• No results found

First Measurement of Bose-Einstein Correlations in proton-proton Collisions at $\sqrts$ =0.9 and 2.36 TeV at the LHC

N/A
N/A
Protected

Academic year: 2022

Share "First Measurement of Bose-Einstein Correlations in proton-proton Collisions at $\sqrts$ =0.9 and 2.36 TeV at the LHC"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

First Measurement of Bose-Einstein Correlations in Proton-Proton Collisions at ffiffiffi

p s

¼ 0:9 and 2.36 TeV at the LHC

V. Khachatryan et al.*

(CMS Collaboration)

(Received 18 May 2010; published 13 July 2010)

Bose-Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider.

The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event.

DOI:10.1103/PhysRevLett.105.032001 PACS numbers: 13.85.Hd

In particle collisions, the space-time structure of the hadronization source can be studied using measurements of Bose-Einstein correlations (BEC) between pairs of iden- tical bosons. Since the first observation of BEC 50 years ago in proton-antiproton interactions [1], a number of measurements have been made by several experiments using different initial states; a detailed list of the experi- mental results can be found in [2,3]. Boson interferometry at the Large Hadron Collider provides a powerful tool to investigate the space-time structure of the particle emission source on femtometric length scales at different center-of- mass energies and with different initial states, using the same detector. This Letter reports the first measurements of BEC at the LHC with the CMS detector, namely, the first measurement in pp collisions at 0.9 TeV and the highest energy measurement at 2.36 TeV.

Constructive interference affects the joint probability for the emission of a pair of identical bosons with four- momenta p1 and p2. Experimentally, the proximity in phase space between final-state particles is quantified by the Lorentz-invariant quantity Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1 p2Þ2

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi M2 4m2

p , where M is the invariant mass of the two particles, assumed to be pions with mass m. The BEC effect is observed as an enhancement at low Q of the ratio of the Q distributions for pairs of identical particles in the same event, and for pairs of particles in a reference sample that, by construction, is expected to include no BEC effect:

RðQÞ ¼ ðdN=dQÞ=ðdNref=dQÞ; (1) which is then fitted with the parametrization

RðQÞ ¼ C½1 þ ðQrÞð1 þ QÞ: (2) In a static model of particle sources, ðQrÞ is the Fourier

transform of the spatial distribution of the emission region of bosons with overlapping wave functions, characterized by an effective size r. It is often parametrized as an exponential function ðQrÞ ¼ eQr, or with a Gaussian form ðQrÞ ¼ eðQrÞ2 (see [4] and references therein).

The parameter  reflects the BEC strength for incoherent boson emission from independent sources,  accounts for long-range momentum correlations, and C is a normaliza- tion factor.

The data used for the present analysis were collected by the CMS experiment in December 2009 from proton- proton collisions at center-of-mass energies of 0.9 and 2.36 TeV. A detailed description of the CMS detector can be found in [5]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, pro- viding a uniform magnetic field of 3.8 T. The inner tracking system is the most relevant detector for the present analy- sis. It is composed of a pixel detector with three barrel layers at radii between 4.4 and 10.2 cm and a silicon strip tracker with 10 barrel detection layers extending outwards to a radius of 1.1 m. Each system is completed by two end caps, extending the acceptance up to a pseudorapidity jj ¼ 2:5. The transverse-momentum (pT) resolution, for 1 GeV charged particles, is between 0.7% at  ¼ 0 and 2%

atjj ¼ 2:5. The events were selected by requiring activity in both beam scintillator counters [6]. A minimum-bias Monte Carlo (MC) sample was generated using PYTHIA

(with D6T tune) [7] followed by full detector simulation based on theGEANT4program [8]. AdditionalPYTHIAMC samples were generated to simulate BEC effects with both Gaussian and exponential forms of ðQrÞ.

Charged particles are required to have pT > 200 MeV, which is sufficient for particles emitted from the interac- tion region to cross all three barrel layers of the pixel detector and ensure good two-track separation. Their pseu- dorapidity is required to satisfy jtrackj < 2:4. To ensure high purity of the primary track selection, the trajectories are required to be reconstructed in fits with more than 5 degrees of freedom (dof) and 2=Ndof< 5:0. The trans- verse impact parameter with respect to the collision point is

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

required to satisfy jdxyj < 0:15 cm. The innermost mea- sured point of the track must be less than 20 cm from the beam axis, in order to reduce electrons and positrons from photon conversions in the detector material and secondary particles from the decay of long-lived hadrons (KS0; , etc.). In a total of 270 472 (13 548) events selected at 0.9 (2.36) TeV center-of-mass energy, 2 903 754 (188 140) tracks are accepted by these selection criteria.

All pairs of same-charge particles with Q between 0.02 and 2 GeV are used for the measurement. The lower limit is chosen to avoid cases of tracks that are duplicated or not well separated, while the upper limit extends far enough beyond the signal region to verify a good match between signal and reference samples. A study with simulated data shows that the ratio of the tracking efficiencies of particle pairs in the signal and in the reference samples is indepen- dent of Q in the measurement region.

