 

(51) +0 +.+

(52) +  0+

(53)  06      6+ -    + +.  *  +   6 66  + +. 06 + + +7  < + 

(54)  *   6 .++4 -  7  . 7+. +- .+0  .    4 ++ 7   B    +.      .+0  +-  7+ 7+

(55) E(F . 8.

(56) Figure 2. The four processing steps in the operation of SPE experiment.. .  * 60    - 7 6+  7 6 51 + 7+   +  6  6 +. 8 +0+769/:E"(F   &RPSRXQGV5HWHQWLRQLQ63(   51 6 +  - +    

(57)   - + +.  - 4   + 6 70    8 0+-  6 *    ..  51   

(58)     .  + +.   - +  6 +.  - +  66    < + EF* +0  7  

(59)  

(60)  #6 51 C    + 6    6  4  0 -+    .  + 7+6+ + . /!$  +0  -/$    +  < 

(61) * 6 70   /9 !: 51 -   0  < 6 6   7  51++7 +

(62) 4  .+4+7 +- -7

(63) -.+8 + + 

(64) +06   7

(65) 0 +00+  06+ *    + +.  + +   +-   6 0 ++6+-    + *+    .+0   +-  + #6++

(66)     B+   7 4  + +  +  < 7 51 -   *    + 0  0 6 0 - +   +  + - 4  7    7 .  + 7+6+  . +. +-  *+    +.   + + 

(67) 76C    =   .  + 7+6+. +- +  =  7        

(68)    + +

(69) 4  7 +  7  +    +06+  . 9.

(70) 6$4,  "#     A     06 6 6 +  .++ +4+0  =   6+     06 +76   

(71) +-  + #  +6  06 6 6 +  +   +  0E(#!F  * .  06+0  =  6+  6+

(72)   706  +764  + 4   + + +. 4.+051  E!!F6 6   6E!!#!F+0 4  7 0E!"#!'F 0 #4  6 E!(FB 0  = +    

(73) +60 +. 4 0 + < +   8 +0  <06 +. 0 7 7 4  8 4 -  7

(74)     + #6 0 + < + 951: 6   0++00+   0 + < +   8 E!$#!F 51. #  . - + +   +  4  66+6   + 6   .+06 72    + 6  6  + 4  06 0 <6  +. 7+.    - 4  6  6 * . -   6     +. ;/ G +.+   +- + *  < +  ..  +.51 6  +  0- +..+ < +  0 7  + 06 6C +   +   06  51 -  < +  6 # +   + +.  .+07 + 8  + 06   + #6  0  < + 95,1:   8 4   =       +.7 7 7 .+06 7E#"F*    4+. .   + 4 6+ 0  +< 95,: !H

(75)  -+   + 6 *  0 06 7 6 .+0 -6 7 6 7 . < 

(76) +0 +. 06 .+ 66+6   0- +. 0 *  +-      +

(77)  -  +6 +  +;/ G + *   8  -  .+

(78) 6+  8 06    +   8   + <  .+0 8 06   - +6

(79)  < + 9&1:E#F07   -+ 4 5,    + 6 .+06 7&  06 6+  +

(80)     4  -.+   0     - 6    06 7- .+ 0 +6 +   *  < + 6  6 +.    8 515,1 &1        =  0  < + 0  05,- 0+   ..  &1 + 0 0+ +-  51EF     + +   0 7 7 4  8 7  0- +. + #  

(81)     

(82) +- - 

(83) +6 ++06  +0 +.  4-+.  - 0   7+0  

(84)  - +6 + +.-    E!F . 10.

(85) 0LFURH[WUDFWLRQLQ3DFNHG6\ULQJH 0(36

(86)    + < +  6  7 915:  406 6 6 +    8  7 7 7  < + 

(87)  E'#(F 15  +- 0  -+!07       +  7 - 67 4 6+  .  + -+  +- 4   7 -   .  B 7 " .  Figure 3. Schematic picture of microextraction in packed syringe (MEPS)..  * 06 6+  7 6 15  0 ++ +.51&  . +   +. 7+. +- 4  66+6  +

(88) 9: 06  + +  4 +7    +  7 6 +4 +  + 

(89)  0 *  .++4 -4 7 6+ 0+

(90)   .     .   +.     <    + /+;/ G + 15 - +.  + # +/+;/4 + 0+ .  + +. . 0   0 + - .+0    15 +- 0   -    6 7- ++ 7 /+06 +-+

(91) 0  + 0 + <  +   8 4  5, +-  0++.  15- 7

(92)  7 -    -   4 4   7 +.

