• No results found

Assessment  of  Embodied  Energy  and  Carbon  Emissions  of  the  Swansea  Bay  Tidal  Lagoon  from  a  Life  Cycle  Perspective

N/A
N/A
Protected

Academic year: 2021

Share "Assessment  of  Embodied  Energy  and  Carbon  Emissions  of  the  Swansea  Bay  Tidal  Lagoon  from  a  Life  Cycle  Perspective"

Copied!
44
0
0

Loading.... (view fulltext now)

Full text

(1)

Environmental  Science,  Individual  Master  Thesis  in  Environmental  Science,  30  credits.  

         

Assessment  of  Embodied  Energy  and   Carbon  Emissions  of  the  Swansea  Bay  

Tidal  Lagoon  from  a  Life  Cycle   Perspective  

   

Peter  Simon   2015  

 

   

 

 

(2)

MID SWEDEN UNIVERSITY

Ecotechnology and Sustainable Building Engineering

Author: Peter Simon, pesi1300@student.miun.se or peter.jc.simon@gmail.com Examiner: Anders Jonsson, anders.jonsson@miun.se

Supervisor: Morgan Fröling, morgan.froling@miun.se

Degree programme: International Master’s Programme in Ecotechnology and Sustainable Development, 120 credits

Main field of study: Environmental Science Semester, year: Spring, 2015

(3)

Abstract  

   

In  the  pursuit  of  low-­‐‑carbon,  renewable  energy  sources  one  option  with  great   potential  in  the  UK  is  tidal  energy.  Specifically  the  proposed  construction  of   the  Swansea  Bay  Tidal  Lagoon  (SBTL)  in  South  Wales  has  become  one  such   discussed  option.  With  a  potential  net  annual  output  of  400  GWh  and  a  120-­‐‑

year  lifetime  the  scheme  represents  a  long-­‐‑term  and  large-­‐‑scale  electricity   production  option.  An  assessment  of  carbon  emissions  and  embodied  energy   (EE)  of  the  lagoon’s  life  cycle  was  carried  out.  Total  lifetime  carbon  emissions   for  the  SBTL  are  in  the  region  of  470,000  tCO2e  and  EE  was  found  to  be  

around  7,800  TJ.  The  assessment  shows  that  the  SBTL  has  significantly  lower   emissions  per  year  than  the  existing  National  Grid  mix  and  with  emissions  of   around  0.01  kgCO2e/KWh  is  significantly  lower  than  the  UK  emissions  target   of  0.07  kgCO2e/KWh.  Energy  payback  of  the  SBTL  was  found  to  be  in  the   region  of  5.5  years.  The  use  of  dredged  ballast  infill  sourced  from  within  the   area  of  the  lagoon  plays  an  important  role  in  keeping  emissions  and  energy   use  low;  and  is  a  key  consideration  when  planning  future  tidal  lagoon   structures.  

 

[Keywords:  Life  Cycle  Assessment,  embodied  energy,  carbon  emissions,  tidal  energy,   tidal  lagoon,  renewable  energy,  Swansea  Bay]    

(4)

Acknowledgements  

 

I  would  like  to  thank  the  following  people:  

 

Firstly  to  all  of  the  lecturers  I  have  had  during  my  time  at  Mid  Sweden  

University  for  developing  my  skills  and  understanding,  all  of  which  has  had  a   part  to  play  in  writing  this  paper.  In  particular  I  would  like  to  thank  program   coordinator  Anders  Jonsson  for  his  enthusiasm  and  encouragement  

throughout  my  two  years  at  MIUN  and  Morgan  Fröling,  my  thesis  

supervisor,  for  his  guidance  and  assistance  with  this  paper.  Without  Morgan’s   invaluable  knowledge  of  the  LCA  methodology  and  report  writing  in  general   the  quality  of  this  report  would  not  be  the  same.  

 

Secondly  to  all  of  the  students  I  have  worked  alongside  or  with  throughout   my  time  at  MIUN,  especially  those  on  the  ECOSUD  master  program  who   have  always  helped  answer  queries  and  provided  support  whenever  needed,   as  well  as  the  occasional  much  needed  trip  to  the  pub!  A  special  mention   must  go  to  Andreas  Willfors  who  acted  as  my  opponent  during  the  writing  of   this  thesis;  his  comments,  guidance  and  the  time  he  spent  on  my  paper  are   much  appreciated.  

 

Huge  thanks  must  go  to  my  parents  for  their  constant  support;  I  have  no  idea   how  I  will  ever  repay  you.  And  finally  to  my  girlfriend  Julia  for  inspiring  me   to  move  to  Sweden  in  the  first  place  and  for  putting  up  with  me  without  (too   many)  complaints!  

 

Pete  Simon    

 

 

 

(5)

 

Table  of  Contents  

1.   Introduction  ...  1  

1.1.   Tidal  energy  UK  Potential  ...  1  

1.2.   Tidal  energy  technologies  ...  2  

1.3.   Motivation  for  study  ...  3  

1.4.   Purpose  and  objectives  ...  4  

1.5.   Life  cycle  assessment  ...  4  

1.6.   Swansea  Bay  Tidal  Lagoon  ...  5  

1.6.1.   Overview  ...  5  

1.6.2.   Location  ...  5  

1.6.3.   Design  ...  6  

2.   Goal  and  scope  ...  8  

2.1.   Function  of  study  and  functional  unit  ...  8  

2.2.   Impact  assessment  categories  ...  8  

2.2.1.   Carbon  Emissions  ...  8  

2.2.2.   Embodied  Energy  ...  8  

2.3.   System  Boundaries  ...  9  

2.3.1.   Technical  system  boundaries  ...  9  

2.3.2.   Geographical  boundaries  ...  10  

2.3.3.   Time  boundary  ...  10  

2.3.4.   Data  Quality  ...  11  

3.   Life  Cycle  Inventory  (LCI)  ...  12  

3.1.   Material  production  ...  12  

3.1.1.   Bulk  Material  Quantities  ...  12  

3.1.2.   Rock  Armour  ...  14  

3.1.3.   Dredged  Ballast  Infill  ...  15  

3.1.4.   Cement  ...  15  

3.1.5.   Sand  ...  15  

3.1.6.   Aggregate  ...  16  

3.1.7.   Steel  reinforcement  ...  16  

3.1.8.   Steel  sheet  pilings  ...  16  

3.1.9.   Turbines  ...  16  

3.1.10.   Water  ...  16  

3.1.11.   Geotubes  ...  17  

3.2.   Transports  ...  17  

3.2.1.   Transport  types  and  distances  ...  18  

3.2.2.   Heavy  goods  vehicles  (HGVs)  ...  19  

3.2.3.   Sea  transport  ...  19  

3.2.4.   Materials  without  transports  ...  19  

3.2.5.   Fuel  production  emissions  and  energy  ...  20  

3.3.   Construction  ...  20  

3.4.   Operation  ...  21  

4.   Results  ...  22  

(6)

4.1.   Carbon  Emissions  ...  22  

4.1.1.   Overall  carbon  emissions  by  life  cycle  stage  ...  22  

4.1.2.   Material  Production  ...  23  

4.1.3.   Material  transports  ...  23  

4.1.4.   Construction  ...  25  

4.1.5.   Operation  ...  25  

4.2.   Embodied  Energy  ...  25  

4.2.1.   Overall  embodied  energy  by  life  cycle  stage  ...  25  

4.2.2.   Material  Production  ...  26  

4.2.3.   Transports  ...  27  

4.2.4.   Construction  ...  28  

4.2.5.   Operation  ...  28  

4.3.   Breakdown  of  carbon  emissions  and  EE  by  material  ...  28  

5.   Discussion  ...  30  

5.1.   Identification  of  significant  life  cycle  stages  ...  30  

5.2.   Identification  of  significant  materials  ...  30  

5.3.   Carbon  and  energy  analysis  ...  32  

5.4.   Significance  in  relation  to  UK  greenhouse  gas  emissions  reduction  targets   32   5.5.   Uncertainties  and  sensitivity  analysis  ...  33  

