• No results found

Business Value of the “Data Warehouse Appliance” Technology

N/A
N/A
Protected

Academic year: 2021

Share "Business Value of the “Data Warehouse Appliance” Technology"

Copied!
43
0
0

Loading.... (view fulltext now)

Full text

(1)

Business Value of the “Data

Warehouse Appliance” Technology

Affärsvärde med tekniken "Data Warehouse Appliance"

Saga Undén

Eric Westerlund

(2)

 

 

 

 

A

BSTRACT

 

 

 

The  recent  increase  in  the  amount  of  stored  company  data  and  exceeding  interest  in  data  analysis   has  resulted  in  new  requirements  on  Data  Warehousing  solutions.  This  has  led  to  the  development   of  Data  Warehouse  Appliances,  which  this  research  project  aims  to  investigate  the  business  value   of.  The  result  is  intended  to  support  companies  that  are  considering  an  investment,  and  give  them   an  understanding  of  the  technology’s  benefits.  

 

The  research  project  was  conducted  in  two  parts.  Vendors  of  the  Appliance  technology  were   interviewed,  as  well  as  their  customers.  The  results  from  the  vendor  interviews  together  with  a   literature  study  provided  a  knowledge  base  for  the  analysis  of  the  user  companies’  interviews.  The   results  clearly  indicate  that  there  is  value  in  the  technology  for  larger  companies.  

The  research  shows  that  although  the  main  benefits  advocated  by  the  vendors  match  the  perceived   ones  of  the  user  companies,  there  are  other  aspects  which  they  value  even  more.  Examples  of  this   include  a  reduced  amount  of  administrative  tasks  and  support  from  a  single  source.  The  research   also  reveals  that  the  benefits  estimated  by  the  customer  at  the  time  of  purchase  were  not  their  most   valued  benefits  in  hindsight.

 

(3)

 

 

 

 

S

AMMANFATTNING

 

 

 

 

Företag  lagrar  allt  större  datamängder  och  låter  dessa  ligga  till  grund  för  komplicerade  

dataanalyser,  vilket  ställer  nya  krav  på  deras  befintliga  Data  Warehouse-­‐lösningar.  Detta  har  lett  till   utvecklingen  av  Data  Warehouse  Appliance,  vars  affärsnytta  detta  projekt  syftar  till  att  utreda.   Resultatet  kommer  tillhandahålla  beslutsunderlag  för  de  företag  som  överväger  en  investering  i   tekniken.  

 

Undersökningen  genomfördes  i  två  steg.  Intervjuer  genomfördes  med  leverantörer  som   tillhandahåller  tekniken  såväl  som  med  deras  användande  kunder.  Resultaten  från  

leverantörsintervjuerna  tillsammans  med  en  omfattande  litteraturstudie  låg  sedan  till  grund  för   den  analys  som  gjordes  av  intervjuerna  med  de  användande  företagen.  Resultaten  visar  på  ett   verkligt  värde  i  tekniken  för  företag  med  stora  datamängder.  

 

Undersökningen  visar  att  de  fördelar  som  framhålls  som  teknikens  främsta  av  leverantörerna   bekräftas  av  deras  användande  kunder,  men  att  det  finns  andra  vinster  de  värdesätter  ännu  mer.   Dessa  inkluderar  en  minskad  teknisk  komplexitet,  en  minskad  mängd  administrativa  uppgifter   samt  support  från  en  enda  källa.  Undersökningen  visar  även  att  de  faktorer  som  spelat  störst  roll   vid  investeringen  inte  är  desamma  som  tillskrivs  störst  värde  i  efterhand.  

(4)

 

 

 

 

P

REFACE

 

 

 

 

 

This  thesis  is  written  for  companies  considering  an  investment  in  the  Data  Warehouse  Appliance   technology,  in  an  attempt  to  provide  them  with  objective  information  on  the  subject.  It  might  also   be  of  interest  to  professionals  within  the  field  of  Business  Intelligence,  as  well  as  any  novice  who  is   curious  about  and  looking  for  an  introduction  to  Business  Intelligence,  Data  Warehousing  or  Data   Warehouse  Appliances.  

 

Working  with  this  thesis  has  been  very  interesting,  enjoyable  and  worthwhile.  We  would  like  to   thank  Affecto  for  their  support  and  confidence  in  us  -­‐  a  special  thanks  goes  out  to  our  tutor  (and   mentor)  Tomas  Nabel  who  has  acted  as  an  excellent  sounding  board  and  with  whom  we  have  had   many  interesting  and  valuable  discussions  during  the  project.  We  would  also  like  to  thank  our   examiner  Anders  Sjögren  who  has  been  of  great  help  in  all  administrative  formalities,  and  Richard   Nordberg  who  has  provided  guidance  and  support  throughout  the  writing  process.    

 

Finally,  we  would  like  to  thank  the  house  of  Nymble,  which  has  provided  us  with  not  only  great   coffee,  lunch  and  ‘fika’,  but  also  super  comfortable  arm  chairs  and  ‘Musikrummet’  which  has  acted   as  our  office  these  two  months.  

 

(5)

T

ABLE  OF  CONTENTS

 

 

 

 

1.  

 

Introduction   7

 

1.1

 

Problem  definition   7

 

1.2

 

Purpose  and  goal   8

 

1.3

 

Scope  and  delimitation   8

 

1.4

 

Project  method   8

 

2.

 

Theoretical  background   9

 

2.1

 

Business  Intelligence   9

 

2.1.2

 

Data  Warehousing   9

 

2.1.3

 

Data  Warehouse  Appliances   12

 

2.1.4

 

Data  Warehouse  Appliance  architecture   13

 

2.2

 

Measuring  business  value   14

 

2.2.1

 

Business  value  of  an  IT  investment   15

 

2.2.2

 

Value  of  Business  Intelligence   15

 

2.2.3

 

Cost  and  value  of  information   17

 

3.