(93)  - +-     . 11.

(94) 6$8 !# 9    #"   # !  * 6 6 + +.6++6+0 0 <     +0+76   6 + 46-  .+ .  0 --I     A .$    0+ +  66+

(95) -   0 +0+76  .  7;///1/51 0 +.  

(96)     0+ + 6+ 

(97) 

(98)  7 0  04 #    6 + 0  * + + 8  .     - .-    0+ 7

(99) +  7   - 0 .+07  0-  +. ..  0+ +0    +  

(100) .

(101) +- + 0  6+6  +4 7.+4#   +46     -    4  6C# 7   * 6+0  = + 0 < +.0  - 0+ + +  +.  0+ +0 +#      +  6   +.+0-  + +. 6++7 +

(102) * 6 6 + 6+    06   7.+4 & . 0 < 7 6+0  = + 0 <   7  7 +7  7 + + 0+

(103) +<7  6+  + +0+76 

(104)  .+ 6+0  = +  0+   D# 7 & .+   0+ +  0   4 4  +7 +

(105) +  0+

(106) 6+ -    +06+   *    0- +..+..  7 6++6+6  +. 0+ +  * .++- +      +06+  +  0+ +. 6++7  +

(107)  +#     +   06  +    +.   D# 7E%#"F   6$:   ! " !    8 +0+769/: 6   +0  7 6 +   8 .    0 E""F*  6 + 0  0  .  +  6  6  / 51     0 9 !!!:*   8  4

(108)  -   0 +

(109) *4 9!$(#!%!%:  

(110)  7 + +. 6  <E"F* +0  7/  8  

(111)  #6  8  +0+769A5#/:    8   + 6     6  4 +6+- .   0+-  6  +6     +. 6 6 -.. .+- 6C* +00+    6   

(112) 6   = +."#!>0 6  7+  66  + - / 66 +4  B 7 . 12.

(113) . Figure 4. Schematic setup of an LC system. 1. Pump, 2. Mobile Phase Mixer, 3. Injector Valve, 4. Column and 5. Detector..  * 06   + +  +6+. +0 -  G +*  6069:  .+4+.0+-  6 +7 +0 *   0+

(114)  4  ..   +7 +0    + .  + .+0  +0 * 

(115) 7  4    0 7  6 +  . +  +. 0 6    + 6  +  .. +.   +   + 6 *    +   <6  -    + .+@  k´ =. t r − t0   t0. . . . 9!:.  4       +  0 .+            +   0 .+       0DVV6SHFWURPHWU\ 06

(116)   6 +0 9:4 +

(117)  - 6  JJ*+0+ 9!$'# !%:E"F ++ +. 0+ 06+    0 .+ 0+   * -   0   6+ + +. +    6 + +.  + + 7+ 0#+#7 90K=: +  

(118) 0E"'FB+006 08 

(119) 4 8  

(120) . .+0 +  - +-   /+0-. 7/ 0 4 4+     L. 0 7 M E"(F/+6   +   6 4  +6    

(121) 0 &  +.  ..    0-  4   7 7  4+. 0  + +0     7  +

(122) 0+  0- 

(123) 6+  7    0-  .   + 76 *  + = +   8    4  +6 + = + 91: +6   6+ 

(124)  + 0+ * +

(125) .+0 /46 + 7    6 - +  +.4 6+ 

(126)    6+   9"#D:466 *    .   + + +- 

(127) 6+ = . +6+.. +6 *+   77 +7 9 :.+4 + 7 6+ 6 & .+    7 06 +0  6+-   . 13.

(128) +6 6 +7 7  

(129) 0- 4   +

(130) 

(131) 6+  +6 7 0  +6 7 0      7         0+      .+0  . B   0 06  +      4   0 +7  + - 0  E"(#"$F     6 86+ 06 +0  9#:4 + +-     .+0 + -+7     7     .+0 +0+76 +    # . 86+ 9N!: 4.+ + 6  + +.    7   B 7     + 86+ 9N: 77+ +  + 7   + 4   .70   ++4 90K=: +6+ + *  6+ + 4        +  86+ 9N":4  + +     6+ + .+0 7    40+ + *   8         + 0+ + 79A:&      8 A 6      - 8  

(132)   4 ++0+76  - 7 6 .+0 + E"(#"%F*   8 4    8  

(133)     4  ++0 4   .  Figure 5. Schematic presentation of how SRM ion experiments in MS-MS are carried out..   6$;"#   6$;$6 # !    A+6

(134)   +  -6

(135)   - 0  6 +     7 B 7 'A+6

(136)   -6

(137)   0  .+7   .+6++6 

(138) 6   .EF   -6

(139)  4     0 0 < +6

(140)    <

(141)  #9#:#   +0 A+6

(142)   +4   

(143) +  ++< 6+   -6

(144)  E!F  +   0  ..       0 +.   + EF. 14.