Conclusion  ...  35  

Bibliography  ...  36    

 

 

(7)

1. Introduction  

 

Electrical  energy  use  and  its  production  represent  two  of  the  largest  issues   facing  society;  as  an  awareness  of  anthropogenic  impacts  on  the  environment   increases  and  stocks  of  fossil  fuels  diminish  our  need  to  find  alternative   means  of  power  is  highlighted.  Previously  used  and  existing  forms  of   electricity  production  have  often  been  both  resource  inefficient  and  

environmentally  damaging,  and  countries  are  setting  themselves  targets  to   not  only  reduce  consumption  through  increased  energy  efficiency  measures   but  also  to  reduce  their  reliance  on  fossil  fuels  and  finite  resources  

(Middleton,  2013).    As  global  economic  aspirations  increase,  so  will  demands   for  electricity.  This  has  led  to  the  increased  interest  in  renewable  energy   sources  and  a  demand  for  new  technologies.  

 

In  2011  the  UK  set  itself  a  target;  15%  of  its  consumed  electrical  energy  must   be  derived  from  renewable  sources  by  2020  (Department  of  Energy  and   Climate  Change,  2011).  In  addition  the  EU  has  set  targets  to  reduce  carbon   emissions  to  “at  least  80%  below  1990  levels  by  2050”  (European  Climate   Foundation,  2010).  In  2013  14.9%  of  the  UKs  electricity  was  produced  from   renewable  sources,  however  in  terms  of  consumed  electricity  renewables  only   contributed  5.2%,  largely  due  to  energy  imports  and  impracticalities  

associated  with  some  renewable  energies  (producing  energy  when  it  is  not   required).  The  largest  source  of  generated  electrical  energy  in  the  UK  was  coal   (36%)  followed  by  gas  (27%),  nuclear  (20%),  renewables  (15%),  and  other   sources  (2%)  (Department  of  Energy  and  Climate  Change,  2014).  This  

highlights  the  need  for  the  UK  to  employ  technologies  capable  of  low-­‐‑carbon   and  practical  renewable  electricity  production  to  meet  the  set  targets  and  curb   anthropogenic  climate  change.  The  Swansea  Bay  Tidal  Lagoon,  which  is  the   object  of  study  for  this  thesis,  is  one  such  electricity  production  technology.  

 

1.1. Tidal  energy  UK  Potential    

The  UK  is  suitably  placed  to  generate  large  amounts  of  consistent  and   predictable  energy  from  the  sea;  namely  from  tidal  and  wave  power   (Middleton,  2013).    Predictions  state  that  as  much  as  20%  of  the  UKs  total   electricity  demand  could  be  fulfilled  by  marine  energy,  with  around    

30-­‐‑50  GW  of  installed  capacity  (Middleton,  2013;  Department  of  Energy  and   Climate  Change,  2011).  Wave  technology  is  still  in  a  development  phase  and   has  not  yet  become  a  commercially  viable  option,  however  tidal  power  has   been  successfully  implemented  in  Europe  since  the  1960’s.  The  UK  has  some   of  the  largest  tidal  ranges  in  the  world  representing  a  huge  potential  for   renewable  energy  production;  Figure  1  shows  the  areas  of  largest  tidal  range.    

(8)

Figure 1. Mean spring tidal range in the UK (Marine Environmental Research, 2015)

One  of  the  key  advantages  of  tidal  power  is  its  predictability,  a  common   drawback  with  many  other  renewable  energy  technologies.  As  tides  are   driven  by  relationships  between  the  moon,  sun  and  earth  we  can  predict  their   time  and  range  with  great  accuracy  (Lewis,  Estefan,  Huckerby,  Musial,  

Pontes,  &  Torres-­‐‑Martinez,  2011).  This  predictability  makes  tidal  energy  ideal   to  form  part  of  a  diverse  energy  network,  something  the  government  states  is   of  key  importance  to  the  UK  (Department  of  Energy  and  Climate  Change,   2011).  

1.2. Tidal  energy  technologies    

There  are  numerous  techniques  for  the  creation  of  electricity  from  tidal   energy;  the  most  widely  used  technique  so  far  has  been  tidal  barrages.  Tidal   barrages  act  in  a  similar  way  to  a  conventional  hydroelectric  dam,  but  instead   of  preventing  water  flowing  downstream  within  a  river  tidal  barrages  are   constructed  across  estuaries,  allowing  the  tide  to  flow  through  them.  This   allows  the  upstream  estuarine  basin  to  fill,  before  storing  the  water  for  a  short   period  and  releasing  it  once  the  tide  has  fallen,  electricity  can  be  created  on   the  flood,  ebb  or  both,  and  there  is  potential  for  large  scale  production   (Johansson,  Kelly,  Reddy,  &  Williams,  1993).  There  are  a  small  number  of   tidal  barrages  currently  in  commission  (Middleton,  2013)  and  although  these  

(9)

have  proved  successful  they  have  not  become  more  widely  used  due  to   environmental  and  economic  concerns  (Clery,  2008).  As  barrages  cut  off  the   estuary  from  normal  tidal  and  river  stream  interactions  there  are  concerns   that  this  will  be  detrimental  to  the  estuarine  habitat  and  its  species,  as  well  as   interfering  with  the  complex  salinity  and  sedimentary  balances  in  estuaries.  

Additionally  the  very  high  costs  of  tidal  barrage  installations  can  make  them   unattractive  and  has  prevented  their  construction  in  the  past  (Clery,  2008).  

 

Another  method  of  tidal  energy  production  is  in-­‐‑stream  tidal  turbines,  which   operate  much  like  a  submarine  wind  turbine,  and  are  best  suited  to  areas  with   a  high  tidal  flow  speed  (Sea  Generation  Ltd.,  2013).  Currently  there  is  only   one  commercially  deployed  example  of  an  in-­‐‑stream  turbine,  the  SeaGen   project  in  Northern  Ireland.  Although  electricity  production  is  lower  than   what  can  be  achieved  with  a  tidal  barrage  so  too  are  the  environmental   impacts  and  economic  outlay  (Sea  Generation  Ltd.,  2013).  The  UK  is  the   leading  expert  in  in-­‐‑stream  tidal  turbines,  and  the  European  Marine  Energy   Centre  (EMEC)  has  been  instrumental  in  testing  different  technologies  and   devices  in  a  bid  to  help  diffusion  of  the  technology.  

 

The  technology  that  this  paper  focuses  on  is  tidal  lagoons;  they  combine  the   large-­‐‑scale  production  potential  of  tidal  barrages  with  the  lower  

environmental  impact  of  in-­‐‑stream  turbines.  Tidal  lagoons  operate  similarly   to  tidal  barrages,  however  rather  than  having  a  sea  wall  that  spans  the  entire   estuary  only  a  small  section  of  the  estuary  is  cut  off,  forming  a  lagoon,  which   can  be  flooded  and  drained  with  the  rising  and  falling  tides  (Tidal  Lagoon   Swansea  Bay  plc,  2014a).  There  are  currently  no  tidal  energy  lagoons   anywhere  in  the  world.  Environmental  impacts  are  expected  to  be  much   lower  than  with  a  tidal  barrage  structure,  as  only  a  section  of  the  estuary  will   be  cut  off  from  natural  tidal  processes.  Although  there  are  currently  no  

examples  of  tidal  energy  lagoons  the  concept  is  not  too  complex  on  a  technical   level,  many  aspects  of  the  lagoons  technology  can  be  borrowed  from  existing   technologies  and  construction  methods.    