Coulomb interactions between charged particles modify their relative momentum distribution. This effect, which differs for pairs with same charge (repulsion) and opposite charge (attraction), is corrected for by using Gamow fac- tors [9]. As a cross-check, the enhancement in the produc- tion of opposite-charge particle pairs with small values of Q is measured in the data and is found to be reproduced by the Gamow factors to within15%.

Different methods are designed to pair uncorrelated charged particles and to define reference samples used to extract the distribution in the denominator of Eq. (1).

Opposite-charge pairs.—This data set is a natural choice but contains resonances (, , . . .) which are not present in the same-charge combinations.

Opposite-hemisphere pairs.—Tracks are paired after inverting in space the three-momentum of one of the two particles: ðE; ~pÞ ! ðE;  ~pÞ; this procedure is applied to pairs with same and opposite charges.

Rotated particles.—Particle pairs are constructed after inverting the x and y components of the three-momentum of one of the two particles:ðpx; py; pzÞ ! ðpx; py; pzÞ.

Pairs from mixed events.—Particles from different events are combined with the following methods:

(i) events are mixed at random, (ii) events with similar charged-particle multiplicity in the same  regions are selected, and (iii) events with an invariant mass of all charged particles similar to that of the signal are used to form the pairs.

As an example, the ratios RðQÞ obtained with the opposite-hemisphere, same-charge reference samples are shown in Fig.1, both for data and for simulation without BEC. A significant excess at small values of Q is observed in the data. Additional details are given in [10].

In order to reduce the bias due to the construction of the reference samples, a double ratioR is defined:

R ðQÞ ¼ R RMC¼

dN=dQ dNref=dQ



=

 dNMC=dQ dNMC;ref=dQ



; (3)

where the subscripts ‘‘MC’’ and ‘‘MC, ref’’ refer to the corresponding distributions from the MC simulated data generated without BEC effects.

The results of fits ofRðQÞ based on the parametrization of Eq. (2) with ðQrÞ ¼ eQrare given in TableI, both for 0.9 and 2.36 TeV data. In the case of the opposite-charge sample, it is found that the region with 0:6 < Q <

0:9 GeV, containing a sizable contribution of pairs from

 ! þ decays, is not well described by the MC calculations [10]. This region is therefore excluded from the fits with this reference sample and also with the com- bined sample defined below.

As a cross-check, the dE=dx [11] measurements of particles in the tracker are used to select a sample enriched in  pairs, and another sample with one of the particles not consistent with the pion hypothesis. Figure2presents the double ratios for these two samples at ffiffiffi

ps

¼ 0:9 TeV, showing that an enhancement at small Q values is observed only in the case of identified  pairs.

As none of the definitions of the reference samples is preferable a priori, an additional, ‘‘combined’’ double ratio Rcomb is formed, where the data and MC distributions are obtained by summing the Q distributions of the seven corresponding reference samples.

The distributions ofRcombfor 0.9 and 2.36 TeV data are shown in Fig. 3, and the values of the fit parameters are given in TableI. A large correlation is found between the parameters  and r, as well as between  and C (correla- tion coefficients of 0.82 and 0:97 at 0.9 TeV, respec- tively). The data are described by Eq. (2) with an exponential form for ðQrÞ, as shown by the solid lines in Fig.3and confirmed by the fit probability (p value) in Table I. The fit with a Gaussian form, ðQrÞ ¼ eðQrÞ2, which yields  ¼ 0:32  0:01, r ¼ 0:98  0:03 fm, does not correctly describe theRðQÞ distribution, as shown by the dashed lines in Fig. 3 and by a p value of 1021. Gaussian shape fits also proved to offer a poor description of the data in previous measurements [12–14].

Q (GeV)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R(Q)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Data MC

Ref.: Opposite hem. same charge

= 0.9 TeV s

CMS

FIG. 1. Ratios RðQÞ obtained with the opposite-hemisphere, same-charge reference samples for data (dots) and MC calcu- lations with no BEC effect (crosses).

(3)

Although the values of r obtained in the exponential fits cannot be compared directly with results obtained with a Gaussian function, it should be noted for comparison pur- poses that the first moment of the ðQrÞ distribution corresponds to 1=r for an exponential shape and to 1=r ffiffiffiffi

p

for a Gaussian form. The first moments measured at the two energies are consistent within errors with most of the previous measurements [2,3]. Alternative functions, as defined in [13,15,16], also describe the data well with similar p values. In particular, for the Le´vy parametrization

ðQrÞ ¼ eðQrÞ, the fitted values are  ¼ 0:93  0:11, r ¼ 2:46  0:38 fm, and  ¼ 0:76  0:06, with a p value of 12.8%.

