• No results found

PYTHIA Status

N/A
N/A
Protected

Academic year: 2022

Share "PYTHIA Status"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

H1 Collaboration Meeting Lund, 3 October 2002

Monte Carlos and NLO

Torbj ¨orn Sj ¨ostrand

Apology: not specifically ep, but photoproduction ∼ pp

Event Physics Overview PYTHIA Status

Improved Parton Showers Heavy Flavour Production Heavy Flavour Hadronization

Multiple Interactions Summary

(2)

Event physics overview

Structure of the basic generation process:

1) Hard subprocess:

dˆσ/dˆt, Breit-Wigners

2) Resonance decays:

includes correlations (where implemented)

3) Final-state parton showers:

(or matrix elements)

4) Initial-state parton showers:

(or matrix elements)

5) Multiple

parton–parton interactions

q

q Z0 Z0

h0

Z0

µ+ µ

h0

W W+

ντ

τ s c

q → qg g → gg g → qq q → qγ

g q

Z0

(3)

6) Beam remnants:

colour-connected to rest of event

7) Hadronization (or fragmentation)

8) Normal decays:

hadronic, τ, charm, . . .

p p

b b

ud ud

u u







q g g q

hadrons

ρ+

π0

π+

γ γ

9) QCD interconnection effects:

e e+

W W+

q3 q4 q2 q1





π+

π+ BE

a) colour rearrangement (⇒ rapidity gaps?);

b) Bose-Einstein (within & between strings).

10) The forgotten/unexpected: a chain is never stronger than its weakest link!

(4)

PYTHIA Status

















































































































































































































































                                                                                                                                                                                                                                                                                                                                                               

                                                                                                                                                                                                                                                                                                                                                     

ll

   



































PYTHIA

lh hh

JETSET 7.4 PYTHIA 5.7 SPYTHIA

4 March 1997 : PYTHIA 6.1

Currently PYTHIA 6.210 of 25 September 2002

∼ 58, 900 lines Fortran 77

Code, manual, sample main programs, more:

www.thep.lu.se/

torbjorn/Pythia.html

short writeup in T. Sj ¨ostrand, P. Ed ´en, C. Friberg, L. L ¨onnblad, G. Miu, S. Mrenna and E. Norrbin

Computer Phys. Commun. 135 (2001) 238 [hep-ph/0010017]

(5)

Lund Productions

Proudly Presents

 

 