(145)  A+6

(146)   0 -+ = - .+ - 7 <  0   

(147) EF*  0 -+ 64  +0 +< +   #  + E"F * 0G+0 -+  +.+6

(148)   55O "#?C#+6

(149)  B 7 '   CH3 O. H. H N. N H. H. C3H7. PPX, Mw 232 g/mol. CH3 O. H. CH3 O. N. N H. N. N H. C3H7. C3D7. CH3. CH3 3-OH-ropivacaine, Mw 290 g/mol. N H. CH3 Lidocaine, Mw 234 g/mol. 2H -ropivacaine, 7. H. CH3 O N. . H. CH3. Ropivacaine, Mw 274 g/mol. H. N. N. CH3. HO. CH3 O. Mw 281 g/mol. CH3 O. C2H5. N. N. C2H5. H. C4H9. CH3 Bupivacaine, Mw 288 g/mol. Figure 6. Structures and molecular weights of local anaesthetics utilized in this work..     . 15.

(150) 6$;$4'     /# "     A++

(151)   ++0+ B 7 ( 6  

(152) 

(153) +     6+ -  4  #  7E#F* 7  

(154)   -  #  6    9/:4   =0 6 +      7 +  

(155) 

(156)  6+  *   .. +.   7    -  + +. 6+ .  +   + +., .70  + .  -  + +.A  ,        #6   + +. 6+6+  +06  

(157)   - +.+*5E#F . Roscovitine, Mw 354 g/mol. Olomoucine (I.S), Mw 298 g/mol. Figure 7. The structures and molecular weights of roscovitine and olomoucine (internal standard)..   . 16.

(158) 7KH$LPRI7KLV:RUN  06 6 6 +  +. -+   0.+ 0   *   0+. 4+- +

(159)  7  

(160) +6 4  8 +   6+- 0*  06+  +.   4  8 - +6+

(161)  . +0 + + # +6 7+   +  0+06 6 6 +   0   7#+76 *  0- +66 

(162)  0 + < +  6  7  915: 406 6 6 +   8 1

(163)  + +.   8  - + -   +.+    .  0- + 6 6  

(164)  6 6   66 4 6++0+ +  6+0   +.  + 4 %'#4 06 6                                . 17.

(165) 7' #&     7$6       66  1546 .+0  7>7 7 7 *  +-   .+0+.6  44 7      +  7  - 67  7 4 .  .+0-+  & .+  7.+  .  0  +- 40 +   + 4 >0  +.++4  ->+.4 .   7 4+.  + +06   6  6006 9>:44 + +  7 - +06   06+ 6006  4 +49P#!: 4  +  ++- 7++6 + + - 4 06  + 66+* .+4  + ..     + +.   * +- 4 . 4  4 7+

(166) + 0+

(167)   .   * 7    4  .   +- -   + +

(168)    +7 

(169) 

(170) 4 4   - 4   8 +0+76    006 +0     150  < + 4  6 .+0 4  0 67+.+- *+ - - ++ +- 4. 4 <P  + +

(171)  .++4 -<P+. 4 7+

(172) - 4 

(173)  < + *  6    0 0+ .. -+.  + +   +. 7 6- .+  . < < +    +.6006  0 67+.+- 4  .+-+! < + .   < +  ..      +

(174) +. +- 4     .+  4    *+0       + 4  715  +

(175) 4 . *   +

(176) 40   6+  +.6+  6  6006  6  7 +.6  + +    7$4 ! &  # "    *++6 0 =   +

(177) .+      +0 60  ..  7   +

(178) 4    0 *  4  6  0+ +.+-   +06+  +  

(179) +0 +. 4 7+ +  +06+  +  0+  +.   + + + B 7++    7+.    +  - 4     0 <  +- 4  .++6 0 = +  +.  < + 6+  . 18.