The leading source of systematic uncertainty on the measurements arises from the fact that none of the refer- ence samples is expected to give a perfect description of the Q distribution in the absence of BEC, and that none of them can be preferred or discarded a priori. The corre- sponding contribution to the systematic error is computed as the rms spread between the results obtained for the

different samples, i.e., 7% for  and 12% for r. The systematic uncertainty related to the Coulomb corrections is computed by propagating the measured 15% agree- ment margin, resulting in 2:8% variation for  and

0:8% for r. The presence of a possible bias introduced by the track reconstruction and selection requirements was studied by comparing the results obtained at the generator and reconstruction levels in the MC simulation that incor- porates BEC effects. The differences in the fitted parameter values for the different reference samples are smaller than the statistical errors, and no systematic bias is observed for r. No correction is therefore applied and no additional systematic error is included. For the 2.36 TeV data the same relative systematic uncertainties as for the 0.9 TeV

Q (GeV)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Double ratio

1 1.1 1.2 1.3 1.4 1.5 1.6

candidates π

π

candidates π

non- π

= 0.9 TeV s

CMS

FIG. 2. Double ratios RðQÞ for the 0.9 TeV data, using the opposite-hemisphere, same-charge reference samples for combi- nations enriched, using a dE=dx measurement, in pion-pion pairs (dots) and in pion-nonpion pairs (open circles), respec- tively.

Q (GeV) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Double ratio

1 1.1 1.2 1.3 1.4 1.5

= 2.36 TeV s

CMS

Excluded from fit

Double ratio

1 1.1 1.2 1.3 1.4 1.5

= 0.9 TeV s

CMS

Excluded from fit

FIG. 3. Fits to the double ratios RcombðQÞ with exponential (solid lines) and Gaussian (dashed lines) functions, for 0.9 TeV (top panel) and 2.36 TeV (bottom panel) data. The range 0:6 <

Q < 0:9 GeV is excluded from the fits.

TABLE I. Results of fits to the double ratiosRðQÞ for several reference samples, using the parametrization of Eq. (2) with the exponential form, for 0.9 TeV data (left) and 2.36 TeV data (right). Errors are statistical only, and quoted as if independent.

Results of fits to 0.9 TeV data Results of fits to 2.36 TeV data Reference sample p value

(%)

C  r

(fm)

 (103GeV1)

p value (%)

C  r

(fm)

 (103GeV1) Opposite charge 21.9 0:988  0:003 0:56  0:03 1:46  0:06 4  2 57 1:004  0:008 0:53  0:08 1:65  0:23 16  6 Opposite hemisphere

same charge

7.3 0:978  0:003 0:63  0:03 1:50  0:06 11  2 42 0:977  0:006 0:68  0:11 1:95  0:24 15  5

Opposite hemisphere opposite charge

11.9 0:975 0:003 0:59  0:03 1:42  0:06 13  2 46 0:969  0:005 0:70  0:11 2:02  0:23 24  5 Rotated 0.02 0:929  0:003 0:68  0:02 1:29  0:04 58  3 42 0:933  0:007 0:61  0:07 1:49  0:15 58  6 Mixed events (random) 1.9 1:014  0:002 0:62  0:04 1:85  0:09 20  2 23 1:041  0:005 0:74  0:15 2:78  0:36 40  4 Mixed events

(same multiplicity)

12.2 0:981  0:002 0:66  0:03 1:72  0:06 11  2 35 0:974  0:005 0:63  0:10 2:01  0:23 20  5

Mixed events (same mass)

1.7 0:976  0:002 0:60  0:03 1:59  0:06 14  2 73 0:964  0:005 0:73  0:11 2:18  0:23 28  5

Combined 2.9 0:984  0:002 0:63  0:02 1:59  0:05 8  2 89 0:981  0:005 0:66  0:07 1:99  0:18 13  4

(4)

results are used, in view of the reduced size of the sample and the larger statistical uncertainties of the fit results.

The BEC parameters measured with the combined ref- erence sample are  ¼ 0:625  0:021ðstatÞ  0:046ðsystÞ and r ¼ 1:59  0:05ðstatÞ  0:19ðsystÞ fm at 0.9 TeV and  ¼ 0:663  0:073ðstatÞ  0:048ðsystÞ and r ¼ 1:99  0:18ðstatÞ  0:24ðsystÞ fm at 2.36 TeV.

The possible dependence of the BEC signal on various track and event observables has been studied. A significant dependence of r on the charged-particle multiplicity in the event is observed for all reference samples. Here, the only mixed-event reference sample used is the one constructed by combining charged particles from events in the same multiplicity range. The fit parameters for the combined reference sample are given in Table II and shown in Fig. 4 as a function of the track multiplicity for the 0.9 TeV data. As an example, the results for the opposite- hemisphere, same-charge reference sample are also shown in Fig.4. The systematic errors on  and r in each multi-

plicity bin are taken as the rms spread of the results obtained with the various reference samples. Because of the limited sample size of the 2.36 TeV data, only two multiplicity bins are considered, one for multiplicities smaller than 20 tracks, the other for multiplicities between 20 and 60 tracks. The values measured for the parameters with the combined reference samples are  ¼ 0:65  0:08 and  ¼ 0:85  0:17, and r ¼ 1:19  0:17 fm and r ¼ 2:85  0:38 fm for these two multiplicity bins, where the errors are statistical only. For comparison, the values ob- tained for the same multiplicity bins at 0.9 TeV are  ¼ 0:65  0:02 and  ¼ 0:63  0:05, and r ¼ 1:25  0:05 fm and r ¼ 2:27  0:12 fm, respectively. These mea- surements are consistent within errors. The dependence of r on multiplicity was already observed in previous mea- surements, as discussed in detail in [3].