 

Research  Method   19

 

3.1

 

Choice  of  method   19

 

3.2

 

Seven  stages  of  interview  investigation   19

 

3.3

 

Question  types  –  when  to  ask  what  and  how   20

 

3.4

 

How  to  conduct  an  interview  of  great  quality   21

 

3.5

 

What  to  consider  when  conducting  an  interview   22

 

3.6

 

What  to  consider  when  analyzing  the  interview  results   22

 

4

 

Results   24

 

4.1

 

Vendor  interview  results   24

 

4.1.1

 

Top  business  values  of  Data  Warehouse  Appliances   24

 

4.1.1.1

 

Performance   25

 

4.1.1.3

 

Scalability   27

 

4.1.1.4

 

Simplicity   28

 

4.2

 

User  interviews   28

 

4.2.1

 

Thoughts  on  Data  Warehouse  Appliance  before  implementation   29

 

4.2.2

 

Thoughts  on  Data  Warehouse  Appliance  after  implementation   30

 

5.

 

Analysis   31

 

5.1

 

Vendor  interviews   31

 

5.1.1

 

Vendor  truths   31

 

5.1.1

 

Analysis  of  vendor  truths   32

 

5.2

 

User  companies  interviews   32

 

(6)

5.2.2

 

The  difference  between  expected  and  perceived  business  value  of  Data  Warehouse  

Appliances   33

 

5.2.3

 

What  drives  an  investment  in  Data  Warehouse  Appliance  technology   33

 

5.2.4

 

Delivering  value  is  more  important  than  lowering  costs   34

 

5.2.5

 

Focus  on  information  rather  than  technology   34

 

6.

 

Conclusion   35

 

6.1

 

Considerations   36

 

6.2

 

Further  research   36

 

7.  

 

References   37

 

7.1

 

Further  reading   37

 

7.2

 

Figures   38

 

Appendix  A   40

 

1

 

Vendor  interview  question  framework   40

 

2

 

Vendor  question  form   40

 

3

 

Using  companies  interview  question  framework   42

 

           

T

ABLE  OF  FIGURES

 

 

Figure  1:      Data  Warehouse  architecture                                11     Figure  2:      Shared  everything  architecture                                13   Figure  3:      Shared  nothing  architecture                                13

 

Figure  4:      Business  value  of  Business  Intelligence                              16

 

Figure  5:      Avantages  of  Data  Warehouse  Appliances  according  to  the  vendors                      24

 

Figure  6:      Factors  that  contribute  to  the  performance  of  Data  Warehouse  Appliances,  

                                         according  to  the  vendors                                  25   Figure  7:      Hardware  components  of  a  Data  Warehouse  Appliance                        27   Figure  8:      Pricing  of  a  Data  Warehouse  Appliance                              28   Figure  9:      Administrative  tasks,  before  and  after  an  implementation  of    

                                         Data  Warehouse  Appliances                                30

 

(7)

1.

 

  I

NTRODUCTION

 

Over  the  years,  companies  have  come  to  increasingly  value  their  stored  information.  This  

realization  is  related  to  the  fact  that  today,  almost  all  company  information  is  stored  electronically   in  databases.  The  companies  strive  towards  using  this  accumulated  information  as  a  source  and   base  for  various  decision  support  tools.  This  has  led  to  the  development  of  Business  Intelligence   (BI)  tools  and  Data  Warehousing  (DW),  which  helps  companies  get  more  out  of  what  they  already   possess,  by  analyzing  data  and  transforming  it  into  information.  The  very  best  results  are  obtained   when  implementing  a  customized  solution  which  fits  in  to  the  companies’  unique  business  

processes.  Among  other  things,  this  enables  ad  hoc  reports  and  forecasts  that  supports  employees   at  all  levels  in  their  decision-­‐making.    While  a  couple  of  years  ago,  the  usage  of  Business  Intelligence   tools  gave  your  company  business  leverage,  today  it  has  become  nearly  mandatory.  

 

The  Business  Intelligence  concept  of  Data  Warehousing  aims  to  collect  data  from  multiple  sources   and  store  it  in  one  common  database,  used  for  reporting  and  other  BI  tools  (Porter  &  Rome,  1995).   Today,  as  the  amount  of  collected  data  grows,  some  companies  are  growing  out  of  their  Data   Warehouse  solutions.  For  them,  a  pre-­‐packaged,  optimized,  large  scale  Data  Warehouse  solution  –   Data  Warehouse  Appliance  -­‐  might  be  of  interest.    

1.1   P

ROBLEM  DEFINITION

 

In  businesses  such  as  finance,  telecommunication  and  retail,  extremely  large  amounts  of  data  is   generated  every  day.  This  could  serve  as  a  perfect  source  for  Business  Intelligence  tools  and   applications,  which  analyze  data  and  create  analyses  that  can  provide  support  in  business  decision   situations.  However,  a  problem  arises  when  the  generated  data  amounts  to  a  level  where  it  is  no   longer  possible  to  load  into  the  system  quickly  enough.  For  example,  this  could  result  in  that  the   weekly  sales  statistics  are  not  completely  loaded  into  the  BI  applications  during  the  weekend.  This,   in  turn,  would  mean  that  the  upcoming  results  from  the  BI  tools  would  never  be  based  on  fresh   data,  but  instead  on  an  older  and  in  some  cases  irrelevant  base.  

 

(8)

1.2   P

URPOSE  AND  GOAL

 

This  thesis  aims  to  investigate  the  business  value  of  the  Data  Warehouse  Appliance  technology,  in   order  to  help  companies  that  are  considering  an  investment  in  making  their  decision.  

1.3   S

COPE  AND  DELIMITATION

 

The  study  will  focus  on  the  Data  Warehouse  Appliance  market  in  Sweden.  The  following  suppliers   and  their  respective  products  will  be  considered:  

 

● Teradata       Enterprise  Data  Warehouse,  Teradata  13.10   ● IBM         Netezza  

● Oracle       Exadata  Database  Machine  

● Microsoft/HP     Enterprise  Data  Warehouse  Appliance  

● SAP       HANA  

 

Other  suppliers  of  the  technology,  that  does  not  hold  market  in  Sweden,  has  been  set  as  out  of  scope   for  this  research  project.  