(180) 7KH6RUEHQW    66    -   0  6 +     4 -  4 6#

(181)  - 4 ( $!2   7   6006  0- 6+ #-+  4     +

(182) *+  6  -  7 6C+. 06 4 . 96CQ": 7!H .+0   6C     6+ 

(183) 7 * 4  6 +.+- 4   -+ + # < 7  +6+- .   + 4  +    +- + . 7+ 7 + # < 7  . + #6+.  + 7+647  .+  < + +.        . 66  ..    9//$ /!$: +<  6+ #

(184) - = 6+0 91 D3:4  

(185)  7  B 7 $ *   +- 

(186) 6  4  

(187) 7  = +.P0 6+0  6  4  %P0E!F /  4  +4  +6+-     +  6 +   7+. -+  4   0- +. -+  -+   . +.   6      +.-+   .+    +6+-   -+  -+      . +    6  . .  +. +-    +         + . +.   =     4+ &      +7+64   ++  .+0       + ++6+-    +  +    +  +4     6+ 

(188) 7  -  .+0B 7 $ ..    9//$  /!$:6+

(189)   7 06  +

(190)   6+0 91 D3:B    +

(191)    4     7+. -+      . *  7  +

(192) 4+- 4   - /4  +- 0  * 6+---   7    4   7 6+ 4  0 6+ 

(193) 7  600   . 19.

(194) 60. Recovery (%). 50 40 30 20 10 0 ENV+. Ethyl silica (C2) Octyl silica (C8) Octadecyl silica (C18) Sorbents. Figure 8. Effect of type of sorbents on the recovery of ropivacaine.. .    66   - - = 6+  4  = +-  0  * +-  + 7  96R!:   -7 +

(195)  .   6C 7 * 6 0   + +  +-   ++ 7 +  < 7 -   ++    +  + #6+   +  2  6C+. 06 0 <4+4 7  +    4   6+ 

(196) 7   +- 0  4 7

(197) 7       4  +- + 6+ .  + 7+6 . +. +-  0  0   +    + *+-      +     4  0  - 7   + +

(198) 4  76C#

(199)   96CQ!!:  *+

(200)  6-  +

(201)    0  #+

(202) 9 "": 0+  +.+- 4+6 0 =    + +    0+ +.06   4 7+

(203)    + +

(204)  -  .+0B 7 %966 :  !966 : 7 0+ +.07+- 0   +

(205) 4 +4  4 !07* 46+-- + ..  +6 + 6  +. +- +4 07+.6 7- 4   +

(206)     *  + .+ +- 7 

(207) +0 +.   +  +

(208) 4  .+ +6 + +.   * 0 0+ +-  4  6-  +

(209) 9QH:4+- 4!074 > 06 4 < B 7 % !* 0+ +.+- 4 -  .++   +  7 +.# +.    B+ 7  +   +  0+ +.+- +-    . 20.

(210) 80 Ropivacaine PPX 3-OH-ropivacaine. Recovery (%). 60. Internal Standard 40. 20. 0 2 mg. 1 mg. 0.5 mg. . Figure 9. Effect of amount of sorbent, C2, on the recovery of ropivacaine and its metabolites PPX and 3-OH-ropivacaine compared to direct injection of pure standard solutions. Ropivacaine PPX 3-OH-ropivacaine Internal Standard. 80%. Recovery. 60%. 40%. 20%. 0% 0.5 mg. 1 mg. 2 mg. . Figure 10. Effect of amount sorbent, benzenesulphonic acid, on the recovery of ropivacaine and its metabolites PPX and 3-OH-ropivacaine compared to direct injection of pure standard solutions..     . 21.

(211)  7$4$4,! 5!  #   * 66+ +. 4 7+

(212)   156+  +  

(213)   0+

(214)  4  +06+ .+0 +- 4 ++ 7    0  + -+

(215)     4 -    + + .+0  6006  - +  +   + #6+   +    -+ 6C  +   + +.+7 +

(216) 4 

(217)  .. +     4 76 .+0     66 4 + . 7 ..  +   + +.+7 +

(218) 4   ++6 0 =  4 7+

(219) * 

(220) +0 +. 4 7+

(221) 4 > -  .+0B 7 !!   7+   + +.+7  +

(222)   4 7+ +      +

(223) *  + .+  +-  +- 4  - /4      +   6 0 +6+- *  +.!H0  +     +

(224) - -+!H+06 +4 + . Relative response. 1. 0,9. 0,8. r1 :1 :8. 10 % M. eO. H/ AC N/ W ate. AC N. 20 % H eO M. M. eO. H. W at. er. 10 %. 0,7. Figure 11. Effect of the washing solution on the response of ropivacaine.. . .  66   + + +.   46 0  + +    +  *+6

(225) ++ 7  + + ++. 6C +  7+.  4 7+ + 4  +   + +.+7 +

(226) 4    7+ + +46C    0 6+ 

(227) 7   .   + 4  +- 0  4 +  6 , ..  0 < +. 4  0  ++ . 7!H.+0  4    4 7 + + * +4 0+  7 9R:4  +  -   .      7  +

(228) 4+- 4  7!>4 + . 7!H .+0  4 7+ +  . 22.