!#"$%&%')(*')"$ +

,

1 2 354 687 9;:=<

>5?A@CBEDFGBIHKJML N HKJPOMHKQ

RGSUTVW=XSYTZ\[W]XS_^`T abZdcfe

hgfikjml&g

XS_Z8ZnV8opa_cfe

[n`

ikq8r8i

Z;stT

i

Z8Zuave

xwyi

` i

Tz[|{_a}Z8cv^

~€‚„ƒk…† ‡x€ ˆ]†Š‰Œ‹dGŽ_€ ‰Œ…€† ‘“’ ƒ=”–•—Ž]˜}™‘š’™›

œ|

ˆ_žŸˆ_‘  ]€…¡™‘ †˜]›_¢£‰]”¤ €¥ƒ †ƒŒˆ§¦¨©ª›

¢«¬]¬Œ­z®]¬x¯—°v±8²f›³Y´¶µY²uµY±

·¡¸ ‰]‡x‚



† ‘šˆ}¥z&‘  }‘š™‘š‰=ˆ|›U¢b‘š‡



”mƒ † ‘š‰=ˆ_™º¹»…¡‰



‚v›

¼

€…¡‡½‘|¾&ƒ † ‘“‰]ˆUƒŒ”–©’’€ ” €… ƒ † ‰=…

œ

ƒk¿n‰=…¡ƒk† ‰Œ…˜

À

¢C¬Œ­k¨U›YÁƒk†ƒ  }‘mƒ}›}Ã

œ

®]Ä]Å}¦ Ä}›_Ÿ»¢b©

Æ}ǐǐÇǐǐÇ.Æ

Æ}ȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐÈ.Æ

Æ}ȐȐȐȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐȐȐȐÈ.Æ

Æ}ȐȐȐȐȐȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐȐȐȐÈȐÈ.Æ

Æ}ȐȐȐȐȐȐȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐȐȐȐÈȐȐÈ*Æ

Æ}ȐȐȐȐȐȐȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐȐȐȐÈȐȐÈ*Æ

Æ}ȐȐȐȐȐȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐȐȐȐÈȐÈ.ÆUÉ

Æ}ȐȐȐȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐȐȐȐÈ.ÆÊɐÉ

ɐÉ&Æ}ȐȐÈɐÉȐȐȐÈȐȐȐȐȐȐÈ.Æ ÉÉ

ÉÉ ÉpƶːÌ͐ËÎÆ ÉÉ

ÉÉ ÉÉ ÉÉ

ÉÉ ÉÉ ÉÉ

ÉÉ ÉÉ

ÉÉ ÏÐ ÉÉ

ÉÉ ÉÉ

ÉÉ ÐÐ ÉÉ

ÉÉ ÏÏ ÉÉ

ÉÉ ÉÉ

ɐÉ

with 430 new or revised pages!

(6)

Subprocess summary

Processes Examples

QCD & related

Soft QCD low-p; diffraction

Hard QCD qg → qg

Open heavy flavour qq → tt Closed heavy flavour gg → gJ/ψ

γγ physics γq → qg

DIS γq → q

γγ physics γT γL → qq Electroweak SM

Single γ/Z0/W± qq → γ/Z0 (γ/γ/Z0/W±/f/g)2 qq → W+W Light SM Higgs gg → h0

Heavy SM Higgs Z0LZ0L → WL+WL SUSY BSM

h0/H0/A0/H± qq → h0A0 SUSY qq0 → ˜χ0i χ˜±j R

/ SUSY χ˜0i → bcs ⇒ junctions!

Other BSM

Technicolor qq0 → πtc0 πtc±

New gauge bosons qq → γ/Z0/Z00 Compositeness qq → e±e∗∓

Leptoquarks qg → `LQ

H±± (from LR-sym.) qq → H++H−−

Extra dimensions gg → G → e+e + New User-Defined Process Machinery

(7)

Photoproduction

(G.A. Schuler & TS, NPB407 (1993) 539, ZPC73 (1997) 677)

Direct VMD Anomalous

Direct: point-like Resolved: hadronic state

Spectrum of fluctuations γ ↔ qq ∝ dk2 /k2 alt. m ' 2k; dm2/m2

? k < k0 ' 0.5 GeV: nonperturbative γ → qq hadronic physics ⇒ VMD

(Vector Meson Dominance) parameterized couplings to ρ0, ω, φ, J/ψ

σtotγ→ρ = P(γ → ρ) · σtotρ

PDF fiγ→ρ(x, µ2), σjetγ→ρ = . . .

beam remnants, multiple interactions, . . .

? k > k0: perturbative γ → qq

PDF calculable: anomalous part of γ

but σtotqq not ⇒ GVMD (Generalized VMD) geometric scaling ansatz σtotqq ∝ kV2 /k2 ,

kV ' mρ/2 for light quarks

again hadronic character: beam remnants, . . .

(8)

Deeply Inelastic Scattering

(aim: extend photoproduction to Q2 ∼ m2ρ)

(Ch. Friberg & TS, EPJC13 (2000) 151, JHEP09 (2000) 10)

Virtual photon: γq → q σtotγp ' 4π2αem

Q2 F2(x, Q2) ' 4π2αem

Q2

X q,q

e2q xq(x, Q2)

but F2 → 0 for Q2 → 0 by gauge invariance, + limit doublecounting with photoproduction

σDISγp ' Q2 Q2 + m2ρ

!2

2αem

Q2

X q,q

e2q xq(x, Q2)

where q(x, Q2) frozen for Q2 < Q20;

and prefactor ensures σDIS → 0 for Q2 → 0

O(αs) DIS =

( QCDC γq → qg BGF γg → qq

)