 

1.3. Motivation  for  study    

Increasingly  large  tidal  energy  lagoons  are  discussed  for  the  future,  and   therefore  there  is  a  need  for  an  understanding  of  the  carbon  emissions  and   embodied  energy  associated  with  their  construction.  As  there  are  currently  no   tidal  energy  lagoons  in  use  there  is  also  a  lack  of  literature  relating  directly  to   their  environmental  impact  from  a  life  cycle  perspective;  a  majority  of  

academic  research  available  focuses  on  the  direct  impact  relating  to  the  site   and  surrounding  areas.    

(10)

 

Although  there  is  a  lack  of  existing  literature  directly  related  to  tidal  energy   lagoons  there  are  technical  and  operational  similarities  with  tidal  barrages.  As   a  result  there  are  numerous  relevant  studies.  In  particular,  the  formerly  

proposed  Severn  estuary  tidal  barrage  saw  a  great  deal  of  academic  research.  

Kelly  et  al.  (2012)  carries  out  an  energy  and  carbon  life  cycle  assessment  of  the   proposed  Severn  barrage,  concluding  that  the  most  significant  stage  of  the   barrage’s  life  cycle  is  the  operational  phase.  This  was  due  to  the  operation   strategy  of  the  barrage;  to  maximise  electricity  generation  pumping  of  water   upstream  of  the  barrage  was  employed  during  the  flood  tide.  Although  this   led  to  a  net  increase  in  electricity  output  the  pumps  were  assumed  to  be   powered  from  the  UK  National  Grid,  and  therefore  this  resulted  in  high   emissions  and  electrical  energy  use  over  the  120-­‐‑year  lifetime  of  the  barrage.  

 

1.4. Purpose  and  objectives      

The  purpose  of  this  report  is  to  assess  carbon  emissions  and  embodied  energy   (EE)  of  the  proposed  Swansea  Bay  tidal  lagoon  from  a  life  cycle  perspective.  

By  considering  these  factors  the  low-­‐‑carbon  and  energy  efficient  

characteristics  of  a  tidal  lagoon  can  be  considered  and  recommendations  can   be  made  on  how  to  limit  the  environmental  impact  of  the  construction  of  such   an  installation.  

 

The  main  objectives  are  as  follows:  

• Develop  understanding  of  embodied  energy  and  carbon  emissions   from  material  production,  material  transport,  construction  and   operation  life  cycle  stages  of  the  Swansea  Bay  Tidal  Lagoon,  and   identify  which  are  most  significant  

• Identify  which  materials  represent  the  largest  carbon  emissions  and   embodied  energy  

• Benchmark  against  current  electrical  energy  mix  in  the  UK    

1.5. Life  cycle  assessment      

When  considering  technologies  or  systems  from  an  environmental  

perspective  it  is  important  to  consider  what  impacts  they  will  have  over  their   entire  operational  life.  Use  of  the  Life  Cycle  Assessment  (LCA)  methodology   allows  inclusion  of  environmental  impacts  of  the  life  cycle  phases  of  raw   material  extraction,  material  manufacture,  construction,  operation  and   disposal  to  be  taken  into  account  (Bauman  &  Tillman,  2004).  This  “cradle  to   grave”  approach  helps  to  identify  the  overall  impact  of  a  product,  for  example  

(11)

a  product  may  have  a  very  low  impact  during  its  use  phase,  making  it  seem   desirable,  but  its  production  or  disposal  may  be  dramatically  different.  This   study  uses  an  LCA  approach  to  assess  the  environmental  impact  of  a  tidal   lagoon  power  installation  in  the  UK.  As  of  yet  there  are  limited  examples  of   LCA  studies  on  large-­‐‑scale  tidal  energy  production.    

 

In  1997  the  International  Organization  for  Standardization  developed  a   standard  for  LCA  (ISO  14040,  1997),  and  the  methodology  is  followed  in  this   study.  

 

1.6.  Swansea  Bay  Tidal  Lagoon    

1.6.1. Overview    

The  focus  of  this  study  will  be  on  one  case  study  in  particular;  the  proposed   Swansea  Bay  Tidal  Lagoon  (SBTL)  in  Swansea,  Wales,  which  if  completed   would  be  the  first  tidal  energy  lagoon  in  the  world  (Tidal  Lagoon  Swansea   Bay  plc,  2014a).  The  project  will  comprise  of  a  9.5km  sea  wall,  which  will   enclose  11.5km2  of  the  bay  (see  Figure  2);  the  sea  wall  will  house  16  turbines,   which  will  allow  water  to  pass  through  both  on  the  rising  and  falling  tide.  

This  bi-­‐‑directional  flow  will  allow  the  lagoon  to  create  electricity  for  14  hours   a  day,  and  with  an  installed  capacity  of  240MW  and  a  net  annual  output  of   400GWh  for  an  expected  lifetime  of  120  years  (Tidal  Lagoon  Swansea  Bay  plc,   2014a).  Tidal  Lagoon  Swansea  Bay  plc.,  the  company  planning  to  construct   the  SBTL,  are  using  this  project  as  a  gateway  to  construct  a  number  of   increasingly  larger  tidal  energy  lagoons  in  the  UK  in  the  future.  

 

1.6.2. Location    

The  position  of  Swansea  Bay  at  the  entrance  to  the  Severn  Estuary,  an  area   that  has  long  been  linked  with  tidal  energy  projects  (Kelly,  McManus,  &  

Hammond,  2012),  makes  it  an  interesting  situation  for  a  tidal  energy  lagoon.  

The  tidal  range  can  be  as  much  as  10.5m  which,  combined  with  the  gently   sloping  sea  bed,  (allowing  simple  seawall  production  with  minimal  materials)   and  proximity  to  a  large  population  make  it  a  promising  site  for  a  commercial   tidal  energy.  

 

(12)

Figure 2. Map of proposed SBTL (adapted from Tidal Lagoon Swansea Bay plc. (2014a)), the seawall can be seen, as well as the turbine house situated at the South Western edge of the lagoon.

1.6.3. Design    

The  design  of  the  lagoons  seawall  and  its  construction  will  be  similar  to  a   standard  UK  breakwater.  Figure  3  shows  a  diagram  of  a  typical  cross  section   of  the  seawall;  the  main  bulk  of  the  seawall  will  consist  of  dredged  material,   which  is  enclosed  within  synthetic  geotubes  filled  with  the  same  dredged   material.  On  top  of  this  foundation  granite  rock  armour  will  be  laid  in  varying   dimensions,  with  a  greater  amount  positioned  on  the  seaward  side  of  the  wall   to  offer  protection  from  wave  activity.  Finally  a  concrete  top  will  be  added  to   provide  a  road  and  walkway  for  access.  The  dimensions  and  design  of  the   seawall  will  change  slightly  depending  on  where  the  most  significant   protection  is  required  (Tidal  Lagoon  Swansea  Bay  plc,  2014a).  

   

Figure 3. Cross-section of typical section of lagoon seawall (Tidal Lagoon Swansea Bay plc, 2014a)   N

(13)

To  create  electricity  the  lagoon  will  include  a  turbine  house,  containing  up  to   16  turbines  and  8  sluice  gates;  although  the  turbines  allow  generation  during   both  filling  and  draining  of  the  lagoon  the  sluice  gates  allow  quick  

equalisation  of  the  water  level  during  the  rising  tide  (Tidal  Lagoon  Swansea   Bay  plc,  2014a).  A  final  turbine  design  has  not  yet  been  decided  upon  

however  it  is  likely  that  it  will  be  based  on  a  7m  bi-­‐‑directional  bulb  turbine.  