(229) 7KH(OXWLRQ6ROYHQW  *   + +

(230) +- + 4  - + 6 7     .+0 +-  0 00

(231) +0 .    +  - +  +6+-    + +  + #6++

(232) 4+-  +7+ 6  .+ -   + +- B   4     +  < 7    +  6C+.   + +

(233) +- 6C  -+

(234) 6

(235)  +. 7    .+   +    +  66   7     -   -  = + +. +- 0   + 7+ + 4  7 +  7C+4

(236) -  1##4    +6 + 4  

(237) +  -  +. 6+ -  .++  + 0  +    .   4 7    4  7 +   +   EF   66 4   - /4 +- 0  -     +6+- .+ - 4  7      6 7-    4  + +    + A    +4  6+--  + .+      +  66  6 0   + 0  04 + .   +   +    + 4  +6+- * 0       + 0  0 -+ 4  

(238)  0 *+   7     +

(239) 6- +.-  7-++6+-   + .+ 4.   -  .+0B 7 !++6 0 =   +

(240)  ..   0 < +.4  0  ++ . 7H00+ 0+<  4       + +

(241)  6 7 +   + +.00+ 0+<   +    +

(242) +.+6

(243)      +   + +. 0  +   B 7 ! 6-  +

(244) 9QH:4+-  4 0  +K4 %9

(245) K

(246) :+ . 7H00+ 0+<  4  *   + +

(247) 4  -+66  . 23.

(248) 80%. C8 C2. Recovery. 60% 40% 20% 0% M eOH/ Wat er 8:2 M eOH/ Wat er 9:1(v/ v) (v/ v) (0.25%NH4OH) (0.25%NH4OH). M eOH/ Wat er/ ACN 8:1:1(v/v) (0.25% NH4OH). M eOH/Water 95:5 (v/v) (0.25%NH4OH). Figure 12. Effect of different elution solvents on the recovery of ropivacaine..   7$7 %    ? +.  0  + +.+0  0   #+

(249) *  ..   6 + 0 .+  7+6 + 6+6  +.    66- 7 06+    

(250) +. 0 +4+ #+

(251)   

(252)  ..  6   +  +. 0 +* 0   #+

(253)  -   6 .+0  +. 0 +4 - E"F   66  #+

(254) 4  - G  7   + +

(255) .    7  +   + 9 :-  *+  0  # +

(256)  +- 44 - 4 

(257)  < +   -    +  "!  7 6+    H#+

(258) 4+- 

(259)  .     + -  ++

(260) 4+- 

(261) + 7+A+  # +

(262)  7 7.+0!+H 6 .++0  0E"F  7$8( !"# ,! !)   # !  ,     66  6+- 6 6   69>:6 4 0  -  0+ +  +-  +.  + 4 %'#4 6 4   .+06 7 * %'#4 6 4  6      6  06 4    . + 0.+.   -/##  4%'#6 +-     4+0   . 24.

(263) 5++6+0 0+ + +- 0  .+ 7#+76 + #  51-   = -O  EFB 

(264) 7+6

(265)      ..  66+ .+ .-  + +.0+ +  6  6 B+ <06 C EF 6++7. 7.+ .-  + +.  6+- 6 6 6   6 + +6 -  =  +- 67     !00  7+- .+0 6 +.6 6   6. + + 6 6   6 4  0+ + 46 6      6+0 4 + 0 -+  +  64+4  E'F  6++7. 7+.-  0+ + +

(266)   + 4+. 0 +6 6   6* 66+40  4+ 64   .  6 4+0+ . . +.  6  + +-+

(267) 0 +4 

(268) +6  06 +  6    7 .+ .-  + +.6++6+0  = 0+ +  6+0  +  4+.6+6+6 6 6   6   7KH3UHSDUDWLRQRI3RURXV3RO\PHU0RQROLWKV  * 6 6   64  .  -6  + + 7+.-+$009'#( >:4 6+0  = + 0 < + . 7;9H:1;,9!H: &9"H:& 9!4H4  6 +0+ +0 :!#+  +9"H:  + < +9"H: * 6 6   64   6 

