• No results found

Transmutation of nuclear waste in Accelerator Driven Systems

N/A
N/A
Protected

Academic year: 2021

Share "Transmutation of nuclear waste in Accelerator Driven Systems"

Copied!
20
0
0

Loading.... (view fulltext now)

Full text

(1)

Transmutation of nuclear waste in Accelerator Driven Systems

Janne Wallenius

Reactor Physics, KTH

(2)

Radiotoxic inventory in spent LWR fuel

Specific radiotoxic inventory of spent LWR fuel in the repository is dominated by transuranic elements (TRU).

The fission product (FP) contribution to the

radiotoxic inventory vanishes with the decay of

90Sr and 137Cs.

Equilibrium radiotoxic inventory of uranium in nature ~ 19 mSv/g.

300 000 years of storage required for spent fuel to return to “natural inventory”.

0.001 0.01 0.1 1 10

100 Radiotoxic inventory [Sv/g]

102 103 104 105 106 101

TRU FP

Uranium in nature

t[y]

(3)

Radiotoxicity of transuranium nuclides

Long term radiotoxic inventory of spent fuel is dominated by

241Am ~ 1 000 years

240Pu ~10 000 years

239Pu ~100 000 years

Radiotoxic inventory due to presence of 237Np is less than that of uranium in nature.

102 103 104 105 106 0.01

0.1 1 10 100

101

Radiotoxic inventory [Sv/g]

243Am

242Pu

239Pu

238Pu

240Pu

237Np

241Am TRU

t [y]

Unat

(4)

Double strata fuel cycle

By transmuting the higher actinides in accelerator driven systems, the fraction of power produced in reactors using innovative fuel is

reduced to a minimum

(5)

Proton Accelerator: 10–15 MW Spallation target: liquid lead Core power: 400 MWth

Sub-criticality: k <0.97 Coolant: lead

Fuel: (Pu

0.4

,Am

0.5

,Cm

0.1

)O

2-x

- Mo

Accelerator Driven System

(6)

Proton accelerator

Two types of high intensity proton accelerators exist:

Cyclotrons – power up to 10 MW

Linear accelerators (LINAC) – power up to 100 MW (100 mA x 1 GeV).

Main issue for ADS: reduction of beam trip frequency.

Today: several beam trips per hour longer than three seconds.

Goal: few beam trips per year.

PSI1 MW cyclotron

LANSCE 1 MW LINAC

(7)

Linear Accelerators

Current limit: ~ 100 mA for reliable operation

LEDA (7 MeV Low Energy Demonstration Accelerator) was operated in Los Alamos at 100 mA for eight hours

Superconducting cavities today provide > 25 MeV/m gradient Length of Oak Ridge Spallation Neutron Source LINAC: 300 m.

Reliability can be achieved by operation below design values

Input power for 1 GeV LINAC: P

grid

= 27 MW + 1.9 x P

beam

(8)

Spallation target

Main task: provide regulated neutron source Technological challenges:

Heat deposition (50–75% of beam power) Radiation damage to beam window

Liquid metal corrosion & embrittlement

Life time of beam window for 0.7 MW LBE target

operated for four months at PSI (MEGAPIE) estimated to be about 0.5 years, limited by embrittlement.

Windowless target solution preferred for prototype ADS

(9)

ADS source neutron spectrum

20 40 60 80 100 120 140 0.95

0.96 0.97 0.98 0.99 1

E [MeV]

Fraction of neutrons with energy below E exiting the target wall

0.01 0.1 1 10 100 1000 0.01

0.1 1

En [MeV]

! (E

n

) dE

n

Spectrum of source neutrons exiting

an LBE target with radius 20 cm

(10)

Neutron source yield

Neutron yield increases with radius due to (n,2n) reactions Yield per proton energy ~ constant for E > 1000 MeV

500 1000 1500 2000

10 20 30 40 50 60

Neutron yield [n/p]

Proton energy [MeV]

Yield [n/p/GeV]

5 10 15 20 25 30

5 10 15 20 25 30

Neutron yield [n/p]

Target radius [cm]

|z| < 50 cm

(11)

Neutron transport in target

Spallation neutrons are multiplied, scattered and moderated in the target

-100 -50 0 50 100

Axial distribution of neutrons exiting the spallation target

z [cm]

r = 10 cm r= 20 cm r= 30 cm

Beam impact: z = 18 cm, E

p

= 1 GeV

Radius Median energy

10 cm 1.42 MeV

20 cm 0.91 MeV

30 cm 0.68 MeV

Median source neutron energy lower

than median fission neutron energy!