In summary, Bose-Einstein correlations have been mea- sured at the LHC by the CMS experiment in pp collisions at 0.9 and 2.36 TeV center-of-mass energies. The main systematic issue affecting BEC measurements was studied through the use of multiple reference samples to extract the signal. We have observed, for all reference samples, that the shape of the signal is not described by a Gaussian function, but rather by exponential or more complex func- tions. An increase of the effective size of the emission region with charged-particle multiplicity, disputed for a long time [3], is now very clearly observed in pp collisions with a single experiment.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra- tive staff at CERN and other CMS institutes, and acknowl- edge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland);

CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania);

CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT TABLE II. Results of the fits to the double ratioRcombfor the combined reference samples, using the parametrization of Eq. (2) with the exponential form, as a function of the charged-particle multiplicity in the event, for 0.9 TeV data. Errors are statistical only, except for  and r where statistical (first error) and systematic (second error) uncertainties are given.

Multiplicity range p value (%) C  r (fm)  (103 GeV1)

2–9 97 0:90  0:01 0:89  0:05  0:20 1:00  0:07  0:05 72  12

10–14 38 0:97  0:01 0:64  0:04  0:09 1:28  0:08  0:09 18  5

15–19 27 0:96  0:01 0:60  0:04  0:10 1:40  0:10  0:05 28  5

20–29 24 0:99  0:01 0:59  0:05  0:17 1:98  0:14  0:45 13  3

30–79 28 1:00  0:01 0:69  0:09  0:17 2:76  0:25  0:44 10  3

charged particles

5 10 15 20 25 30N 35

r (fm)

0 0.5 1 1.5 2 2.5 3

3.5 Opposite hem. same charge

λ

0.2 0.4 0.6 0.8 1 1.2 1.4

Combined sample

= 0.9 TeV s

CMS

FIG. 4. Values of the  (top panel) and r (bottom panel) parameters as a function of the charged-particle multiplicity in the event for combined (dots) and opposite-hemisphere, same- charge (open circles) reference samples, at 0.9 TeV. The errors shown are statistical only. The points are placed on the horizon- tal scale at the average of the multiplicity distribution in the corresponding bin.

(5)

(Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia);

MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); and DOE and NSF (U.S.).

[1] G. Goldhaber, W. B. Fowler, S. Goldhaber, T. F. Hoang, T. E. Kalogeropoulos, and W. M. Powell,Phys. Rev. Lett.

3, 181 (1959).

[2] G. Alexander,Rep. Prog. Phys. 66, 481 (2003).

[3] W. Kittel and E. A. De Wolf, Soft Multihadron Dynamics (World Scientific, Singapore, 2005).

[4] G. Kozlov, O. Utyuzh, G. Wilk, and Z. Wlodarczyk,Phys.

At. Nucl. 71, 1502 (2008).

[5] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[6] V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys. 02 (2010) 041.

[7] T. Sjostrand, S. Mrenna, and P. Skands,J. High Energy Phys. 05 (2006) 026.

[8] T. Agostinelli et al.,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[9] M. Gyulassy, S. K. Kauffmann, and L. W. Wilson,Phys.

Rev. C 20, 2267 (1979).

[10] CMS Collaboration, CMS PAS Report No. QCD-10-003, 2010.

[11] CMS Collaboration, CMS PAS Report No. TRK-10-001, 2010.

[12] C. Adloff et al. (H1 Collaboration),Z. Phys. C 75, 437 (1997).

[13] G. A. Kozlov, L. Lovas, S. Tokar, Y. A. Boudagov, and A. N. Sissakian,arXiv:hep-ph/0510027v2.

[14] W. J. Metzger, T. Novak, W. Kittel, and T. Csorgo,Int. J.

Mod. Phys. E 16, 3224 (2007).

[15] M. Biyajima, A. Bartl, T. Mizoguchi, N. Suzuki, and O.

Terazawa,Prog. Theor. Phys. 84, 931 (1990).

[16] M. Biyajima, A. Bartl, T. Mizoguchi, N. Suzuki, and O.

Terazawa,Prog. Theor. Phys. 88, 157 (1992).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2 G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2R. Scho¨fbeck,2

J. Strauss,2A. Taurok,2F. Teischinger,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4L. Ceard,4E. A. De Wolf,4M. Hashemi,4X. Janssen,4T. Maes,4

L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4V. Adler,5S. Beauceron,5S. Blyweert,5J. D’Hondt,5O. Devroede,5A. Kalogeropoulos,5J. Maes,5 M. Maes,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5I. Villella,5E. C. Chabert,6O. Charaf,6B. Clerbaux,6

G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6P. E. Marage,6C. Vander Velde,6P. Vanlaer,6 J. Wickens,6S. Costantini,7M. Grunewald,7B. Klein,7A. Marinov,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7

L. Vanelderen,7P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8 J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8,bL. Quertenmont,8N. Schul,8N. Beliy,9

T. Caebergs,9E. Daubie,9G. A. Alves,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11E. M. Da Costa,11 D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11V. Oguri,11A. Santoro,11