= dir

σLO DISγp = σDISγp − σdirγp → σDISγp exp

−σdirγp σDISγp

corresponds to Sudakov form factor

so 4 components: DIS + dir + VMD + GVMD

(9)

From Real to Virtual Photons

σtotγp(W2, Q2) = σDISγp exp

−σdirγp σDISγp

+ σdirγp

+ W

2

Q2+W2

!3 

σVMDγp + σGVMDγp



Direct photon: Q2 in ME expression

Resolved photon:

total cross section σtotγ→i dampened by dipole m2

m2 + Q2

!2

(fewer fluctuations, smaller size)

VMD: m = mρ, mω, mφ, mJ/ψ GVMD: m ' 2k; in total

Z k02

dk2 k2

k2V k2

4k2 4k2 + Q2

!2

fγ

T

i (x, µ2, Q2): SaS 1D (also dipole-based) fγ

L

i (x, µ2, Q2): simple multiplicative factor or Ch´yla (hep-ph/0006232) (1 − x)3 reduces doublecounting at large x

⊕ virtual photon flux (T & L)

(10)

Parton Shower approach

2 → n = (2 → 2) ⊕ ISR ⊕ FSR

q q

Q Q Q2

2 → 2 Q22

Q21

ISR

Q24 Q23

FSR

2 → 2 = hard scattering (on-shell) σ =

ZZZ

dx1 dx2 dˆt fi(x1, Q2) fj(x2, Q2) dˆσij dˆt FSR = Final-State Radiation; timelike shower Q2i = M2 > 0 decreasing + coherence

ISR = Initial-State Radiation; spacelike shower Q2i = −M2 > 0 increasing + ∼ coherence backwards evolution: start at hard scattering

Do not doublecount! Q2 > Q21, Q22, Q23, Q24 2 → 2 = most virtual = shortest distance

(11)

ME vs. PS

ME : Matrix Elements

+ systematic expansion in αs (‘exact’) + powerful for multiparton Born level + flexible phase space cuts

− loop calculations very tough

− negative cross section in collinear regions

⇒ unpredictive jet/event structure

no easy match to hadronization

PS : Parton Showers

− approximate, to LL (or NLL)

− main topology not predetermined

⇒ inefficient for exclusive states

+ process-generic ⇒ simple multiparton + Sudakov form factors/resummation

⇒ sensible jet/event structure + easy to match to hadronization

Marriage desirable! But how?

Problems: • gaps in coverage?

• doublecounting of radiation?

• Sudakov?

• NLO consistency?

(12)

Merging

= smooth transition ME/PS, no sharp edge.

+ emissions can cover full phase space

− coherence not straightforward Want to reproduce

WME = 1 σ(LO)

dσ(LO + g) d(phasespace)

by shower generation + correction procedure

wanted z }| {

WME =

generated z }| {

WPS

correction z }| {

WME WPS Comments:

• Do not normalize WME to σ(NLO),

since extra work without clear gain (expect radiation also in events added by K-factor ≥ 1)

• Exponentiate ME correction by shower Sudakov form factor:

WactualPS (Q2) =

WME(Q2) exp −

Z Q2max

Q2 WME(Q02) dQ02

!

• Normally several shower histories

⇒ alternative approaches, largely equivalent

(13)

Final-state showers

Merging with γ/Z0 → qqg since long

(M. Bengtsson & TS, PLB185 (1987) 435, NPB289 (1987) 810)

. . . but problems with γ/Z0 → bbg noted:

Q2i = m2i gives wrong singularity structure, Q2i = m2i − m2i,onshell is relevant propagator!

WME = (. . .)

Q21Q22 − (. . .)