(12)

Exercise

Calculate the conversion efficiency for electrical to proton beam power of a 1 GeV LINAC with 10 respectively 20 MW beam power.

P

grid

= 27 MW + 1.9 x P

beam

Calculate the fraction of electricity produced by the ADS that

is needed to operate the accelerator, assuming a thermal

power of 400 MW and a conversion efficiency of 40%.

(13)

Core design

Core map

(14)

Fuel column height: 0.9 – 1.2 m Clad outer diameter: 6 – 8 mm P/D = 1.50 – 1.75

Linear rating: 20–30 kW/m Core power: 400 – 800 MWth Pu-fraction = 30–50%

k-eigenvalue @ BOL: 0.97 Radial power peaking: 1.30

Core design

Core map

(15)

Radial power peaking & matrix fraction

Matrix Zone 1 Zone 2 Zone 3

92

Mo 0,8 0,62 0,5

EFIT cermet fuel matrix fractions

for D = 8.5 mm & P/D = 1.50

(16)

Radial power peaking & matrix fraction

10 20 30 40 50 60 70 0.5

1.0 1.5 2.0

Power density [relative]

Pin number counted from target

Zone 1 Zone 2 Zone 3

Matrix Zone 1 Zone 2 Zone 3

92

Mo 0,8 0,62 0,5

EFIT cermet fuel matrix fractions

for D = 8.5 mm & P/D = 1.50

(17)

Radial power peaking & matrix fraction

10 20 30 40 50 60 70 0.5

1.0 1.5 2.0

Power density [relative]

Pin number counted from target

Zone 1 Zone 2 Zone 3

Radial power peaking factor: 1.30

Matrix Zone 1 Zone 2 Zone 3

92

Mo 0,8 0,62 0,5

EFIT cermet fuel matrix fractions

for D = 8.5 mm & P/D = 1.50

(18)

Matrix versus void worth

ADS core must never become super-critical.

Fuel matrix influences void worth Less amount of oxygen reduces void worth.

Cermet fuels have advantage Cr matrix gives lowest void worth!

1.2 1.4 1.6 1.8 2.0 2.2 2.4 1000

2000 3000 4000 5000

6000

LBE void worth [pcm]

P/D

ZrO2 MgO W

Mo Cr

Di = 5.0 mm

(19)

European prototype ADS

MYRRHA project under development at SCK-CEN in Belgium

60 MWth ADS with lead-bismuth coolant and MOX fuel.

Facility for proving coupling of accelerator and sub-critical core and of lead coolant technology.

Irradiation facility for development of

cladding materials and transmutation fuels.

“XT-ADS” design major goal of EUROTRANS project in FP6

Start of construction around 2015

(20)

Summary

• Accelerator driven reactors would allow to use up to 50%

americium in the fuel, and thus make americium transmutation much more effective than in critical reactors.

• Adds to nuclear electricity production without mining new fuel.

• Assuming multiple recycling, we may reduce the time needed to

store nuclear waste by two orders of magnitude (similar to the

reduction in amount of long lived waste).

References

Related documents

Stöden omfattar statliga lån och kreditgarantier; anstånd med skatter och avgifter; tillfälligt sänkta arbetsgivaravgifter under pandemins första fas; ökat statligt ansvar

46 Konkreta exempel skulle kunna vara främjandeinsatser för affärsänglar/affärsängelnätverk, skapa arenor där aktörer från utbuds- och efterfrågesidan kan mötas eller

För att uppskatta den totala effekten av reformerna måste dock hänsyn tas till såväl samt- liga priseffekter som sammansättningseffekter, till följd av ökad försäljningsandel

The increasing availability of data and attention to services has increased the understanding of the contribution of services to innovation and productivity in

Generella styrmedel kan ha varit mindre verksamma än man har trott De generella styrmedlen, till skillnad från de specifika styrmedlen, har kommit att användas i större

I regleringsbrevet för 2014 uppdrog Regeringen åt Tillväxtanalys att ”föreslå mätmetoder och indikatorer som kan användas vid utvärdering av de samhällsekonomiska effekterna av

Parallellmarknader innebär dock inte en drivkraft för en grön omställning Ökad andel direktförsäljning räddar många lokala producenter och kan tyckas utgöra en drivkraft

Närmare 90 procent av de statliga medlen (intäkter och utgifter) för näringslivets klimatomställning går till generella styrmedel, det vill säga styrmedel som påverkar