1.4   P

ROJECT  METHOD

 

(9)

2.  

T

HEORETICAL  BACKGROUND

 

In  order  to  provide  relevant  background  information  on  the  research  subject,  this  section  presents   information  compiled  from  a  literature  study.  The  first  section  presents  the  Business  Intelligence   and  Data  Warehousing  areas.  The  second  deals  with  business  value  -­‐  its  definition  and  ways  it  can   be  assessed.  The  information  about  Business  Intelligence,  Data  Warehousing  and  business  value   has  been  collected  from  books  and  academic  articles.  The  information  about  Data  Warehouse   Appliances  is  based  on  interviews  with  Appliance  vendors  as  well  as  their  documentation.      

2.1   B

USINESS  

I

NTELLIGENCE

 

Business  Intelligence  (BI)  is  a  concept  that  can  be  described  as  the  usage  of  business  information  

and  business  analysis  in  key  business  processes  in  order  to  take  actions  and  make  decisions  that   increase  performance  or  profit.  It  is  not  a  specific  product,  technology  or  methodology  but  rather  a   combination  of  the  three  (Williams  &  Williams,  2007).  

 

There  has  been  an  increased  interest  in  Business  Intelligence  over  the  past  few  years.  What  was   business  leverage  five  or  ten  years  ago  is  today  mandatory  in  order  to  keep  up  with  the  

competition.  Every  year  since  2004,  Business  Intelligence  has  been  among  the  top  ten  priorities  of   CIO’s.  This  year,  2012,  it  is  the  very  top  one  (Gartner,  2004-­‐2012).  

 

Today,  as  more  and  more  information  is  stored  electronically,  the  foundation  on  which  BI  tools  rely   becomes  greater.  One  reason  for  this  is  the  fact  that  prices  on  hardware  has  dropped,  allowing   companies  to  not  only  store  their  current  data,  but  historical  as  well  (Chaudhuri,  Dayal  &   Narasayya,  2011).  The  technology  for  storing  this  historical  data  is  commonly  called  Data   Warehousing.  

2.1.1   D

ATA  

W

AREHOUSING

 

Data  Warehousing  (DW)  is  a  term  for  the  collection  of  decision  support  technologies  enabling  

companies  to  make  better  and  faster  decisions  (Chaudhuri  &  Dayal,  1997).  In  order  to  understand   its  definition,  one  must  first  know  the  basics  of  operational  databases.    

(10)

Operational  databases  are  digital  storage  areas  for  computer  applications.  It  is  a  solution  for   handling  lots  of  data  for  many  users.  When  new  data  is  created  within  an  application,  it  is  sent  to   the  database  which  writes  it  to  its  memory.  When  a  user  wants  information  in  an  application,  a   request  -­‐  or  query  -­‐  for  the  relevant  data  is  sent  to  the  database.  The  read  and  write  operations  of   an  operational  database  are  typically  simple  and  many.  Every  single  query  that  is  sent  costs  a  bit  of   the  database’s  capacity,  meaning  that  the  amount  of  capacity  needed  is  based  on  the  number  of   queries  and  their  complexity.  Therefore,  companies  with  many  users  or  a  large  amount  of  complex   queries  need  a  database  with  a  lot  of  capacity  (Abiteboul  et  al,  1995).  

 

In  the  1990’s  when  companies  were  starting  to  analyze  data  stored  in  their  databases,  they  realized   some  important  differences  between  operational  and  analytical  needs:  

   

● The  data  serving  needs  were  physically  different  

● The  supporting  technology  needs  were  fundamentally  different   ● The  user  communities  were  different  

● The  processing  characteristics  were  fundamentally  different    

These  findings  led  to  the  separation  of  operational  databases  and  databases  with  historical  data   intended  for  analysis.  These  databases  were  named  Data  Warehouses  and  its  main  characteristics   are  (Inmon,  2005):  

 

• It  has  a  longer  time  horizon  than  operational  databases   • It  integrates  data  from  many  heterogeneous  sources  

• It  is  organized  around  subjects  such  as  customer,  product  or  sales  

• Its  data  is  not  changed  over  time,  the  only  permitted  change  is  to  add  new  data    

In  later  years  Data  Warehousing  has  come  to  mean  different  things.  One  meaning  is  the  database   itself  and  another,  broader  meaning  is  the  entire  Data  Warehouse  environment.  The  reason  for  this   is  that  in  the  beginning  a  Data  Warehouse  consisted  of  just  one  database.  As  it  often  ended  up   overly  complicated  and  hard  to  understand  and  navigate,  it  evolved  into  an  architecture  consisting   of  both  a  large  integrated  database  and  smaller  databases  targeted  only  to  support  a  few  

(11)

Surrounding  this  architecture  are  processes  to  handle  the  flow  of  data  from  operational  systems  to   analytic  applications.  This  is  needed  because  the  data  stored  often  differs  between  the  source   systems.  Examples  of  differences  are:    

 

• Label  of  the  information,    

such  as  a  person  being  labeled  as  a  customer  in  one  system  and  a  user  in  another     • Structure  of  data,    

such  as  forename  and  surname  stored  separately  in  one  system  and  together  in  another   • Formatting  of  data,    

such  as  a  zip  code  saved  as  a  number  in  one  system  and  as  a  text  string  in  another      

The  term  used  to  describe  this  flow  of  information  is  the  Extract-­Transform-­Load  (ETL)  process.   Figure  1  displays  a  typical  Data  Warehouse  architecture  with  source  systems,  Data  Warehouse,   Data  Marts,  analytical  tools,  as  well  as  the  ETL  process.  

 

(12)

2.1.2   D

ATA  

W

AREHOUSE  

A

PPLIANCES

 

This  section  is  a  compilation  of  information  extracted  from  interviews  with  Data  Warehouse   Appliance  vendors  and  a  number  of  published  documents.  As  an  introduction,  here  is  the  definition   of  appliance  by  the  New  Oxford  American  Dictionary:  

 

appliance

¦

əә plīəәns¦

noun

1 a device or piece of equipment designed to perform a specific

task, typically a domestic one. See note at TOOL

.