The  turbine  house  itself  will  be  constructed  with  reinforced  concrete  and  will   be  placed  at  the  southwest  edge  of  the  lagoon,  as  seen  in  Figure  2.  

 

This  study  will  focus  on  the  SBTL  and  assess  the  carbon  emissions  and   embodied  energy  of  the  120-­‐‑year  lifetime  of  the  project.  

   

 

 

(14)

2. Goal  and  scope  

 

The  following  chapter  will  outline  the  scope  and  boundaries  of  the  study,  and   detail  the  methodological  considerations  that  were  applied  throughout.  

 

2.1. Function  of  study  and  functional  unit    

This  study  will  focus  on  the  potential  production  of  electrical  energy  from  the   SBTL.  Only  the  direct  output  of  electrical  energy  is  considered.  The  functional   unit  for  most  results  in  this  study  will  be  one  SBTL  for  a  120-­‐‑year  lifetime,  in   addition,  for  some  purposes  results  will  be  directly  related  to  electrical  energy   output  from  the  lagoon;  in  these  instances  KWh  will  be  used.  

 

2.2. Impact  assessment  categories    

This  study  uses  two  impact  categories,  carbon  emissions  and  embodied   energy.  These  have  been  selected  as  they  represent  two  of  the  key  

considerations  when  assessing  future  electrical  energy  technologies  and  in   addition  a  majority  of  the  existing  literature  regarding  tidal  installations  focus   solely  on  these  categories.  

 

2.2.1. Carbon  Emissions    

The  first  impact  category  is  carbon  emissions,  which  will  be  highlighted  by   collecting  data  regarding  carbon  equivalent  emissions.    

 

Carbon  emissions  are  an  important  characteristic  to  consider  when  discussing   future  electrical  energy  solutions  as  they  are  one  of  the  key  drivers  of  global   warming.  Much  focus  has  been  placed  on  renewable  energies  playing  a   significant  role  in  future  energy  mixes;  however  renewable  energy  does  not   necessarily  mean  low-­‐‑carbon.  As  renewable  energies  often  have  low  carbon   emissions  during  their  operational  phase  it  is  important  to  understand   emissions  from  their  whole  life  cycle.  

 

2.2.2. Embodied  Energy    

In  addition  to  carbon  emissions,  Embodied  Energy  (EE)  will  also  be  assessed.  

The  EE  of  an  energy  technology  is  important  as  it  gives  an  insight  into  the   energy  efficiency  of  the  product,  as  well  as  indicating  its  energy-­‐‑payback  

(15)

time.  In  a  majority  of  cases  EE  data  is  estimated  according  to  UK  industrial   fuel  consumption  data  (Hammond  &  Jones,  2011).    

 

2.3. System  Boundaries    

2.3.1. Technical  system  boundaries    

The  technical  system  boundaries  are  outlined  in  Figure  4.  The  included   processes  are  split  into  four  stages,  material  production,  transport,  

construction,  operation,  whereas  decommissioning  has  been  excluded  from   the  study.  Where  possible  all  materials,  structures  and  processes  directly   associated  with  the  production  of  electrical  energy  from  the  SBTL  are   included.  

 

Figure 4. Flow diagram showing the technical system boundaries of the SBTL LCA study. The  

decommissioning phase has been excluded from the study.

Excluded   processes   Included  processes  

 

Grid   connection  

  Other   maintenance /operating   procedures   Construction  

Material  production  

Sea  wall   Turbine  house  

Turbines  

Transport  

Transports  

Dredging   Turbine  

house  

Sea  wall  

Operation  

Maintenance   -­‐‑  turbines  

(16)

Not  included  in  this  assessment  are  the  impacts  associated  with  production   and  manufacturing  of  any  external  machinery  used  for  either,  material   production,  transports  etc.  It  is  assumed  that  these  machines  are  already   manufactured  and,  as  they  can  be  used  multiple  times  for  numerous  projects   should  not  be  associated  solely  with  the  SBTL.  

 

There  are  however  some  aspects  that  have  been  excluded.  Firstly,  how  the   SBTL  will  be  connected  to  the  wider  electricity  grid  infrastructure  has  not  yet   been  decided,  and  therefore  this  process  will  be  disregarded;  this  is  expected   to  have  a  negligible  impact  on  the  overall  results.  During  the  operation  phase   of  the  SBTL  only  routine  replacement  of  turbines  will  be  included  as  this  is   predictable.  All  other  maintenance  relating  to  the  sea  wall  and  other  

structures  will  not  be  included  as  it  is  not  known  whether  or  to  what  extent  it   will  be  necessary.  It  is  also  likely  that  a  small  amount  of  electrical  energy  will   be  drawn  from  the  National  Grid  during  operation  to  control  the  technical   electricity  production  functions,  however  as  the  details  of  this  are  not   available,  and  as  it  is  assumed  to  be  insignificant  in  relation  to  the  energy   produced  by  the  lagoon  this  has  also  been  excluded.    

 

It  is  important  to  note  that  due  to  the  120-­‐‑year  life  cycle  of  the  SBTL  the   decommissioning  stage  is  hard  to  predict,  and  therefore  will  be  disregarded.  

It  is  likely  that  the  seawall  structure  would  be  left  to  gradually  degrade  into   the  sea  in  any  case  (Kelly,  McManus,  &  Hammond,  2012),  however  it  is   unclear  how  other  elements  of  the  lagoon  will  be  handled,  such  as  the   turbines  and  sluice  gates.  

 

2.3.2. Geographical  boundaries    

A  majority  of  materials  and  products  used  to  construct  the  SBTL  will  

originate  from  UK  suppliers,  where  possible  local  materials  and  suppliers  are   intended  to  be  used  (sources  of  material  listed  in  Tidal  Lagoon  Swansea  Bay   plc.  (2014a)  (see  Table  2);  Tidal  Lagoon  Swansea  Bay  plc  (2015)).  Thus  

inventory  data  for  materials  production  and  transports  in  the  UK  will  be   used.  

 

2.3.3. Time  boundary    

The  planned  service  life  of  the  SBTL  is  expected  to  be  120  years.  This  study   assumes  that  construction  and  commissioning  of  the  project  will  start   immediately  and  that  the  lifetime  of  the  lagoon  will  not  be  cut  short.  Due  to   planning  and  funding  issues  it  is  conceivable  that  the  project  could  start  in  a  

(17)

number  of  years  time,  which  could  impact  the  accuracy  of  the  data  used  in  the   Life  Cycle  Inventory  (LCI).  Additionally,  in  the  event  that  the  lagoons  life  was   cut  short  it  would  have  a  dramatic  influence  on  this  study’s  results.  

 

In  regards  to  the  operation  stage  of  the  lagoon’s  life  cycle,  the  turbines  are   assumed  to  be  replaced  twice  over  120  years;  once  in  40  years  and  again  in  80   years.  However,  the  environmental  impacts  of  both  sets  of  replacement   turbines  are  described  as  if  they  were  produced  using  present  day  energy   mix,  manufacturing  processes  and  equipment.  

2.3.4. Data  Quality    

When  compiling  data  to  be  used  in  this  study  the  quality  and  accuracy  is  of   upmost  importance.  To  ensure  consistency,  a  majority  of  the  inventory  data   regarding  materials  has  been  sourced  from  the  same  database,  the  Inventory   of  Carbon  and  Energy  (ICE)  from  Bath  University  (Hammond  &  Jones,  2011).  