Q41 − (. . .) Q42

(also weight from splitting kernels in PS) Coloured decaying particle also radiates:

0 (t)

1 (b) 2 (W+) i

3 (g)

0 (t)

1 (b) 2 (W+)

i 3 (g)

ME 1

Q20Q21 matches PS b → bg

⇒ can merge PS with generic a → bcg ME

(E. Norrbin & TS, NPB603 (2001) 297)

Subsequent branchings q → qg: also matched to ME, with reduced energy of system

(14)

Calculate for 1 → 2 processes in SM + MSSM:

WME(x1, x2) = 1

σ(a → bc)

dσ(a → bcg) dx1 dx2 Depends on

• mass ratios r1 = mb/ma and r2 = mc/ma

• colour and spin structure

• vector vs. axial vector etc. (γ5)

colour spin γ5 example

1 → 3 + 3 (eikonal)

1 → 3 + 3 1 → 12 + 12 1, γ5, 1 ± γ5 Z0 → qq 3 → 3 + 1 12 12 + 1 1, γ5, 1 ± γ5 t → bW+ 1 → 3 + 3 0 → 12 + 12 1, γ5, 1 ± γ5 H0 → qq 3 → 3 + 1 12 12 + 0 1, γ5, 1 ± γ5 t → bH+ 1 → 3 + 3 1 → 0 + 0 1 Z0 → ˜q 3 → 3 + 1 0 → 0 + 1 1 ˜q → ˜q0W+ 1 → 3 + 3 0 → 0 + 0 1 H0 → ˜q 3 → 3 + 1 0 → 0 + 0 1 ˜q → ˜q0H+ 1 → 3 + 3 12 12 + 0 1, γ5, 1 ± γ5 χ → q˜q 3 → 3 + 1 0 → 12 + 12 1, γ5, 1 ± γ5 ˜q → qχ 3 → 3 + 1 12 → 0 + 12 1, γ5, 1 ± γ5 t → ˜ 8 → 3 + 3 12 12 + 0 1, γ5, 1 ± γ5 ˜g → q˜q 3 → 3 + 8 0 → 12 + 12 1, γ5, 1 ± γ5 ˜q → q˜g 3 → 3 + 8 12 → 0 + 12 1, γ5, 1 ± γ5 t → ˜g

(15)

WME(x1, x2)

g emission rate for different colour, spin and parity structures r1 = r2 = 0.2, x3 = 0.3

θqg

3 → 3 + 8

1 → 3 + 3 8 → 3 + 3 3 → 3 + 1

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

0 0.02 0.04 0.06 0.08 0.1

R3bl

yc

Pythia 6.153 Pythia 6.152 Pythia 6.129 DELPHI ALEPH

Rbl3 (yc)

ECM = 91 GeV mb = 4.8GeV

ratio of 3-jets in b and uds (=l) events

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16

0 0.02 0.04 0.06 0.08 0.1

R3bl

yc

Vector Axial vector Scalar Pseudoscalar

Rbl3 (yc)

ECM = mh/H/A

= 120 GeV mb = 4.8GeV reference light q from γ/Z

(16)

Initial-state showers

p⊥Z dσ/dp⊥Z

physical Z + 1 jet ‘exact’

LO

‘exact’

NLO virtual

resummation: physical p⊥Z spectrum

shower: ditto + accompanying jets (exclusive)

Merged with matrix elements for

qq → (γ/Z0/W±)g and qg → (γ/Z0/W±)q0:

(G. Miu & TS, PLB449 (1999) 313)

WME WPS

!

qq0→gW

= ˆt2 + ˆu2 + 2m2Wˆs

ˆs2 + m4W ≤ 1 WME

WPS

!

qg→q0W

= ˆs2 + ˆu2 + 2m2Wˆt

(ˆs − m2W)2 + m4W < 3

(17)

curve=ResBos

black=PYTHIA KPYTHIA = 1.4

Q2max = s

C. Bal ´azs, J. Huston and I. Puljak, PRD63 (2001) 014021

Problem: requires large primordial k ≈ 2 GeV

⇒ need BFKL/CCFM non-ordered evolution ? Modified algorithm also affects other processes

• prefer Q2max = s where no doublecounting

⇒ more radiation at large p

• require ˆu = Q2 − ˆs(1 − z) < 0 in branchings

⇒ fewer but harder emissions

Similarly for Higgs production in mt → ∞ limit:

• gg → gh0 and qg → qh0 simple

• qq → gh0 nonsingular & small ⇒ add Challenges:

• gauge boson pairs (S. Burby)

• QCD 2 → 2 with ISR+FSR+interference

(18)