• an apparatus fitted by a surgeon or a dentist for corrective or

therapeutic purpose : electrical and gas appliances.

2 Brit. the action or process of bringing something into operation :

the appliance of science could increase crop yields.

The  definition  of  Data  Warehouse  Appliance  is,  according  to  one  vendor,  a  complete  and  optimized   software  and  hardware  solution  for  large-­‐scale  Data  Warehousing  purposes.  Others  referred  to  an   analogy  of  a  kitchen  appliance,  and  argued  that  any  two  appliances  have  one  thing  in  common:  it  is   not  defined  by  what  it  consists  of,  but  by  what  it  is  meant  to  do.  While  you  could  describe  a  toaster   as  a  metal  box  containing  heating  elements  and  a  spring  timer,  the  common  way  is  to  say  it's  a  tool   for  toasting  bread.  Ergo,  an  appliance  is  a  tool  or  product  with  a  specific  purpose.    

 

According  to  vendors,  companies  that  have  invested  in  Appliance  technology  are  in  one  of  the   following  categories:  

 

● Companies  with  large  amounts  of  data   ● Companies  with  complex  queries   ● Companies  with  many  queries    

Targeted  areas  are  retail,  telecommunications  and  banking.  What  they  have  in  common  is  the  large   amount  of  operational  data  that  is  generated  every  day.  Banks  register  every  transaction  from   every  customer,  retail  companies  register  every  item  sold  in  every  store  and  telephone  companies   register  every  call  and  message  of  every  customer.    

(13)

However,  the  vendors  differentiate  as  they  target  companies  of  various  sizes.  While  one  vendor   states  that  those  who  consider  the  DW  Appliance  technology  usually  are  among  the  five  largest  in   their  industry,  others  imply  that  their  solutions  fit  the  needs  of  smaller  sized  companies  as  well.   Another  vendor  claims  that  there  are  clear  breaking  points  in  data  volume  that  indicate  that  an   Appliance  is  applicable.  This  vendor  states  that  at  six  to  ten  terabytes  of  stored  data,  it  becomes   more  beneficial  in  terms  of  hardware  price  and  performance  -­‐  while  other  vendors  mention  one   terabyte  as  this  breaking  point.  

 

2.1.3   D

ATA  

W

AREHOUSE  

A

PPLIANCE  ARCHITECTURE

 

When  DW  Appliance  vendors  are  asked  how  the  technology  works,  it  is  clear  that  the  solution  is   complex.  One  component  that  is  essential  to  the  concept  of  Data  Warehouse  Appliance  is  the  overall   architectural  design.  

 

Data  Warehouse  Appliances  focus  on  two  architectural  types  of  design:  Symmetric  Multi-­‐Processing   (SMP)  and  Massively  Parallel  Processing  (MPP).  Both  intend  to  speed  up  the  input/output  (I/O)  of   the  database  but  they  work  in  slightly  different  ways.  The  SMP  design  revolves  around  multiple   processing  units  connected  to  a  single  shared  memory  and  storage  area.  This  design  is  often  called   a  shared  everything  design,  and  is  shown  in  figure  2.  The  MPP  design  has  parallel  processing  units   which  all  have  their  own  data  source  and  memory.  This  is  called  shared  nothing  architecture,  and  is   shown  in  Figure  3.  

                   

(14)

Both  designs  use  a  query  planner,  which  distributes  the  incoming  tasks  on  the  different  processing   units.  Each  unit  does  its  part  of  the  work  and  the  result  is  then  assembled  at  the  end.  On  top  of  the   query  planner  is  an  interface,  which  typically  is  able  to  understand  most  database  query  languages.      

All  DW  Appliance  systems  use  some  kind  of  security  for  handling  hardware  malfunctions.  The   most  common  setup  is  RAID  1,  which  means  that  every  disc  has  a  mirror  somewhere,  containing   the  exact  same  information.  The  system  is  usually  configured  in  a  way  that  prevents  two  mirror   partitions  from  being  on  the  same  physical  machine.  The  risk  of  inaccessible  data  is  therefore   further  reduced.    

 

2.2   M

EASURING  BUSINESS  VALUE

 

In  order  to  investigate  how  an  investment  in  Data  Warehouse  Appliances  can  be  valued,  it  is   important  to  first  understand  what  business  value  is.  The  economic  formula  for  defining  value  is   rather  straight  forward:  “Economical  value  occurs  when  the  benefit  derived  from  a  resource’s   application  is  greater  than  the  costs  incurred  from  its  planning,  acquisition,  maintenance,  and   disposition.”  This  means  that  value  roughly  can  be  translated  into  benefits  minus  costs  (English,   1999).    

 

The  possible  outcomes  of  any  successful  investment  are  lowered  costs,  improved  productivity  and   increased  revenue,  all  leading  to  that  more  money  will  be  generated  than  what  was  spent.  This  is   called  return  on  investment  (ROI)  (Adelman  &  Moss,  2000).  

 

Benefits  can  be  divided  into  two  categories:  tangible  and  intangible.  Tangible  benefits  are  those  that   are  considered  easily  quantifiable,  such  as  higher  productivity  or  fewer  returned  products.  

Intangible  benefits  are  harder  to  measure  and  creates  value  indirectly.  Examples  of  intangible   benefits  are  goodwill  and  customer  relationships.  Costs  are  also  usually  divided  into  two  categories:  

fixed  and  variable.  Fixed  costs  are  described  as  the  costs  involved  with  creating  the  capacity  to  

(15)

time  (English,  1999).  These  concepts  should  be  kept  in  mind  while  reading  further  about  value  in  IT   and  Business  Intelligence.  

2.2.1   B

USINESS  VALUE  OF  AN  

IT

 INVESTMENT

 

Business  value  is  the  difference  between  perceived  value  of  the  company's  product  or  service  and   the  cost  for  it.  In  order  to  sell  a  product  or  service,  a  company  will  need  to  create  business  value  and   then  capture  it.  There  have  been  many  attempts  to  try  to  describe  the  value  of  IT  in  an  organization,   and  the  main  issue  is  to  describe  how  a  general  IT  infrastructure  contributes  to  the  overall  benefits   and  costs.    