S. M. Silva Do Amaral,11A. Sznajder,11F. Torres Da Silva De Araujo,11F. A. Dias,12M. A. F. Dias,12 T. R. Fernandez Perez Tomei,12E. M. Gregores,12F. Marinho,12S. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,b L. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13S. Piperov,13S. Stoykova,13G. Sultanov,13R. Trayanov,13I. Vankov,13

M. Dyulendarova,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14 P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15

X. Wang,15Z. Wang,15M. Yang,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Z. Hu,16Y. Mao,16S. J. Qian,16 H. Teng,16B. Zhu,16A. Cabrera,17C. A. Carrillo Montoya,17B. Gomez Moreno,17A. A. Ocampo Rios,17 A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,cD. Polic,18 I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21 R. Fereos,21M. Galanti,21J. Mousa,21C. Nicolaou,21A. Papadakis,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21 D. Tsiakkouri,21Z. Zinonos,21M. Mahmoud,22A. Hektor,23M. Kadastik,23K. Kannike,23M. Mu¨ntel,23M. Raidal,23 L. Rebane,23V. Azzolini,24P. Eerola,24S. Czellar,25J. Ha¨rko¨nen,25A. Heikkinen,25V. Karima¨ki,25R. Kinnunen,25 J. Klem,25M. J. Kortelainen,25T. Lampe´n,25K. Lassila-Perini,25S. Lehti,25T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25

E. Tuominen,25J. Tuominiemi,25E. Tuovinen,25D. Ungaro,25L. Wendland,25K. Banzuzi,26A. Korpela,26 T. Tuuva,26D. Sillou,27M. Besancon,28M. Dejardin,28D. Denegri,28J. Descamps,28B. Fabbro,28J. L. Faure,28 F. Ferri,28S. Ganjour,28F. X. Gentit,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28

J. Malcles,28M. Marionneau,28L. Millischer,28J. Rander,28A. Rosowsky,28D. Rousseau,28M. Titov,28

(6)

P. Verrecchia,28S. Baffioni,29L. Bianchini,29M. Bluj,29,dC. Broutin,29P. Busson,29C. Charlot,29L. Dobrzynski,29 S. Elgammal,29R. Granier de Cassagnac,29M. Haguenauer,29A. Kalinowski,29P. Mine´,29P. Paganini,29D. Sabes,29

Y. Sirois,29C. Thiebaux,29A. Zabi,29J.-L. Agram,30A. Besson,30D. Bloch,30D. Bodin,30J.-M. Brom,30 M. Cardaci,30E. Conte,30F. Drouhin,30C. Ferro,30J.-C. Fontaine,30D. Gele´,30U. Goerlach,30S. Greder,30 P. Juillot,30M. Karim,30A.-C. Le Bihan,30Y. Mikami,30J. Speck,30P. Van Hove,30F. Fassi,31D. Mercier,31 C. Baty,32N. Beaupere,32M. Bedjidian,32O. Bondu,32G. Boudoul,32D. Boumediene,32H. Brun,32N. Chanon,32

R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32B. Ille,32T. Kurca,32 T. Le Grand,32M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32 H. Xiao,32V. Roinishvili,33G. Anagnostou,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34

K. Klein,34J. Merz,34N. Mohr,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34 D. Sprenger,34H. Weber,34M. Weber,34B. Wittmer,34O. Actis,35M. Ata,35W. Bender,35P. Biallass,35 M. Erdmann,35J. Frangenheim,35T. Hebbeker,35A. Hinzmann,35K. Hoepfner,35C. Hof,35M. Kirsch,35 T. Klimkovich,35P. Kreuzer,35,bD. Lanske,35,aC. Magass,35M. Merschmeyer,35A. Meyer,35P. Papacz,35H. Pieta,35

H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35M. Sowa,35J. Steggemann,35D. Teyssier,35C. Zeidler,35 M. Bontenackels,36M. Davids,36M. Duda,36G. Flu¨gge,36H. Geenen,36M. Giffels,36W. Haj Ahmad,36 D. Heydhausen,36T. Kress,36Y. Kuessel,36A. Linn,36A. Nowack,36L. Perchalla,36O. Pooth,36P. Sauerland,36

A. Stahl,36M. Thomas,36D. Tornier,36M. H. Zoeller,36M. Aldaya Martin,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37K. Borras,37A. Campbell,37E. Castro,37D. Dammann,37G. Eckerlin,37A. Flossdorf,37G. Flucke,37

A. Geiser,37J. Hauk,37H. Jung,37M. Kasemann,37I. Katkov,37C. Kleinwort,37H. Kluge,37A. Knutsson,37 E. Kuznetsova,37W. Lange,37W. Lohmann,37R. Mankel,37M. Marienfeld,37I.-A. Melzer-Pellmann,37

A. B. Meyer,37J. Mnich,37A. Mussgiller,37J. Olzem,37A. Parenti,37A. Raspereza,37R. Schmidt,37 T. Schoerner-Sadenius,37N. Sen,37M. Stein,37J. Tomaszewska,37D. Volyanskyy,37C. Wissing,37C. Autermann,38