(269)      6+0  = + 66 * 6+0  = + 4+4 +6+ . .+'0 4  6  +.  6+4     +  D06+.!0  .+0  4  6 6    +.0+  D06.  +06  + +.6+0  = +   64   0+

(270)  6     0 ++6 .+---  4 4  + + 0+

(271)  6++7  +

(272)  + +06+  0. 7  0+ + & .+    6 4  4 4   + +

(273)  B+6++76  07 +. 0+ +  +- -+"00+ 706  .+0  644 =+- 4 ++74  +    4  0+. +7    6\QWKHVLVRI3RO\ *0$(*'0$%0$

(274) 0RQROLWKVIRU3LSHWWH7LSV  * 6++0+ + 4   =       6+- 6 6   6- 

(275)   D# 7   6+0  = + B 7 !" 66++76  07 +. 0+ +      6 6   6   7+06  .  7 +. 6+0 + -  + 7 .   ..     +

(276) +  - 4  6+0 0 <   6 -  , 6  66  + +.  76  96+-: 0+ +   + 6++.  6* .   ..  -  7+. 0+ + + 6 - - . 25.

(277) 

(278) *  .+  + 4 .  0+ .  + +. . +.   6- .+  6+0  = + 7

(279)      .  E'F C+4

(280) 4 6 .+0  +. <6  0  4 4   ..     +  0 + <0  0 +. 0+ + + - 2 . + 4 +   +  0 9  "0 :4     0+ + 0 6++. - 5+ -  4 + +76+0      +. 0+ + * +  +  -   6+0  +  4+. -  0     - B 4  +    06+ +6   6

(281)       D-+<+

(282)  8   +   .  Figure 13. A photographic image of UV-polymerized monolith inside a disposable micro pipette tip. The polymerization mixture contained GMA 20%, EGDMA 15.5%, BMA 3.5%, AIBN 1% (with respect to monomers), cyclohexanol 30% and 1-dodecanol 30%. Polymerization was allowed to proceed for 85 minutes using 254 nm light..  7$8$:"#   *+

(283)   6 .+0  +. 0+ +   6++

(284)   0  60 4 4 0+ -   * 0 6 6 %'6 6   64    -+-+5 +  5 6 +955# #:+- .+06 +,  7  9/ : B 7 !* 6  60+4 06 9!P:.+0%'#4 6  4  4 6- +-+2  06 4  6 +7  0+ + 6+0    4  +- + *  + 6 4 4 +  4 4 9!P:+ 0+

(285)  6+  + .  .   B    4    4 0  +9!P:+  /0+-  6    +%'#4 6 .+.   -/##  7 6+    . 7+. 06 .+06+ -   .     %'#4 6 46 .+0  4+0  S 6 +. 6+.    6+  47    . 26.

(286)  .  Figure 14. Packed 96-tips with monolithic methacrylate polymer..  6HOHFWLYLW\  * 0 +  

(287)   .  + #  .   4   +7 + -     7 + +.   B 7 ! !&+4 6  

(288)  +0+70+.- 0 60 0 606  4  ++

(289)   ++0+ 9:+ 7+  +0+70   /##  +.++

(290)   0 60 70+ +  6 6    6 +  .  7+06+ 4      0    +  0    +06+ *    7++  

(291) .+ 66  + +. 0+ + + . 7 606 6 6 + 0 +    +. ++

(292)   . 27.

(293) 041005024. MRM of 2 Channels ES+ 355.3 > 233 8.58e4. 100. A. Roscovitine 125 nM in plasma sample. %. Blank plasma 0. 1.00. 2.00. 3.00. 4.00. 5.00. Time 7.00 8.00 MRM of 2 Channels ES+ 299 > 91 2.96e5. 6.00. 041005086 4.87. 100. IS. B. %. Blank plasma 0. 1.00. 2.00. 3.00. 4.00. 5.00. 6.00. 7.00. 8.00. Time. Figure 15. Chromatograms of (A) blank plasma and plasma spiked with 125 nM roscovitine and (B) blank plasma and plasma spiked with olomoucine (I.S.). Chromatographic conditions: column Zorbax 50 x 2.1 mm I.D., SB-C8, 3,5 ȝm connected to a guard column, an Optiguard 10 x 1 mm I.D., C8; mobile phase (A) 0.1 % formic acid in ACN-Water (10:90, v/v), (B) 0.1% formic acid in ACN-Water (80-20, v/v); linear gradient 0% B for 1 min, 0-80% B in 4 min, 80% B in 1 min; flow rate 150 ȝL/min.. 28.