 

There  are  several  reasons  to  why  companies  wish  to  do  value  assessments  of  their  IT  investments  -­‐   it  can  not  only  help  justify  the  money  spent,  but  can  also  function  as  a  way  of  engaging  the  

employees  and  future  users.  The  assessment  process  focuses  on  what  creates  value  and  is   important  for  the  company.  This  thought  process  is  said  to  create  creativity  and  motivation   (Dahlgren  &  Lundgren  &  Stigberg,  1998)  (Keeney,  1994).  But  there  is  a  real  challenge  in  assessing   the  value  of  an  IT  investment.  Studies  indicate  that  there  is  no  absolute  method  of  measuring  the   value  of  an  IT  investment  which  is  applicable  for  all  companies.  Instead,  while  some  companies  try   to  quantify  the  value  and  make  everything  into  dollars  and  cents,  others  consider  a  list  of  intangible   values  as  a  reason  for  an  investment  (Renkema,  2000).    

 

One  reason  that  assessments  of  IT  investments  are  difficult  to  conduct  is  the  fact  that  different  parts   of  an  organization  might  not  consider  the  same  things  to  be  of  value.  From  the  business  

management  point  of  view,  factors  such  as  higher  margins  and  improved  efficiency  are  prioritized.   But  from  a  technological  perspective,  availability,  performance  and  security  is  of  higher  interest   (Gammelgård,  2007).  

2.2.2   V

ALUE  OF  

B

USINESS  INTELLIGENCE

 

The  true  value  of  Business  Intelligence  occurs  when  business  information  is  combined  with  

(16)

 

Figure 4: Business value of Business Intelligence

Business  Intelligence  affects  the  business  value  to  a  very  large  extent.  Companies  and  organizations   have  been  using  information  as  a  foundation  for  decisions  and  performance  control  for  a  long  time.   This  comes  from  the  basic  assumption  that  an  informed  decision  tends  to  have  a  higher  chance  of   leading  to  good  results  than  an  uninformed  one.  This  is  a  straightforward  reason  for  gathering   information  in  a  business.  The  less  uncertainty  we  have  about  the  current  state  and  future   outcomes,  the  better  chance  we  have  to  make  decisions  with  good  outcomes  (Clemen  &  Reilly,   2011).  

 

To  assess  the  value  of  information  that  will  influence  decisions  and  actions,  Clemen  &  Reilly  (2011)   introduce  the  term  expected  value  of  information.  This  term  describes  what  we  expect  to  gain  from   acquiring  more  information  on  how  to  act.  Only  by  considering  the  expected  value  of  information   can  we  decide  whether  to  invest  in  obtaining  it.  The  worst-­‐case  scenario  is  that  no  new  input  is   acquired  on  how  to  make  the  decision,  and  in  this  case  the  expected  value  of  the  new  information  is   zero.  The  best  case  is  when  the  acquired  information  always  leads  to  a  decision  with  the  best   possible  outcome.  This  is  according  to  Clemen  &  Reilly  called  perfect  information.  Putting  this   together,  the  expected  value  of  any  information  source  is  somewhere  between  zero  and  the  value  of   perfect  information.  Additionally,  the  expected  value  of  information  is  critically  dependent  on  the   particular  decision  or  problem  at  hand.  This  means  that  different  people,  in  different  situations,   place  different  value  on  the  same  information.  

 

(17)

investments  of  179  larger  companies  were  studied.  The  findings  were  that  companies  that  had   adopted  data  driven  decision-­making  had  5-­‐6%  higher  output  and  productivity.  They  also  found  a   correlation  between  making  decisions  based  on  data  and  asset  utilization,  return  on  equity  and   market  value.  In  a  study  made  by  Park  (2006),  it  was  concluded  that  a  full  data  warehouse  solution   increases  the  performance  of  Decision  Support  System  users.    

 

The  main  focus  of  BI  is  to  enable  profit  making  and  to  make  non-­‐profit  making  business  processes   more  efficient.  This  is  done  through  identifying  the  information  which  the  business  processes  need   and  obtaining  that  very  information.  Therefore,  every  BI  environment  should  be  developed  around   the  company's  business  processes  (Willams  &  Williams,  2007).  

2.2.3   C

OST  AND  VALUE  OF  INFORMATION

 

A  common  approach  to  Data  Warehousing  is  that  all  stored  data  is  valuable,  meaning  that  the  more   information  is  saved,  the  more  valuable  it  is.  This  is  not  entirely  true.  Although  a  Data  Warehouse   could  potentially  be  more  valuable  when  filled  with  a  greater  amount  of  information,  it  is  not  until   the  information  is  used  in  the  organization  it  becomes  valuable  (English,  1999).  

 

In  business  there  are  typically  two  types  of  costs,  fixed  and  variable.  However  when  discussing  the   cost  of  information  there  are  two  other  areas  that  categorize  costs:  the  cost  basis  and  the  value   basis.  The  cost  basis  of  information  is  the  cost  of  developing  and  maintaining  the  infrastructure  that   supports  collecting  information.  This  includes  developing  information  and  technology  architecture,   as  well  as  the  cost  of  designing  applications  and  databases.  The  value  basis  of  information  is  the   cost  of  applying  information.  This  means  the  cost  for  applications  that  access  or  retrieve  data  and   use  it  to  perform  work  or  to  solve  a  business  problem  (English,  1999).    

 

Before  the  information  can  create  value,  it  must  go  through  a  process  containing  various  steps   which  all  are  tied  to  costs.  This  process  is  called  the  Resource  life  cycle.  IT  systems  designed  to   capture  data  and  turn  it  into  information  is  looked  upon  as  a  company  resource.  The  first  step  of   this  cycle  is  the  planning.  This  step  consists  of  planning  what  software  and  hardware  to  buy.  The   second  step  is  the  acquisition  step,  where  the  company  buys  and  installs  its  purchase  in  the  

(18)
(19)

3.  