ICE  compiles  results  from  wider  literature  for  carbon  and  energy  analyses  for   many  building  materials  from  a  UK  perspective.  In  cases  where  the  ICE   database  indicates  a  wide  variation  in  data  or  is  missing  the  relevant  

information  individual  data  values  have  been  gathered  from  peer  reviewed   literature  sources,  government  reports  or  large  organisations.  Whenever  this   is  the  case  several  data  sources  are  considered  and  compared  before  use.  

 

The  long  life  expectancy  of  the  SBTL  raises  numerous  issues  relating  to   quality  of  data  used  in  this  study.  It  can  be  assumed  that  the  accuracy  of  data   used  in  this  study  is  likely  to  decline  further  into  the  lagoons  lifetime;  

although  accurate  information  can  be  accessed  for  current  processes  estimates   are  increasingly  used  as  time  goes  on.    

         

   

 

 

(18)

3. Life  Cycle  Inventory  (LCI)  

 

In  this  study  the  120-­‐‑year  lifetime  of  the  SBTL  will  be  split  into  four  main  life   cycle  stages,  material  production,  transport,  construction  and  operation  (see   Figure  4);  as  detailed  in  section  2.3.1  of  this  report  the  decommissioning  stage   has  been  disregarded.  The  different  components  of  these  stages  and  the  data   that  will  be  used  for  the  results  of  the  study  are  outlined  in  the  following   chapter.  

 

3.1. Material  production    

The  materials  and  quantities  required  for  construction  of  the  SBTL  are  shown   in  Table  1,  together  with  the  carbon  emissions  and  EE  associated  with  

material  production.  Each  material  in  Table  1,  and  inventory  data  used  to   describe  its  production,  is  further  described  in  this  section.  Material  

production  concerns  all  bulk  materials  that  will  be  used  for  the  construction   of  the  SBTL;  this  study  considers  all  stages  of  the  materials  production,  from   raw  material  extraction,  to  processing  from  a  carbon  emission  and  EE  

perspective.    

 

3.1.1. Bulk  Material  Quantities    

Table  1,  column  2,  shows  estimated  quantities  of  bulk  material  needed  for   construction  of  the  SBTL.  Material  quantities  were  sourced  and  are  listed  in   Tidal  Lagoon  Swansea  Bay  plc.  (2014a).  

                               

(19)

 

Table 1. Summary of material quantities (Tidal Lagoon Swansea Bay plc, 2014a), and chosen factors to describe specific carbon emissions and EE further described in sections 3.3.1-3.3.11.

Material   Quantity    

(t)   Carbon  emissions  

(kgCO2e/t)   EE     (MJ/t)   Rock  Armour    

(Section  3.1.2)   2,790,000   20  

(Crishna,  Goodsir,   Banfill,  &  Baker,   2010)  

1,300   (Crishna,  

Goodsir,   Banfill,  &  

Baker,  2010;  

University  of   Tennessee,   2008)   Dredged  Ballast      

Infill  

(Section  3.1.3)  

15,200,000   4.95  

(Aumonier,   Hartlin,  &  Peirce,   2010)    

24.5   (Kemp,  2008)    

Cement    

(Section  3.1.4)   80,000   740  

(Hammond  &  

Jones,  2011)  

4,500   (Hammond  &  

Jones,  2011)   Sand    

(Section  3.1.5)   165,000   4.95  

(Aumonier,   Hartlin,  &  Peirce,   2010)    

24.5   (Kemp,  2008)  

Aggregate     (Section  3.1.6)  

250,000   5.2  

(Hammond  &  

Jones,  2011)    

80   (Hammond  &  

Jones,  2011)   Steel  Reinforcement    

(Section  3.1.7)   38,000   1,400    

(Hammond  &  

Jones,  2011)  

17,400   (Hammond  &  

Jones,  2011)   Steel  Sheet  Pilings    

(Section  3.1.8)   1,100  

  1,540    

(Hammond  &  

Jones,  2011)  

22,600   (Hammond  &  

Jones,  2011)     Turbines    

(Section  3.1.9)   9,000   6,150    

(Hammond  &  

Jones,  2011)  

56,700   (Hammond  &  

Jones,  2011)     Water    

(Section  3.1.10)   35,000   0.4  

(Water  UK,  2011)    

200     (Hammond  &  

Jones,  2011)    

   

(20)

3.1.2. Rock  Armour    

Rock  armour  will  be  used  along  the  entire  length  of  the  lagoon  wall  (not   including  the  turbine  house),  it  consists  of  large  blocks  of  roughly  broken   granite  and  is  positioned  on  the  outside  of  the  wall  where  it  absorbs  wave   energy.  This  rock  armour  will  be  of  varying  sizes,  from  0.3  to  10  tonnes,  with   smaller  sized  rocks  placed  beneath  the  larger  (Tidal  Lagoon  Swansea  Bay  plc,   2014a).    

 

Data  concerning  the  carbon  emissions  associated  with  granite  acquisition  is   highly  variable  (Hammond  &  Jones,  2011),  with  values  ranging  from  6  to  781   kgCO2/tonne  (Broekens,  Escarameia,  Cantelmo,  &  Woolhouse,  2011).  

However  it  is  likely  that  this  great  range  is  largely  due  to  the  processing  of   granite  for  different  uses,  and  the  fact  that  a  majority  of  studies  focus  on   dimension  stone  for  building  and  interior  uses.  Results  from  a  study  by   Crishna  et  al.  (2010)  indicate  that  granite  has  carbon  emissions  of    

92.91  kgCO2e/tonne  but  that  a  majority  of  this  is  due  to  processing;  extraction   of  granite  is  responsible  for  around  22%  of  this  total,  therefore  around  20   kgCO2e/tonne.  Although  indications  are  that  if  the  granite  is  sourced  as  a  by-­‐‑

product  of  aggregate  extraction,  it  could  be  assumed  that  its  CO2  emissions   are  the  same  as  that  for  aggregate  extraction  (Broekens,  Escarameia,  

Cantelmo,  &  Woolhouse,  2011).  In  this  case  values  could  be  considerably   lower,  as  low  as  5  kgCO2/tonne.  However  as  indicated  in  Tidal  Lagoon   Swansea  Bay  plc  (2014a)  the  quarry  that  will  be  used  for  rock  armour  will  be   reopened  especially  for  the  project,  indicating  that  any  granite  extracted  will   not  be  a  by-­‐‑product  of  aggregate  extraction.  Therefore  for  this  study  a  value   of  20  kgCO2e/tonne  will  be  used.  

 

In  regards  to  the  EE  associated  with  granite  extraction  there  are  still  widely   variable  results  and  a  lack  of  studies  that  aim  to  divide  the  EE  between   extraction  and  processing.  Hammond  and  Jones  (2011)  indicate  EE  could  be   as  high  as  11,000  MJ/t,  but  does  not  differentiate  between  extraction  and   processing.  A  study  by  the  University  of  Tennessee  (2008)  indicates  that   granite  production  in  the  USA  is  predicted  to  have  EE  of  5,900  MJ/t.  

Assuming  that  EE  will  be  similar  for  granite  produced  in  the  UK  and  inline   with  the  carbon  emissions  results  from  Crishna  et  al  (2010)  it  could  be   assumed  that  the  material  extraction  only  represents  around  22%  of  this   value,  or  around  1,300  MJ/t.  Therefore  EE  of  1,300  MJ/t  will  be  used  for   granite  rock  armour  in  this  study.  