J. Draeger,38D. Eckstein,38H. Enderle,38U. Gebbert,38K. Kaschube,38G. Kaussen,38R. Klanner,38B. Mura,38 S. Naumann-Emme,38F. Nowak,38C. Sander,38H. Schettler,38P. Schleper,38M. Schro¨der,38T. Schum,38 J. Schwandt,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38R. Wolf,38J. Bauer,39V. Buege,39A. Cakir,39 T. Chwalek,39D. Daeuwel,39W. De Boer,39A. Dierlamm,39G. Dirkes,39M. Feindt,39J. Gruschke,39C. Hackstein,39

F. Hartmann,39M. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39T. Kuhr,39D. Martschei,39S. Mueller,39 Th. Mu¨ller,39M. Niegel,39O. Oberst,39A. Oehler,39J. Ott,39T. Peiffer,39D. Piparo,39G. Quast,39K. Rabbertz,39

F. Ratnikov,39M. Renz,39A. Sabellek,39C. Saout,39,bA. Scheurer,39P. Schieferdecker,39F.-P. Schilling,39 G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39J. Wagner-Kuhr,39M. Zeise,39V. Zhukov,39,e E. B. Ziebarth,39G. Daskalakis,40T. Geralis,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40 C. Markou,40C. Mavrommatis,40E. Petrakou,40L. Gouskos,41P. Katsas,41A. Panagiotou,41,bI. Evangelou,42 P. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42F. A. Triantis,42A. Aranyi,43G. Bencze,43L. Boldizsar,43

G. Debreczeni,43C. Hajdu,43,bD. Horvath,43,fA. Kapusi,43K. Krajczar,43A. Laszlo,43F. Sikler,43 G. Vesztergombi,43N. Beni,44J. Molnar,44J. Palinkas,44Z. Szillasi,44,bV. Veszpremi,44P. Raics,45Z. L. Trocsanyi,45

B. Ujvari,45S. Bansal,46S. B. Beri,46V. Bhatnagar,46M. Jindal,46M. Kaur,46J. M. Kohli,46M. Z. Mehta,46 N. Nishu,46L. K. Saini,46A. Sharma,46R. Sharma,46A. P. Singh,46J. B. Singh,46S. P. Singh,46S. Ahuja,47 S. Bhattacharya,47,gS. Chauhan,47B. C. Choudhary,47P. Gupta,47S. Jain,47S. Jain,47A. Kumar,47K. Ranjan,47

R. K. Shivpuri,47R. K. Choudhury,48D. Dutta,48S. Kailas,48S. K. Kataria,48A. K. Mohanty,48L. M. Pant,48 P. Shukla,48P. Suggisetti,48T. Aziz,49M. Guchait,49,hA. Gurtu,49M. Maity,49D. Majumder,49G. Majumder,49

K. Mazumdar,49G. B. Mohanty,49A. Saha,49K. Sudhakar,49N. Wickramage,49S. Banerjee,50S. Dugad,50 N. K. Mondal,50H. Arfaei,51H. Bakhshiansohi,51A. Fahim,51A. Jafari,51M. Mohammadi Najafabadi,51 S. Paktinat Mehdiabadi,51B. Safarzadeh,51M. Zeinali,51M. Abbrescia,52a,52bL. Barbone,52aA. Colaleo,52a D. Creanza,52a,52cN. De Filippis,52aM. De Palma,52a,52bA. Dimitrov,52aF. Fedele,52aL. Fiore,52aG. Iaselli,52a,52c L. Lusito,52a,52b,bG. Maggi,52a,52cM. Maggi,52aN. Manna,52a,52bB. Marangelli,52a,52bS. My,52a,52cS. Nuzzo,52a,52b

G. A. Pierro,52aA. Pompili,52a,52bG. Pugliese,52a,52cF. Romano,52a,52cG. Roselli,52a,52bG. Selvaggi,52a,52b L. Silvestris,52aR. Trentadue,52aS. Tupputi,52a,52bG. Zito,52aG. Abbiendi,53aA. C. Benvenuti,53aD. Bonacorsi,53a

S. Braibant-Giacomelli,53a,53bP. Capiluppi,53a,53bA. Castro,53a,53bF. R. Cavallo,53aG. Codispoti,53a,53b M. Cuffiani,53a,53bA. Fanfani,53a,53bD. Fasanella,53aP. Giacomelli,53aM. Giunta,53a,bC. Grandi,53aS. Marcellini,53a

G. Masetti,53a,53bA. Montanari,53aF. L. Navarria,53a,53bF. Odorici,53aA. Perrotta,53aA. M. Rossi,53a,53b T. Rovelli,53a,53bG. Siroli,53a,53bR. Travaglini,53a,53bS. Albergo,54a,54bG. Cappello,54a,54bM. Chiorboli,54a,54b

(7)