(294) &RQFOXVLRQV   + < +  6  7 915:+ # 4 /##   <  06 6 6 +   8 4 4 0+  .+    0  + +.+     0 6006 /+.  +  +06 154.+0   06 +++ + 0   + < 66  + +6006  0 67+.+- +-   .+-+! < + - .+   < +  ..     +

(295)  4  B  4+4 15 6+

(296)   -    

(297)   8  006 

(298) +0 + 0 +4+

(299) 

(300) +0   +-  4  ..  +- 0       +  6+- 6 6   64  6 4 67+.0   - 6++6+0  0+ + 06 +-  6 %'#  64    +.  + 4 %'#4 6 A++

(301)   0 60   4 06 4 0+ -    7  0%' 06 4  6 6 .+   4+0   * 6  4++- +     6  

(302) +60 +.    0+0   0 .+ 7 06 +76   6+

(303)  +. 29.

(304)  *#  "   *   0 6 +6 + .+ +  - +  + 4+ + . 0 7 4+6+ -   # 5+. +

(305)   5+. +! !"# .+7

(306) 7 0  +66+ ++ 4+  +7 0  7    7  <6    4- 7+ .+66+  # +  5+. +

(307) #.T7+U+U-    0- 0   

(308) . 7   # ++ + 7+6U 0   +. V $%& '

(309)

(310) ( 

(311)

(312) (  ()%

(313)

(314) (*

(315)

(316) (  ( +" ' !($% '

(317)

(318) 

(319) ,*.T7+   +     +   #  

(320)  , 60 +./ 0 .+0 7 6       7 6  6 +4+  # .   

(321) .+66+ 6+

(322)  7  + .

(323) + 0   # -! - (.

(324) '    6G -+ 47+4 - 0  W  &  4

(325)  00 -  # C

(326) 0 WG    6G -+  W  # /*0(

(327) 1(%!2$ 7 . +4 7 .+   + +0 66+.               . 30.

(328) 5HIHUHQFHV  E!F  EF  E"F  EF  EF  E'F  E(F  E$F  E%F  E!F  E!!F  E!F  E!"F  E!F  E!F  E!'F  E!(F  E!$F  E!%F. - #A  0  + 15+  / + #CTT7; &+0- 7 !"9$:9!:"!" #/C. + $'9!%%%:"  X$$9:" JC + 1& 4 ;A (9!%%$:' /B5++   !  3 !! J 54= 91 +:1

(329) 0 06"" C&B  + ;2+ "9!%!:!!' 1*0   !"

(330) &4 5  

(331) !  2   4Y+!%%$ C+!

(332) 9":" C+   

(333)

(334) !9:' 1*0  

(335) !

(336) !%9:!$ 2J

(337)  C+A  4;J J+ 7($$ 9!%%%:!!( 2J

(338)  C+2

(339)  170+ J5B  A  4 ;J J+ 7(''9:"( /J  ,;+ B  (%%9:% C 7 B&  (%9":""( C+05+  1  Z

(340)  -[*; -+ (%9":!($ +

(341)  A= J#D  $!9:!! ,,. B 7 / /

(342) 6!9:$ A1  J54 = '%9!%%(:"! A;&  J54 = 7 #

(343) 9!%$%:!(%. 31.

(344)  EF  E!F  EF  E"F  EF  EF  E'F  E(F  E$F  E%F  E"F  E"!F  E"F  E""F  E"F  E"F  E"'F  E"(F . 32. /J54 = '9!%%:! J54 = 91 +: !"

(345)  4 5! 2   4Y+!%%( J 6  3

(346) 

(347) "'(9: J 6  3

(348) 

(349) "'%9!:( 1& 5 B,

(350) //0  !!9!%%%: ("( B,

(351) &* 6 5JB 89& J:;<<=>! - #A  0 9?2 "!2?"!%!% 9":6(( - #A  0$!9:"!( B\

(352) *&*. +

(353) ,    5 

(354) (  

(355) !  1

(356) 0 0"6" B\

(357) JJB]  

(358) $9!%%:($ /D  B\

(359) JJB] 70 

(360) "9!%%%: '"(( B\

(361)  (9:!!% /YOB\

(362) JJB]  9: ( C1 7 $9:" *4  !@

(363) 6

(364) 'A

(365) 

(366) 6&

(367) 

(368) 6

(369)  A!    !9!%: JA/60 ;1+JA # !