   

(21)

3.1.3. Dredged  Ballast  Infill    

A  majority  of  the  lagoon  wall  will  consist  of  sediment  dredged  from  the   lagoon  bed  itself.  This  sediment  will  be  used  for  the  central  part  of  the  wall,   and  will  be  enclosed  within  synthetic  geotubes,  which  will  also  be  filled  with   dredged  sediment  (Tidal  Lagoon  Swansea  Bay  plc,  2014a).  It  is  assumed  that   the  sediment  will  not  need  to  be  further  treated  or  cleaned,  however  in  the   case  of  the  sediments  being  found  to  be  contaminated,  further  processing  of   the  sediment  will  be  required.  

 

The  Crowne  Estate  has  published  data  regarding  the  carbon  emissions  and  EE   for  dredging  in  the  UK  (Aumonier,  Hartlin,  &  Peirce,  2010).  The  total  carbon   emissions  for  a  short  haul  dredger  are  6.41  kgCO2e/tonne  of  dredged  material   making  landfall  (Aumonier,  Hartlin,  &  Peirce,  2010).  It  is  important  to  note   that  dredged  material  used  for  SBTL  will  not  need  to  make  landfall,  it  will  be   deposited  straight  from  the  boat  to  form  the  lagoon  wall,  so  all  emissions  and   energy  use  regarding  wharfs  and  on  land  processes  can  be  disregarded.  

Therefore  data  for  only  the  vessels  can  be  used,  which  includes  transit,   loading,  dredging  and  discharge,  this  value  is  given  as  4.95  kgCO2e/tonne   (Aumonier,  Hartlin,  &  Peirce,  2010).  

 

Dredgers  use  Marine  Gas  Oil  (MGO)  for  fuel,  which  has  an  embodied  energy   of  49MJ/kg  (Alternative  Fuels  Data  Center,  2015),  and  a  typical  short  haul   dredger  uses  0.5kg  MGO/tonne  of  dredged  material  (Kemp,  2008),  giving  an   energy  consumption  of  24.5MJ/tonne  of  dredged  sediment.  

 

3.1.4. Cement    

Cement  will  be  used  to  make  concrete  for  both  the  turbine  house  and  also  for   the  top  of  the  lagoon  wall  as  an  access  path  and  road.  It  is  not  specified  what   kind  of  cement  will  be  used  so  average  UK  cement  data  for  embodied  carbon   and  embodied  energy  from  the  ICE  database  are  used.  For  carbon  emissions  a   value  of  740  kgCO2e/tonne  is  used  and  for  EE  4,500MJ/tonne  is  used  

(Hammond  &  Jones,  2011).  

 

3.1.5. Sand    

To  make  the  concrete  a  combination  of  sand  and  aggregate  will  be  used.  The   sand  will  be  sourced  from  within  Swansea  Bay  by  dredging;  from  both  within   the  lagoon  and  elsewhere  in  the  area.  As  with  the  dredged  ballast  infill  from   section  3.1.2  the  data  found  by  the  Crowne  Estate  will  be  applied,  carbon  

(22)

emissions  are  4.95  kgCO2e/tonne  (Aumonier,  Hartlin,  &  Peirce,  2010)  and  EE   will  be  24.5  MJ/tonne  (Kemp,  2008).  

 

3.1.6. Aggregate    

Aggregate  used  for  concrete  production  will  use  standard  UK  data  for   quarried  aggregate  from  the  ICE  database,  with  carbon  emissions  of  5.2   kgCO2e/tonne  and  EE  of  83  MJ/tonne  (Hammond  &  Jones,  2011).  

 

3.1.7. Steel  reinforcement    

Certain  areas  of  the  concrete  constructions  will  require  steel  reinforcements,   especially  the  turbine  house,  for  this,  data  for  bar  and  rod  steel  were  acquired   from  the  ICE  database.  Therefore  carbon  emissions  of  1,400  kgCO2e/tonne  and   an  EE  of  17,400  MJ/tonne  (Hammond  &  Jones,  2011)  will  be  used.    

 

3.1.8. Steel  sheet  pilings    

Steel  sheet  pilings  will  be  used  along  sections  of  the  coastline  to  protect  from   wave  erosion.  The  ICE  database  suggests  carbon  emissions  for  UK  galvanised   sheet  steel  with  average  recycled  content  as  1,540  kgCO2e/tonne  and  EE  as   22,600  MJ/tonne  (Hammond  &  Jones,  2011).  

 

3.1.9. Turbines    

Detailed  information  regarding  the  materials  needed  in  the  turbines  is  not   available  and  in  SBTL’s  preliminary  material  requirement  assessment  steel  is   the  only  listed  material  for  turbine  construction  (Tidal  Lagoon  Swansea  Bay   plc,  2014a).  It  is  presumed  that  the  turbines  will  require  high  quality  stainless   steel;  the  ICE  database  provides  data  for  average  stainless  steel,  with  carbon   emissions  of  6,150  kgCO2/tonne  and  EE  of  56,700  MJ/tonne  (Hammond  &  

Jones,  2011).  

 

3.1.10. Water    

Water  will  be  used  for  the  preparation  of  concrete,  and  will  be  sourced  from   the  mains  water  supply.  The  ICE  database  contains  information  regarding  the   EE  of  mains  water,  but  not  carbon  emissions.  EE  was  given  at  an  average  of   0.2  MJ/kg  (Hammond  &  Jones,  2011),  which  can  be  converted  as  200  

MJ/tonne.  In  a  report  published  by  Water  UK,  the  governing  body  of  the  UK  

(23)

water  industry,  the  carbon  emissions  associated  with  mains  water  supply  in   Wales  was  given  as  400  kgCO2e/million  litres  or  0.4  kgCO2e/tonne  (Water  UK,   2011).  It  is  important  to  note  that  both  the  carbon  emissions  and  EE  values   here  include  the  effects  of  distribution  throughout  the  mains  water  network.  

 

3.1.11. Geotubes    

Geotubes  have  been  excluded  from  this  study,  as  the  quantity  required  is  not   available  in  the  SBTL  reports  and  data  regarding  the  environmental  impact  of   their  production  is  inconclusive;  however  their  exclusion  is  expected  to  have  a   negligible  impact  on  the  results.    

 

The  SBTL  will  use  geotubes  in  the  lagoon  wall;  the  geotubes  are  a  tube  made   of  woven  synthetic  material  (often  known  as  a  geotextile  or  geosynthetic),   which  can  be  filled  with  dredged  sediment.  The  synthetic  tube  holds  the   material  in  place  but  can  let  water  migrate  through  its  membrane,  reducing   the  risk  of  damage  by  wave  activity  but  maintaining  moisture  in  the  enclosed   sediment.  They  have  become  widely  used  in  coastal  protection  constructions;  

however  there  is  very  limited  information  regarding  their  carbon  emissions   and  EE.  Stucki  et  al.  (2011)  discusses  the  carbon  emissions  of  four  different   geosynthetics  intended  for  various  applications.  The  material  most  similar  to   the  geotubes  used  in  the  SBTL  was  a  retaining  filter  layer,  with  carbon  

emissions  of  3.2  kgCO2e/kg  of  geotextile  (Stucki,  Busser,  Itten,  Frischknecht,  &  

Wallbaum,  2011).  However  it  is  likely  that  the  geotubes  used  in  this  case  will   still  be  markedly  different  to  those  from  the  Stucki  study,  and  therefore  this   value  cannot  be  included  in  this  study.  Likewise  there  is  no  available  

information  relating  to  the  EE  of  geotubes,  this  highlights  an  area  where   future  research  is  required,  especially  as  the  use  of  geotubes  is  becoming   increasingly  widespread  in  coastal  construction.  Stucki  et  al.  (2011)  and  Bruce   and  Chick  (2009)  both  indicate  that  in  relation  to  the  overall  construction,   geotubes  will  have  a  negligible  impact  on  the  end  results.  Geotubes  also  allow   the  use  of  less  bulk  materials  overall  in  comparison  to  a  traditional  rubble   mound  structure,  so  although  their  direct  emissions  are  not  included  their   impact  on  the  rest  of  the  structure  is  inherent.  