S. Costa,54a,54bA. Tricomi,54a,54bC. Tuve,54aG. Barbagli,55aG. Broccolo,55a,55bV. Ciulli,55a,55bC. Civinini,55a R. D’Alessandro,55a,55bE. Focardi,55a,55bS. Frosali,55a,55bE. Gallo,55aC. Genta,55a,55bP. Lenzi,55a,55b,b M. Meschini,55aS. Paoletti,55aG. Sguazzoni,55aA. Tropiano,55aL. Benussi,56S. Bianco,56S. Colafranceschi,56 F. Fabbri,56D. Piccolo,56P. Fabbricatore,57R. Musenich,57A. Benaglia,58a,58bG. B. Cerati,58a,58b,bF. De Guio,58a,58b

L. Di Matteo,58a,58bA. Ghezzi,58a,58b,bP. Govoni,58a,58bM. Malberti,58a,58b,bS. Malvezzi,58aA. Martelli,58a,58b,c A. Massironi,58a,58bD. Menasce,58aV. Miccio,58a,58bL. Moroni,58aP. Negri,58a,58bM. Paganoni,58a,58bD. Pedrini,58a

S. Ragazzi,58a,58bN. Redaelli,58aS. Sala,58aR. Salerno,58a,58bT. Tabarelli de Fatis,58a,58bV. Tancini,58a,58b S. Taroni,58a,58bS. Buontempo,59aA. Cimmino,59a,59bA. De Cosa,59a,59b,bM. De Gruttola,59a,59b,bF. Fabozzi,59a

A. O. M. Iorio,59aL. Lista,59aP. Noli,59a,59bP. Paolucci,59aP. Azzi,60aN. Bacchetta,60aP. Bellan,60a,60b,b D. Bisello,60a,60bR. Carlin,60a,60bP. Checchia,60aE. Conti,60aM. De Mattia,60a,60bT. Dorigo,60aU. Dosselli,60a F. Gasparini,60a,60bU. Gasparini,60a,60bP. Giubilato,60a,60bA. Gresele,60a,60cS. Lacaprara,60aI. Lazzizzera,60a,60c M. Margoni,60a,60bM. Mazzucato,60aA. T. Meneguzzo,60a,60bM. Nespolo,60aL. Perrozzi,60aN. Pozzobon,60a,60b

P. Ronchese,60a,60bF. Simonetto,60a,60bE. Torassa,60aM. Tosi,60a,60bS. Vanini,60a,60bP. Zotto,60a,60b G. Zumerle,60a,60bP. Baesso,61a,61bU. Berzano,61aC. Riccardi,61a,61bP. Torre,61a,61bP. Vitulo,61a,61bC. Viviani,61a,61b

M. Biasini,62a,62bG. M. Bilei,62aB. Caponeri,62a,62bL. Fano`,62aP. Lariccia,62a,62bA. Lucaroni,62a,62b G. Mantovani,62a,62bM. Menichelli,62aA. Nappi,62a,62bA. Santocchia,62a,62bL. Servoli,62aM. Valdata,62a

R. Volpe,62a,62b,bP. Azzurri,63a,63cG. Bagliesi,63aJ. Bernardini,63a,63b,bT. Boccali,63aR. Castaldi,63a R. T. Dagnolo,63a,63cR. Dell’Orso,63aF. Fiori,63a,63bL. Foa`,63a,63cA. Giassi,63aA. Kraan,63aF. Ligabue,63a,63c T. Lomtadze,63aL. Martini,63aA. Messineo,63a,63bF. Palla,63aF. Palmonari,63aG. Segneri,63aA. T. Serban,63a

P. Spagnolo,63a,bR. Tenchini,63a,bG. Tonelli,63a,63b,bA. Venturi,63aP. G. Verdini,63aL. Barone,64a,64b F. Cavallari,64a,bD. Del Re,64a,64bE. Di Marco,64a,64bM. Diemoz,64aD. Franci,64a,64bM. Grassi,64aE. Longo,64a,64b

G. Organtini,64a,64bA. Palma,64a,64bF. Pandolfi,64a,64bR. Paramatti,64a,bS. Rahatlou,64a,64b,bN. Amapane,65a,65b R. Arcidiacono,65a,65bS. Argiro,65a,65bM. Arneodo,65a,65cC. Biino,65aC. Botta,65a,65bN. Cartiglia,65a R. Castello,65a,65bM. Costa,65a,65bN. Demaria,65aA. Graziano,65a,65bC. Mariotti,65aM. Marone,65a,65bS. Maselli,65a

E. Migliore,65a,65bG. Mila,65a,65bV. Monaco,65a,65bM. Musich,65a,65bM. M. Obertino,65a,65cN. Pastrone,65a M. Pelliccioni,65a,65b,bA. Romero,65a,65bM. Ruspa,65a,65cR. Sacchi,65a,65bA. Solano,65a,65bA. Staiano,65a D. Trocino,65a,65bA. Vilela Pereira,65a,65b,bF. Ambroglini,66a,66bS. Belforte,66aF. Cossutti,66aG. Della Ricca,66a,66b

B. Gobbo,66aD. Montanino,66aA. Penzo,66aS. Chang,67J. Chung,67D. H. Kim,67G. N. Kim,67J. E. Kim,67 D. J. Kong,67H. Park,67D. C. Son,67Zero Kim,68J. Y. Kim,68S. Song,68B. Hong,69H. Kim,69J. H. Kim,69 T. J. Kim,69K. S. Lee,69D. H. Moon,69S. K. Park,69H. B. Rhee,69K. S. Sim,69M. Choi,70S. Kang,70H. Kim,70 C. Park,70I. C. Park,70S. Park,70S. Choi,71Y. Choi,71Y. K. Choi,71J. Goh,71J. Lee,71S. Lee,71H. Seo,71I. Yu,71