Production graphs

Examples of Q = c/b production diagrams, not ex- haustive:

g Q

g Q

Leading order

q

q Q

Q Leading order

g Q

g Q

g Pair creation

(with gluon emission)

g g

g

Q Q

Flavour excitation

g g

g

Q Q

Gluon splitting

g g

g

Q Q g

Gluon splitting (flavour excitation)

(19)

PS approach to heavy quarks

3 main sources (arbitrary names):

1) pair creation:

based on gg → QQ and qq → QQ with masses + additional showering

2) flavour excitation:

based on c and b content of standard PDF’s + Qg → Qg and Qq → Qq ME’s;

massive kinematics but massless ME’s;

with Q2 > m2Q (so PDF> 0) and Q2i < Q2; g → bb by backwards evolution (improved)

≈ t-channel graph of gg → QQ

3) gluon splitting:

ordinary 2 → 2 processes, e.g. gg → gg + g → QQ branching with threshold

q1 − 4m2Q/m2g (1 + 2m2Q/m2g)

≈ s-channel graphs of gg, qq → QQ

Avoid doublecounting:

for 2 → 2: Q2 = ˆp2+ (m23 + m24)/2 (⇒ ˆs∼ 4Q> 2) for FSR: Q2max = m2max = 4Q2

for ISR: Q2max = Q2

(20)

Beam Remnant Physics

Strings normally ‘large’ mass, but at times small because of beam remnant structure or by g → qq in shower. Thus three hadronization mechanisms (regions):

1. Normal string fragmentation:

continuum of phase-space states.

2. Cluster decay:

low mass ⇒ exclusive two-body state.

3. Cluster collapse:

very low mass ⇒ only one hadron.

p+ π

u u

c c

ud d





If collapse:

cd: D, D∗−, . . .

cud: Λ+c , Σ+c , Σ∗+c , . . .

⇒ flavour asymmetries Can give D “drag” to larger xF than c quark.

PYTHIA predicted qualitative behaviour.

Quantitative one sensitive to details

⇒ develop model & tune

(21)

Improved description of when collapse occurs (mass spectrum ⇐ constituent quark masses)

example:

charm string in πp collision

2 2.5 3 3.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Msinglet

(1/N)dN/dM

(a)

1-body

2-body cluster

2-body string

3-body

0.01 0.1

100 1000 10000

Collapse rate

√s

(a) Default

Small quark masses

Even BRDF charm string

collapse rate in pp collisions

(variations)

and

1-body collapse: energy-momentum shuffling 2-body decay: smoother joining to string

picture (matched anisotropic decay)

(22)

But also normal string fragmentation:

c d z

p± = E ± pz

p−D = zp−c 0 < z < 1

⇒ p+D = m2⊥D

p−D = m2⊥D zp−c

normally

> m2⊥c

zp−c = p+c z i.e. again drag.

Technical components of modelling:

• Charm and bottom masses: c and b cross sec- tions (mc = 1.5, mb = 4.8)

• Light-quark masses: threshold for cluster mass spectrum, together with mc

(mu = md = 0.33, ms = 0.50)

• Beam remnant distribution function:

(p − g = ud0 + u in colour octet state) hadron asymmetries also without collapse

(uneven sharing, but not extremely so)

• Primordial k: collapse rate at large p (Gaussian width 1 GeV)

• Threshold behaviour for non-collapse:

all at Dπ or gradually at Dπ, Dπ, Dρ, . . .

• Collapse energy–momentum conservation:

practical solution to mass δ function

(several models tried; not very sensitive)

(23)

Asymmetries and correlations

0.001 0.01 0.1 1 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (1/N)dN/dxF

xF (a) Pair production

All channels WA82 WA92

0.001 0.01 0.1 1 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (1/N)dN/dxF

xF (b) Pair production

All channels WA82 WA92

D+ D

A(xF) =

#D−#D+

#D+#D+

in πp

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 A(xF)

xF Pair production (a)