 

3.2. Transports    

The  main  modes  of  transports  for  materials  in  this  project  are  road  and  sea.  

Tidal  Lagoon  Swansea  Bay  plc  (2014a)  discusses  the  likelihood  that  railway   will  be  used,  however  this  will  require  re-­‐‑commissioning  of  a  section  of   disused  railway  which  runs  adjacent  to  the  proposed  SBTL  site.  For  the  case  

(24)

of  this  study  it  is  assumed  that  this  railway  will  not  be  used,  largely  due  to  the   local  sources  of  a  majority  of  the  material  being  transported  by  land,  however   if  transport  distances  were  to  increase  re-­‐‑commissioning  of  the  railway  may   be  necessary.  The  main  mode  of  land  transport  considered  in  this  study  will   be  by  heavy  goods  vehicles.  The  UK  Department  for  Environment,  Food  and   Rural  Affairs  (DEFRA)  have  compiled  data  regarding  fuel  conversion  factors   and  direct  emissions  from  numerous  transports  (Hill,  Walker,  &  Beevor,   2011),  this  data  was  used  when  calculating  both  transport  emissions  and   energy  use  (see  table  2,  two  last  columns).  

 

3.2.1. Transport  types  and  distances    

The  sources  of  construction  materials  are  described  in  brief  in  Tidal  Lagoon   Swansea  Bay  plc  (2014a),  where  specific  locations  are  not  noted,  a  likely   source  in  close  proximity  to  the  construction  site  is  assumed.  Table  2  outlines   the  assumed  source  locations  of  each  bulk  material  and  the  transport  method.  

 

Table 2. Material transport information. Carbon emission values are taken from Hill et al. (2011) and EE values from Allen and Browne (2010) for road transport and Lipasto (2009) for sea transport.

Material   Assumed  

place  of   origin  

Mode  of   transport  

Distance   Carbon  Emissions   (gCO2e/tonne  km)  

EE  

(MJ/tonne   km)   Rock  Armour    

(Section  3.1.2)   Cornwall,  

England   Boat   300  km   13.2  

  0.34  

Dredged  Ballast    

(Section  3.1.3)   Swansea  bay,  

dredged   N/A   0  km   N/A   N/A  

Cement    

(Section  3.1.4)   Aberthaw,  S.  

Wales   Road   60  km   86.7     0.5  

  Sand    

(Section  3.1.5)   Swansea  bay,  

dredged   N/A   0  km   N/A   N/A  

Aggregate    

(Section  3.1.6)   Swansea,  

local  quarry   Road   25  km   86.7     0.5  

  Steel  

Reinforcement   (Section  3.1.7)  

Port  Talbot,  

S.  Wales   Road   15  km   86.7     0.5  

 

Steel  Sheet   Pilings     (Section  3.1.8)  

Port  Talbot,  

S.  Wales   Boat   10  km   13.2     0.34  

Turbines    

(Section  3.1.9)   Port  Talbot,  

S.  Wales   Road   15  km   86.7     0.5  

  Water    

(Section  3.1.10)   Mains  water   N/A   0  km   N/A   N/A  

(25)

 

3.2.2. Heavy  goods  vehicles  (HGVs)    

With  respects  to  HGV  use,  it  is  presumed  due  to  the  type  and  quantity  of   materials  being  used  for  the  SBTL  construction  that  articulated  HGVs  greater   than  33  tonnes  will  be  used  in  most  instances.  Whilst  emissions  from  HGVs   vary  depending  on  their  laden  weight,  this  study  will  use  the  UK  average   value  of  61%  laden  in  tonne  kilometres,  which  give  carbon  emissions  of     86.7  gCO2e/tonne  km  (Hill,  Walker,  &  Beevor,  2011).  

 

In  terms  of  EE  HGVs  have  an  average  fuel  efficiency  of  3.15km/l  of  fuel  (Allen  

&  Browne,  2010),  and  diesel  oil  has  an  EE  of  35.8  MJ/l  of  fuel,  which  means   HGVs  use  around  11.4  MJ/km  or  0.5  MJ/tonne  km.  

 

3.2.3. Sea  transport    

In  addition  to  road  transport  many  materials  will  be  moved  via  boat  straight   to  the  site.  Again  data  from  DEFRAs  report  by  Hill  et  al.  (2011)  is  used  for  this   study.  The  average  carbon  emissions  of  a  general  cargo  vessel  laden  to  the  UK   average  of  60%,  is  given  as  13.2  gCO2e/tonne  km  (Hill,  Walker,  &  Beevor,   2011).  

 

In  terms  of  EE  an  average  figure  for  fuel  use  for  general  cargo  ships  is  0.34   MJ/tonne  km  (Lipasto,  2009).  

3.2.4. Materials  without  transports    

As  indicated  in  Table  2  the  dredged  ballast  infill  and  sand  have  no  transports   associated  with  them  as  they  are  dredged  on-­‐‑site  and  any  short  movements  of   dredgers  are  included  in  the  carbon  emissions  and  EE  associated  with  the   material  production.  

 

As  expressed  in  section  3.1.10  carbon  emissions  and  EE  associated  with  water   distribution  are  included  in  the  material  production  data  from  Water  UK   (2011)  and  (Hammond  &  Jones,  2011).In  addition,  the  water  required  for   construction  is  also  assumed  to  have  no  transport  as  it  is  sourced  from  the   mains  water  supply.    

     

(26)

3.2.5. Fuel  production  emissions  and  energy    

When  calculating  emissions  and  energy  use  in  regards  to  transports  it  is   important  to  consider  the  indirect  influences  of  fuel  production  and  

distribution.  Sheehan  et  al.  (1998)  suggest  that  0.2  MJ  of  energy  is  consumed   during  the  production  and  distribution  of  1  MJ  of  petroleum  diesel.  Assuming   that  the  same  is  true  for  carbon  emissions  then  fuel  production  should  be   responsible  for  an  additional  20%  of  tailpipe  emissions.  

 

3.3. Construction    

As  the  SBTL  does  not  yet  have  a  start  date  for  construction  work  it  is  not   known  precisely  what  processes  will  be  required  for  the  construction.  This   combined  with  the  lack  of  previous  research  into  tidal  energy  lagoons  from   energy  and  carbon  perspectives  make  this  life  cycle  stage  problematic  and  the   method  employed  represents  an  estimate.    

 

In  line  with  a  study  by  Bruce  and  Chick  (2009)  on  UK  breakwater  

construction  it  is  assumed  that  construction  emissions  and  EE  will  be  within   the  same  order  of  magnitude  as  those  associated  with  transports.  However   numerous  methods  for  construction  analysis  were  considered.  

 

One  option  available  is  to  convert  data  from  studies  relating  to  the  Severn   estuary  tidal  barrage,  the  most  highly  regarded  of  these  studies  being  Roberts   (1982).  However  Roberts’  study  and  results  have  limitations,  namely  the  age   of  the  study  and  the  method  employed  for  energy  and  carbon  accounting;  

basing  estimates  off  the  expected  cost  of  construction  activities,  the  method  is   not  consistent  with  this  study.  Kelly  et  al.  (2012)  conclude  that  the  

construction  stage  (including  material  extraction,  processing  and  transports)   of  the  Severn  barrage  has  carbon  emissions  in  the  region  of  5  Mt.CO2e  or   300,000  tCO2e/km  and  EE  of  around  6,000  TJ/km.  However  the  design   considered  for  the  Severn  estuary  is  concrete  caissons,  and  the  physical   dimensions  of  the  sea  wall  are  greatly  different  to  the  SBTL,  so  these  figures   are  only  appropriate  for  benchmarking  against.  