R

ESEARCH  

M

ETHOD

 

This  section  presents  the  research  and  interview  methods  used  in  the  study,  to  vindicate  the   correctness  of  the  conducted  interviews  and  their  function  as  research  material.  

 

3.1   C

HOICE  OF  METHOD

 

The  interviews  were  conducted  according  to  the  principles  stated  by  Kvale  in  ’Interviews  –  an   introduction  to  qualitative  research  interviewing’  (1996).  A  qualitative  research  method  was   chosen  because  of  a  number  of  reasons.  First  -­‐  since  the  existing  research  is  extremely  limited,  the   interviews  serve  as  the  main  source  of  information  on  the  subject  and  therefore  needs  to  be  in-­‐ depth.  Second  -­‐  the  target  interviewees  were  too  few  to  serve  as  a  reasonable  ground  for  a   quantitative  research.  Third  -­‐  since  a  comparison  of  the  answers  from  the  different  interviewees   was  to  be  conducted,  reasons  existed  for  using  a  predefined  set  of  questions.  

 

However,  it  is  important  to  create  a  comfortable  interview  environment  where  the  interviewee   feels  secure  and  comfortable  and  therefore  answers  the  questions  openly.  Therefore,  the  interviews   were  conducted  in  a  semi-­‐structured  way,  using  a  framework  of  topics  that  were  to  be  discussed   instead  of  questions  being  answered.  This  is  found  in  Appendix  A.  Prior  to  each  interview;  these   topics  were  changed  to  fit  the  specific  interviewee.  The  interview  was  then  recorded,  which  allowed   the  researchers  to  participate  actively  and  take  notes  when  specific  subjects  of  interest  were  

discussed  to  enable  revisits  to  them  later.  The  transcription  of  the  interviews  was  facilitated  by   performing  it  the  very  day  of  the  interview,  while  fresh  in  mind.  

 

3.2   S

EVEN  STAGES  OF  INTERVIEW  INVESTIGATION

 

Kvale  introduces  the  following  seven  stages  of  interview  investigation:   1. Thematizing  

(20)

6. Verifying   7. Reporting    

The  first  stage,  thematizing,  results  in  a  well-­‐formulated  purpose  of  the  investigation  and  a  

description  of  the  main  topic.  This  is  to  be  done  before  any  of  the  interviews  takes  place,  in  order  to   gain  an  understanding  of  what  is  to  be  done  during  the  research,  and  why.  It  is  followed  by  a  

designing  phase  where  the  research  study  is  planned  in  detail  with  regards  to  all  of  the  seven  stages  

as  a  whole.  The  interviewing  is  then  conducted  in  the  chosen  manner,  according  to  the  interview   guide  that  was  developed  during  the  previous  designing  phase.  The  transcribing  phase  follows,   which  aims  to  prepare  the  material  for  analysis.  Kvale  stresses  the  importance  of  this  stage,   claiming  that  rather  than  being  a  simple  clerical  task,  transcription  is  itself  an  interpretative   process.  Through  careful  analyzing,  conclusions  can  be  drawn.  This  is  done  systematically,  using  a   chosen  method  that  is  in  line  with  the  previously  stated  purpose  of  the  project.    By  verifying  the   collected  material,  the  generalizability,  reliability  and  validity  of  the  conducted  interviews  are   ascertained.  Finally  the  reporting  is  done  to  communicate  the  findings.  

 

3.3   Q

UESTION  TYPES  

 WHEN  TO  ASK  WHAT  AND  HOW

 

Kvale  also  introduces  how  and  when  different  types  of  interview  questions  are  asked:    

Introducing  questions  are  used  to  open  up  a  conversation  broadly,  e.g.  ’can  you  tell  me  

something  about…’  

Follow-­up  questions  are  used  to  keep  the  conversation  going.  Either  by  asking  a  direct  

question  on  the  already  touched  subject,  repeating  keywords  or  agreeing:  nodding,  making   affirmative  sounds  

Probing  questions  are  used  to  make  the  interviewee  elaborate  on  the  already  touched  

subject  

Specifying  questions  are  used  to  drill  down  into  a  detailed  subject  and  the  opinions  of  the  

interviewee,  e.g.  ’what  did  you  think  then?’  

Direct  questions  are  used  to  openly  introduce  a  new  topic  or  dimension  to  the  discussion  

Indirect  questions  can  be  used  either  to  discretely  introduce  a  new  topic  or  dimension  to  the  

(21)

Structuring  questions  are  used  to  close  an  already  exhausted  topic  or  disrupt  a  long  answer  

which  is  not  relevant  to  the  research  

Silence  in  between  the  questions  are  used  to  make  the  interviewee  more  comfortable  and  

get  time  to  collect  his/her  thoughts  without  feeling  rushed  

Interpreting  questions  are  asked  to  confirm  that  what  you  have  interpreted  from  the  

answers  really  is  what  the  interviewee  meant,  e.g.  ’So  it  is  true  that  you  mean  that…?’    

Moreover,  the  aspects  of  how  and  when  to  use  leading  questions  are  discussed.  According  to  Kvale  it   suits  qualitative  research  interviews  particularly  well  as  it  is  not  only  is  important  to  repeatedly   check  the  reliability  of  the  interviewees’  answers,  but  also  to  verify  the  interviewers’  

interpretations.  As  a  qualitative  research  study  generally  comprises  a  smaller  number  of  interviews   than  a  quantitative,  this  is  of  especially  great  importance.  Kvale  stresses  that  the  interviewer  should   not  put  focus  on  whether  to  lead  or  not,  but  rather  where  the  interview  questions  should  lead  –  in   important  directions,  which  results  in  relevant  findings  for  the  research  study.  