(370)

(371) !! 9!%%(:!( ,/C B   6 

(372)

(373) B .1  + 2CB 0   /+06  4Y+!%%%6'%% 1& 4 JC +  $(9!%%$:"%.

(374) E"$F  E"%F  EF  E!F  EF  E"F  EF  EF  E'F  E(F  E$F  E%F  EF  E!F.  EF  E"F  . A& A0+B*   !"9!:'"  1C  

(375)

(376) #6!$9!%%%:!$( B 0 C 

(377)  4  A  B J91 +:A

(378)  5  4Y+!%%6!( *

(379) + Y 0C  !!"9!%%%: $' C 1& - 7& 7  *

(380) + Y 0 1+.+ 2 0/  /

(381) 

(382) 9!%%':%' ;1+0 &;. + /  /

(383) 

(384) 9!%%':%     +*0,*2+ 7+ A!9:% &+7 A;+  (#

(385) 9":!(  G &+7 ? J5/+ 7JJ&+4  7   7 J;, +J5+ +<&  "9!%%(:( 2B, =

(386) +   G C

(387)    C  0&  "9!%%(:!$  C +4B  ?  2 A 7 B B /5  *,   ' !$9:9:(( JD  C

(388)    JJ&+4,+ #,   5. , 0J+, 

(389)   &   9!%%:((! A*-08+      A&  B & 7 /& 7+ +<;&. /&8 #B7+,B7+  $"9!%%:! 7+ *  ++7    ! 

(390) !6 

(391)  !A 4++/ / .+   & 50 ; 7;+ !&

(392) 

(393)

(394)   ,    4Y+6$ ,*A+   7$$9:%(. 33.

(395) EF  EF. O B\

(396) JJB] !9!%%$:( J#C#/+#  7#YC 7/#J2B# #C / (&

(397)

(398) 9:"$.  E'F                                        . . 34. *&+4 *A+1BC  ,5  + Y B\

(399)  JJB] &

(400)

(401) 9":"'$%.

(402) New Techniques for Sample Preparation in Analytical Chemistry. Sample preparation is often a bottleneck in systems for chemical analysis. The aim of this work was to investigate and develop new techniques to address some of the shortcomings of current sample preparation methods. The goal has been to provide full automation, on-line coupling to detection systems, short sample preparation times and high-throughput. A new technique for sample preparation that can be connected on-line to liquid chromatography (LC) and gas chromatography (GC) has been developed. Microextraction in packed syringe (MEPS) is a new solid-phase extraction (SPE) technique that is miniaturized and can be fully automated. In MEPS approximately 1 mg of sorbent material is inserted into a gas tight syringe (100-250 µL) as a plug. Sample preparation takes place on the packed bed. Evaluation of the technique was done by the determination of local anaesthetics in human plasma samples using MEPS on-line with LC and tandem mass spectrometry (MS-MS). MEPS connected to an autosampler was fully automated and clean-up of the samples took one minute. In addition, in the case of plasma samples the same plug of sorbent could be used for about 100 extractions before it was discarded. A further aim of this work was to increase sample preparation throughput. To do that disposable pipette tips were packed with a plug of porous polymer monoliths as sample adsorbent and were then used in connection with 96-well plates and LCMS-MS. When roscovitine in human plasma and water samples was used as model substance, a 96-plate was handled in two minutes.. Karlstad University Studies ISSN 1403-8099 ISBN 91-85335-65-7.

(403)

References

Related documents

The aim of the present study is to identify condition- transcending determinants of success of self- management interventions in two parallel individual patient data meta-analyses

Simultaneous determination of  insulin, DesB30 insulin, proinsulin, and C-peptide in human plasma samples by  liquid chromatography coupled to high resolution mass

Therefore, in order to improve our understanding on MeHg chemical speciation, we developed a novel analytical method for direct determination of MeHg complexes

Key words: PCDD/Fs, dioxins, pressurized liquid extraction, PLE, selective SPLE, modular M-PLE, soil, sediment, sludge, gas chromatography, new stationary phases,

[r]

PCDD/Fs, dioxins, pressurized liquid extraction, PLE, selective SPLE, modular M-PLE, soil, sediment, sludge, gas chromatography, new stationary phases, multivariate

The co-feature ratio approach has been successfully used for evaluating sample preparation methods [III] and for comparing chromatographic setups [IV], Figure 9, but the author

In Batch 5, a final attempt of extracting with water was done as well as extracting with a 50:50 (v/v) water/methanol mixture. Extraction was performed after soaking the soil