M. Janulis,72D. Martisiute,72P. Petrov,72T. Sabonis,72H. Castilla Valdez,73,bE. De La Cruz Burelo,73 R. Lopez-Fernandez,73A. Sa´nchez Herna´ndez,73L. M. Villasen˜or-Cendejas,73S. Carrillo Moreno,74 H. A. Salazar Ibarguen,75E. Casimiro Linares,76A. Morelos Pineda,76M. A. Reyes-Santos,76P. Allfrey,77 D. Krofcheck,77J. Tam,77P. H. Butler,78T. Signal,78J. C. Williams,78M. Ahmad,79I. Ahmed,79M. I. Asghar,79 H. R. Hoorani,79W. A. Khan,79T. Khurshid,79S. Qazi,79M. Cwiok,80W. Dominik,80K. Doroba,80M. Konecki,80

J. Krolikowski,80T. Frueboes,81R. Gokieli,81M. Go´rski,81M. Kazana,81K. Nawrocki,81M. Szleper,81 G. Wrochna,81P. Zalewski,81N. Almeida,82A. David,82P. Faccioli,82P. G. Ferreira Parracho,82M. Gallinaro,82 G. Mini,82P. Musella,82A. Nayak,82L. Raposo,82P. Q. Ribeiro,82J. Seixas,82P. Silva,82D. Soares,82J. Varela,82,b H. K. Wo¨hri,82I. Altsybeev,83I. Belotelov,83P. Bunin,83M. Finger,83M. Finger, Jr.,83I. Golutvin,83A. Kamenev,83 V. Karjavin,83G. Kozlov,83A. Lanev,83P. Moisenz,83V. Palichik,83V. Perelygin,83S. Shmatov,83V. Smirnov,83

A. Volodko,83A. Zarubin,83N. Bondar,84V. Golovtsov,84Y. Ivanov,84V. Kim,84P. Levchenko,84I. Smirnov,84 V. Sulimov,84L. Uvarov,84S. Vavilov,84A. Vorobyev,84Yu. Andreev,85S. Gninenko,85N. Golubev,85M. Kirsanov,85 N. Krasnikov,85V. Matveev,85A. Pashenkov,85A. Toropin,85S. Troitsky,85V. Epshteyn,86V. Gavrilov,86N. Ilina,86

V. Kaftanov,86,aM. Kossov,86,bA. Krokhotin,86S. Kuleshov,86A. Oulianov,86G. Safronov,86S. Semenov,86 I. Shreyber,86V. Stolin,86E. Vlasov,86A. Zhokin,86E. Boos,87M. Dubinin,87,iL. Dudko,87A. Ershov,87 A. Gribushin,87O. Kodolova,87I. Lokhtin,87S. Obraztsov,87S. Petrushanko,87L. Sarycheva,87V. Savrin,87 A. Snigirev,87V. Andreev,88I. Dremin,88M. Kirakosyan,88S. V. Rusakov,88A. Vinogradov,88I. Azhgirey,89

S. Bitioukov,89K. Datsko,89V. Grishin,89,bV. Kachanov,89D. Konstantinov,89V. Krychkine,89V. Petrov,89 R. Ryutin,89S. Slabospitsky,89A. Sobol,89A. Sytine,89L. Tourtchanovitch,89S. Troshin,89N. Tyurin,89 A. Uzunian,89A. Volkov,89P. Adzic,90M. Djordjevic,90D. Krpic,90D. Maletic,90J. Milosevic,90J. Puzovic,90

References

Related documents

I praktiken varierar elevernas motivation i ett temaarbete, vilket beror på att val av tema inte var lika intressant hos alla elever, att läraren har olika förväntningar på

Detta examensarbete syftar till att öka kunskapen och förståelsen för hur gymnasieelever upplever att deras demokratiska kompetens, i form av aktivt politiskt deltagande, påverkas

The content of the paper is arranged according to the following: firstly, we discuss the characterization of the SBA-15 bulk material by nitrogen sorption-desorption and small

Selvom et flertal af kommunerne i undersøgelsen angiver, at de i høj eller i nogen grad synes, at DBU’s krav til kapaci- tet i Superligaen er rimeligt, understøtter det også

Den andra dimensionen av cirkeln handlar om hur lärarna identifierar sina ämnesdidaktiska kunskaper och förmågor, vilka de har och vilka som behövs för att

Informanterna delger att de stödinsatser som nyanlända elever får ta del av är studiehandledning, flextid, modersmålsundervisning samt undervisning i lilla gruppen.

the first session of public examination of the pre-diploma project and the evaluation by an official committee who will also assess the final project (example: December 2009);

Majoriteten av de nyanlända eleverna nådde inte målen för godkänt betyg varken i matematik eller i de andra ämnena dem hade för att, kort och gott, de inte kunde använda det