 

3.4   H

OW  TO  CONDUCT  AN  INTERVIEW  OF  GREAT  QUALITY

 

A  great  quality  interview  requires  not  only  well  planned  and  asked  questions,  but  also  an   interviewer  who  possesses  the  following  qualities:  

  ● Knowledgeable   ● Structuring   ● Clear   ● Gentle   ● Sensitive   ● Open   ● Steering   ● Critical   ● Remembering   ● Interpreting    

(22)

 

● The  answers  should  be  spontaneous,  rich,  specific,  and  relevant  

● The  questions  asked  should  be  short  and  clear,  allowing  the  answers  to  be  long  and  in  focus   ● The  interviewer  should  take  care  to  clarify  the  meanings  of  relevant  terms  used  in  the  

interview    

● The  interpretation  of  the  answers  should  begin  already  during  the  interview  

● The  interviewer  should  strive  to  verify  his  or  her  interpretations  of  the  interviewee’s   answers  during  the  interview  

● The  interview  should  be  self-­‐communicative  and  therefore  be  understandable  without   extensive  knowledge  of  or  introduction  to  the  subject  

 

3.5   W

HAT  TO  CONSIDER  WHEN  CONDUCTING  AN  INTERVIEW

 

While  performing  the  analysis,  there  are  two  crucial  factors  of  which  the  researchers  need  to  be   aware.  First  –  their  own  theoretical  presuppositions  and  the  role  these  play  in  the  interpretation  of   the  material.  Second  –  the  usage  of  either  miners'  or  travelers'  approach.  When  using  the  former,  the   researcher  must  take  care  not  to  affect  the  interviewee’s  answer  in  any  way  –  much  like  a  botanic   collecting  flowers  in  the  nature  without  damaging  the  environment.  When  using  the  latter,  the   opposite  applies  and  the  questions  asked  are  answered  collaboratively.  

 

3.6   W

HAT  TO  CONSIDER  WHEN  ANALYZING  THE  INTERVIEW  RESULTS

 

To  gain  a  high  level  of  reliability,  validity  and  generalizability,  there  are  a  number  of  things  to   consider  when  analyzing  the  interview  results,  especially  when  they  are  qualitative  and  conducted   semi-­‐structurally.    

   

Generalizability  tells  to  which  degree  the  conclusions  that  are  drawn  from  the  analysis  apply  in  

general.  This  is  crucial  when  a  small  number  of  interviews  are  conducted,  as  they  will  represent  a   much  larger  group.  According  to  Kvale,  this  is  achieved  through  examining  relevant  attributes  only.      

Reliability  concerns  the  consistency  of  the  research  findings.  The  more  sources  tell  the  same,  the  

(23)

 

Validity  regards  the  degree  to  which  the  observations  reflects  the  variables  that  are  of  true  

importance  to  the  research.  This  is  achieved  through  the  researchers’  capabilities  and  

craftsmanship,  and  concerns  agreeing  with  the  interviewee  on  the  meanings  of  the  terms  that  are   used.  It  also  concerns  the  truth  and  correctness  of  the  interviewee’s  statements,  which  must  be   carefully  evaluated  by  the  researcher.  

(24)

4  

R

ESULTS

 

This  section  presents  a  summary  of  what  was  said  during  the  interviews  with  the  vendors  and  user   companies.  

 

4.1   V

ENDOR  INTERVIEW  RESULTS

 

Vendor  interviews  were  conducted  in  order  to  gain  an  insight  into  what  the  technology  aims  to   solve  as  well  as  to  analyze  the  current  position  of  the  appliance  technology  vendors.  

 

In-­‐depth  interviews  were  conducted  semi-­‐structurally  and  in  person.  The  question  framework  can   be  found  in  Appendix  A.  Follow-­‐up  questions  were  asked,  when  necessary,  via  email  and  telephone.   Afterwards,  a  form  was  sent  out  to  enable  comparisons  between  the  vendors  and  attain  and  collect   short,  clear  and  specific  answers.  The  question  form  and  the  collected  answers  can  be  found  in   Appendix  A.    

4.1.1   T

OP  BUSINESS  VALUES  OF  

D

ATA  

W

AREHOUSE  

A

PPLIANCES

 

According  to  Data  Warehousing  Appliance  vendors  there  are  many  reasons  to  invest  in  data   warehouse  technology.  They  mention  the  benefits  seen  in  Figure  5.  

 

(25)

Cost  of  hardware,  the  cost  that  occurs  when  buying  hardware  to  support  the  Data  Warehouse  

Appliance  

Cost  of  maintenance,  the  cost  of  administration  and  development  tasks  Performance,  the  speed  at  which  the  Data  Warehouse  Appliance  operates  Support,  the  external  help  received  when  maintaining  or  troubleshooting    

Time  of  implementation,  the  duration  of  setting  up  and  configuring  the  Data  Warehouse  

Apppliance  

Read  performance,  the  speed  with  which  a  question  to  the  Data  Warehouse  Appliance  is  

retrieved  

Write  performance,  the  speed  with  which  an  update  batch  is  inserted  into  the  Data  

Warehouse  Appliance  

Scalability,  the  Data  Warehouse  Appliances’  ability  to  expand  or  contract  in  order  to  fit  the  

changing  needs  of  the  user  company  

Other,  including  shortened  ‘latency’  in  information  which  means  the  reduced  time  taken  for  

information  flow  between  operational  system  and  analysis,  and  fewer  systems  to  administrate  

 

The  following  sections  cover  what  the  vendors  say  about  these  benefits.  

4.1.1.1   PERFORMANCE  

In  terms  of  performance  every  vendor  has  numerous  reasons  why  appliances  are  fast.  The  vendors   mention  many  factors  that  make  up  the  Appliance  performance,  as  seen  in  Figure  6.  

(26)

When  discussing  performance,  vendors  explain  that  the  main  issue  with  large  scale  Data  

Warehousing  is  the  input/output  (I/O).  I/O  can  be  described  as  the  flow  of  data  between  processing   and  storage.  Today  the  processing  speed  is  much  higher  than  the  reading  speed  of  storage  discs.  In   order  to  make  up  for  the  slow  reading  speed,  Appliance  products  use  parallel  processing  of  data.   This  is,  as  shown  in  Figure  6,  an  essential  part  of  why  appliances  have  high  performance.  The  goal   has  been  to  retrieve  as  little  unnecessary  data  as  possible  from  the  database.  To  achieve  this,  the   DW  Appliance  has  several  processing  units  directly  linked  to  the  location  of  the  data.  These  

processing  units  each  process  their  own  part  of  a  query  and  filter  out  unneeded  rows  and  columns.     Many  Appliance  products  also  use  compression  to  further  reduce  the  traffic  between  processing   units  and  storage.  This  parallel  processing  technology  is  controlled  by  software  developed  

especially  for  Appliances.  Vendors  say  that  software  that  handles  query  planning  and  optimizing  is   central  in  building  a  parallel  Data  Warehouse  solution.    