 

The  physical  similarities  between  the  SBTL  and  a  standard  rubble  mound   breakwater  allow  for  the  use  of  a  wider  data  set;  there  are  a  number  of  studies   that  attempt  a  quantitative  analysis.  Bruce  and  Chick  (2009)  highlights  the   complexities  associated  with  the  construction  phase.  Bruce  and  Chick  (2009)   assume  that  due  to  the  types  of  equipment,  and  their  typical  fuel  (diesel  oil)   that  construction  EE  and  carbon  emissions  will  be  of  a  similar  magnitude  to   those  associated  with  the  transports  of  the  materials  themselves.  Problems  

(27)

with  this  approach  are  that  this  assumption  largely  relates  to  the  mode  and   distance  of  transport.    

 

Bruce  and  Chick  (2009)  conclude  that  construction  of  a  typical  rubble  mound   breakwater  would  represent  90,000  tCO2/km;  this  includes  the  emissions   associated  with  material  production  and  transports.  In  the  case  of  the  SBTL   the  sea  wall  will  be  around  9.5km  in  length,  meaning  total  construction   emissions  including  materials  and  transports  should  be  in  the  region  of   855,000  tCO2.  In  terms  of  EE  Bruce  and  Chick  (2009)  conclude  that  embodied   energy  of  construction  (including  materials  and  transports)  will  be  1,500   TJ/km,  giving  a  total  for  the  SBTL  of  14,250  TJ.  However  due  to  the  design   and  inventory  value  differences  between  the  example  used  in  Bruce  and   Chick  (2009)  and  the  lagoon  in  this  study  these  figures  cannot  be  used.  In   addition,  Bruce  and  Chick  (2009)  discuss  emissions  and  EE  for  standard  

breakwater  constructions  which  are  very  rarely  on  a  similar  scale  to  the  nearly   10km  lagoon  wall  in  this  study;  it  is  likely  that  the  scale  of  the  overall  

construction  would  impact  the  emissions  and  EE  per  kilometre.    

 

Therefore  this  study  will  use  the  first  assumption  by  Bruce  and  Chick  (2009);  

that  construction  emissions  and  EE  will  be  within  the  same  order  of   magnitude  as  those  associated  with  total  material  transports.  

 

3.4.  Operation    

As  outlined  in  the  system  boundaries  the  scheduled  replacement  of  the   turbines  will  be  the  only  considered  process  during  the  operation  stage.  It  is   assumed  that  full  replacements  of  the  turbines  will  be  required  every  40   years,  as  estimated  in  Kelly  et  al.  (2012),  this  means  that  following  the  initial   construction  of  the  SBTL  two  further  sets  of  turbines  will  have  to  be  installed   over  the  following  120  years.  Although  emissions  related  to  turbine  

manufacture  are  likely  to  reduce  in  the  future  this  study  will  use  the  same   values  for  replacement  turbines  as  used  for  the  initial  construction  of  the   lagoon  as  detailed  in  section  3.1.9.  In  contrast  to  the  tidal  barrage  considered   in  Kelly  et  al.  (2012)  flood  pumping  is  not  expected  to  be  used  during  

operation  of  the  SBTL.    

(28)

4. Results  

 

4.1.  Carbon  Emissions    

The  carbon  emissions  associated  with  the  various  life  cycle  stages  of  the  SBTL   are  detailed  in  the  following  sections.  

 

4.1.1. Overall  carbon  emissions  by  life  cycle  stage    

The  overall  carbon  emissions  related  to  different  life  cycle  stages  are  shown  in   Figure  5.  The  life  cycle  stage  with  the  largest  emissions  is  material  production,   with  a  total  of  around  300,000  tCO2e.  The  stage  with  the  next  highest  

emissions  is  the  operation  stage  with  around  110,000  tCO2e  followed  by   transports  and  construction  both  with  27,000  tCO2e.  The  total  emissions   associated  with  the  SBTL  are  around  470,000  tCO2e.  

   

Figure 5. Carbon emissions by life cycle stage  

   

0   50,000   100,000   150,000   200,000   250,000   300,000   350,000  

Material  Production   Transport   Construction   Operation  

Emissions  (tCO2e)  

(29)

Figure 6. Carbon emissions of bulk material production of the SBTL.  

4.1.2. Material  Production    

   shows  the  total  carbon  emissions  associated  with  the  production  and  

manufacture  of  each  bulk  material  used  in  the  SBTL.  The  dredged  ballast  infill   represents  the  largest  contributor  to  carbon  emissions  with  around  75,000   tCO2e.  The  second  most  significant  material  in  terms  of  carbon  emissions  is   cement;  despite  being  nearly  190  times  less  mass  than  the  dredged  ballast   infill  it  still  has  carbon  equivalent  emissions  of  about  60,000  tonnes.    

 

In  relation  to  the  functional  unit  of  one  SBTL  for  120  years,  the  total  emissions   associated  with  material  production  are  300,000  tonnes  of  CO2e.  

4.1.3. Material  transports    

Figure  7  shows  the  CO2e  emissions  associated  with  the  transports  of  materials   to  the  SBTL  site.  The  dredged  ballast  infill  and  sand  are  both  dredged  from   within  the  area  of  the  lagoon  so  external  transport  distances  are  zero  and   short  distances  of  transports  within  sites  are  already  considered  in  the  

inventory  data  used  for  material  production.  The  same  is  true  for  water;  as  it   is  accessed  through  the  mains  water  system  transport  emissions  are  not  

applicable,  and  distribution  throughout  the  mains  water  system  is  included  in   the  material  production  inventory  data.    

 

0   10,000   20,000   30,000   40,000   50,000   60,000   70,000   80,000  

Tonnes  CO2e  

(30)

Figure 7. Carbon emissions (fuel production and tail pipe) of material transports to site. Note the  

logarithmic scale of the y-axis.

 

Figure 8. Percentage division of carbon emissions per material between material production and  

transport

 

0   1   10   100   1,000   10,000   100,000  

Tonnes  of  CO2e  emissions  

Fuel  production   Emissions  

Tailpipe  Emissions  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  

%  of  total  emissions    

Transport   Material   Production  

References

Related documents

This study found in total 43 percent of present study is using different database sources, which could impact the final results due to the different study boundaries, data quality

This formulation means that the utility change is positive (negative) if the price including transportation in the store exceeds (falls short of) the e-tailing price. Moreover,

These results indicate that in an LCA on building, where all life cycle stages of the building are included, the End of Life impacts of the building materials are of minor

Carbon dioxide emissions estimates produced here include al- lowance for oxidation of fossil-fuel products even if those prod- ucts are not used as fuels, whereas earlier

The thesis will use the variables Emissions per capita 2010 and Emissions per capita 2030 to explain the per capita greenhouse gas emissions countries had in 2010 and the

Keywords: Life Cycle Assessment; feedstock energy; asphalt binder additives; mass-energy flows; bitumen healing; wax;

The top 8 panels show, for each of the time points ❶-❽, the geometry of the anterior mitral leaflet, an outline of the mitral annulus, and the orientation of eight potential

Bilderna av den tryckta texten har tolkats maskinellt (OCR-tolkats) för att skapa en sökbar text som ligger osynlig bakom bilden.. Den maskinellt tolkade texten kan