All channels WA92, 350 GeV WA82, 340 GeV E791, 500 GeV E769, 250 GeV

1e-05 0.0001 0.001 0.01 0.1 1

0 2 4 6 8 10 12 14 16 18 (1/N)dN/dpT2

pT2 (c) Pair production

All channels WA92

1e-05 0.0001 0.001 0.01 0.1 1

0 2 4 6 8 10 12 14 16 18 (1/N)dN/dpT2

pT2 (d) Pair production

All channels WA92

D+ D

(24)

A(p) =

#D−#D+

#D+#D+

in πp

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0 2 4 6 8 10

A(pT2 )

pT2 (b)

Pair production All channels WA92, 350 GeV E791, 500 GeV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 1 1.5 2 2.5 3 3.5

(1/N)dN/d∆φ

∆φ (a)

Pair production All channels WA92

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-4 -3 -2 -1 0 1 2 3 4

(1/N)dN/dy

∆y

(b) Pair production All channels WA92 data

φ correlations improved . . .

. . . but

y correlations worsened

(25)

Multiple Interactions

(TS & M. van Zijl, PRD36 (1987) 2019, J. Dischler & TS, EPJdir C2 (2001) 1)

Consequence of composite nature of hadrons:

Evidence:

• direct observation: AFS, UA1, CDF

• implied by width of multiplicity distribution + jet universality: UA5

• forward–backward correlations: UA5

• pedestal effect: UA1, H1

One new free parameter: p⊥min 1

jet =

Z s/4 p2⊥min

dp2 dp2

Z s/4 0

dσ dp2

p4

(p2⊥0 + p2)2 dp2

Measure of colour screening length d in hadron p⊥min hdi ≈ 1(= ¯h)

(26)

r r

d

resolved

r r

d

screened

λ ∼ 1/p

hdi ∼ rp

qNpartons no correlations

∼ rp

Npartons with correlations?

Npartons ∼ Ng =

Z 1

∼4p2⊥min/s g(x, ∼ p2⊥min) dx Olden days:

xg(x, Q20) → const. for x → 0

⇒ Npartons ∼ ln s

4p2⊥min ∼ const.

Post-HERA:

xg(x, Q20) ∼ x− for x → 0, ∼ 0.08>

⇒ Npartons ∼ s 4p2⊥min

!

⇒ p⊥min ∼ 1

hdi ∼ Npartons ∼ s

(27)

Mean charged multiplicity in inelastic non-diffractive ‘minimum bias’:

‘New’ PYTHIA default:

p⊥min = (1.9 GeV)

 s 1 TeV2

0.08

Importance:

• comparison of data at 630 GeV & 1.8 TeV

• extrapolations to LHC

(28)

Summary

• PYTHIA evolving – do not use old versions!

• Test photoproduction/DIS transition region.

• Many ongoing efforts to improve showers.

Objective not NLO but good description.

Merging: “NLO ME” ⇒ shower smoothly;

applicable to ISR and FSR alike.

• Heavy flavour production/hadronization understood in pp?

Perturbative by non-overlapping

LO + flavour excitation + gluon splitting.

Combined with string hadronization;

small string = cluster, with special treatment

• Multiple interactions getting to be orthodoxy!

CDF: min bias & underlying event agree.

Varying impact parameter ⇒ “hot spots”.

References

Related documents

If we allow for different productivity trajectories before export entry for future export entrants and for firms not entering the export market, we notice a significant

Kvinnor tenderar att vilja bära denna stil eftersom när de vill sola, kommer de inte få solbränna linjer på grund av stilen.. G-string badbyxor är mycket praktiska om du letar att

In order to assess its contradictions and contingency, this thesis navigates the origins, development and cultural specificities of drug dealing popular culture in

Figure 14 Distribution of random initial points generated in displacements within 20 × 20 windows of ground-truths for scenario I (Right side) 38 Figure 15 Distribution of error

The potential energy surfaces for Cl 2 CO dissociation into CO + Cl + Cl in the S 0 and S 1 electronic states have been determined by the CASSCF, CCSD, and

Regarding latent participation we can see an effect of the dual identification as most of the interviewees share news regarding both Palestine and Jordan on social media,

Besides, long lead time for the product container, the major component, and large minimum order quantity (more than 100000 units) to exploit economies of scale in

[r]