 

Because  of  the  highly  increased  performance  in  Appliances,  the  structure  of  the  Data  Warehouse   can  be  changed.  The  potential  benefit  is  shortened  latency  between  registered  information  in   source  systems  and  information  ready  for  analysis.  Vendors  explain  that  with  increased  

performance  of  queries,  the  traditional  architecture  with  a  large  Data  Warehouse  and  several  Data   Marts  can  be  changed.  The  result  is  a  structure  where  all  of  the  data  is  stored  in  the  Data  

Warehouse  and  the  Data  Marts  are  built  as  views  of  that  data.  According  to  a  vendor  this  has   several  benefits,  such  as  less  duplicated  data,  less  development  effort  and  more  flexibility  in  report   design.    

 

When  talking  about  DW  Appliance  business  value,  one  of  the  benefits  most  commonly  mentioned   by  vendors  is  the  change  in  maintenance.  Since  the  architecture  can  be  changed  and  compressed  to   one  place,  the  administrative  work  is  reduced.  Vendors  argue  that  since  less  physical  modeling  is   needed  to  create  Data  Marts,  indexes  and  aggregated  views,  less  development  is  required  from  a   Business  Intelligence  perspective.  The  eliminated  need  to  construct  Data  Marts  also  contributes  to  a   more  flexible  environment  for  the  developers.    

 

(27)

on  this  is  that  it  is  easier  building  an  optimized  solution  with  hardware  that  fit  well  together.   Another  mentioned  reason  is  that  prices  can  be  lowered.  

     

Figure 7: Hardware components of a Data Warehouse Appliance

 

All  vendors  provide  a  unified  source  of  support.  Since  large  scale  Data  Warehouse  architectures  can   be  very  complex,  it  is  often  hard  to  specify  exactly  what  is  causing  errors  or  performance  issues.   This  problem  lies  in  the  many  different  components  that  constitute  the  architecture.  Vendors  argue   that  with  a  standardized  product,  it  is  far  easier  to  duplicate  the  environment  and  run  tests  to  find  a   solution.  There  is  also  an  issue  with  responsibility,  where  in  a  solution  with  many  vendors  low   performance  or  errors  could  be  blamed  on  others.    

4.1.1.2   SCALABILITY  

Appliance  solutions  are  in  many  ways  targeted  for  companies  with  large  amounts  of  data.  This   means  that  the  products  must  be  able  to  grow.  Vendors  talk  about  the  concepts  and  linear   scalability  and  modular  expansion.  Linear  scalability  means  that  performance,  price,  and   administration  will  increase  linearly  when  expanding  the  Data  Warehouse  Appliance.  Modular  

expansion  means  that  expansion  of  the  Data  Warehouse  Appliance  is  done  in  modules  –  a  company  

(28)

4.1.1.3   SIMPLICITY  

There  are  a  number  of  benefits  which  are  less  tangible.  One  reason  to  invest  in  an  Appliance  is  -­‐   according  to  the  vendors  -­‐  the  lowered  amount  of  systems  included  in  the  Data  Warehouse   architecture.  This  benefit  is  accompanied  by  fewer  administrative  tasks.  A  result  of  these  impacts   would  be  a  less  complex  Data  Warehouse  environment.  Another  aspect  taken  into  consideration   when  marketing  DW  Appliances  is  the  pricing.  Vendors  have  learned  that  pricing  of  large  scale   systems  can  be  very  confusing  to  the  customer.  They  have  therefore  developed  a  simple  pricing   method  with  either  price  per  complete  product,  or  per  amount  of  storage  needed.  This  is  shown  in   Figure  8.  The  column  ‘Other’  represents  the  answer  that  a  combination  of  the  pricing  methods  can   be  offered.    

 

 

Figure 8: Pricing of a Data Warehouse Appliance

4.2   U

SER  INTERVIEWS

 

 

User  interviews  were  conducted  in  order  to  gain  an  insight  into  the  decision  process  of  a  Data   Warehouse  Appliance  investment:    

 

What  where  the  grounds  for  the  investment?  How  was  the  vendor  chosen?  How  was  the   implementation  managed?  And  most  importantly:  what  is  the  perceived  business  value?    

In-­‐depth  interviews  were  conducted  semi-­‐structurally  and  in  person.  A  framework  of  questions  and   topics  was  sent  to  the  interviewees  beforehand.  This  can  be  found  in  Appendix  A.  Follow-­‐up  

References

Related documents

Problemet är att skillnaden mellan de olika systemen kan vara mycket stor vilket gör det svårt att utvinna bra information. Idag så finns det olika sätt för att komma tillrätta

Resultatet i den aktuella studien visade att både män och kvinnor med högre nivåer av konservativa attityder hade implicita negativa associoner mot utomnordiska ansikten, vilket

När föräldrarna fick mer kunskap om den palliativa vården så upptäckte de att när deras barn blev så pass försämrade att de gick in i det palliativa skedet så betydde inte

As an example, an algorithmic trading system responsible for splitting large orders into several smaller orders could upon receipt of a new order study the results of actions

Några närstående kände också att PS bidrog till att patienterna fick en god död, eftersom att patienterna kunde få sina önskemål uppfyllda (Bruinsma et al., 2014)..

Artificial capillaroscopy videos were used to compare the stabilisation algorithms Mutual information, Single-step DFT, Block matching and Phase correlation in terms of

The four best network configurations in regards to the least drop in accuracy, compared to the original network, and the speed-up gained for convolutional layers are presented in

With the shift towards a circular economy, furniture companies can recapture the remaining value of furniture products through refurbishing, repairing or remanufacturing,